WO2010094412A1 - Grundierung für mineralische baustoffe - Google Patents

Grundierung für mineralische baustoffe Download PDF

Info

Publication number
WO2010094412A1
WO2010094412A1 PCT/EP2010/000779 EP2010000779W WO2010094412A1 WO 2010094412 A1 WO2010094412 A1 WO 2010094412A1 EP 2010000779 W EP2010000779 W EP 2010000779W WO 2010094412 A1 WO2010094412 A1 WO 2010094412A1
Authority
WO
WIPO (PCT)
Prior art keywords
use according
concrete
diisocyanate
prepolymer
substrates
Prior art date
Application number
PCT/EP2010/000779
Other languages
English (en)
French (fr)
Inventor
Evelyn Pfeiffer
Mathias Matner
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Publication of WO2010094412A1 publication Critical patent/WO2010094412A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4884Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/63Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4845Polyethers containing oxyethylene units and other oxyalkylene units containing oxypropylene or higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00491Primers

Definitions

  • the present invention relates to a novel primer for mineral building materials.
  • Mineral substrates to which a reactive coating is applied or a floor covering is to be glued frequently require pretreatment with a primer.
  • a primer In the case of certain substrates such as cement, calcium sulfate or magnesia, this pre-treatment is even mandatory, other substrates are usually treated as such.
  • the primer achieves a reduction in the absorbency of the substrate as well as a binding of residual dust, which has arisen through mechanical pretreatment (milling, grinding, etc.) or weathering.
  • the primer often serves as a vapor barrier between the substrate and floor covering, it can be reliably wetted with any adhesives used and serves as a bonding layer between the layers, be it the adhesive layer or a cover or protective coating.
  • Such protective coatings are, for example, insulating layers intended to prevent the penetration of defrosting salt-contaminated water in concrete components, especially in steel-reinforced concrete, as used in bridge construction, for the construction of protective galleries or in building construction (car parks and the like) ,
  • the penetrating into the concrete, salt-laden water destroys the structure of the building material, in particular it is disadvantageous that it comes to corrosion of the reinforcement, whereby the reinforced concrete components thus equipped lose their tensile strength.
  • Such primers are typically based on silicic acid, acrylate, epoxy or polyurethane raw materials.
  • polyurethanes one-component coatings based on MDI prepolymers have become established. These are characterized in comparison to the two-component Epoxysystemen by easier handling. Due to the use of an aromatic isocyanate short curing times are possible. The high proportion of monomeric MDI (diphenylmethane diisocyanate) causes a low viscosity of the prepolymers and thus easy processing.
  • the application DD-A 134 970 (VEB Schwarzheide, DDR) describes such systems. In this context, mixtures of polyether esters and polyether alcohols are described as polyol components. However, ester groups are known to be under basic conditions not resistant to contamination - therefore it is not recommended to use it on concrete surfaces such as typical cement screeds.
  • the present invention therefore provides formulations of low-monomer-content prepolymers based on aliphatic polyisocyanates and, if appropriate, suitable additives which are applied as a primer to concrete surfaces and, after a short curing time, a further coating of the surface with adhesives, barrier layers, liquid films or liquid floor coatings (for example on screeds). allow.
  • the formulations used according to the invention are preferably used on structural concrete components and screeds, for example on supporting elements of parking garages, bridges, pillars and ceiling elements of protective galleries, screeds, in particular in rooms permanently exposed to moisture and salt.
  • the formulations used according to the invention also reduce the sanding of the treated Surfaces.
  • the application can also be done for the renovation of already attacked surfaces.
  • Moisture-curing one-part polyurethane primers for pretreatment of concrete surfaces are typically based on short-chain prepolymers prepared by the reaction of corresponding polyether polyols with diphenylmethane diisocyanate (MDI). Due to the manufacturing process, these prepolymers contain high residual amounts of monomeric isocyanate. For example, the Desmodur frequently used for this application ® E contains 29 (Bayer MaterialScience AG, Leverkusen, Germany) monomeric MDI in amounts of> 10 wt .-%. For reasons of occupational hygiene, such a high proportion of monomeric isocyanates is undesirable and moreover leads to a labeling of the primers with the risk phrase R40 (suspected carcinogenic effect).
  • MDI diphenylmethane diisocyanate
  • the present invention therefore relates to the use of prepolymers based on aliphatic isocyanates and hard saponifiable polyols.
  • the preparation of the polyisocyanate prepolymers used is known per se to the person skilled in the art and is carried out by reacting excess amounts of polyisocyanates (component A) with polyhydroxy compounds (component B).
  • component A it is possible in principle to use all organic aliphatic, cycloaliphatic or heterocyclic polyisocyanates having at least two isocyanate groups per molecule known to the person skilled in the art and mixtures thereof.
  • suitable aliphatic or cycloaliphatic polyisocyanates are di- or Triisocy- anate such as butane diisocyanate, pentane diisocyanate, hexane diisocyanate (hexamethylene diisocyanate, HDI), 4-Isocyanatomethyl-l, 8-octane diisocyanate (triisocyanatononane, TIN) or cyclic systems, such as 4,4'-methylenebis (cyclohexylisocyanate), 3,5,5-trimethyl-1-isocyanato-3-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI), 2,4- and / or 2,6-methylcyclohex
  • aliphatic diisocyanates more preferably of hexane diisocyanate (hexamethylene diisocyanate, HDI), 3,5,5-trimethyl-1-isocyanato-3-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI), and also ⁇ , ⁇ '- diisocyanato-l, 3-dimethylcyclohexane (H east XDI).
  • the present invention also provides the use or co-use of the abovementioned organic aliphatic, cycloaliphatic or heterocyclic polyisocyanates in the form of their derivatives, such as, for example, urethanes, biurets, allophanates, uretdiones, isocyanurates and trimers and mixed forms of these derivatizations.
  • organic aliphatic, cycloaliphatic or heterocyclic polyisocyanates in the form of their derivatives, such as, for example, urethanes, biurets, allophanates, uretdiones, isocyanurates and trimers and mixed forms of these derivatizations.
  • saponification-stable compounds known to the person skilled in the art which have an average OH functionality of at least 1.5.
  • These may be, for example, low molecular weight diols (eg 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol), triols (eg glycerol, trimethylolpropane) and tetraols (eg pentaerythritol), but also higher molecular weight Polyhydroxy compounds such as polyether polyols, polycarbonate polyols and Polythioetherpolyole.
  • diols eg 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol
  • triols eg glycerol, trimethylolpropane
  • tetraols eg pentaerythritol
  • Polyhydroxy compounds such as polyether
  • Such polyether polyols preferably have OH numbers of from 5 to 620 mg KOH / g, preferably from 14 to 550 mg KOH / g and more preferably from 28 to 480 mg KOH / g and a mean functionality of from 2 to 4, preferably 2 to 3.7, and more preferably from 2 to 3.6.
  • Such polyether polyols are accessible in a manner known per se by alkoxylation of suitable starter molecules with base catalysis or the use of double metal cyanide compounds (DMC compounds).
  • Suitable starter molecules for the preparation of polyether polyols are molecules having at least two elemental hydrogen bonds which are reactive toward epoxides or any desired mixtures of such starter molecules.
  • Particularly suitable polyether polyols are those of the abovementioned type having an unsaturated end group content of less than or equal to 0.02 meq / gram of polyol (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0, 01 meq / g (method of determination ASTM D2849-69).
  • Such polyether polyols can be prepared in a manner known per se by alkoxylation of suitable starter molecules, in particular using double metal cyanide catalysts (DMC catalysis). This is described, for example, in US Pat. No. 5,158,922 (eg Example 30) and EP-A 0 654 302 (P. 5, Z. 26 to P. 6, Z. 32).
  • starter molecules for the preparation of polyether polyols are simple, low molecular weight polyols, water, ethylene glycol, 1,2-propanediol, 2,2-bis (4-hydroxyphenyl) propane, 1,3-propylene glycol and 1-butanediol. 4, hexanediol-1,6, neopentyl glycol, 2-ethylhexanediol-1,3-trimethylolpropane, glycerol, pentaerythritol, sorbitol, organic polyamines having at least two NH bonds, for example triethanolamine, ammonia, methylamine or ethylenediamine, or mixtures of such starters - molecules.
  • Alkylene oxides which are suitable for the alkoxylation are, in particular, ethylene oxide and / or propylene oxide, which can be used in any order or also in a mixture in the alkoxylation.
  • polyether polyol mixtures containing at least one polyol having at least one tertiary amino group can be prepared by alkoxylation of starter molecules or mixtures of starter molecules containing at least one starter molecule having at least two epoxide-reactive element hydrogen bonds, at least one of which is an NH bond.
  • suitable starter molecules are ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, ethanolamine, diethanolamine, triethanolamine, ethylenediamine, ethylenetriamine, triethanolamine, N-methyldiethanolamine, ethylenediamine, N, N'-dimethylamine.
  • polyether polyols with organic fillers dispersed therein, for example addition products of tolylene diisocyanate with hydrazine hydrate or copolymers of styrene and acrylonitrile. It is also possible to use the polytetra-methylene ether glycols obtainable by polymerization of tetrahydrofuran with molecular weights of from 400 to 4000, but also hydroxyl-containing polybutadienes.
  • hydroxylpolycarbonates are reaction products of glycols of the type ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,4-butanediol, neopentyl glycol or 1,6-hexanediol and / or triols such as glycerol, trimethylolpropane, pentaerythritol or sorbitol with diphenyl- and / or or dimethyl carbonate.
  • the reaction is a condensation reaction in which phenol and / or methanol are split off.
  • the molecular weight range is 200 to 10,000.
  • the molecular weight range of 500 to 3000 is particularly preferred.
  • polystyrene resin can of course be reacted with all polyisocyanates, aromatic as well as aliphatic, before the actual prepolymerization to urethane-modified hydroxyl compounds.
  • monools can also be used while maintaining the preferred average OH functionality.
  • These may be, for example, low molecular weight monools (for example methanol, ethanol, propanol, isopropanol), but also relatively high molecular weight monohydroxy compounds such as polyether monools.
  • the reaction is generally carried out at temperatures of 20 to 140 0 C, preferably at 40 to 120 ° C.
  • the reaction can be carried out by the use of catalysts known per se from polyurethane chemistry, for example tin soaps, for example dibutyltin dilaurate or tertiary amines, for example triethylamine or diazabicyclooctane (DABCO).
  • catalysts known per se from polyurethane chemistry, for example tin soaps, for example dibutyltin dilaurate or tertiary amines, for example triethylamine or diazabicyclooctane (DABCO).
  • DABCO diazabicyclooctane
  • the addition of the components and optionally a catalyst of the aforementioned type can in principle be carried out in any order. If the monomeric polyisocyanate is used in excess, it is preferable to separate it off after the reaction by extraction or distillation, preferably by means of thin-layer distillation via a thin-film evaporator at elevated temperature and reduced pressure.
  • the separation of the excess polyisocyanate is carried out to the extent that remains in the resulting polyisocyanate prepolymer less than 1 wt .-%, preferably less than 0.5 wt .-% and more preferably less than 0.2 wt .-% of the polyisocyanate. In this way, prepolymers with a low monomer content are obtained which, depending on the residual monomer content, are in some cases no longer subject to labeling.
  • the components from A) and B) are usually used in a molar ratio of isocyanate groups to hydroxyl groups of 1: 1 to 1.8: 1, preferably in a molar ratio of isocyanate groups: hydroxyl groups of 1: 1 to 1.6: 1 and more preferably in a molar ratio of isocyanate groups: hydroxyl groups of 1.05: 1 to 1.5: 1 mixed together.
  • the preparation of the isocyanate-terminated prepolymers are prepared by known methods by the polyols with a stoichiometric excess of aliphatic Polyi- socyanaten at temperatures of 30 to 150 ° C, preferably 60 to 140 0 C, are reacted. This can be done discontinuously in boilers or continuously in boiler cascades or via mixers.
  • the thin film distillation is the preferred method and is usually carried out at temperatures of 100 to 160 0 C and a pressure of 0.01 to 3 mbar.
  • the residual monomer content is then preferably less than 1 wt .-%, more preferably less than 0.5 wt .-% (diisocyanate).
  • the coating formulations used according to the invention generally also contain other formulation constituents such as catalysts, additives (for example defoamers, deaerating agents), plasticizers, solvents and auxiliaries and additives which are known per se to the person skilled in the art in terms of their nature and mode of use are.
  • additives for example defoamers, deaerating agents
  • plasticizers for example plasticizers, solvents and auxiliaries and additives which are known per se to the person skilled in the art in terms of their nature and mode of use are.
  • a catalyst can be added to the system.
  • the catalyst is added to the prepolymers before, during or preferably after completion of prepolymer formation.
  • organotin compounds can be mentioned by way of example: dibutyltin diacetate, dibutyltin dilaurate, dibutyltin bis-acetoacetonate and tin carboxylates such as tin octoate.
  • the said organometallic catalysts may optionally be used in combination with amine catalysts such as 1,4-diazabicyclo [2.2.2] octane.
  • amine catalysts such as 1,4-diazabicyclo [2.2.2] octane.
  • the added amount of the catalyst depends on the desired processing time. In general, amounts of 0.02 to 3.0 wt .-%, preferably 0.1 to 2.0 wt .-%, particularly preferably 0.5 to 1.5 wt .-%, based on the prepolymer, out.
  • the coatings according to the invention can be applied by the known methods.
  • his here the role or brush job or the order with a (tooth) spatula or a roller called.
  • the prepolymer shows at the end of the reaction time of 9 hours a constant NCO content of 13.2 wt .-%.
  • the prepolymer is then freed at 180 0 C and 0.1 mm Hg over a short path evaporator largely from the excess HDI monomers.
  • the prepolymer shows a constant NCO content of 11.9 wt .-% at the end of the reaction time of 2 hours.
  • the prepolymer is then stabilized with 20 ppm dibutyl phosphate.
  • the prepolymer shows a constant NCO content of 11.9 wt .-% at the end of the reaction time of 2 hours.
  • the prepolymer is then stabilized with 20 ppm dibutyl phosphate.
  • the prepolymer shows a constant NCO content of 11.9 wt .-% at the end of the reaction time of 3 hours.
  • the prepolymer is then stabilized with 20 ppm dibutyl phosphate. This gives a low-viscosity prepolymer having an isocyanate content of 11.9 wt .-% and a viscosity of 2177 mPas at 23 ° C.
  • the content of free HDI monomer is 0.11 wt .-%.
  • the Drying Recorder is located in a climate room at 23 0 C and 50% rel. Air humidity.
  • the skin-forming time is the time at which the permanent trace of the needle disappears from the film. Determination of adhesive tensile strength
  • the prepolymers are applied using a foam roller on concrete slabs of size 30cm x 30cm.
  • the wet film thickness is approximately 100 ⁇ m.
  • the coatings were then allowed to dry for 14 days at 23 ° C / 50% RH. hardened and then the adhesive tensile strengths determined with a DYNA adhesion tester (company FORM + TEST Seidner & Co. GmbH, Riedlingen).
  • TIB Kat 225 is an organo-tin catalyst (TIB Chemicals, Mannheim)
  • Coscat 83 is an organo-bismuth catalyst (Erbslöh, Krefeld)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Polyurethanprepolymeren auf Basis von aliphatischen Polyisocyanaten als Grundierung für mineralische Baustoffe.

Description

Grundierung für mineralische Baustoffe
Die vorliegende Erfindung betrifft eine neuartige Grundierung für mineralische Baustoffe. Mineralische Untergründe, auf die eine Reaktivbeschichtung aufgebracht oder ein Bodenbelag verklebt werden soll, bedürfen häufig einer Vorbehandlung mit einer Grundierung. Im Fall bestimmter Untergründe wie beispielsweise Zement-, Calciumsulfat- oder Magnesiaestriche ist diese Vorbehandlung sogar zwingend notwendig, andere Untergründe werden meistens so behandelt. Durch die Grundierung erreicht man eine Verminderung der Saugfähigkeit des Untergrundes sowie eine Bindung von Reststaub, der durch eine mechanische Vorbehandlung (Fräsen, Schleifen etc.) oder Verwitterung entstanden ist. Weiterhin dient die Grundierung häufig als Dampfsperre zwischen Untergrund und Bodenbelag, sie lässt sich zuverlässig mit gegebenenfalls verwendeten Klebstoffen benetzen und dient als Haftbrücke zwischen den Schichten, sei es die Klebstoffschicht oder eine Deck- oder Schutzbe- schichtung. Bei derartigen Schutzbeschichtungen handelt es sich beispielsweise um Isolierschichten, die das Eindringen von Abtausalz-belastetem Wasser in Betonbauteile verhindern sollen, insbesondere in mit Stahl armiertem Beton, wie er im Brückenbau, zum Bau von Schutzgalerien oder auch im Hochbau (Parkhäuser und dergleichen) verwendet wird. Das in den Beton eindringende, salzbelastete Wasser zerstört die Struktur des Baustoffs, insbesondere nachteilig ist, dass es zur Korrosion der Armierung kommt, wodurch die damit ausgestatteten Stahlbeton-Bauteile ihre Zugfestigkeit verlieren.
Solche Grundierungen basieren typischerweise auf Kieselsäure-, Acrylat-, Epoxy- oder Polyurethanrohstoffen. Im Falle der Polyurethane haben sich dabei einkomponentige Beschichtungen auf Basis von MDI-Prepolymeren etabliert. Diese zeichnen sich im Vergleich zu den zweikomponentigen Epoxysystemen durch eine einfachere Handhabung aus. Aufgrund der Verwendung eines aromatischen Isocyanats sind kurze Aushärtezeiten möglich. Der hohe Anteil an monomerem MDI (Diphenylmethandiisocyanat) bewirkt eine niedrige Viskosität der Prepolymere und somit eine einfache Verarbeitung. Die Anmeldung DD-A 134 970 (VEB Schwarzheide, DDR) beschreibt solche Systeme. Als Polyolkomponenten werden dabei Mischungen von Polyetherestern und Polyether- alkoholen beschrieben. Estergruppen sind aber bekanntlich unter basischen Bedingungen nicht verseifiingsstabil - daher ist von ihrer Verwendung auf Betonoberflächen wie z.B. typischen Zementestrichen abzuraten.
Ähnliche Systeme werden auch in der GB-A 2 240 977 beschrieben.
Die oben beschriebenen Systeme enthalten hohe Anteile an monomeren Isocyanat, das aufgrund seiner toxikologischen Eigenschaften mittlerweile kritisch gesehen wird. Weiterhin stellt die durch das monomere Isocyanat notwendige Kennzeichnung mit den entsprechenden Gefahrstoffsymbolen einen Nachteil für die Vermarktung der Grundierungen dar.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, Grundierungen bereitzustellen, die einen niedrigen Anteil an monomeren Isocyanaten enthalten, eine gute Ver- arbeitbarkeit ermöglichen und innerhalb kurzer Zeit ausreagieren.
Gelöst wurde diese Aufgabe durch die Verwendung von monomerenarme Polyurethan- prepolymere enthaltenden Zubereitungen. Diese Prepolymere werden durch Umsetzung von aliphatischen Polyisocyanaten und nicht verseifbaren Polyolen erhalten. Diese Prepolymere können durch geeignete Katalysatoren in ihrer Reaktivität so eingestellt werden, dass sowohl eine ausreichende Verarbeitungszeit, eine schnelle Aushärtung sowie eine ausreichende Lagerstabilität gegeben ist.
Gegenstand der vorliegenden Erfindung sind daher Formulierungen monomerenarmer Prepolymere auf Basis von aliphatischen Polyisocyanaten und gegebenenfalls geeigneten Additiven, die als Grundierung auf Betonoberflächen aufgetragen werden und nach kurzer Aushärtungszeit eine weitere Beschichtung der Oberfläche mit Klebstoffen, Sperrschichten, flüssigen Folien oder flüssigen Bodenbeschichtungen (beispielsweise auf Estrichen) erlauben. Bevorzugt werden die erfindungsgemäß verwendeten Formulierungen auf konstruktiven Betonbauteilen und Estrichen eingesetzt, beispielsweise auf tragenden Elementen von Parkhäusern, Brücken, Pfeilern und Deckenelementen von Schutzgalerien, Estrichen, insbesondere in dauernd feuchtigkeits- und salzbelasteten Räumen.
Zusätzlich zur Haftvermittlung zu den nachfolgend aufzutragenden Schichten reduzieren die erfindungsgemäß verwendeten Formulierungen auch das Sanden der behandelten Oberflächen. Die Anwendung kann auch zur Sanierung bereits angegriffener Oberflächen erfolgen.
Feuchtigkeitshärtende, einkomponentige Polyurethangrundierungen zur Vorbehandlung von Betonoberflächen basieren typischerweise auf kurzkettigen Prepolymeren, die durch die Umsetzung von entsprechenden Polyetherpolyolen mit Diphenylmethandiisocyanat (MDI) hergestellt werden. Bedingt durch den Herstellprozess enthalten diese Prepolyme- re hohe Restmengen an monomeren Isocyanat. Beispielsweise enthält das häufig für diese Anwendung eingesetzte Desmodur® E 29 (Bayer MaterialScience AG, Leverkusen, DE) monomeres MDI in Mengen von > 10 Gew.-%. Aus arbeitshygienischen Gründen ist ein solch hoher Anteil an monomeren Isocyanaten nicht wünschenswert und führt darüber hinaus zu einer Kennzeichnung der Grundierungen mit dem Risiko-Satz R40 (Verdacht auf krebserzeugende Wirkung).
Eine Entfernung des monomeren MDIs ist beispielsweise auf destillativem Wege möglich, jedoch steigt dadurch die Viskosität des Prepolymers so stark an, dass eine Verar- beitung nach dem üblichen Verfahren (Rollen, Streichen, Sprühauftrag) nicht mehr möglich ist. Dieser Weg zur Monomerreduktion scheidet daher aus.
Gegenstand der vorliegenden Erfindung ist daher die Verwendung von Prepolymeren auf Basis von aliphatischen Isocyanaten und schwer verseifbaren Polyolen.
Die Herstellung der eingesetzten Polyisocyanat-Prepolymere ist dem Fachmann an sich bekannt und erfolgt durch Umsetzung von überschüssigen Mengen an Polyisocyanaten (Komponente A) mit Polyhydroxyverbindungen (Komponente B).
Als Komponente A können prinzipiell alle dem Fachmann bekannten organischen aliphatischen, cycloaliphatischen oder heterocyclischen Polyisocyanate mit mindestens zwei Isocyanatgruppen pro Molekül sowie Gemische davon eingesetzt werden. Beispiele für geeignete aliphatische bzw. cycloaliphatische Polyisocyanate sind Di- oder Triisocy- anate wie z.B. Butandiisocyanat, Pentandiisocyanat, Hexandiisocyanat (Hexamethylen- diisocyanat, HDI), 4-Isocyanatomethyl-l,8-octandiisocyanat (Triisocyanatononan, TIN) oder cyclische Systeme, wie z.B. 4,4'-Methylenbis(cyclohexylisocyanat), 3,5,5-Tri- methyl-l-isocyanato-3-isocyanatomethylcyclohexan (Isophorondiisocyanat, IPDI), 2,4- und/oder 2,6-Methylcyclohexyldiisocyanat (H6TDI) sowie ω,ω'-Diisocyanato-l,3-di- methylcyclohexan (HÖXDI). Bevorzugt ist jedoch die Verwendung von aliphatischen Di- isocyanaten, besonders bevorzugt von Hexandiisocyanat (Hexamethylendiisocyanat, HDI), 3,5,5-Trimethyl- l-isocyanato-3-isocyanatomethylcyclohexan (Isophorondiiso- cyanat, IPDI), sowie ω,ω'-Diisocyanato-l,3-dimethylcyclohexan (HÖXDI).
Ebenfalls Gegenstand der vorliegenden Erfindung sind auch die Verwendung, bzw. Mitverwendung der vorstehend erwähnten organischen aliphatischen, cycloaliphatischen oder heterocyclischen Polyisocyanate in Form ihrer Derivate, wie beispielsweise Ure- thane, Biurete, Allophanate, Uretdione, Isocyanurate und Trimerisate und Mischformen dieser Derivatisierungen.
Als Komponente B können alle dem Fachmann bekannten verseifungsstabilen Verbindungen eingesetzt werden, welche eine mittlere OH-Funktionalität von mindestens 1,5 aufweisen. Dies können beispielsweise niedermolekulare Diole (z.B. 1,2-Ethandiol, 1,3- bzw. 1,2-Propandiol, 1,4-Butandiol), Triole (z.B. Glycerin, Trimethylolpropan) und Tetraole (z.B. Pentaerythrit) sein, aber auch höhermolekulare Polyhydroxyverbindungen wie Polyetherpolyole, Polycarbonatpolyole sowie Polythioetherpolyole. Bevorzugt weisen solche Polyetherpolyole OH-Zahlen von 5 bis 620 mg KOH/g, bevorzugt von 14 bis 550 mg KOH/g und besonders bevorzugt von 28 bis 480 mg KOH/g auf und eine mittle- re Funktionalität von 2 bis 4, bevorzugt 2 bis 3,7 und besonders bevorzugt von 2 bis 3,6. Solche Polyetherpolyole sind in an sich bekannter Weise durch Alkoxylierung von geeigneten Starter-Molekülen unter Basenkatalyse oder Einsatz von Doppelmetallcyanid- verbindungen (DMC-Verbindungen) zugänglich. Geeignete Starter-Moleküle für die Herstellung von Polyetherpolyolen sind Moleküle mit mindestens zwei gegenüber Epo- xiden reaktiven Element- Wasserstoffbindungen oder beliebige Gemische derartiger Starter-Moleküle.
Besonders geeignete Polyetherpolyole sind solche der vorstehend genannten Art mit einem Gehalt an ungesättigten Endgruppen von kleiner oder gleich 0,02 Milliäquivalen- ten pro Gramm Polyol (meq/g), bevorzugt kleiner oder gleich 0,015 meq/g, besonders bevorzugt kleiner oder gleich 0,01 meq/g (Bestimmungsmethode ASTM D2849-69). Derartige Polyetherpolyole sind in an sich bekannter Weise durch Alkoxylierung von geeigneten Starter-Molekülen, insbesondere unter Verwendung von Doppelmetallcya- nid-Katalysatoren (DMC-Katalyse) herstellbar. Dies ist z.B. in der US-A 5 158 922 (z.B. Beispiel 30) und EP-A 0 654 302 (S. 5, Z. 26 bis S. 6, Z. 32) beschrieben. Geeignete Starter-Moleküle für die Herstellung von Polyetherpolyolen sind beispielsweise einfache, niedermolekulare Polyole, Wasser, Ethylenglykol, Propandiol-1,2, 2,2-Bis- (4-hydroxyphenyl)propan, Propylenglykol-1,3- und Butandiol-1,4, Hexandiol-1,6, Neo- pentylglykol, 2-Ethylhexandiol-l,3, Trimethylolpropan, Glyzerin, Pentaerythrit, Sorbit, organische Polyamine mit mindestens zwei N-H-Bindungen wie z.B. Triethanolamin, Ammoniak, Methylamin oder Ethylendiamin oder beliebige Gemische derartiger Starter- Moleküle. Für die Alkoxylierung geeignete Alkylenoxide sind insbesondere Ethylenoxid und/oder Propylenoxid, die in beliebiger Reihenfolge oder auch im Gemisch bei der Alkoxylierung eingesetzt werden können.
Möglich sind außerdem Polyetherpolyolmischungen, die wenigstens ein Polyol mit we- nigstens einer tertiären Aminogruppe enthalten. Solche tertiäre Aminogruppen aufweisenden Polyetherpolyole lassen sich durch Alkoxylierung von Startermolekülen oder Mischungen von Startermolekülen herstellen, die wenigstens ein Startermolekül mit mindestens zwei gegenüber Epoxiden reaktiven Element- Wasserstoffbindungen enthalten, von denen mindestens eine eine NH-Bindung ist. Beispiele für geeignete Startermo- leküle sind Ammoniak, Methylamin, Ethylamin, n-Propylamin, iso-Propylamin, Ethano- lamin, Diethanolamin, Triethanolamin, Ethylendiamin, Ethylentriamin, Triethanolamin, N-Methyl-diethanolamin, Ethylendiamin, N,N'-Dimethyl-ethylendiamin, Tetramethy- lendiamin, Hexamethylendiamin, 2,4-Toluylendiamin, 2,6-Toluylendiamin, Anilin, Di- phenylmethan-2 ,2 ' -diamin, Diphenylmethan-2,4 ' -diamin, Diphenylmethan-4,4 ' -diamin, l-Aminomethyl-3-amino-l,5,5-trimethylcyclohexan (Isophorondiamin), Dicyclohexyl- methan-4,4' -diamin, Xylylendiamin und Polyoxyalkylenamine.
Möglich sind selbstverständlich auch die Polyetherpolyole mit darin dispergierten organischen Füllstoffen wie beispielsweise Additionsprodukten von Toluylendiisocyanat mit Hydrazinhydrat oder Copolymerisaten von Styrol und Acrylnitril. Einsetzbar sind auch die durch Polymerisation von Tetrahydrofuran erhältlichen PoIy- tetramethylenetherglykole mit Molekuargewichten von 400 bis 4000, aber auch Hydroxylgruppen enthaltende Polybutadiene.
Unter den Hydroxylpolycarbonaten sind Umsetzungsprodukte von Glykolen vom Typ Ethylenglykol, Diethylenglykol, 1,2-Propylenglykol, 1 ,4-Butandiol, Neopentylglykol oder 1 ,6-Hexandiol und/oder Triolen wie beispielsweise Glyzerin, Trimethylolpropan, Pentaerythrit oder Sorbit mit Diphenyl- und/oder Dimethylcarbonat zu verstehen. Die Umsetzung ist eine Kondensationsreaktion, bei der Phenol und/oder Methanol abgespal- ten werden. Es resultieren, je nach Zusammensetzung, flüssige bis wachsartige, amorphe Typen mit Tg- Werten von > -400C oder kristalline Polycarbonatpolyole mit Schmelzbereichen von 40-900C. Der Molekulargewichtsbereich liegt bei 200 bis 10000. Der Molekulargewichtsbereich von 400 bis 5000 wird bevorzugt. Der Molekulargewichtsbereich von 500 bis 3000 wird besonders bevorzugt.
Die vorstehend erwähnten Polyole können selbstverständlich mit allen Polyisocyanaten, aromatischen als auch aliphatischen vor der eigentlichen Prepolymerisierung zu Urethan modifizierten Hydroxylverbindungen umgesetzt werden.
Anteilig können auch Monoole unter Einhaltung der bevorzugten mittleren OH- Funktionalität eingesetzt werden. Dies können beispielsweise niedermolekulare Monoole (z.B. Methanol, Ethanol, Propanol, iso-Propanol) sein, aber auch höhermolekulare Mo- nohydroxyverbindungen wie Polyethermonoole.
Grundsätzlich können auch Mischungen von mehreren Polyisocyanaten und/oder PoIy- hydroxyverbindungen eingesetzt werden, bevorzugt ist jedoch die Verwendung nur eines Polyisocyanats. Typischerweise beträgt dabei das Mol-Verhältnis der NCO-Gruppen der Polyisocyanate zu OH-Gruppen der Polyhydroxyverbindungen 25 : 1 bis 1,5 : 1, bevorzugt 20 : 1 bis 1,5 : 1 und besonders bevorzugt 15 : 1 bis 1,5 : 1. Die Umsetzung erfolgt im Allgemeinen bei Temperaturen von 20 bis 1400C, bevorzugt bei 40 bis 120°C. Grundsätzlich kann die Reaktion durch die Verwendung von aus der Polyurethanchemie an sich bekannten Katalysatoren wie beispielsweise Zinn-Seifen, z.B. Dibutylzinndilau- rat oder tertiären Aminen, z.B. Triethylamin oder Diazabicyclooctan (DABCO) be- schleunigt werden. Die Zugabe der Komponenten und gegebenenfalls eines Katalysators der vorgenannten Art kann grundsätzlich in beliebiger Reihenfolge erfolgen. Wird das monomere Polyisocyanat im Überschuss eingesetzt, so ist bevorzugt, dieses nach der Umsetzung durch Extraktion oder Destillation, vorzugsweise mittels Dünnschichtdestil- lation über einen Dünnschichtverdampfer bei erhöhter Temperatur und vermindertem Druck, abzutrennen. Die Abtrennung des überschüssigen Polyisocyanats wird dabei soweit geführt, das im resultierenden Polyisocyanat-Prepolymer weniger als 1 Gew.-%, bevorzugt weniger als 0,5 Gew.-% und besonders bevorzugt weniger als 0,2 Gew.-% des Polyisocyanats verbleibt. Man erhält auf diese Weise Prepolymere mit niedrigem Mo- nomergehalt, die abhängig vom Restmonomergehalt zum Teil nicht mehr kennzeich- nungspflichtig sind.
Die Komponenten aus A) und B) werden üblicherweise in einem molaren Verhältnis von Isocyanat-Gruppen zu Hydroxyl-Gruppen von 1:1 bis zu 1,8:1, bevorzugt in einem mo- laren Verhältnis von Isocyanat-Gruppen:Hydroxyl-Gruppen von 1:1 bis zu 1,6:1 und besonders bevorzugt in einem molaren Verhältnis von Isocyanat-Gruppen:Hydroxyl- Gruppen von 1,05:1 bis zu 1,5:1 miteinander gemischt.
Die Herstellung der Isocyanat-terminierten Prepolymere erfolgt nach bekannten Methoden indem die Polyole mit einem stöchiometrischen Überschuss von aliphatischen Polyi- socyanaten bei Temperaturen von 30 bis 150 °C, vorzugsweise 60 bis 140 0C, zur Reaktion gebracht werden. Dies kann diskontinuierlich in Kesseln oder kontinuierlich in Kesselkaskaden oder über Mischer erfolgen.
Soll überschüssiges Diisocyanat abgetrennt werden, ist die Dünnschichtdestillation das bevorzugte Verfahren und wird in der Regel bei Temperaturen von 100 bis 160 0C und einem Druck von 0,01 bis 3 mbar durchgeführt. Der Restmonomergehalt beträgt danach bevorzugt weniger als 1 Gew.-%, besonders bevorzugt weniger als 0,5 Gew.-% (Diisocyanat).
All diesen Produkten können vor, während oder bevorzugt nach der Reaktion noch modifizierte aliphatische Polyisocyanate zur Feinsteuerung der Eigenschaften zugesetzt werden. Solche Produkte befinden sich im Handel, wie beispielsweise unter den Namen Desmodur® N 100 (HDI-Biuretmodifizierung) oder Desmodur® N 3300 (HDI-Trimerisat der Bayer MaterialScience AG) oder Vestanat® (IPDI-Trimersisat; BASF SE, Ludwigshafen, DE).
In den erfindungsgemäß verwendeten Beschichtungsformulierungen werden neben dem Bindemittel in der Regel auch weitere Formulierungsbestandteile wie Katalysatoren, Additive (bspw. Entschäumer, Entlüftungsmittel), Weichmacher, Lösemittel und Hilfs- sowie Zusatzstoffe verwendet, die dem Fachmann auf diesem Gebiet hinsichtlich Art und Anwendungsweise an sich bekannt sind.
Zur beschleunigten Aushärtung der Beschichtungen kann dem System ein Katalysator zugegeben werden. Der Katalysator wird den Prepolymeren vor, während oder vorzugs- weise nach der Beendigung der Prepolymerbildung zugesetzt.
Als Katalysatoren können grundsätzlich alle aus der Polyurethanchemie an sich bekannten Stoffe zugesetzt werden, welche die Reaktion von Isocyanaten mit Wasser katalysieren. Genannt seien beispielsweise Metallsalze, Metallkomplexe, metallorganische Verbindungen. Organozinnverbindungen und Organobismuthverbindungen oder aminische Katalysatoren kommen in Frage. Als Organozinnverbindungen seien beispielhaft genannt: Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinn-bis-acetoacetonat und Zinncarboxylate wie beispielsweise Zinnoctoat. Die genannten metallorganischen Katalysatoren können gegebenenfalls in Kombination mit aminischen Katalysatoren wie 1,4- Diazabicyclo[2.2.2]octan verwendet werden. Die zugesetzte Menge des Katalysators richtet sich nach der gewünschten Verarbeitungszeit. In der Regel reichen Mengen von 0,02 bis 3,0 Gew.-%, vorzugsweise 0,1 bis 2,0 Gew.-%, besonders bevorzugt 0,5 bis 1,5 Gew.-%, bezogen auf das Prepolymer, aus.
Die erfindungsgemäßen Beschichtungen können durch die bekannten Verfahren appliziert werden. Beispielhaft seinen hier der Rollen- oder Pinselauftrag oder der Auftrag mit einem (Zahn-)Spachtel oder einer Walze genannt.
Die nachfolgenden Beispiele sollen die Erfindung erläutern. Beispiele:
Experimenteller Teil:
Beispiel 1
Prepolymerherstellung (HDI Allophanat)
1979 g (0,99 Mol) Polypropylenglykol mit einer Hydroxylzahl von 56 mg KOH/g (mittels DMC-Katalyse (Basen-frei) hergestellt, Gehalt ungesättigter Gruppen < 0,01 meq/g), stabilisiert mit 90 mg Isophthalsäuredichlorid und 2521 g (15 Mol) Hexamethylendiiso- cyanat (HDI) werden bei 100 0C umgesetzt. Das Prepolymer zeigt am Ende der Reaktionszeit von 4 Stunden einen konstanten NCO-Gehalt von 26,1 %.
Bei 90 0C werden zur Allophanatisierung des Prepolymers 360 mg Zink(II)bis(2- ethylhexanoat) zugegeben. Das Allophanat zeigt am Ende der Reaktionszeit von 2 Stunden einen konstanten NCO-Gehalt von 24,3 Gew.-%. Das mit 360 mg Isophthalsäure- dichlorid stabilisierte Allophanat wird dann bei 140 0C und 0,5 mbar über einen Dünnschichtverdampfer vom überschüssigen HDI-Monomeren befreit.
Man erhält ein niedrigviskoses Prepolymer mit einem Isocyanatgehalt von 5,9 Gew.-% und einer Viskosität von 2070 mPas bei 23 0C. Der HDI-Restmonomergehalt beträgt <0,03 Gew.-%.
Beispiel 2
Prepolymerherstellung (HDI Prepolymer)
1000 g (4,59 Mol) Polypropylenglykol mit einer Hydroxylzahl von 515 mg KOH/g und 3850 g (22,94 Mol) Hexamethylendiisocyanat (HDI) werden bei ca. 80 bis 90 °C umge- setzt.
Das Prepolymer zeigt am Ende der Reaktionszeit von 9 Stunden einen konstanten NCO- Gehalt von 13,2 Gew.-%. Das Prepolymer wird dann bei 180 0C und 0,1 mm Hg über einen Kurzwegverdampfer weitgehend vom überschüssigen HDI-Monomeren befreit.
Man erhält ein mittelviskoses Prepolymer mit einem Isocyanatgehalt von 12,5 Gew.-% und einer Viskosität von 4500 mPas bei 23 °C. Der HDI-Restmonomergehalt beträgt 0,35 Gew.-%. Beispiel 3
Prepolymerherstellung (tert. Aminogruppen aufweisendes Desmodur® N 3400 Prepoly- mer)
309 g (0,27 Mol) Polypropylenethertriol gestartet mit Triethanolamin, hergestellt mittels KOH-Katalyse mit einer Hydroxylzahl von 145 mg KOH/g und 691 g (1,4 Mol) Desmodur® N 3400 (Bayer MaterialScience AG; Dimer von Hexamethylendiisocyanat mit 21,8 Gew.-% NCO-Gehalt und 0,5 Gew.-% freiem HDI-Monomer) werden katalysiert mit 20 ppm Dibutylzinndilaurat bei ca. 40 0C umgesetzt.
Das Prepolymer zeigt am Ende der Reaktionszeit von 2 Stunden einen konstanten NCO- Gehalt von 11,9 Gew.-%. Das Prepolymer wird dann mit 20 ppm Dibutylphosphat stabilisiert.
Man erhält ein niedrigviskoses Prepolymer mit einem Isocyanatgehalt von 11,9 Gew.-% und einer Viskosität von 4477 mPas bei 23 0C. Der Gehalt an freiem HDI-Monomer beträgt 0,12 Gew.-%.
Beispiel 4
Prepolymerherstellung (Desmodur® N 3400 Prepolymer)
153 g (0,15 Mol) Polypropylenethertriol mit einer Hydroxylzahl von 55,5 mg KOH/g, 156 g (0,22 Mol) Polypropylenethertriol mit einer Hydroxylzahl von 233,1 mg KOH/g und 691 g (1,4 Mol) Desmodur® N 3400 (Bayer MaterialScience AG; Dimer von Hexamethylendiisocyanat mit 21,8 Gew.-% NCO-Gehalt und 0,5 Gew.-% freiem HDI- Monomer) werden katalysiert mit 20 ppm Dibutylzinndilaurat bei ca. 60 °C umgesetzt.
Das Prepolymer zeigt am Ende der Reaktionszeit von 2 Stunden einen konstanten NCO- Gehalt von 11,9 Gew.-%. Das Prepolymer wird dann mit 20 ppm Dibutylphosphat stabi- lisiert.
Man erhält ein mittelviskoses Prepolymer mit einem Isocyanatgehalt von 11,9 Gew.-% und einer Viskosität von 8767 mPas bei 23 0C. Der Gehalt an freiem HDI-Monomer beträgt 0,11 Gew.-%. Beispiel 5
Prepolymerherstellung (tert. Aminogruppen aufweisendes Desmodur® N 3400 Prepoly- mer)
93 g (0,08 Mol) Polypropylenethertriol gestartet mit Triethanolamin, hergestellt mittels KOH-Katalyse mit einer Hydroxylzahl von 145 mg KOH/g, 93 g (0,05 Mol) Polypropy- lenglykol mit einer Hydroxylzahl von 56 mg KOH/g (mittels DMC-Katalyse (Basen- frei) hergestellt, Gehalt ungesättigter Gruppen < 0,01 meq/g,), 186 g (0,08 Mol) Po- lypropylenethermonool mit einer Hydroxylzahl von 23,0 mg KOH/g und 629 g (1,3 Mol) Desmodur® N 3400 der Bayer MaterialScience AG (Dimer von Hexamethylendii- socyanat mit 21,8 Gew.-% NCO-Gehalt und 0,5 Gew.-% freiem HDI-Monomer) werden katalysiert mit 20 ppm Dibutylzinndilaurat bei ca. 40 0C umgesetzt.
Das Prepolymer zeigt am Ende der Reaktionszeit von 3 Stunden einen konstanten NCO- Gehalt von 11,9 Gew.-%. Das Prepolymer wird dann mit 20 ppm Dibutylphosphat stabilisiert. Man erhält ein niedrigviskoses Prepolymer mit einem Isocyanatgehalt von 11,9 Gew.-% und einer Viskosität von 2177 mPas bei 23 °C. Der Gehalt an freiem HDI-Monomer beträgt 0,11 Gew.-%.
Bestimmung der Hautbildezeit Mittels eines Rakels (200 μm) wird ein Film auf eine vorher mit Ethylacetat gereinigte Glasplatte aufgetragen und sofort in den Drying Recorder eingelegt. Die Nadel wird mit 10 g belastet und bewegt sich über eine Zeitraum von 24 Stunden über eine Strecke von 35 cm.
Der Drying Recorder befindet sich in einem Klimaraum bei 23 0C und 50 % rel. Luft- feuchte.
Als Hautbildezeit wird der Zeitpunkt des Verschwindens der permanenten Spur der Nadel aus dem Film angegeben. Bestimmung der Haftzugfestigkeit
Die Prepolymere werden mit Hilfe einer Schaumstoffrolle auf Betonplatten der Größe 30cm x 30cm aufgetragen. Die Nassfilmschichtdicke beträgt dabei ca. lOOμm.
Anschließend wurden die Beschichtungen 14 Tage bei 23 °C / 50 % r.F. ausgehärtet und dann die Haftzugfestigkeiten mit einem DYNA Haftprüfgerät (Fa. FORM+TEST Seidner & Co. GmbH, Riedlingen) bestimmt.
Rohstoffe
TIB Kat 225 ist ein Organo-Zinn-Katalysator (Fa. TIB Chemicals, Mannheim) Coscat 83 ist ein Organo-Bismuth-Katalysator (Fa. Erbslöh, Krefeld)
Figure imgf000013_0001
Bei jeder Prüfung erfolgte jeweils ein Versagen des Substrats, es fand keine Ablösung der Beschichtung vom Beton statt.

Claims

Patentansprüche:
1. Verwendung von monomerenarmen Prepolymeren, die unter Verwendung von aliphatischen Polyisocyanaten und nicht verseifbaren Polyolen hergestellt werden, zur Beschichtung von Substraten aus Beton. 2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass als Polyisocya- natkomponente Hexamethylendiisocyanat, Isophorondiisocyanat,
2,4- und/oder 2,6-Methylcyclohexyldiisocyanat, 4,4'-Methylenbis(cyclohexylisocyanat), ω,ω'- Diisocyanato-l,3-dimethylcyclohexan oder die oben genannten Diisocyanate in Form ihrer Derivate, wie beispielsweise Urethane, Biurete, Allophanate, Uretdi- one, Isocyanurate und Trimerisate, Mischformen dieser Derivatisierungen oder
Mischungen verschiedener Polyisocyanate eingesetzt werden.
3. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass als Polyolkom- ponente Polyetherpolyole und/oder Polycarbonatpolyole eingesetzt werden.
4. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die eingesetzten Polyurethanprepolymere einen Restgehalt an monomerem Diisocyanat von < 1
Gew.-%, bevorzugt von < 0,5 Gew.-% aufweisen.
5. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die eingesetzten Polyurethanprepolymere eine Viskosität von < 20000 mPas, bevorzugt < 10000 mPas, besonders bevorzugt < 5000 mPas aufweisen.
6. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass das Prepolymer durch Zusatz von Additiven formuliert wird.
7. Verwendung gemäß Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass es sich bei den Substraten aus Beton um konstruktive Bauteile handelt.
8. Verwendung gemäß Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass es sich bei den Substraten aus Beton um Stahlbeton-Bauteile handelt.
9. Verwendung gemäß Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass es sich bei den Substraten aus Beton um Estriche handelt.
10. Verwendung gemäß Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass es sich bei den Substraten aus Beton um Stahlbeton-Bauteile im Hochbau oder Galerie- pfeiler handelt.
PCT/EP2010/000779 2009-02-21 2010-02-09 Grundierung für mineralische baustoffe WO2010094412A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910010069 DE102009010069A1 (de) 2009-02-21 2009-02-21 Grundierung für mineralische Baustoffe
DE102009010069.5 2009-02-21

Publications (1)

Publication Number Publication Date
WO2010094412A1 true WO2010094412A1 (de) 2010-08-26

Family

ID=42104540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000779 WO2010094412A1 (de) 2009-02-21 2010-02-09 Grundierung für mineralische baustoffe

Country Status (2)

Country Link
DE (1) DE102009010069A1 (de)
WO (1) WO2010094412A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200148809A1 (en) * 2017-05-17 2020-05-14 Basf Se Process for the preparation of alicyclic polyisocyanate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2511215T3 (es) 2012-01-05 2014-10-22 Bayer Intellectual Property Gmbh Estructura en capas con una capa protectora y una capa de fotopolímero expuesta a radiación

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD134970A1 (de) 1978-03-16 1979-04-04 Helmut Ermer Grundierungsmittel fuer mineralische oberflaechen
DE3142322A1 (de) * 1981-10-24 1983-05-05 Basf Ag, 6700 Ludwigshafen Fugenvergussmassen auf polyisocyanat-polyol-basis und deren verwendung
GB2240977A (en) 1990-02-08 1991-08-21 Flowcrete Systems Limited Composition and method for treating cementitious layers
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
EP0654302A1 (de) 1993-11-23 1995-05-24 ARCO Chemical Technology, L.P. Verbesserte Doppelmetallcyanidkatalysatoren
EP0808859A1 (de) * 1996-05-20 1997-11-26 Sika AG, vorm. Kaspar Winkler &amp; Co. Spritzbare Abdichtung von Bauwerken auf Basis einer koagelierbaren Polyurethandispersion
DE19700014A1 (de) * 1997-01-02 1998-07-09 Henkel Kgaa Monomerenarmes PU-Prepolymer
DE19706904A1 (de) * 1997-02-21 1998-08-27 Bayer Ag Imprägniermittel und seine Verwendung
WO2005054324A1 (de) * 2003-12-06 2005-06-16 Rathor Ag Monomerarme prepolymerzusammensetzung aus unsymmetrischen polyisocyanaten und sterisch gehinderten polyolen
US20090018262A1 (en) * 2001-02-15 2009-01-15 Basf Aktiengesellschaft Aqueous polyurethane dispersion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD134970A1 (de) 1978-03-16 1979-04-04 Helmut Ermer Grundierungsmittel fuer mineralische oberflaechen
DE3142322A1 (de) * 1981-10-24 1983-05-05 Basf Ag, 6700 Ludwigshafen Fugenvergussmassen auf polyisocyanat-polyol-basis und deren verwendung
GB2240977A (en) 1990-02-08 1991-08-21 Flowcrete Systems Limited Composition and method for treating cementitious layers
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
EP0654302A1 (de) 1993-11-23 1995-05-24 ARCO Chemical Technology, L.P. Verbesserte Doppelmetallcyanidkatalysatoren
EP0808859A1 (de) * 1996-05-20 1997-11-26 Sika AG, vorm. Kaspar Winkler &amp; Co. Spritzbare Abdichtung von Bauwerken auf Basis einer koagelierbaren Polyurethandispersion
DE19700014A1 (de) * 1997-01-02 1998-07-09 Henkel Kgaa Monomerenarmes PU-Prepolymer
DE19706904A1 (de) * 1997-02-21 1998-08-27 Bayer Ag Imprägniermittel und seine Verwendung
US20090018262A1 (en) * 2001-02-15 2009-01-15 Basf Aktiengesellschaft Aqueous polyurethane dispersion
WO2005054324A1 (de) * 2003-12-06 2005-06-16 Rathor Ag Monomerarme prepolymerzusammensetzung aus unsymmetrischen polyisocyanaten und sterisch gehinderten polyolen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200148809A1 (en) * 2017-05-17 2020-05-14 Basf Se Process for the preparation of alicyclic polyisocyanate

Also Published As

Publication number Publication date
DE102009010069A1 (de) 2010-08-26

Similar Documents

Publication Publication Date Title
EP2262842B1 (de) 2,2&#39;-mdi-basierte isocyanat-mischungen und ihre herstellung sowie verwendung
EP2038323B1 (de) Voc-freie oder voc-arme polyurethanbeschichtung
EP1996635B1 (de) Feuchtigkeitshärtende polyurethanzusammensetzung mit gutem tieftemperaturverhalten
EP3166985B1 (de) Flüssig aufgetragene wasserdichte membran für dächer
EP0608738B1 (de) Zweikomponenten-Polyurethanbeschichtungsmassen und ihre Verwendung
EP2510027B1 (de) Polyurethan-prepolymere
EP0693512B1 (de) Lichtechte, lösemittelfreie Polyurethan-Beschichtungsmittel und ihre Verwendung
WO2011069966A1 (de) Mit alkoxysilangruppen modifizierte polyurethane
DE102005047562A1 (de) Zweitkomponenten-Systeme für die Herstellung flexibler Beschichtungen
WO2004033517A1 (de) Zweikomponente-systeme für die herstellung elastischer beschichtungen
EP4132984B1 (de) Mit aus cashewnuss-schalenöl erhältlichen phenolen blockierte, niedrigviskose isocyanat-prepolymere, verfahren zur deren herstellung und deren verwendung
EP0497131B1 (de) Ether- und Estergruppen aufweisende Isocyanat-Prepolymere, ein Verfahren zu ihrer Herstellung und ihre Verwendung
DE102008052765A1 (de) Feuchtigkeitshärtende Polyisocyanatmischungen
EP0769511B1 (de) Bindemittelkombination zur Herstellung lösungsmittelfreier Beschichtungsmassen
DE102009037009A1 (de) Prepolymere mit guter Lagerstabilität
DE4217023A1 (de) Verwendung von alkylthiosubstituierten aromatischen Diaminen aus Härter für Polyisocyanate in Beschichtungsmitteln oder Fugenvergußmassen
WO2018073303A1 (de) Harte beschichtungen mit hoher chemischer und mechanischer beständigkeit
EP3115388B1 (de) Verwendung eines reaktivsystems zur bauwerksabdichtung und eine bauwerksabdichtung
WO2010094412A1 (de) Grundierung für mineralische baustoffe
WO2006002811A1 (de) Verfahren zur herstellung aminofunktioneller polyurethan-prepolymere
DE4400224A1 (de) Feuchtigkeitshärtende Einkomponenten-Beschichtungsmittel
WO2012020027A1 (de) Lichtechte polyurethane und ihre verwendung
WO2004033518A1 (de) Zweikomponenten-systeme für die herstellung elastischer beschichtungen
JPH0127109B2 (de)
EP2620457A1 (de) Beschleunigte Durchhärtung von 1K-Polyurethanen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10706502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10706502

Country of ref document: EP

Kind code of ref document: A1