WO2010095167A1 - Test apparatus, calibration method and program - Google Patents

Test apparatus, calibration method and program Download PDF

Info

Publication number
WO2010095167A1
WO2010095167A1 PCT/JP2009/000646 JP2009000646W WO2010095167A1 WO 2010095167 A1 WO2010095167 A1 WO 2010095167A1 JP 2009000646 W JP2009000646 W JP 2009000646W WO 2010095167 A1 WO2010095167 A1 WO 2010095167A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal group
signal input
unit
output
reference phase
Prior art date
Application number
PCT/JP2009/000646
Other languages
French (fr)
Japanese (ja)
Inventor
松原康夫
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2009/000646 priority Critical patent/WO2010095167A1/en
Priority to TW099104486A priority patent/TW201037332A/en
Publication of WO2010095167A1 publication Critical patent/WO2010095167A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31922Timing generation or clock distribution

Definitions

  • the present invention relates to a test apparatus, a calibration method, and a program for testing a device under test.
  • the test apparatus outputs a test signal having a designated waveform at a timing delayed by a designated time from the reference phase for each test cycle.
  • the test apparatus acquires the value of the response signal from the device under test at a timing delayed by a specified time from the reference phase.
  • the test apparatus also includes a large number of signal input / output units that exchange signals with the device under test. The plurality of signal input / output units are adjusted prior to the test so that their reference phases coincide with each other (Patent Document 1). International Publication No. 2007/072738 Pamphlet
  • a plurality of signal input / output units are provided distributed on a plurality of substrates.
  • the phase difference in the reference phase between the two signal input / output units is based on differences in physical conditions (for example, temperature conditions, transmission paths, relay connector fitting conditions, power supply voltage conditions, etc.) for each board.
  • the case where the substrates are different tends to be larger than the case of. Therefore, it is preferable that the test apparatus can reduce the phase difference between the substrates by simple processing when adjusting the reference phase in each signal input / output unit.
  • a test apparatus for testing a device under test each of which outputs a signal to a terminal of the device under test and is output from the terminal.
  • a first terminal group and a second terminal group having a plurality of signal input / output units for inputting signals; the signal input / output units of each of the first terminal groups; and the signal input / output units of each of the second terminal groups.
  • the base For each pair of the measurement unit to be measured and the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other, the base Providing a test device comprising an adjustment unit for the reference phase based on the difference of the phase closer to each other, the.
  • a calibration method for calibrating a test apparatus for testing a device under test wherein each of the test apparatuses outputs a signal to a terminal of the device under test and outputs from the terminal.
  • a first terminal group and a second terminal group each having a plurality of signal input / output units for inputting the received signals, each of the signal input / output units of the first terminal group and each of the signals of the second terminal group
  • a reference phase for inputting / outputting a signal for each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other in a state where the input / output unit is connected to each other.
  • a first terminal group and a second terminal group having a plurality of signal input / output units for outputting and inputting signals output from the terminals, and the computer is connected to each of the signal input / output units of the first terminal group.
  • the signal input / output units of the first terminal group and the signal input / output units of the second terminal group connected to each other in a state where the signal input / output units of the second terminal group are connected to each other.
  • the reference phase adjusting unit close to each other the reference phase based on the difference of, providing a program for causing to function.
  • FIG. 1 shows a configuration of a test apparatus 10 according to the present embodiment.
  • FIG. 2 shows an example of the configuration of the signal input / output unit 30.
  • FIG. 3 shows an example of the configuration of the calibration unit 50.
  • 4 shows the reference phase distribution A of the signal input / output units 30 belonging to the first terminal group 21, the reference phase distribution B of the signal input / output units 30 belonging to the second terminal group 22, and the average value of the reference phases. Distribution A and distribution B after matching are shown.
  • FIG. 5 shows the distribution A and the distribution B after the average value of the reference phase is matched between the terminal groups, and after the reference phase is further adjusted from the state where the average value of the reference phase is substantially matched between the terminal groups.
  • FIG. 2 shows a reference phase distribution C in which the first terminal group 21 and the second terminal group 22 are combined.
  • FIG. 6 shows a flowchart of the calibration process of the test apparatus 10 according to the present embodiment.
  • FIG. 7 shows a configuration of a test apparatus 10 according to a modification of the present embodiment. 2 shows an exemplary hardware configuration of a computer 1900 according to an embodiment of the present invention.
  • FIG. 1 shows a configuration of a test apparatus 10 according to the present embodiment.
  • the test apparatus 10 tests a device under test such as a semiconductor device.
  • the test apparatus 10 is mounted with a device under test by a handler device or the like when testing the device under test. Further, the test apparatus 10 calibrates the test apparatus 10 prior to the test.
  • the test apparatus 10 includes a first terminal group 21, a second terminal group 22, and a control apparatus 24.
  • Each of the first terminal group 21 and the second terminal group 22 includes a plurality of signal input / output units 30, a group register 34, and a plurality of terminal registers 36.
  • the plurality of signal input / output units 30 each output a signal to the terminal of the device under test. Further, each of the plurality of signal input / output units 30 inputs a signal output from the corresponding terminal of the device under test, and determines whether or not the logical value of the input signal matches the expected value.
  • the group register 34 stores an offset delay amount for collectively shifting the reference phase in the plurality of signal input / output units 30 in units of the terminal group.
  • the reference phase represents a reference phase for controlling the generation timing of the signal to be transmitted to the device under test and the acquisition timing of the logical value of the signal received from the device under test to the designated phase.
  • the plurality of terminal registers 36 are provided in one-to-one correspondence with the plurality of signal input / output units 30.
  • Each terminal register 36 stores an offset delay amount for individually shifting the reference phase in the corresponding signal input / output unit 30.
  • each member is provided on one substrate.
  • each member is provided on a substrate different from the first terminal group 21.
  • the test apparatus 10 may be configured to include one or a plurality of other terminal groups having the same configuration as the first terminal group 21 and the second terminal group 22.
  • the test apparatus 10 includes a calibration connection unit 200 that connects the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 to each other. Is provided.
  • the calibration connection unit 200 connects the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 on a one-to-one basis. It is a calibration board.
  • the control device 24 is a control computer that controls the first terminal group 21 and the second terminal group 22 via a bus or the like.
  • the control device 24 includes a test unit 48 and a calibration unit 50.
  • the test unit 48 is a functional block realized by the control device 24 executing a program.
  • the test unit 48 causes each of the first terminal group 21 and the second terminal group 22 to execute a test sequence that specifies the waveform of the test signal and the expected value of the response signal.
  • the first terminal group 21 and the second terminal group 22 supply a test signal corresponding to the test sequence to the device under test, compare the response signal from the device under test with the expected value, and select the device under test. Can be tested.
  • the calibration unit 50 is a functional block realized by the control device 24 executing a program.
  • the calibration unit 50 includes a measurement unit 52 and an adjustment unit 54.
  • the measuring unit 52 is connected to each other in the state where the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 are connected to each other. For each pair of the signal input / output unit 30 and the signal input / output unit 30 of the second terminal group 22, the difference in the reference phase for inputting and outputting the signal is measured.
  • the measurement unit 52 includes a calibration sequence for each of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 with the calibration connection unit 200 mounted. To measure the difference between the reference phases for inputting and outputting signals for each pair.
  • the adjusting unit 54 brings the reference phase closer to each other based on the difference in the reference phase for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • the adjustment unit 54 writes the offset delay amount to the group register 34 and the terminal register 36 of the first terminal group 21 and the second terminal group 22, respectively, so that the reference phases of the pairs are brought closer to each other. adjust.
  • the adjustment unit 54 reduces the difference between the average of the reference phases of the signal input / output units 30 belonging to the first terminal group 21 and the average of the reference phases of the signal input / output units 30 belonging to the second terminal group 22.
  • the difference in the reference phase is reduced for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • the adjustment unit 54 approximately sets the average of the reference phases of the signal input / output units 30 belonging to the first terminal group 21 and the average of the reference phases of the signal input / output units 30 belonging to the second terminal group 22. Match.
  • the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 that are connected to each other may be substantially matched.
  • the adjustment unit 54 determines the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 connected to each other as the reference phase. You may make it substantially correspond with mutual average value.
  • FIG. 2 shows an example of the configuration of the signal input / output unit 30.
  • the signal input / output unit 30 includes a driver 56, a comparator 58, a pattern generator 60, a timing generator 62, an output side delay unit 64, a generation unit 66, an acquisition side delay unit 68, and an acquisition unit 70.
  • the determination unit 72 is included.
  • the driver 56 supplies a signal of a voltage level corresponding to the logic signal given from the generation unit 66 to the corresponding terminal of the device under test.
  • the comparator 58 inputs a signal from a corresponding terminal of the device under test and generates a logic signal representing a logic value corresponding to the voltage level of the input signal.
  • the comparator 58 gives the generated logic signal to the acquisition unit 70.
  • the terminal from which the driver 56 outputs a signal and the terminal from which the comparator 58 inputs a signal are the same.
  • the pattern generator 60 generates a logic pattern that specifies the waveform and generation timing of the signal generated from the signal input / output unit 30. Further, the pattern generator 60 generates an expected pattern that specifies an expected value of the signal input by the signal input / output unit 30 and an acquisition timing for acquiring the signal. The pattern generator 60 supplies the generated logic pattern to the output side delay unit 64 and the generation unit 66 for each test period. The pattern generator 60 supplies the generated expected pattern to the acquisition-side delay unit 68 and the determination unit 72.
  • the timing generator 62 generates a timing signal for designating the timing at which the signal input / output unit 30 outputs a signal.
  • the timing generator 62 generates a strobe signal for designating the timing at which the signal input / output unit 30 inputs a signal value.
  • the timing generator 62 generates a timing signal and a strobe signal for each test period.
  • the timing generator 62 supplies the timing signal to the output side delay unit 64 and supplies the strobe signal to the acquisition side delay unit 68.
  • the output side delay unit 64 delays the timing signal supplied from the timing generator 62 for each test cycle by a delay amount corresponding to the generation timing specified by the pattern generator 60 from the reference phase to the generation unit 66. Supply. Further, the output side delay unit 64 is given an offset delay amount from each of the group register 34 and the terminal register 36. The output side delay unit 64 sets the reference phase to a phase corresponding to a delay amount obtained by adding the offset delay amount given from the group register 34 and the offset delay amount given from the terminal register 36.
  • the generation unit 66 generates a logic signal having a waveform designated by the pattern generator 60 at the timing of the timing signal delayed by the output side delay unit 64.
  • the generation unit 66 supplies the generated logic signal to the driver 56.
  • the acquisition-side delay unit 68 delays the strobe signal supplied from the timing generator 62 for each test cycle by a delay amount corresponding to the acquisition timing specified by the pattern generator 60 from the reference phase to the acquisition unit 70. Supply.
  • the acquisition-side delay unit 68 is given an offset delay amount from each of the group register 34 and the terminal register 36.
  • the acquisition-side delay unit 68 sets the reference phase to a phase corresponding to the delay amount obtained by adding the offset delay amount given from the group register 34 and the offset delay amount given from the terminal register 36.
  • the acquisition unit 70 acquires the logical value of the logical signal output from the comparator 58 at the timing of the strobe signal delayed by the acquisition side delay unit 68.
  • the acquisition unit 70 supplies the acquired logical value to the determination unit 72.
  • the determination unit 72 compares the logical value acquired by the acquisition unit 70 with the expected value specified by the pattern generator 60.
  • the acquisition unit 70 supplies the comparison result to the pattern generator 60 or the control device 24. Further, the acquisition unit 70 may write the comparison result in a memory or the like that can be read from the control device 24.
  • Such a signal input / output unit 30 can output a signal to the terminal of the device under test. Furthermore, the signal input / output unit 30 can input a signal output from the terminal of the device under test and determine whether or not the logical value of the input signal matches the expected value. Note that the pattern generator 60 and the timing generator 62 may be configured to be used in common by the plurality of signal input / output units 30 as an example.
  • FIG. 3 shows an example of the configuration of the calibration unit 50.
  • the measurement unit 52 of the calibration unit 50 includes a first shift amount detection unit 80, a second shift amount detection unit 82, and a difference calculation unit 84.
  • the first shift amount detection unit 80 performs signal input / output of the first terminal group 21 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • the signal output from the unit 30 is acquired by the signal input / output unit 30 of the second terminal group 22.
  • the 1st shift amount detection part 80 detects the phase shift amount in the case of acquiring in this way.
  • the signal acquisition timing must be matched with the timing delayed by the signal propagation time from the signal generation timing. Don't be.
  • the amount of phase shift is the amount by which the phase of the timing signal or strobe signal is relatively changed in order to match the signal acquisition timing with the signal generation timing delayed by the signal propagation time.
  • the second shift amount detection unit 82 performs signal input / output of the second terminal group 22 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • the signal output from the unit 30 is acquired by the signal input / output unit 30 of the first terminal group 21.
  • the 2nd shift amount detection part 82 detects the phase shift amount in the case of making it acquire in this way.
  • the difference calculation unit 84 detects the phase shift detected by the first shift amount detection unit 80 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • the value of 1 ⁇ 2 of the difference between the amount and the phase shift amount detected by the second shift amount detector 82 is calculated.
  • the value calculated in this way represents the difference in the reference phase for the pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • Such a measuring unit 52 can measure the difference in the reference phase for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. . Then, the measurement unit 52 gives the difference of the reference phase calculated in this way to the adjustment unit 54.
  • the adjustment unit 54 includes an average calculation unit 86, an inter-group adjustment unit 88, and an inter-terminal adjustment unit 90.
  • the average calculation unit 86 calculates the average value of the differences in the reference phase measured for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22.
  • the inter-group adjustment unit 88 calculates the average of the reference phase of each signal input / output unit 30 of the first terminal group 21 relative to the reference phase of each signal input / output unit 30 of the second terminal group 22.
  • the average value of the reference phase of the signal input / output unit 30 belonging to the first terminal group 21 and the average value of the reference phase of the signal input / output unit 30 belonging to the second terminal group 22 are shifted by the average value calculated by the unit 86. And approximately match.
  • the inter-group adjustment unit 88 writes the corresponding offset delay amount to each of the group register 34 included in the first terminal group 21 and the group register 34 included in the second terminal group 22.
  • the reference phase is uniformly shifted for each terminal group.
  • the inter-terminal adjustment unit 90 averages the reference phases of the signal input / output units 30 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. Match the value.
  • the inter-terminal adjustment unit 90 writes the corresponding offset delay amount to each terminal register 36 corresponding to each pair, so that the reference between the signal input / output units 30 for each pair is obtained. Match the phase to the average value.
  • Such an adjustment unit 54 substantially matches the average of the reference phases of the signal input / output units 30 belonging to the first terminal group 21 and the average of the reference phases of the signal input / output units 30 belonging to the second terminal group 22. Can do. Further, such an adjusting unit 54 can substantially match the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 connected to each other. .
  • FIG. 4 shows the reference phase distribution A of the signal input / output units 30 belonging to the first terminal group 21, the reference phase distribution B of the signal input / output units 30 belonging to the second terminal group 22, and the average value of the reference phases. Distribution A and distribution B after matching are shown. Assume that the reference phase of timing signals and strobe signals supplied to the plurality of signal input / output units 30 is calibrated in units of the first terminal group 21 and the second terminal group 22.
  • the distribution of the reference phases (TA1, TA2, TA3,...) Of the first terminal group 21 is, for example, a distribution having a peak at the first average phase (MA) as shown in FIG.
  • MA first average phase
  • the distribution of the reference phases (TB1, TB2, TB3,...) Of the second terminal group 22 is, for example, a distribution having a peak at the second average phase (MB) as shown in FIG. Gaussian distribution).
  • the calibration unit 50 determines the difference (MB ⁇ MA) between the first average phase (MA) and the second average phase (MB). ) Is substantially 0, the reference phases of the plurality of signal input / output units 30 belonging to the first terminal group 21 are set to the respective reference phases of the plurality of signal input / output units 30 belonging to the second second terminal group 22. What is necessary is just to shift relatively uniformly with respect to the reference phase.
  • the first average phase (MA) and the second average phase (MB) Is represented by Formula (1) and Formula (2).
  • Equation (3) the difference in the average value of the reference phase (MB-MA) is expressed by Equation (3). Furthermore, when the right side of the formula (3) is rewritten, it is represented by the formula (4).
  • the difference (MB ⁇ MA) between the first average phase (MA) and the second average phase (MB) is the signal input / output unit 30 of the first terminal group 21 connected to each other. It can be seen that the difference is the average of the differences in the reference phase for each pair of the signal input / output units 30 of the second terminal group 22. Therefore, in order to make the average value of the reference phase substantially coincide between the terminal groups, the calibration unit 50 calculates the difference of the reference phase for each pair of signal input / output units 30 connected to each other, and calculates the average of the calculated differences. Calculate the value.
  • the calibration unit 50 calculates the reference phase of each signal input / output unit 30 of the first terminal group 21 relative to the reference phase of each signal input / output unit 30 of the second terminal group 22. What is necessary is just to make a uniform shift by the average value of a difference.
  • FIG. 5 shows the distribution A and the distribution B after the average value of the reference phase is matched between the terminal groups, and after the reference phase is further adjusted from the state where the average value of the reference phase is substantially matched between the terminal groups.
  • 2 shows a reference phase distribution C in which the first terminal group 21 and the second terminal group 22 are combined.
  • the calibration unit 50 adjusts the reference phase as shown in FIG. 4, and further, for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 that are connected to each other.
  • the reference phase between the signal input / output units 30 is adjusted to match the average value.
  • the first terminal group 21 one signal input and output unit 30 belonging to the reference phase (T AX ') and the second belongs to the terminal group 22 one signal input and output unit 30 of the reference phase (T AX connected together think about.
  • the reference phase (T AX ′) is smaller than the average of the distribution A and is located at the end of the distribution A.
  • the reference phase (T BX ′) is smaller than the average of the distribution B and is located at the end of the distribution B. Further, the reference phase (T AX ′) is larger than the reference phase (T BX ′).
  • This value is closer to the average value than the reference phase (T BX ′). Therefore, the distribution of the reference phase obtained by combining the first terminal group 21 and the second terminal group 22 is smaller than the distribution before adjustment. From the above, according to the calibration unit 50, the distribution of the reference phase of the signal input / output unit 30 belonging to the first terminal group 21 and the reference phase of the signal input / output unit 30 belonging to the second terminal group 22 can be further reduced. .
  • FIG. 6 shows a flowchart of the calibration process of the test apparatus 10 according to the present embodiment.
  • the test apparatus 10 attaches the calibration connection unit 200 to the test apparatus 10 in place of the device under test. Accordingly, the test apparatus 10 can connect the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 in a one-to-one relationship.
  • the measurement unit 52 repeats the processing from step S13 to step S15 for each pair of signal input / output units 30 connected one-to-one (S12, S16).
  • step S ⁇ b> 13 the first shift amount detection unit 80 outputs a signal from the signal input / output unit 30 of the first terminal group 21 and causes the signal input / output unit 30 of the second terminal group 22 to acquire the signal. Then, the first shift amount detector 80 detects the phase shift amount when the signal is acquired in this way.
  • the first shift amount detection unit 80 repeatedly outputs a signal whose logic changes at a fixed generation timing from the signal input / output unit 30 of the first terminal group 21 for each test cycle, and sequentially changes the acquisition timing. Then, the signal input / output unit 30 of the second terminal group 22 is made to acquire signals repeatedly.
  • the first shift amount detection unit 80 detects the phase of the strobe signal when the signal input / output unit 30 of the second terminal group 22 captures an edge, and captures an edge from the reference phase of the strobe signal. The amount of change up to the phase of the strobe signal is detected as a phase shift amount.
  • the first shift amount detection unit 80 repeatedly outputs a signal whose logic changes while changing the generation timing sequentially from the signal input / output unit 30 of the first terminal group 21 for each test cycle.
  • the signal input / output unit 30 of the second terminal group 22 is repeatedly acquired at a fixed acquisition timing.
  • the first shift amount detection unit 80 detects the phase of the timing signal when the signal input / output unit 30 of the second terminal group 22 captures the edge, and captures the edge from the reference phase of the timing signal.
  • the amount of change up to the phase of the timing signal may be detected as a phase shift amount.
  • step S ⁇ b> 14 the second shift amount detection unit 82 outputs a signal from the signal input / output unit 30 of the second terminal group 22 and causes the signal input / output unit 30 of the first terminal group 21 to acquire the signal. Then, the second shift amount detector 82 detects the phase shift amount when the signal is acquired in this way. For example, the second shift amount detection unit 82 may detect the phase shift amount by performing the same processing as step S13 with the relationship between the signal output side and the input side reversed.
  • step S15 the difference calculation unit 84 detects the phase shift amount detected by the first shift amount detection unit 80 by the process of step S13 and the phase shift detected by the second shift amount detection unit 82 by the process of step S14.
  • the value of 1/2 of the difference from the quantity is calculated.
  • the difference calculation unit 84 subtracts the phase shift amount detected by the first shift amount detection unit 80 from the phase shift amount detected by the second shift amount detection unit 82, and 1 / of the value obtained by subtraction. 2 is calculated.
  • the difference calculation part 84 can measure the difference of the reference phase for the pair of the signal input / output part 30 of the first terminal group 21 and the signal input / output part 30 of the second terminal group 22 connected to each other. .
  • step S17 the average calculation unit 86 selects all signal input / output units. An average value M of reference phase differences for 30 pairs is calculated.
  • step S18 the inter-group adjustment unit 88 multiplies the average value M of the reference phase difference by a first coefficient ⁇ (0 ⁇ ⁇ ⁇ 1) of 0 or more and 1 for the timing signal (and strobe). Signal) is calculated. Then, the inter-group adjustment unit 88 adds the calculated offset delay amount to the offset delay amount stored in the group register 34 belonging to the first terminal group 21 and writes it back to the group register 34.
  • the inter-group adjustment unit 88 generates a timing signal (and a strobe signal) corresponding to the phase obtained by multiplying the average value of the reference phase differences by the second coefficient (1- ⁇ ) (a value obtained by subtracting the first coefficient ⁇ from 1). The amount of offset delay that delays is calculated. Then, the inter-group adjustment unit 88 subtracts the calculated offset delay amount from the offset delay amount stored in the group register 34 belonging to the second terminal group 22 and writes it back to the group register 34.
  • the inter-group adjustment unit 88 makes the reference phase of each signal input / output unit 30 of the first terminal group 21 relatively to the reference phase of each signal input / output unit 30 of the second terminal group 22.
  • the average value calculated by the average calculator 86 can be made uniform.
  • the inter-group adjusting unit 88 substantially matches the average value of the reference phase of the signal input / output unit 30 belonging to the first terminal group 21 and the average value of the reference phase of the signal input / output unit 30 belonging to the second terminal group 22. Can be made.
  • the first coefficient ⁇ and the second coefficient ⁇ -1 may each be 0.5.
  • the measurement unit 52 repeats the processing from step S20 to step S23 for each pair of signal input / output units 30 connected one-to-one (S19, S24).
  • step S ⁇ b> 20 the first shift amount detection unit 80 outputs a signal from the signal input / output unit 30 of the first terminal group 21 and causes the signal input / output unit 30 of the second terminal group 22 to acquire the signal. Then, the first shift amount detection unit 80 detects the phase shift amount when the signal is acquired in this way.
  • the first shift amount detection unit 80 may perform the same process as in step S13.
  • step S ⁇ b> 21 the second shift amount detection unit 82 outputs a signal from the signal input / output unit 30 of the second terminal group 22 and causes the signal input / output unit 30 of the first terminal group 21 to acquire the signal. Then, the second shift amount detector 82 detects the phase shift amount when the signal is acquired in this way.
  • the second shift amount detection unit 82 may perform the same process as in step S14.
  • step S22 the difference calculation unit 84 detects the phase shift amount detected by the first shift amount detection unit 80 by the process of step S20 and the phase shift detected by the second shift amount detection unit 82 by the process of step S21.
  • the value of 1/2 of the difference from the quantity is calculated.
  • the difference calculation unit 84 subtracts the phase shift amount detected by the first shift amount detection unit 80 from the phase shift amount detected by the second shift amount detection unit 82, and subtracts 1 as a result of the subtraction. / 2 is calculated.
  • the difference calculation part 84 can measure the difference of the reference phase for the pair of the signal input / output part 30 of the first terminal group 21 and the signal input / output part 30 of the second terminal group 22 connected to each other. .
  • step S23 the inter-terminal adjustment unit 90 corresponds to the pair belonging to the first terminal group 21 with an offset delay amount that is delayed by a phase amount that is 1 ⁇ 2 of the reference phase difference calculated in step S22.
  • the offset delay amount stored in the terminal register 36 to be added is added back to the terminal register 36.
  • the inter-terminal adjusting unit 90 delays an offset delay amount that is delayed by a phase amount that is 1 ⁇ 2 of the reference phase difference calculated in step S22, to the terminal register 36 that corresponds to the pair belonging to the second terminal group 22. Is subtracted from the offset delay amount stored in the terminal register 36 and written back to the terminal register 36.
  • the inter-terminal adjustment unit 90 is configured such that the signal input / output units 30 are connected to each other for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
  • the phase can be matched to the average value.
  • the calibration unit 50 ends all processing. According to the test apparatus 10 as described above, the distribution of the reference phases of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 can be reduced.
  • the test apparatus 10 may perform the processing from step S19 to step S24 without performing the processing from step S11 to step S18. That is, for example, the adjustment unit 54 determines the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 connected to each other as the reference phase. Set to the average phase of each other. Accordingly, the test apparatus 10 does not have to perform the phase shift amount detection process, the average calculation process, and the like, so that the processing time can be reduced.
  • FIG. 7 shows a configuration of a test apparatus 10 according to a modification of the present embodiment. Since the test apparatus 10 according to this modification employs substantially the same configuration and function as the test apparatus 10 shown in FIG. 1, members having substantially the same configuration and function as those shown in FIG. The description will be omitted except for the differences.
  • the calibration unit 50 according to this modification further includes a verification unit 92.
  • the adjustment unit 54 according to this modification shifts the reference phase of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 that are connected to each other by substantially the same amount. Bring them closer together.
  • the verification unit 92 After each adjustment by the adjustment unit 54, the verification unit 92 causes the measurement unit 52 to measure the difference in the reference phase of the signal input / output unit 30 between the first terminal group 21 and the second terminal group 22. Verify whether the average value is within the reference range. Then, the verification unit 92 instructs the adjustment unit 54 to further adjust the reference phase when the average difference value is outside the reference range.
  • the reference phase of the signal input / output unit 30 of the first terminal group 21 and the second terminal group 22 is more reliably determined, and the average value of the differences becomes the reference range. Can be adjusted as follows.
  • the calibration unit 50 may further include a history storage unit 94.
  • the history storage unit 94 stores a history of reference phases set in the past for each signal input / output unit 30 of the first terminal group 21 and each signal input / output unit 30 of the second terminal group 22.
  • the adjustment unit 54 brings the reference phases closer to each other and sets each reference phase for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22.
  • the corresponding reference phase stored in the history storage unit 94 is approached.
  • the adjustment unit 54 calculates the reference phase of each signal input / output unit 30 of the first terminal group 21 relative to the reference phase of each signal input / output unit 30 of the second terminal group 22.
  • the phase is shifted uniformly by the average value of the difference, and set to a phase that matches or is closer to the corresponding reference phase stored in the history storage unit 94.
  • the calibration unit 50 since the device under test can be tested with a reference phase close to a reference phase set in the past, the reproducibility of the test result can be increased.
  • FIG. 8 shows an example of a hardware configuration of a computer 1900 according to this embodiment.
  • a computer 1900 according to this embodiment is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084.
  • Input / output unit having communication interface 2030, hard disk drive 2040, and CD-ROM drive 2060, and legacy input / output unit having ROM 2010, flexible disk drive 2050, and input / output chip 2070 connected to input / output controller 2084 With.
  • the host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate.
  • the CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit.
  • the graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080.
  • the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
  • the input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the CD-ROM drive 2060, which are relatively high-speed input / output devices.
  • the communication interface 2030 communicates with other devices via a network.
  • the hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900.
  • the CD-ROM drive 2060 reads a program or data from the CD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084.
  • the ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900.
  • the flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084 and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
  • the program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as the flexible disk 2090, the CD-ROM 2095, or an IC card and provided by the user.
  • the program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
  • a program that is installed in the computer 1900 and causes the computer 1900 to function as the calibration unit 50 includes a measurement module and an adjustment module. These programs or modules work on the CPU 2000 or the like to cause the computer 1900 to function as the measurement unit 52 and the adjustment unit 54, respectively.
  • the information processing described in these programs functions as the measurement unit 52 and the adjustment unit 54, which are specific means in which the software and the various hardware resources described above cooperate with each other when read into the computer 1900.
  • the specific calibration part 50 according to the intended purpose is constructed
  • the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program.
  • a communication process is instructed to 2030.
  • the communication interface 2030 reads transmission data stored in a transmission buffer area or the like provided on a storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the CD-ROM 2095, and sends it to the network.
  • the reception data transmitted or received from the network is written into a reception buffer area or the like provided on the storage device.
  • the communication interface 2030 may transfer transmission / reception data to / from the storage device by a DMA (direct memory access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as a transfer source.
  • the transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
  • the CPU 2000 is all or necessary from among files or databases stored in an external storage device such as a hard disk drive 2040, a CD-ROM drive 2060 (CD-ROM 2095), and a flexible disk drive 2050 (flexible disk 2090).
  • This portion is read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020. Then, CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like.
  • the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, or a storage device.
  • the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
  • the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020. For example, when performing the condition determination, the CPU 2000 determines whether the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. When the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
  • the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
  • the program or module shown above may be stored in an external recording medium.
  • an optical recording medium such as DVD or CD
  • a magneto-optical recording medium such as MO
  • a tape medium such as an IC card, and the like
  • a storage device such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.

Abstract

Provided is a test apparatus that tests devices to be tested, and that is provided with a first terminal group and a second terminal group that have multiple signal I/O parts, each of which outputs a signal to a terminal of a tested device and to which a signal output from the terminal is input, a measurement part that measures the difference in signal I/O reference phases for each pair of the first terminal group signal I/O parts and the second terminal group signal I/O parts connected to each other when the respective signal I/O parts of the first terminal group and the respective signal I/O parts of the second terminal group are connected to each other, and an adjustment part that brings the reference phases close to each other based on the difference in reference phases for each pair of first terminal group signal I/O parts and second terminal group signal I/O parts connected to each other.

Description

試験装置、校正方法およびプログラムTest apparatus, calibration method and program
 被試験デバイスを試験する試験装置、校正方法およびプログラムに関する。 The present invention relates to a test apparatus, a calibration method, and a program for testing a device under test.
 試験装置は、試験周期毎に、基準位相から指定された時間遅延したタイミングにおいて、指定された波形の試験信号を出力する。また、試験装置は、基準位相から指定された時間遅延したタイミングにおいて、被試験デバイスからの応答信号の値を取得する。また、試験装置は、被試験デバイスと信号を授受する多数の信号入出力部を備える。複数の信号入出力部は、互いの基準位相が一致するように試験に先立って調整される(特許文献1)。
国際公開第2007/072738号パンフレット
The test apparatus outputs a test signal having a designated waveform at a timing delayed by a designated time from the reference phase for each test cycle. In addition, the test apparatus acquires the value of the response signal from the device under test at a timing delayed by a specified time from the reference phase. The test apparatus also includes a large number of signal input / output units that exchange signals with the device under test. The plurality of signal input / output units are adjusted prior to the test so that their reference phases coincide with each other (Patent Document 1).
International Publication No. 2007/072738 Pamphlet
 ところで、複数の信号入出力部は、複数の基板に分散して設けられる。2つの信号入出力部間の基準位相の位相差は、基板毎の物理的な条件(例えば、温度条件、伝送経路、中継コネクタの嵌合条件、電源電圧条件等)の違いから、同一基板内の場合よりも、基板が異なる場合のほうが大きくなり易い。そこで、試験装置は、それぞれの信号入出力部における基準位相を調整する場合に、基板間の位相差を簡易な処理でより小さくできることが好ましい。 By the way, a plurality of signal input / output units are provided distributed on a plurality of substrates. The phase difference in the reference phase between the two signal input / output units is based on differences in physical conditions (for example, temperature conditions, transmission paths, relay connector fitting conditions, power supply voltage conditions, etc.) for each board. The case where the substrates are different tends to be larger than the case of. Therefore, it is preferable that the test apparatus can reduce the phase difference between the substrates by simple processing when adjusting the reference phase in each signal input / output unit.
 上記課題を解決するために、本発明の第1の態様においては、被試験デバイスを試験する試験装置であって、それぞれが前記被試験デバイスの端子へ信号を出力し、前記端子から出力された信号を入力する信号入出力部を複数有する第1端子グループおよび第2端子グループと、前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続した状態で、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、信号を入出力する基準位相の差分を測定する測定部と、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記基準位相の差分に基づき前記基準位相を互いに近付ける調整部と、を備える試験装置を提供する。 In order to solve the above problems, in the first aspect of the present invention, a test apparatus for testing a device under test, each of which outputs a signal to a terminal of the device under test and is output from the terminal. A first terminal group and a second terminal group having a plurality of signal input / output units for inputting signals; the signal input / output units of each of the first terminal groups; and the signal input / output units of each of the second terminal groups. With respect to each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other, a difference in reference phase for inputting / outputting a signal is obtained. For each pair of the measurement unit to be measured and the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other, the base Providing a test device comprising an adjustment unit for the reference phase based on the difference of the phase closer to each other, the.
 本発明の第2の態様においては、被試験デバイスを試験する試験装置を校正する校正方法であって、前記試験装置は、それぞれが前記被試験デバイスの端子へ信号を出力し、前記端子から出力された信号を入力する信号入出力部を複数有する第1端子グループおよび第2端子グループを備え、前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続した状態で、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、信号を入出力する基準位相の差分を測定し、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記基準位相の差分に基づき前記基準位相を互いに近付ける校正方法を提供する。 According to a second aspect of the present invention, there is provided a calibration method for calibrating a test apparatus for testing a device under test, wherein each of the test apparatuses outputs a signal to a terminal of the device under test and outputs from the terminal. A first terminal group and a second terminal group each having a plurality of signal input / output units for inputting the received signals, each of the signal input / output units of the first terminal group and each of the signals of the second terminal group A reference phase for inputting / outputting a signal for each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other in a state where the input / output unit is connected to each other. For each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other, To provide a calibration method close to each other the reference phase based on the difference between the quasi-phase.
 本発明の第3の態様においては、コンピュータを、被試験デバイスを試験する試験装置を校正する校正装置として機能させるプログラムであって、前記試験装置は、それぞれが前記被試験デバイスの端子へ信号を出力し、前記端子から出力された信号を入力する信号入出力部を複数有する第1端子グループおよび第2端子グループを備え、前記コンピュータを、前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続した状態で、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、信号を入出力する基準位相の差分を測定する測定部と、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記基準位相の差分に基づき前記基準位相を互いに近付ける調整部と、して機能させるプログラムを提供する。 According to a third aspect of the present invention, there is provided a program for causing a computer to function as a calibration apparatus that calibrates a test apparatus that tests a device under test, each of which sends a signal to a terminal of the device under test. A first terminal group and a second terminal group having a plurality of signal input / output units for outputting and inputting signals output from the terminals, and the computer is connected to each of the signal input / output units of the first terminal group. The signal input / output units of the first terminal group and the signal input / output units of the second terminal group connected to each other in a state where the signal input / output units of the second terminal group are connected to each other. For each pair, a measurement unit for measuring a difference between reference phases for inputting and outputting signals, and the signal input of the first terminal group connected to each other. For each pair of the force unit and the signal output portion of the second terminal group, and the reference phase adjusting unit close to each other the reference phase based on the difference of, providing a program for causing to function.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.
図1は、本実施形態に係る試験装置10の構成を示す。FIG. 1 shows a configuration of a test apparatus 10 according to the present embodiment. 図2は、信号入出力部30の構成の一例を示す。FIG. 2 shows an example of the configuration of the signal input / output unit 30. 図3は、校正部50の構成の一例を示す。FIG. 3 shows an example of the configuration of the calibration unit 50. 図4は、第1端子グループ21に属する信号入出力部30の基準位相の分布A、第2端子グループ22に属する信号入出力部30の基準位相の分布B、および、基準位相の平均値を一致させた後の分布Aおよび分布Bを示す。4 shows the reference phase distribution A of the signal input / output units 30 belonging to the first terminal group 21, the reference phase distribution B of the signal input / output units 30 belonging to the second terminal group 22, and the average value of the reference phases. Distribution A and distribution B after matching are shown. 図5は、基準位相の平均値を端子グループ間で一致させた後の分布Aおよび分布B、および、基準位相の平均値を端子グループ間で略一致させた状態から更に基準位相を調整した後における、第1端子グループ21および第2端子グループ22を合成した基準位相の分布Cを示す。FIG. 5 shows the distribution A and the distribution B after the average value of the reference phase is matched between the terminal groups, and after the reference phase is further adjusted from the state where the average value of the reference phase is substantially matched between the terminal groups. 2 shows a reference phase distribution C in which the first terminal group 21 and the second terminal group 22 are combined. 図6は、本実施形態に係る試験装置10の校正処理のフローチャートを示す。FIG. 6 shows a flowchart of the calibration process of the test apparatus 10 according to the present embodiment. 図7は、本実施形態の変形例に係る試験装置10の構成を示す。FIG. 7 shows a configuration of a test apparatus 10 according to a modification of the present embodiment. 本発明の実施形態に係るコンピュータ1900のハードウェア構成の一例を示す。2 shows an exemplary hardware configuration of a computer 1900 according to an embodiment of the present invention.
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the (1) aspect of the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the scope of claims, and the features described in the embodiments are as follows. Not all combinations are essential for the solution of the invention.
 図1は、本実施形態に係る試験装置10の構成を示す。試験装置10は、半導体装置等の被試験デバイスを試験する。 FIG. 1 shows a configuration of a test apparatus 10 according to the present embodiment. The test apparatus 10 tests a device under test such as a semiconductor device.
 試験装置10は、被試験デバイスを試験する場合において、ハンドラ装置等により被試験デバイスが搭載される。また、試験装置10は、試験に先立って、当該試験装置10の校正を行う。 The test apparatus 10 is mounted with a device under test by a handler device or the like when testing the device under test. Further, the test apparatus 10 calibrates the test apparatus 10 prior to the test.
 試験装置10は、第1端子グループ21と、第2端子グループ22と、制御装置24とを備える。第1端子グループ21および第2端子グループ22のそれぞれは、複数の信号入出力部30と、グループ用レジスタ34と、複数の端子用レジスタ36とを有する。 The test apparatus 10 includes a first terminal group 21, a second terminal group 22, and a control apparatus 24. Each of the first terminal group 21 and the second terminal group 22 includes a plurality of signal input / output units 30, a group register 34, and a plurality of terminal registers 36.
 複数の信号入出力部30は、それぞれが被試験デバイスの端子へ信号を出力する。さらに、複数の信号入出力部30は、それぞれが被試験デバイスの当該端子から出力された信号を入力して、入力した信号の論理値が期待値と一致するか否かを判定する。 The plurality of signal input / output units 30 each output a signal to the terminal of the device under test. Further, each of the plurality of signal input / output units 30 inputs a signal output from the corresponding terminal of the device under test, and determines whether or not the logical value of the input signal matches the expected value.
 グループ用レジスタ34は、複数の信号入出力部30における基準位相を、当該端子グループ単位で一括してシフトさせるオフセット遅延量を記憶する。ここで、基準位相は、被試験デバイスへと送信する信号の発生タイミングおよび被試験デバイスから受信した信号の論理値の取得タイミングを指定された位相に制御するための、基準となる位相を表す。 The group register 34 stores an offset delay amount for collectively shifting the reference phase in the plurality of signal input / output units 30 in units of the terminal group. Here, the reference phase represents a reference phase for controlling the generation timing of the signal to be transmitted to the device under test and the acquisition timing of the logical value of the signal received from the device under test to the designated phase.
 複数の端子用レジスタ36は、複数の信号入出力部30に1対1に対応して設けられる。各端子用レジスタ36は、対応する信号入出力部30における基準位相を、個別にシフトさせるオフセット遅延量を記憶する。 The plurality of terminal registers 36 are provided in one-to-one correspondence with the plurality of signal input / output units 30. Each terminal register 36 stores an offset delay amount for individually shifting the reference phase in the corresponding signal input / output unit 30.
 このような第1端子グループ21は、例えば、各部材が、一の基板に設けられる。また、第2端子グループ22は、例えば、各部材が、第1端子グループ21とは異なる基板に設けられる。また、試験装置10は、第1端子グループ21および第2端子グループ22と同様の構成の、1または複数の他の端子グループを備える構成であってもよい。 In such a first terminal group 21, for example, each member is provided on one substrate. In the second terminal group 22, for example, each member is provided on a substrate different from the first terminal group 21. Further, the test apparatus 10 may be configured to include one or a plurality of other terminal groups having the same configuration as the first terminal group 21 and the second terminal group 22.
 また、本実施形態において、試験装置10は、第1端子グループ21のそれぞれの信号入出力部30と、第2端子グループ22のそれぞれの信号入出力部30とを互いに接続する校正用接続部200を備える。本実施形態においては、校正用接続部200は、第1端子グループ21のそれぞれの信号入出力部30と、第2端子グループ22のそれぞれの信号入出力部30とを、1対1に接続するキャリブレーションボードである。 In the present embodiment, the test apparatus 10 includes a calibration connection unit 200 that connects the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 to each other. Is provided. In the present embodiment, the calibration connection unit 200 connects the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 on a one-to-one basis. It is a calibration board.
 制御装置24は、バス等を介して、第1端子グループ21および第2端子グループ22を制御する制御用コンピュータである。制御装置24は、試験部48と、校正部50とを有する。 The control device 24 is a control computer that controls the first terminal group 21 and the second terminal group 22 via a bus or the like. The control device 24 includes a test unit 48 and a calibration unit 50.
 試験部48は、制御装置24がプログラムを実行することによって実現される機能ブロックである。試験部48は、第1端子グループ21および第2端子グループ22のそれぞれに、試験信号の波形および応答信号の期待値を指定する試験シーケンスを実行させる。これにより、第1端子グループ21および第2端子グループ22は、被試験デバイスに試験シーケンスに応じた試験信号を供給し、被試験デバイスからの応答信号を期待値と比較して、被試験デバイスを試験することができる。 The test unit 48 is a functional block realized by the control device 24 executing a program. The test unit 48 causes each of the first terminal group 21 and the second terminal group 22 to execute a test sequence that specifies the waveform of the test signal and the expected value of the response signal. Thus, the first terminal group 21 and the second terminal group 22 supply a test signal corresponding to the test sequence to the device under test, compare the response signal from the device under test with the expected value, and select the device under test. Can be tested.
 校正部50は、制御装置24がプログラムを実行することによって実現される機能ブロックである。校正部50は、測定部52と、調整部54とを有する。 The calibration unit 50 is a functional block realized by the control device 24 executing a program. The calibration unit 50 includes a measurement unit 52 and an adjustment unit 54.
 測定部52は、第1端子グループ21のそれぞれの信号入出力部30と、第2端子グループ22のそれぞれの信号入出力部30とを互いに接続した状態で、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、信号を入出力する基準位相の差分を測定する。測定部52は、一例として、当該校正用接続部200を搭載した状態で、第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30のそれぞれに校正用のシーケンスを実行させて、各ペアについて信号を入出力する基準位相の差分を測定する。 The measuring unit 52 is connected to each other in the state where the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 are connected to each other. For each pair of the signal input / output unit 30 and the signal input / output unit 30 of the second terminal group 22, the difference in the reference phase for inputting and outputting the signal is measured. As an example, the measurement unit 52 includes a calibration sequence for each of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 with the calibration connection unit 200 mounted. To measure the difference between the reference phases for inputting and outputting signals for each pair.
 調整部54は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、基準位相の差分に基づき基準位相を互いに近付ける。調整部54は、一例として、第1端子グループ21および第2端子グループ22のそれぞれのグループ用レジスタ34および端子用レジスタ36にオフセット遅延量を書き込むことにより、各ペアの基準位相を互いに近づけるように調整する。 The adjusting unit 54 brings the reference phase closer to each other based on the difference in the reference phase for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. As an example, the adjustment unit 54 writes the offset delay amount to the group register 34 and the terminal register 36 of the first terminal group 21 and the second terminal group 22, respectively, so that the reference phases of the pairs are brought closer to each other. adjust.
 例えば、調整部54は、第1端子グループ21に属する信号入出力部30の基準位相の平均、および第2端子グループ22に属する信号入出力部30の基準位相の平均の差を低減する。かつ、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて基準位相の差を低減する。 For example, the adjustment unit 54 reduces the difference between the average of the reference phases of the signal input / output units 30 belonging to the first terminal group 21 and the average of the reference phases of the signal input / output units 30 belonging to the second terminal group 22. In addition, the difference in the reference phase is reduced for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
 この場合において、例えば、調整部54は、第1端子グループ21に属する信号入出力部30の基準位相の平均と、第2端子グループ22に属する信号入出力部30の基準位相の平均とを略一致させる。かつ、互いに接続された第1端子グループ21の信号入出力部30の基準位相および第2端子グループ22の信号入出力部30の基準位相を略一致させてもよい。また、調整部54は、一例として、互いに接続された第1端子グループ21の信号入出力部30の基準位相および第2端子グループ22の信号入出力部30の基準位相のそれぞれを、当該基準位相同士の平均値と略一致させてもよい。 In this case, for example, the adjustment unit 54 approximately sets the average of the reference phases of the signal input / output units 30 belonging to the first terminal group 21 and the average of the reference phases of the signal input / output units 30 belonging to the second terminal group 22. Match. In addition, the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 that are connected to each other may be substantially matched. For example, the adjustment unit 54 determines the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 connected to each other as the reference phase. You may make it substantially correspond with mutual average value.
 図2は、信号入出力部30の構成の一例を示す。信号入出力部30は、ドライバ56と、コンパレータ58と、パターン発生器60と、タイミング発生器62と、出力側遅延部64と、発生部66と、取得側遅延部68と、取得部70と、判定部72とを含む。 FIG. 2 shows an example of the configuration of the signal input / output unit 30. The signal input / output unit 30 includes a driver 56, a comparator 58, a pattern generator 60, a timing generator 62, an output side delay unit 64, a generation unit 66, an acquisition side delay unit 68, and an acquisition unit 70. The determination unit 72 is included.
 ドライバ56は、発生部66から与えられた論理信号に応じた電圧レベルの信号を、被試験デバイスの対応する端子へと供給する。コンパレータ58は、被試験デバイスの対応する端子から信号を入力して、入力した信号の電圧レベルに応じた論理値を表す論理信号を生成する。コンパレータ58は、生成した論理信号を取得部70へ与える。なお、ドライバ56が信号を出力する端子およびコンパレータ58が信号を入力する端子は同一である。 The driver 56 supplies a signal of a voltage level corresponding to the logic signal given from the generation unit 66 to the corresponding terminal of the device under test. The comparator 58 inputs a signal from a corresponding terminal of the device under test and generates a logic signal representing a logic value corresponding to the voltage level of the input signal. The comparator 58 gives the generated logic signal to the acquisition unit 70. The terminal from which the driver 56 outputs a signal and the terminal from which the comparator 58 inputs a signal are the same.
 パターン発生器60は、当該信号入出力部30から発生する信号の波形および発生タイミングを指定する論理パターンを発生する。さらに、パターン発生器60は、当該信号入出力部30が入力する信号の期待値および信号を取得する取得タイミングを指定する期待パターンを発生する。パターン発生器60は、発生した論理パターンを、試験周期毎に出力側遅延部64および発生部66へ供給する。また、パターン発生器60は、発生した期待パターンを取得側遅延部68および判定部72へ供給する。 The pattern generator 60 generates a logic pattern that specifies the waveform and generation timing of the signal generated from the signal input / output unit 30. Further, the pattern generator 60 generates an expected pattern that specifies an expected value of the signal input by the signal input / output unit 30 and an acquisition timing for acquiring the signal. The pattern generator 60 supplies the generated logic pattern to the output side delay unit 64 and the generation unit 66 for each test period. The pattern generator 60 supplies the generated expected pattern to the acquisition-side delay unit 68 and the determination unit 72.
 タイミング発生器62は、当該信号入出力部30が信号を出力するタイミングを指定するためのタイミング信号を発生する。また、タイミング発生器62は、当該信号入出力部30が信号の値を入力するタイミングを指定するためのストローブ信号を発生する。タイミング発生器62は、一例として、試験周期毎に、タイミング信号およびストローブ信号を発生する。タイミング発生器62は、タイミング信号を出力側遅延部64へと供給し、ストローブ信号を取得側遅延部68へと供給する。 The timing generator 62 generates a timing signal for designating the timing at which the signal input / output unit 30 outputs a signal. The timing generator 62 generates a strobe signal for designating the timing at which the signal input / output unit 30 inputs a signal value. As an example, the timing generator 62 generates a timing signal and a strobe signal for each test period. The timing generator 62 supplies the timing signal to the output side delay unit 64 and supplies the strobe signal to the acquisition side delay unit 68.
 出力側遅延部64は、タイミング発生器62から試験周期毎に供給されるタイミング信号を、基準位相から、パターン発生器60により指定された発生タイミングに応じた遅延量分遅延して発生部66に供給する。また、出力側遅延部64は、グループ用レジスタ34および端子用レジスタ36のそれぞれからオフセット遅延量が与えられる。出力側遅延部64は、基準位相を、グループ用レジスタ34より与えられたオフセット遅延量および端子用レジスタ36より与えられたオフセット遅延量を加算した遅延量に応じた位相に設定する。 The output side delay unit 64 delays the timing signal supplied from the timing generator 62 for each test cycle by a delay amount corresponding to the generation timing specified by the pattern generator 60 from the reference phase to the generation unit 66. Supply. Further, the output side delay unit 64 is given an offset delay amount from each of the group register 34 and the terminal register 36. The output side delay unit 64 sets the reference phase to a phase corresponding to a delay amount obtained by adding the offset delay amount given from the group register 34 and the offset delay amount given from the terminal register 36.
 発生部66は、出力側遅延部64により遅延されたタイミング信号のタイミングにおいて、パターン発生器60により指定された波形の論理信号を発生する。発生部66は、発生した論理信号をドライバ56へと供給する。 The generation unit 66 generates a logic signal having a waveform designated by the pattern generator 60 at the timing of the timing signal delayed by the output side delay unit 64. The generation unit 66 supplies the generated logic signal to the driver 56.
 取得側遅延部68は、タイミング発生器62から試験周期毎に供給されるストローブ信号を、基準位相から、パターン発生器60により指定された取得タイミングに応じた遅延量分遅延して取得部70に供給する。また、取得側遅延部68は、グループ用レジスタ34および端子用レジスタ36のそれぞれからオフセット遅延量が与えられる。ここで、取得側遅延部68は、基準位相を、グループ用レジスタ34より与えられたオフセット遅延量および端子用レジスタ36より与えられたオフセット遅延量を加算した遅延量に応じた位相に設定する。 The acquisition-side delay unit 68 delays the strobe signal supplied from the timing generator 62 for each test cycle by a delay amount corresponding to the acquisition timing specified by the pattern generator 60 from the reference phase to the acquisition unit 70. Supply. The acquisition-side delay unit 68 is given an offset delay amount from each of the group register 34 and the terminal register 36. Here, the acquisition-side delay unit 68 sets the reference phase to a phase corresponding to the delay amount obtained by adding the offset delay amount given from the group register 34 and the offset delay amount given from the terminal register 36.
 取得部70は、取得側遅延部68により遅延されたストローブ信号のタイミングにおいて、コンパレータ58から出力された論理信号の論理値を取得する。取得部70は、取得した論理値を判定部72へと供給する。 The acquisition unit 70 acquires the logical value of the logical signal output from the comparator 58 at the timing of the strobe signal delayed by the acquisition side delay unit 68. The acquisition unit 70 supplies the acquired logical value to the determination unit 72.
 判定部72は、取得部70により取得された論理値を、パターン発生器60により指定された期待値と一致するか否かを比較する。取得部70は、比較結果をパターン発生器60または制御装置24へと供給する。また、取得部70は、比較結果を、制御装置24から読出し可能なメモリ等に書き込んでもよい。 The determination unit 72 compares the logical value acquired by the acquisition unit 70 with the expected value specified by the pattern generator 60. The acquisition unit 70 supplies the comparison result to the pattern generator 60 or the control device 24. Further, the acquisition unit 70 may write the comparison result in a memory or the like that can be read from the control device 24.
 このような信号入出力部30は、被試験デバイスの端子へ信号を出力することができる。さらに、信号入出力部30は、被試験デバイスの端子から出力された信号を入力して、入力した信号の論理値が期待値と一致するか否かを判定することができる。なお、パターン発生器60およびタイミング発生器62は、一例として、複数の信号入出力部30で共通に用いられる構成であってもよい。 Such a signal input / output unit 30 can output a signal to the terminal of the device under test. Furthermore, the signal input / output unit 30 can input a signal output from the terminal of the device under test and determine whether or not the logical value of the input signal matches the expected value. Note that the pattern generator 60 and the timing generator 62 may be configured to be used in common by the plurality of signal input / output units 30 as an example.
 図3は、校正部50の構成の一例を示す。校正部50の測定部52は、第1シフト量検出部80と、第2シフト量検出部82と、差分算出部84とを含む。 FIG. 3 shows an example of the configuration of the calibration unit 50. The measurement unit 52 of the calibration unit 50 includes a first shift amount detection unit 80, a second shift amount detection unit 82, and a difference calculation unit 84.
 第1シフト量検出部80は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、第1端子グループ21の信号入出力部30から出力した信号を、第2端子グループ22の信号入出力部30により取得させる。そして、第1シフト量検出部80は、このように取得させた場合における位相シフト量を検出する。 The first shift amount detection unit 80 performs signal input / output of the first terminal group 21 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. The signal output from the unit 30 is acquired by the signal input / output unit 30 of the second terminal group 22. And the 1st shift amount detection part 80 detects the phase shift amount in the case of acquiring in this way.
 ここで、一方の信号入出力部30が発生した信号を他方の信号入出力部30に取得させる場合、信号の取得タイミングを、信号の発生タイミングに信号伝播時間分遅延したタイミングに一致させなければならない。位相シフト量は、このように、信号の取得タイミングを信号の発生タイミングに信号伝播時間分遅延したタイミングに一致させることを目的として、タイミング信号またはストローブ信号の位相を相対的に変化させた量をいう。 Here, when the signal generated by one signal input / output unit 30 is acquired by the other signal input / output unit 30, the signal acquisition timing must be matched with the timing delayed by the signal propagation time from the signal generation timing. Don't be. In this way, the amount of phase shift is the amount by which the phase of the timing signal or strobe signal is relatively changed in order to match the signal acquisition timing with the signal generation timing delayed by the signal propagation time. Say.
 第2シフト量検出部82は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、第2端子グループ22の信号入出力部30から出力した信号を、第1端子グループ21の信号入出力部30により取得させる。そして、第2シフト量検出部82は、このように取得させた場合における位相シフト量を検出する。 The second shift amount detection unit 82 performs signal input / output of the second terminal group 22 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. The signal output from the unit 30 is acquired by the signal input / output unit 30 of the first terminal group 21. And the 2nd shift amount detection part 82 detects the phase shift amount in the case of making it acquire in this way.
 差分算出部84は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、第1シフト量検出部80が検出した位相シフト量と第2シフト量検出部82が検出した位相シフト量との差分の1/2の値を算出する。このように算出された値は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30のペアについての、基準位相の差分を表す。 The difference calculation unit 84 detects the phase shift detected by the first shift amount detection unit 80 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. The value of ½ of the difference between the amount and the phase shift amount detected by the second shift amount detector 82 is calculated. The value calculated in this way represents the difference in the reference phase for the pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other.
 このような測定部52は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、基準位相の差分を測定することができる。そして、測定部52は、このように算出した基準位相の差分を調整部54に与える。 Such a measuring unit 52 can measure the difference in the reference phase for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. . Then, the measurement unit 52 gives the difference of the reference phase calculated in this way to the adjustment unit 54.
 調整部54は、平均算出部86と、グループ間調整部88と、端子間調整部90とを含む。平均算出部86は、第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて測定した基準位相の差分の平均値を算出する。 The adjustment unit 54 includes an average calculation unit 86, an inter-group adjustment unit 88, and an inter-terminal adjustment unit 90. The average calculation unit 86 calculates the average value of the differences in the reference phase measured for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22.
 グループ間調整部88は、第1端子グループ21のそれぞれの信号入出力部30の基準位相を、第2端子グループ22のそれぞれの信号入出力部30の基準位相に対して相対的に、平均算出部86が算出した平均値分一律シフトさせて、第1端子グループ21に属する信号入出力部30の基準位相の平均値と第2端子グループ22に属する信号入出力部30の基準位相の平均値とを略一致させる。本実施形態においては、グループ間調整部88は、第1端子グループ21が有するグループ用レジスタ34および第2端子グループ22が有するグループ用レジスタ34のそれぞれに対して、対応するオフセット遅延量を書き込むことにより、端子グループ毎に基準位相を一律にシフトさせる。 The inter-group adjustment unit 88 calculates the average of the reference phase of each signal input / output unit 30 of the first terminal group 21 relative to the reference phase of each signal input / output unit 30 of the second terminal group 22. The average value of the reference phase of the signal input / output unit 30 belonging to the first terminal group 21 and the average value of the reference phase of the signal input / output unit 30 belonging to the second terminal group 22 are shifted by the average value calculated by the unit 86. And approximately match. In the present embodiment, the inter-group adjustment unit 88 writes the corresponding offset delay amount to each of the group register 34 included in the first terminal group 21 and the group register 34 included in the second terminal group 22. Thus, the reference phase is uniformly shifted for each terminal group.
 端子間調整部90は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、信号入出力部30同士の基準位相を平均値に一致させる。本実施形態においては、端子間調整部90は、各ペアに対応するそれぞれの端子用レジスタ36に対して、対応するオフセット遅延量を書き込むことにより、各ペアについての信号入出力部30同士の基準位相を平均値に一致させる。 The inter-terminal adjustment unit 90 averages the reference phases of the signal input / output units 30 for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. Match the value. In the present embodiment, the inter-terminal adjustment unit 90 writes the corresponding offset delay amount to each terminal register 36 corresponding to each pair, so that the reference between the signal input / output units 30 for each pair is obtained. Match the phase to the average value.
 このような調整部54は、第1端子グループ21に属する信号入出力部30の基準位相の平均と、第2端子グループ22に属する信号入出力部30の基準位相の平均とを略一致させることができる。さらに、このような調整部54は、互いに接続された第1端子グループ21の信号入出力部30の基準位相および第2端子グループ22の信号入出力部30の基準位相を略一致させることができる。 Such an adjustment unit 54 substantially matches the average of the reference phases of the signal input / output units 30 belonging to the first terminal group 21 and the average of the reference phases of the signal input / output units 30 belonging to the second terminal group 22. Can do. Further, such an adjusting unit 54 can substantially match the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 connected to each other. .
 図4は、第1端子グループ21に属する信号入出力部30の基準位相の分布A、第2端子グループ22に属する信号入出力部30の基準位相の分布B、および、基準位相の平均値を一致させた後の分布Aおよび分布Bを示す。第1端子グループ21および第2端子グループ22のそれぞれ単位で、複数の信号入出力部30に与えられるタイミング信号およびストローブ信号の基準位相の校正がされているとする。 4 shows the reference phase distribution A of the signal input / output units 30 belonging to the first terminal group 21, the reference phase distribution B of the signal input / output units 30 belonging to the second terminal group 22, and the average value of the reference phases. Distribution A and distribution B after matching are shown. Assume that the reference phase of timing signals and strobe signals supplied to the plurality of signal input / output units 30 is calibrated in units of the first terminal group 21 and the second terminal group 22.
 この場合、第1端子グループ21の基準位相(TA1、TA2、TA3、…)の分布は、図4のAに示すように、一例として、第1の平均位相(MA)をピークとした分布(例えばガウス分布)となる。また、第2端子グループ22の基準位相(TB1、TB2、TB3、…)の分布は、図4のBに示すように、一例として、第2の平均位相(MB)をピークとした分布(例えばガウス分布)となる。 In this case, the distribution of the reference phases (TA1, TA2, TA3,...) Of the first terminal group 21 is, for example, a distribution having a peak at the first average phase (MA) as shown in FIG. For example, Gaussian distribution). The distribution of the reference phases (TB1, TB2, TB3,...) Of the second terminal group 22 is, for example, a distribution having a peak at the second average phase (MB) as shown in FIG. Gaussian distribution).
 このような場合、基準位相の平均値を端子グループ間で略一致させるには、校正部50は、第1の平均位相(MA)と第2の平均位相(MB)との差(MB-MA)が略0となるように、第1端子グループ21に属する複数の信号入出力部30のそれぞれの基準位相を、第2の第2端子グループ22に属する複数の信号入出力部30のそれぞれの基準位相に対して、相対的に一律にシフトすればよい。ここで、第1端子グループ21および第2端子グループ22のそれぞれが有する複数の信号入出力部30の個数をnとした場合、第1の平均位相(MA)および第2の平均位相(MB)は、式(1)および式(2)により表される。 In such a case, in order to make the average value of the reference phase substantially coincide between the terminal groups, the calibration unit 50 determines the difference (MB−MA) between the first average phase (MA) and the second average phase (MB). ) Is substantially 0, the reference phases of the plurality of signal input / output units 30 belonging to the first terminal group 21 are set to the respective reference phases of the plurality of signal input / output units 30 belonging to the second second terminal group 22. What is necessary is just to shift relatively uniformly with respect to the reference phase. Here, when the number of the plurality of signal input / output units 30 included in each of the first terminal group 21 and the second terminal group 22 is n, the first average phase (MA) and the second average phase (MB). Is represented by Formula (1) and Formula (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)および式(2)から、基準位相の平均値の差(MB-MA)は、式(3)により表される。さらに、式(3)の右辺を書き換えると、式(4)により表される。 From Equation (1) and Equation (2), the difference in the average value of the reference phase (MB-MA) is expressed by Equation (3). Furthermore, when the right side of the formula (3) is rewritten, it is represented by the formula (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(4)を参照すると、第1の平均位相(MA)と第2の平均位相(MB)との差(MB-MA)は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30のペア毎の基準位相の差分を平均した値であることがわかる。従って、基準位相の平均値を端子グループ間で略一致させるには、校正部50は、互いに接続された信号入出力部30のペア毎に基準位相の差分を算出して、算出した差分の平均値を算出する。そして、校正部50は、第1端子グループ21のそれぞれの信号入出力部30の基準位相を、第2端子グループ22のそれぞれの信号入出力部30の基準位相に対して相対的に、算出した差分の平均値分一律シフトさせればよい。 Referring to Equation (4), the difference (MB−MA) between the first average phase (MA) and the second average phase (MB) is the signal input / output unit 30 of the first terminal group 21 connected to each other. It can be seen that the difference is the average of the differences in the reference phase for each pair of the signal input / output units 30 of the second terminal group 22. Therefore, in order to make the average value of the reference phase substantially coincide between the terminal groups, the calibration unit 50 calculates the difference of the reference phase for each pair of signal input / output units 30 connected to each other, and calculates the average of the calculated differences. Calculate the value. Then, the calibration unit 50 calculates the reference phase of each signal input / output unit 30 of the first terminal group 21 relative to the reference phase of each signal input / output unit 30 of the second terminal group 22. What is necessary is just to make a uniform shift by the average value of a difference.
 図5は、基準位相の平均値を端子グループ間で一致させた後の分布Aおよび分布B、および、基準位相の平均値を端子グループ間で略一致させた状態から更に基準位相を調整した後における、第1端子グループ21および第2端子グループ22を合成した基準位相の分布Cを示す。校正部50は、基準位相を図4のように調整した後、更に、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、信号入出力部30同士の基準位相を平均値に一致させるように調整する。 FIG. 5 shows the distribution A and the distribution B after the average value of the reference phase is matched between the terminal groups, and after the reference phase is further adjusted from the state where the average value of the reference phase is substantially matched between the terminal groups. 2 shows a reference phase distribution C in which the first terminal group 21 and the second terminal group 22 are combined. The calibration unit 50 adjusts the reference phase as shown in FIG. 4, and further, for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 that are connected to each other. The reference phase between the signal input / output units 30 is adjusted to match the average value.
 ここで、互いに接続された第1端子グループ21に属する一の信号入出力部30の基準位相(TAX´)および第2端子グループ22に属する一の信号入出力部30の基準位相(TAX´)について考える。基準位相(TAX´)は、分布Aの平均より小さく分布Aの端に位置する。また、基準位相(TBX´)は、分布Bの平均より小さく分布Bの端に位置する。また、基準位相(TAX´)は、基準位相(TBX´)より大きい。 Here, the first terminal group 21 one signal input and output unit 30 belonging to the reference phase (T AX ') and the second belongs to the terminal group 22 one signal input and output unit 30 of the reference phase (T AX connected together think about. The reference phase (T AX ′) is smaller than the average of the distribution A and is located at the end of the distribution A. The reference phase (T BX ′) is smaller than the average of the distribution B and is located at the end of the distribution B. Further, the reference phase (T AX ′) is larger than the reference phase (T BX ′).
 このような場合、基準位相(TAX´)および基準位相(TBX´)の平均値に一致させるように調整した後の基準位相(TAX´´=TBX´´)は、(TAX´+TBX´)/2となる。この値は、基準位相(TBX´)よりも平均値に近い。従って、第1端子グループ21および第2端子グループ22を合成した基準位相の分布は、調整前の分布よりも小さくなる。以上から、校正部50によれば、第1端子グループ21に属する信号入出力部30の基準位相および第2端子グループ22に属する信号入出力部30の基準位相の分布をより小さくすることができる。 In this case, the reference phase (T AX ') and a reference phase (T BX') of the average value matched to so adjusted after the reference phase (T AX'' = T BX'' ) is, (T AX '+ T BX ') / 2. This value is closer to the average value than the reference phase (T BX ′). Therefore, the distribution of the reference phase obtained by combining the first terminal group 21 and the second terminal group 22 is smaller than the distribution before adjustment. From the above, according to the calibration unit 50, the distribution of the reference phase of the signal input / output unit 30 belonging to the first terminal group 21 and the reference phase of the signal input / output unit 30 belonging to the second terminal group 22 can be further reduced. .
 図6は、本実施形態に係る試験装置10の校正処理のフローチャートを示す。まず、試験装置10は、ステップS11において、被試験デバイスに代えて、校正用接続部200を当該試験装置10に取り付ける。これにより、試験装置10は、第1端子グループ21のそれぞれの信号入出力部30と、第2端子グループ22のそれぞれの信号入出力部30とを、1対1に接続することができる。 FIG. 6 shows a flowchart of the calibration process of the test apparatus 10 according to the present embodiment. First, in step S <b> 11, the test apparatus 10 attaches the calibration connection unit 200 to the test apparatus 10 in place of the device under test. Accordingly, the test apparatus 10 can connect the signal input / output units 30 of the first terminal group 21 and the signal input / output units 30 of the second terminal group 22 in a one-to-one relationship.
 次に、測定部52は、1対1で接続された信号入出力部30のペア毎に、ステップS13からステップS15の処理を繰り返す(S12、S16)。ステップS13において、第1シフト量検出部80は、第1端子グループ21の信号入出力部30から信号を出力させて、第2端子グループ22の信号入出力部30により取得させる。そして、第1シフト量検出部80は、このように信号を取得させた場合における位相シフト量を検出する。 Next, the measurement unit 52 repeats the processing from step S13 to step S15 for each pair of signal input / output units 30 connected one-to-one (S12, S16). In step S <b> 13, the first shift amount detection unit 80 outputs a signal from the signal input / output unit 30 of the first terminal group 21 and causes the signal input / output unit 30 of the second terminal group 22 to acquire the signal. Then, the first shift amount detector 80 detects the phase shift amount when the signal is acquired in this way.
 例えば、第1シフト量検出部80は、試験周期毎に、固定の発生タイミングにおいて論理が変化する信号を第1端子グループ21の信号入出力部30から繰り返して出力させ、取得タイミングを順次に変化させながら第2端子グループ22の信号入出力部30に信号を繰り返して取得させる。そして、第1シフト量検出部80は、第2端子グループ22の信号入出力部30がエッジを取り込んだ時のストローブ信号の位相を検出して、ストローブ信号の基準位相からのエッジを取り込んだ時のストローブ信号の位相までの変化量を、位相シフト量として検出する。 For example, the first shift amount detection unit 80 repeatedly outputs a signal whose logic changes at a fixed generation timing from the signal input / output unit 30 of the first terminal group 21 for each test cycle, and sequentially changes the acquisition timing. Then, the signal input / output unit 30 of the second terminal group 22 is made to acquire signals repeatedly. The first shift amount detection unit 80 detects the phase of the strobe signal when the signal input / output unit 30 of the second terminal group 22 captures an edge, and captures an edge from the reference phase of the strobe signal. The amount of change up to the phase of the strobe signal is detected as a phase shift amount.
 また、これに代えて、第1シフト量検出部80は、試験周期毎に、発生タイミングを順次に変化させながら論理が変化する信号を第1端子グループ21の信号入出力部30から繰り返して出力させ、固定の取得タイミングにおいて第2端子グループ22の信号入出力部30に信号を繰り返して取得させる。そして、第1シフト量検出部80は、第2端子グループ22の信号入出力部30がエッジを取り込んだ時のタイミング信号の位相を検出して、タイミング信号の基準位相からエッジを取り込んだ時のタイミング信号の位相までの変化量を、位相シフト量として検出してもよい。 Alternatively, the first shift amount detection unit 80 repeatedly outputs a signal whose logic changes while changing the generation timing sequentially from the signal input / output unit 30 of the first terminal group 21 for each test cycle. The signal input / output unit 30 of the second terminal group 22 is repeatedly acquired at a fixed acquisition timing. The first shift amount detection unit 80 detects the phase of the timing signal when the signal input / output unit 30 of the second terminal group 22 captures the edge, and captures the edge from the reference phase of the timing signal. The amount of change up to the phase of the timing signal may be detected as a phase shift amount.
 次に、ステップS14において、第2シフト量検出部82は、第2端子グループ22の信号入出力部30から信号を出力させて、第1端子グループ21の信号入出力部30により取得させる。そして、第2シフト量検出部82は、このように信号を取得させた場合における位相シフト量を検出する。例えば、第2シフト量検出部82は、信号の出力側と入力側の関係を逆として、ステップS13と同様の処理をして、位相シフト量を検出してよい。 Next, in step S <b> 14, the second shift amount detection unit 82 outputs a signal from the signal input / output unit 30 of the second terminal group 22 and causes the signal input / output unit 30 of the first terminal group 21 to acquire the signal. Then, the second shift amount detector 82 detects the phase shift amount when the signal is acquired in this way. For example, the second shift amount detection unit 82 may detect the phase shift amount by performing the same processing as step S13 with the relationship between the signal output side and the input side reversed.
 次に、ステップS15において、差分算出部84は、ステップS13の処理により第1シフト量検出部80が検出した位相シフト量と、ステップS14の処理により第2シフト量検出部82が検出した位相シフト量との差分の1/2の値を算出する。本実施形態においては、差分算出部84は、第2シフト量検出部82が検出した位相シフト量から第1シフト量検出部80が検出した位相シフト量を減じ、減じた結果の値の1/2を算出する。これにより、差分算出部84は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30のペアについて、基準位相の差分を測定することができる。 Next, in step S15, the difference calculation unit 84 detects the phase shift amount detected by the first shift amount detection unit 80 by the process of step S13 and the phase shift detected by the second shift amount detection unit 82 by the process of step S14. The value of 1/2 of the difference from the quantity is calculated. In the present embodiment, the difference calculation unit 84 subtracts the phase shift amount detected by the first shift amount detection unit 80 from the phase shift amount detected by the second shift amount detection unit 82, and 1 / of the value obtained by subtraction. 2 is calculated. Thereby, the difference calculation part 84 can measure the difference of the reference phase for the pair of the signal input / output part 30 of the first terminal group 21 and the signal input / output part 30 of the second terminal group 22 connected to each other. .
 1対1で接続された信号入出力部30のペアの全てについてステップS12からステップS15の処理が終了すると(S16)、次に、ステップS17において、平均算出部86は、全ての信号入出力部30のペアについての、基準位相の差分の平均値Mを算出する。 When the processing from step S12 to step S15 is completed for all the pairs of signal input / output units 30 connected in a one-to-one relationship (S16), then in step S17, the average calculation unit 86 selects all signal input / output units. An average value M of reference phase differences for 30 pairs is calculated.
 次に、ステップS18において、グループ間調整部88は、基準位相の差分の平均値Mに0以上1以下の第1係数α(0≦α≦1)を乗じた位相分、タイミング信号(およびストローブ信号)を遅延させるオフセット遅延量を算出する。そして、グループ間調整部88は、算出したオフセット遅延量を、第1端子グループ21に属するグループ用レジスタ34に記憶されたオフセット遅延量に加算して、当該グループ用レジスタ34に書き戻す。 Next, in step S18, the inter-group adjustment unit 88 multiplies the average value M of the reference phase difference by a first coefficient α (0 ≦ α ≦ 1) of 0 or more and 1 for the timing signal (and strobe). Signal) is calculated. Then, the inter-group adjustment unit 88 adds the calculated offset delay amount to the offset delay amount stored in the group register 34 belonging to the first terminal group 21 and writes it back to the group register 34.
 さらに、グループ間調整部88は、基準位相の差分の平均値に第2係数(1-α)(1から第1系数αを減じた値)を乗じた位相分、タイミング信号(およびストローブ信号)を遅延させるオフセット遅延量を算出する。そして、グループ間調整部88は、算出したオフセット遅延量を、第2端子グループ22に属するグループ用レジスタ34に記憶されたオフセット遅延量から減算して、当該グループ用レジスタ34に書き戻す。 Further, the inter-group adjustment unit 88 generates a timing signal (and a strobe signal) corresponding to the phase obtained by multiplying the average value of the reference phase differences by the second coefficient (1-α) (a value obtained by subtracting the first coefficient α from 1). The amount of offset delay that delays is calculated. Then, the inter-group adjustment unit 88 subtracts the calculated offset delay amount from the offset delay amount stored in the group register 34 belonging to the second terminal group 22 and writes it back to the group register 34.
 これにより、グループ間調整部88は、第1端子グループ21のそれぞれの信号入出力部30の基準位相を、第2端子グループ22のそれぞれの信号入出力部30の基準位相に対して相対的に、平均算出部86が算出した平均値分一律させることができる。そして、グループ間調整部88は、第1端子グループ21に属する信号入出力部30の基準位相の平均値と第2端子グループ22に属する信号入出力部30の基準位相の平均値とを略一致させることができる。なお、第1係数αおよび第2係数α―1は、それぞれ0.5であってよい。 Thereby, the inter-group adjustment unit 88 makes the reference phase of each signal input / output unit 30 of the first terminal group 21 relatively to the reference phase of each signal input / output unit 30 of the second terminal group 22. The average value calculated by the average calculator 86 can be made uniform. The inter-group adjusting unit 88 substantially matches the average value of the reference phase of the signal input / output unit 30 belonging to the first terminal group 21 and the average value of the reference phase of the signal input / output unit 30 belonging to the second terminal group 22. Can be made. Note that the first coefficient α and the second coefficient α-1 may each be 0.5.
 次に、測定部52は、1対1で接続された信号入出力部30のペア毎に、ステップS20からステップS23の処理を繰り返す(S19、S24)。ステップS20において、第1シフト量検出部80は、第1端子グループ21の信号入出力部30から信号を出力させて、第2端子グループ22の信号入出力部30により取得させる。そして、第1シフト量検出部80は、このように信号を取得させた場合における位相シフト量を検出する。第1シフト量検出部80は、ステップS20において、ステップS13と同様の処理を行ってよい。 Next, the measurement unit 52 repeats the processing from step S20 to step S23 for each pair of signal input / output units 30 connected one-to-one (S19, S24). In step S <b> 20, the first shift amount detection unit 80 outputs a signal from the signal input / output unit 30 of the first terminal group 21 and causes the signal input / output unit 30 of the second terminal group 22 to acquire the signal. Then, the first shift amount detection unit 80 detects the phase shift amount when the signal is acquired in this way. In step S20, the first shift amount detection unit 80 may perform the same process as in step S13.
 次に、ステップS21において、第2シフト量検出部82は、第2端子グループ22の信号入出力部30から信号を出力させて、第1端子グループ21の信号入出力部30により取得させる。そして、第2シフト量検出部82は、このように信号を取得させた場合における位相シフト量を検出する。第2シフト量検出部82は、ステップS21において、ステップS14と同様の処理を行ってよい。 Next, in step S <b> 21, the second shift amount detection unit 82 outputs a signal from the signal input / output unit 30 of the second terminal group 22 and causes the signal input / output unit 30 of the first terminal group 21 to acquire the signal. Then, the second shift amount detector 82 detects the phase shift amount when the signal is acquired in this way. In step S21, the second shift amount detection unit 82 may perform the same process as in step S14.
 次に、ステップS22において、差分算出部84は、ステップS20の処理により第1シフト量検出部80が検出した位相シフト量と、ステップS21の処理により第2シフト量検出部82が検出した位相シフト量との差分の1/2の値を算出する。本実施形態においては、差分算出部84は、第2シフト量検出部82が検出した位相シフト量から、第1シフト量検出部80が検出した位相シフト量を減じ、減じた結果の値の1/2を算出する。これにより、差分算出部84は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30のペアについて、基準位相の差分を測定することができる。 Next, in step S22, the difference calculation unit 84 detects the phase shift amount detected by the first shift amount detection unit 80 by the process of step S20 and the phase shift detected by the second shift amount detection unit 82 by the process of step S21. The value of 1/2 of the difference from the quantity is calculated. In the present embodiment, the difference calculation unit 84 subtracts the phase shift amount detected by the first shift amount detection unit 80 from the phase shift amount detected by the second shift amount detection unit 82, and subtracts 1 as a result of the subtraction. / 2 is calculated. Thereby, the difference calculation part 84 can measure the difference of the reference phase for the pair of the signal input / output part 30 of the first terminal group 21 and the signal input / output part 30 of the second terminal group 22 connected to each other. .
 次に、ステップS23において、端子間調整部90は、ステップS22で算出した基準位相の差分の1/2の位相量分遅延させるオフセット遅延量を、第1端子グループ21に属する、当該ペアに対応する端子用レジスタ36に記憶されたオフセット遅延量に加算して、当該端子用レジスタ36に書き戻す。さらに、端子間調整部90は、ステップS22で算出した基準位相の差分の1/2の位相量分遅延させるオフセット遅延量を、第2端子グループ22に属する、当該ペアに対応する端子用レジスタ36に記憶されたオフセット遅延量から減算して、当該端子用レジスタ36に書き戻す。これにより、端子間調整部90は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、信号入出力部30同士の基準位相を平均値に一致させることができる。 Next, in step S23, the inter-terminal adjustment unit 90 corresponds to the pair belonging to the first terminal group 21 with an offset delay amount that is delayed by a phase amount that is ½ of the reference phase difference calculated in step S22. The offset delay amount stored in the terminal register 36 to be added is added back to the terminal register 36. Further, the inter-terminal adjusting unit 90 delays an offset delay amount that is delayed by a phase amount that is ½ of the reference phase difference calculated in step S22, to the terminal register 36 that corresponds to the pair belonging to the second terminal group 22. Is subtracted from the offset delay amount stored in the terminal register 36 and written back to the terminal register 36. As a result, the inter-terminal adjustment unit 90 is configured such that the signal input / output units 30 are connected to each other for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 connected to each other. The phase can be matched to the average value.
 1対1で接続された信号入出力部30のペアの全てについてステップS20からステップS23の処理が終了すると、校正部50は、全ての処理を終了する。以上のような試験装置10によれば、第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30のそれぞれの基準位相の分布を小さくすることができる。 When the processing from step S20 to step S23 is completed for all pairs of signal input / output units 30 connected in a one-to-one relationship, the calibration unit 50 ends all processing. According to the test apparatus 10 as described above, the distribution of the reference phases of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 can be reduced.
 なお、試験装置10は、一例として、ステップS11からステップS18の処理を行わずに、ステップS19からステップS24の処理を行ってもよい。即ち、調整部54は、一例として、互いに接続された第1端子グループ21の信号入出力部30の基準位相および第2端子グループ22の信号入出力部30の基準位相のそれぞれを、当該基準位相同士の平均の位相に設定する。これにより、試験装置10は、位相シフト量の検出処理および平均演算処理等を行わなくてよいので、処理時間を短縮することができる。 Note that, as an example, the test apparatus 10 may perform the processing from step S19 to step S24 without performing the processing from step S11 to step S18. That is, for example, the adjustment unit 54 determines the reference phase of the signal input / output unit 30 of the first terminal group 21 and the reference phase of the signal input / output unit 30 of the second terminal group 22 connected to each other as the reference phase. Set to the average phase of each other. Accordingly, the test apparatus 10 does not have to perform the phase shift amount detection process, the average calculation process, and the like, so that the processing time can be reduced.
 図7は、本実施形態の変形例に係る試験装置10の構成を示す。本変形例に係る試験装置10は、図1に示された試験装置10と略同一の構成および機能を採るので、図1に示された部材と略同一の構成および機能の部材に同一の符号を付け、以下相違点を除き説明を省略する。 FIG. 7 shows a configuration of a test apparatus 10 according to a modification of the present embodiment. Since the test apparatus 10 according to this modification employs substantially the same configuration and function as the test apparatus 10 shown in FIG. 1, members having substantially the same configuration and function as those shown in FIG. The description will be omitted except for the differences.
 本変形例に係る校正部50は、検証部92を更に有する。本変形例に係る調整部54は、互いに接続された第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の基準位相を略同量ずつシフトして基準位相同士を互いに近づける。 The calibration unit 50 according to this modification further includes a verification unit 92. The adjustment unit 54 according to this modification shifts the reference phase of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22 that are connected to each other by substantially the same amount. Bring them closer together.
 検証部92は、調整部54によるそれぞれの調整後に、第1端子グループ21および第2端子グループ22の間の信号入出力部30の基準位相の差分を測定部52により測定させて、当該差分の平均値が基準範囲内か否かを検証する。そして、検証部92は、差分の平均値が基準範囲外であった場合に、基準位相を更に調整することを調整部54に指示する。これにより、本変形例に係る校正部50によれば、第1端子グループ21および第2端子グループ22の信号入出力部30の基準位相を、より確実に、差分の平均値が基準範囲となるように調整することができる。 After each adjustment by the adjustment unit 54, the verification unit 92 causes the measurement unit 52 to measure the difference in the reference phase of the signal input / output unit 30 between the first terminal group 21 and the second terminal group 22. Verify whether the average value is within the reference range. Then, the verification unit 92 instructs the adjustment unit 54 to further adjust the reference phase when the average difference value is outside the reference range. Thereby, according to the calibration unit 50 according to the present modification, the reference phase of the signal input / output unit 30 of the first terminal group 21 and the second terminal group 22 is more reliably determined, and the average value of the differences becomes the reference range. Can be adjusted as follows.
 また、本変形例に係る校正部50は、履歴記憶部94を更に有してもよい。履歴記憶部94は、第1端子グループ21のそれぞれの信号入出力部30および第2端子グループ22のそれぞれの信号入出力部30に対して過去に設定した基準位相の履歴を記憶する。そして、この場合、調整部54は、第1端子グループ21の信号入出力部30および第2端子グループ22の信号入出力部30の各ペアについて、基準位相同士を互いに近づけ、かつ各基準位相を履歴記憶部94に記憶された対応する基準位相に近付ける。 Further, the calibration unit 50 according to this modification may further include a history storage unit 94. The history storage unit 94 stores a history of reference phases set in the past for each signal input / output unit 30 of the first terminal group 21 and each signal input / output unit 30 of the second terminal group 22. In this case, the adjustment unit 54 brings the reference phases closer to each other and sets each reference phase for each pair of the signal input / output unit 30 of the first terminal group 21 and the signal input / output unit 30 of the second terminal group 22. The corresponding reference phase stored in the history storage unit 94 is approached.
 調整部54は、一例として、第1端子グループ21のそれぞれの信号入出力部30の基準位相を、第2端子グループ22のそれぞれの信号入出力部30の基準位相に対して相対的に算出した差分の平均値分一律シフトさせ、且つ、履歴記憶部94に記憶された対応する基準位相に一致またはより近づけるような位相に設定する。このような本変形例に係る校正部50によれば、過去に設定された基準位相に近い基準位相で被試験デバイスを試験することができるので、試験結果の再現性を高くすることができる。 For example, the adjustment unit 54 calculates the reference phase of each signal input / output unit 30 of the first terminal group 21 relative to the reference phase of each signal input / output unit 30 of the second terminal group 22. The phase is shifted uniformly by the average value of the difference, and set to a phase that matches or is closer to the corresponding reference phase stored in the history storage unit 94. According to the calibration unit 50 according to this modification example, since the device under test can be tested with a reference phase close to a reference phase set in the past, the reproducibility of the test result can be increased.
 図8は、本実施形態に係るコンピュータ1900のハードウェア構成の一例を示す。本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、及び表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、ハードディスクドライブ2040、及びCD-ROMドライブ2060を有する入出力部と、入出力コントローラ2084に接続されるROM2010、フレキシブルディスク・ドライブ2050、及び入出力チップ2070を有するレガシー入出力部とを備える。 FIG. 8 shows an example of a hardware configuration of a computer 1900 according to this embodiment. A computer 1900 according to this embodiment is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084. Input / output unit having communication interface 2030, hard disk drive 2040, and CD-ROM drive 2060, and legacy input / output unit having ROM 2010, flexible disk drive 2050, and input / output chip 2070 connected to input / output controller 2084 With.
 ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000及びグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010及びRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。 The host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate. The CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit. The graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080. Instead of this, the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
 入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、ハードディスクドライブ2040、CD-ROMドライブ2060を接続する。通信インターフェイス2030は、ネットワークを介して他の装置と通信する。ハードディスクドライブ2040は、コンピュータ1900内のCPU2000が使用するプログラム及びデータを格納する。CD-ROMドライブ2060は、CD-ROM2095からプログラム又はデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。 The input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the CD-ROM drive 2060, which are relatively high-speed input / output devices. The communication interface 2030 communicates with other devices via a network. The hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900. The CD-ROM drive 2060 reads a program or data from the CD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
 また、入出力コントローラ2084には、ROM2010と、フレキシブルディスク・ドライブ2050、及び入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、及び/又は、コンピュータ1900のハードウェアに依存するプログラム等を格納する。フレキシブルディスク・ドライブ2050は、フレキシブルディスク2090からプログラム又はデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。入出力チップ2070は、フレキシブルディスク・ドライブ2050を入出力コントローラ2084へと接続すると共に、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続する。 Also, the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084. The ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900. The flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via the RAM 2020. The input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084 and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
 RAM2020を介してハードディスクドライブ2040に提供されるプログラムは、フレキシブルディスク2090、CD-ROM2095、又はICカード等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内のハードディスクドライブ2040にインストールされ、CPU2000において実行される。 The program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as the flexible disk 2090, the CD-ROM 2095, or an IC card and provided by the user. The program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
 コンピュータ1900にインストールされ、コンピュータ1900を校正部50として機能させるプログラムは、測定モジュールと、調整モジュールとを備える。これらのプログラム又はモジュールは、CPU2000等に働きかけて、コンピュータ1900を、測定部52、調整部54としてそれぞれ機能させる。 A program that is installed in the computer 1900 and causes the computer 1900 to function as the calibration unit 50 includes a measurement module and an adjustment module. These programs or modules work on the CPU 2000 or the like to cause the computer 1900 to function as the measurement unit 52 and the adjustment unit 54, respectively.
 これらのプログラムに記述された情報処理は、コンピュータ1900に読込まれることにより、ソフトウェアと上述した各種のハードウェア資源とが協働した具体的手段である測定部52、調整部54として機能する。そして、これらの具体的手段によって、本実施形態におけるコンピュータ1900の使用目的に応じた情報の演算又は加工を実現することにより、使用目的に応じた特有の校正部50が構築される。 The information processing described in these programs functions as the measurement unit 52 and the adjustment unit 54, which are specific means in which the software and the various hardware resources described above cooperate with each other when read into the computer 1900. And the specific calibration part 50 according to the intended purpose is constructed | assembled by implement | achieving the calculation or processing of the information according to the intended purpose of the computer 1900 in this embodiment by these specific means.
 一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、ハードディスクドライブ2040、フレキシブルディスク2090、又はCD-ROM2095等の記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置又は通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030又は記憶装置へとデータを書き込むことにより送受信データを転送してもよい。 As an example, when communication is performed between the computer 1900 and an external device or the like, the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program. A communication process is instructed to 2030. Under the control of the CPU 2000, the communication interface 2030 reads transmission data stored in a transmission buffer area or the like provided on a storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the CD-ROM 2095, and sends it to the network. The reception data transmitted or received from the network is written into a reception buffer area or the like provided on the storage device. As described above, the communication interface 2030 may transfer transmission / reception data to / from the storage device by a DMA (direct memory access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as a transfer source. The transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
 また、CPU2000は、ハードディスクドライブ2040、CD-ROMドライブ2060(CD-ROM2095)、フレキシブルディスク・ドライブ2050(フレキシブルディスク2090)等の外部記憶装置に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。そして、CPU2000は、処理を終えたデータを、DMA転送等により外部記憶装置へと書き戻す。このような処理において、RAM2020は、外部記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020および外部記憶装置等をメモリ、記憶部、または記憶装置等と総称する。本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、及び/又は記憶装置に含まれるものとする。 The CPU 2000 is all or necessary from among files or databases stored in an external storage device such as a hard disk drive 2040, a CD-ROM drive 2060 (CD-ROM 2095), and a flexible disk drive 2050 (flexible disk 2090). This portion is read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020. Then, CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like. In such processing, since the RAM 2020 can be regarded as temporarily holding the contents of the external storage device, in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, or a storage device. Various types of information such as various programs, data, tables, and databases in the present embodiment are stored on such a storage device and are subjected to information processing. Note that the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
 また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすかどうかを判断し、条件が成立した場合(又は不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。 In addition, the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020. For example, when performing the condition determination, the CPU 2000 determines whether the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. When the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
 また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。 Further, the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
 以上に示したプログラム又はモジュールは、外部の記録媒体に格納されてもよい。記録媒体としては、フレキシブルディスク2090、CD-ROM2095の他に、DVD又はCD等の光学記録媒体、MO等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワーク又はインターネットに接続されたサーバシステムに設けたハードディスク又はRAM等の記憶装置を記録媒体として使用し、ネットワークを介してプログラムをコンピュータ1900に提供してもよい。 The program or module shown above may be stored in an external recording medium. As the recording medium, in addition to the flexible disk 2090 and the CD-ROM 2095, an optical recording medium such as DVD or CD, a magneto-optical recording medium such as MO, a tape medium, a semiconductor memory such as an IC card, and the like can be used. Further, a storage device such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.

Claims (14)

  1.  被試験デバイスを試験する試験装置であって、
     それぞれが前記被試験デバイスの端子へ信号を出力し、前記端子から出力された信号を入力する信号入出力部を複数有する第1端子グループおよび第2端子グループと、
     前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続した状態で、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、信号を入出力する基準位相の差分を測定する測定部と、
     互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記基準位相の差分に基づき前記基準位相を互いに近付ける調整部と、
     を備える試験装置。
    A test apparatus for testing a device under test,
    A first terminal group and a second terminal group each having a plurality of signal input / output units for outputting signals to the terminals of the device under test and inputting signals output from the terminals;
    The signal input / output of the first terminal group connected to each other in a state where the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group are connected to each other. And a measurement unit for measuring a difference in a reference phase for inputting / outputting a signal for each pair of the signal input / output units of the second terminal group; and
    For each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other, an adjustment unit that brings the reference phase closer to each other based on the difference of the reference phase;
    A test apparatus comprising:
  2.  前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続する校正用接続部を更に備える請求項1に記載の試験装置。 The test apparatus according to claim 1, further comprising a calibration connection unit that connects the signal input / output units of the first terminal group and the signal input / output units of the second terminal group to each other.
  3.  前記調整部は、前記第1端子グループに属する前記信号入出力部の前記基準位相の平均、および前記第2端子グループに属する前記信号入出力部の前記基準位相の平均の差を低減し、かつ互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて前記基準位相の差を低減する請求項1または2に記載の試験装置。 The adjusting unit reduces an average difference between the reference phases of the signal input / output units belonging to the first terminal group and an average of the reference phases of the signal input / output units belonging to the second terminal group; and The test apparatus according to claim 1, wherein a difference in the reference phase is reduced for each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group that are connected to each other.
  4.  前記調整部は、前記第1端子グループに属する前記信号入出力部の前記基準位相の平均と、前記第2端子グループに属する前記信号入出力部の前記基準位相の平均とを略一致させ、かつ、互いに接続された前記第1端子グループの前記信号入出力部の前記基準位相および前記第2端子グループの前記信号入出力部の前記基準位相を略一致させる請求項3に記載の試験装置。 The adjusting unit substantially matches an average of the reference phases of the signal input / output units belonging to the first terminal group and an average of the reference phases of the signal input / output units belonging to the second terminal group; and The test apparatus according to claim 3, wherein the reference phase of the signal input / output unit of the first terminal group connected to each other and the reference phase of the signal input / output unit of the second terminal group are substantially matched.
  5.  前記調整部は、互いに接続された前記第1端子グループの前記信号入出力部の前記基準位相および前記第2端子グループの前記信号入出力部の前記基準位相のそれぞれを、当該基準位相同士の平均値と略一致させる請求項4に記載の試験装置。 The adjusting unit calculates an average of the reference phases of the reference phase of the signal input / output unit of the first terminal group and the reference phase of the signal input / output unit of the second terminal group connected to each other. The test apparatus according to claim 4, which is substantially coincident with the value.
  6.  前記調整部は、互いに接続された前記第1端子グループの前記信号入出力部の基準位相および前記第2端子グループの前記信号入出力部の基準位相のそれぞれを、当該基準位相同士の平均の位相に設定する請求項1から5のいずれかに記載の試験装置。 The adjustment unit calculates an average phase between the reference phases of the reference phase of the signal input / output unit of the first terminal group and the reference phase of the signal input / output unit of the second terminal group connected to each other. The test apparatus according to claim 1, wherein the test apparatus is set as follows.
  7.  前記調整部は、
     前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて測定した基準位相の差分の平均値を算出する平均算出部と、
     前記第1端子グループのそれぞれの前記信号入出力部の基準位相を、前記第2端子グループのそれぞれの前記信号入出力部の基準位相に対して相対的に、前記平均算出部が算出した平均値分一律シフトさせて、前記第1端子グループに属する前記信号入出力部の基準位相の平均値と前記第2端子グループに属する前記信号入出力部の基準位相の平均値とを略一致させるグループ間調整部と、
     互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記信号入出力部同士の基準位相を平均値に一致させる
     請求項1から5のいずれかに記載の試験装置。
    The adjustment unit is
    An average calculating unit that calculates an average value of differences in reference phases measured for each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group;
    The average value calculated by the average calculator relative to the reference phase of each of the signal input / output units of the second terminal group, relative to the reference phase of each of the signal input / output units of the second terminal group. A group shift is performed so that the average value of the reference phase of the signal input / output unit belonging to the first terminal group and the average value of the reference phase of the signal input / output unit belonging to the second terminal group are substantially matched. An adjustment unit;
    2. For each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group that are connected to each other, a reference phase of the signal input / output units is made to coincide with an average value. To 5. The test apparatus according to any one of 5 to 5.
  8.  前記調整部による調整後に、前記第1端子グループおよび前記第2端子グループの間の前記信号入出力部の基準位相の差分を前記測定部により測定させて、当該差分の平均値が基準範囲内か否かを検証する検証部を更に備える請求項1から7のいずれかに記載の試験装置。 After the adjustment by the adjustment unit, the difference in the reference phase of the signal input / output unit between the first terminal group and the second terminal group is measured by the measurement unit, and whether the average value of the difference is within the reference range The test apparatus according to claim 1, further comprising a verification unit that verifies whether or not.
  9.  前記検証部は、前記差分の平均値が前記基準範囲外であった場合に、基準位相を更に調整することを前記調整部に指示する請求項8に記載の試験装置。 The test apparatus according to claim 8, wherein the verification unit instructs the adjustment unit to further adjust a reference phase when the average value of the differences is outside the reference range.
  10.  前記調整部は、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の基準位相を略同量ずつシフトして基準位相同士を互いに近づける請求項1から9のいずれかに記載の試験装置。 The adjustment unit shifts the reference phases of the signal input / output units of the first terminal group and the signal input / output units of the second terminal group connected to each other by substantially the same amount to bring the reference phases closer to each other. Item 10. The test apparatus according to any one of Items 1 to 9.
  11.  前記第1端子グループのそれぞれの前記信号入出力部および前記第2端子グループのそれぞれの前記信号入出力部に対して過去に設定した基準位相の履歴を記憶する履歴記憶部を更に備え、
     前記調整部は、前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、基準位相同士を互いに近づけ、かつ各基準位相を前記履歴記憶部に記憶された対応する基準位相に近付ける
     請求項1から10のいずれかに記載の試験装置。
    A history storage unit for storing a history of reference phases set in the past for each of the signal input / output units of the first terminal group and the signal input / output unit of the second terminal group;
    The adjusting unit brings the reference phases closer to each other for each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group, and sets each reference phase in the history storage unit. The test apparatus according to claim 1, wherein the test apparatus approaches a stored reference phase.
  12.  前記校正用接続部は、前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを、1対1に接続するキャリブレーションボードである請求項2に記載の試験装置。 The calibration connection unit is a calibration board that connects the signal input / output units of the first terminal group and the signal input / output units of the second terminal group in a one-to-one relationship. Item 3. The test apparatus according to Item 2.
  13.  被試験デバイスを試験する試験装置を校正する校正方法であって、
     前記試験装置は、それぞれが前記被試験デバイスの端子へ信号を出力し、前記端子から出力された信号を入力する信号入出力部を複数有する第1端子グループおよび第2端子グループを備え、
     前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続した状態で、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、信号を入出力する基準位相の差分を測定し、
     互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記基準位相の差分に基づき前記基準位相を互いに近付ける
     校正方法。
    A calibration method for calibrating a test apparatus for testing a device under test,
    The test apparatus includes a first terminal group and a second terminal group each having a plurality of signal input / output units that output signals to the terminals of the device under test and input signals output from the terminals,
    The signal input / output of the first terminal group connected to each other in a state where the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group are connected to each other. For each pair of signal input / output units of the second terminal group and a reference phase for inputting / outputting signals,
    A calibration method for bringing the reference phase closer to each other based on the difference in the reference phase for each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other.
  14.  コンピュータを、被試験デバイスを試験する試験装置を校正する校正装置として機能させるプログラムであって、
     前記試験装置は、それぞれが前記被試験デバイスの端子へ信号を出力し、前記端子から出力された信号を入力する信号入出力部を複数有する第1端子グループおよび第2端子グループを備え、
     前記コンピュータを、
     前記第1端子グループのそれぞれの前記信号入出力部と、前記第2端子グループのそれぞれの前記信号入出力部とを互いに接続した状態で、互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、信号を入出力する基準位相の差分を測定する測定部と、
     互いに接続された前記第1端子グループの前記信号入出力部および前記第2端子グループの前記信号入出力部の各ペアについて、前記基準位相の差分に基づき前記基準位相を互いに近付ける調整部と、
    して機能させるプログラム。
    A program for causing a computer to function as a calibration apparatus for calibrating a test apparatus for testing a device under test,
    The test apparatus includes a first terminal group and a second terminal group each having a plurality of signal input / output units that output signals to the terminals of the device under test and input signals output from the terminals,
    The computer,
    The signal input / output of the first terminal group connected to each other in a state where the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group are connected to each other. And a measurement unit for measuring a difference in a reference phase for inputting / outputting a signal for each pair of the signal input / output units of the second terminal group; and
    For each pair of the signal input / output unit of the first terminal group and the signal input / output unit of the second terminal group connected to each other, an adjustment unit that brings the reference phase closer to each other based on the difference of the reference phase;
    Program to make it work.
PCT/JP2009/000646 2009-02-17 2009-02-17 Test apparatus, calibration method and program WO2010095167A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/000646 WO2010095167A1 (en) 2009-02-17 2009-02-17 Test apparatus, calibration method and program
TW099104486A TW201037332A (en) 2009-02-17 2010-02-11 Test apparatus, calibration method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000646 WO2010095167A1 (en) 2009-02-17 2009-02-17 Test apparatus, calibration method and program

Publications (1)

Publication Number Publication Date
WO2010095167A1 true WO2010095167A1 (en) 2010-08-26

Family

ID=42633473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000646 WO2010095167A1 (en) 2009-02-17 2009-02-17 Test apparatus, calibration method and program

Country Status (2)

Country Link
TW (1) TW201037332A (en)
WO (1) WO2010095167A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072738A1 (en) * 2005-12-19 2007-06-28 Advantest Corporation Testing apparatus, adjusting apparatus, adjusting method and adjusting program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072738A1 (en) * 2005-12-19 2007-06-28 Advantest Corporation Testing apparatus, adjusting apparatus, adjusting method and adjusting program

Also Published As

Publication number Publication date
TW201037332A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
US20060059392A1 (en) Method and apparatus for estimating random jitter (RJ) and deterministic jitter (DJ) from bit error rate (BER)
US7757144B2 (en) System and method for testing integrated circuit modules comprising a plurality of integrated circuit devices
WO2011001463A1 (en) Test apparatus, method for correcting and program
JP4948421B2 (en) Test apparatus, adjustment apparatus, adjustment method, and adjustment program
KR100868995B1 (en) Test Apparatus, Regulating Apparatus, Regulating Method, and Computer Readable Medium on which Regulating Program is recorded
TW201216048A (en) Test system
CN111858412B (en) Method, device, computer equipment and medium for adjusting time sequence
US7532994B2 (en) Test apparatus, test method, electronic device manufacturing method, test simulator and test simulation method
KR100736675B1 (en) Tester for testing semiconductor device
CN104660935A (en) T-CON voltage adjusting device, system and method
US7262621B1 (en) Method and apparatus for integrated mixed-signal or analog testing
JP4849996B2 (en) Delay circuit, test apparatus, program, semiconductor chip, initialization method, and initialization circuit
WO2010095167A1 (en) Test apparatus, calibration method and program
WO2010058441A1 (en) Test equipment, test method, and program
US20090063086A1 (en) Apparatus for testing semiconductor integrated circuit and method for testing semiconductor integrated circuit
JP2011053065A (en) Test apparatus, test method, program, and interface circuit
JP2009250803A (en) Test device, measuring instrument, program, test method, and measuring method
JP2007024524A (en) Testing device, control method, and control program
JP5274648B2 (en) Test apparatus, calibration method, and program
JP2011089857A (en) Testing device, adjustment method, board for calibration, adjusting device, and program
JP4721919B2 (en) Correction method and correction apparatus
CN102414567A (en) Correction device, probability density function measuring device, jitter measuring device, jitter separating device, electronic device, correction method, program, and recording medium
US20230342274A1 (en) Modular test system
JP2012093251A (en) Testing apparatus and program
JP5249123B2 (en) Device having diagnostic function, diagnostic method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP