WO2010094190A1 - 一种悬臂梁结构的谐振式集成光波导加速度计 - Google Patents

一种悬臂梁结构的谐振式集成光波导加速度计 Download PDF

Info

Publication number
WO2010094190A1
WO2010094190A1 PCT/CN2009/074144 CN2009074144W WO2010094190A1 WO 2010094190 A1 WO2010094190 A1 WO 2010094190A1 CN 2009074144 W CN2009074144 W CN 2009074144W WO 2010094190 A1 WO2010094190 A1 WO 2010094190A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
organic polymer
cantilever beam
optical
short
Prior art date
Application number
PCT/CN2009/074144
Other languages
English (en)
French (fr)
Inventor
张彤
薛晓军
张晓阳
吴朋钦
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US13/202,755 priority Critical patent/US8640542B2/en
Publication of WO2010094190A1 publication Critical patent/WO2010094190A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12138Sensor

Definitions

  • the invention belongs to the field of integrated optics and sensing technology, and particularly relates to a resonant integrated optical waveguide accelerometer of a cantilever beam structure, and more specifically to a monolithically integrated high sensitivity accelerometer. Background technique
  • Accelerometers are important test components for inertial navigation, inertial guidance, and control instrumentation. Both inertial navigation and inertial guidance use the accelerometer sensitivity to test the motion acceleration of the carrier. At present, accelerometers have been widely used in aviation, navigation, aerospace, seismic detection, precision guidance and control. There are many types of accelerometers, including pendulum accelerometers, flexible accelerometers, electromagnetic accelerometers, microelectromechanical (MEMS) accelerometers, optical accelerometers, and more.
  • MEMS microelectromechanical
  • Optical accelerometer has many advantages such as anti-electromagnetic interference, high sensitivity, high signal-to-noise ratio and high stability. It is one of the main research directions in the field of accelerometer research in recent years.
  • the detection principle of the optical accelerometer is as follows: Since the optical signal in the sensitive component (mass) is modulated by the measured acceleration, the optical properties corresponding to the optical signal received by the photodetector after transmission, reflection or interference through the optical loop If the light intensity, phase or resonant frequency changes, it is sent to the photodetector, and the corresponding physical quantity is measured by the corresponding demodulation technique.
  • Optical accelerometers which are currently studied more, mainly include phase modulation type and frequency (wavelength) modulation type.
  • a phase-modulated optical accelerometer is a sensing optical element.
  • an optical fiber or the like is subjected to an inertial force to cause a phase change of a transmitted light, and an acceleration value is detected by a phase change amount.
  • Such accelerometers generally use an optical structure such as Michelson, Mach-Zehnder or Fabry-Perot cavity to detect acceleration by detecting changes in light intensity after interference between the signal light and the reference light.
  • the main disadvantage is that when the phase difference between the two optical signals is small, the change in light intensity is not significant, so the detection sensitivity is not high.
  • Frequency-modulated optical accelerometers are developed on the basis of phase modulation type.
  • Special device structures with periodic frequency selection functions such as gratings, fiber gratings, resonant rings, etc., are utilized between the resonant frequency and the inertial force.
  • the relationship detecting acceleration when the measured sensitive element generates inertial force or displacement due to the acceleration motion, causes a displacement change of the resonant frequency of the optical path system, and obtains an acceleration value by detecting a horizontal displacement amount of the resonant frequency. Since the small change in the phase difference of the signal light is further amplified by the multi-beam interference enhancement, the detection sensitivity is higher. However, due to the influence of environmental temperature disturbance and waveguide birefringence, the horizontal displacement and asymmetric distribution of the resonance spectrum will cause the detection sensitivity of the device to decrease significantly.
  • optical sensing devices and transmissions of current optical accelerometers The system structure of the optical path is mainly composed of discrete components such as optical fibers, gratings, fiber gratings, and mirrors.
  • the device has a large volume, high process preparation cost, and poor system stability.
  • fiber optic devices are sensitive to temperature changes, and joint loss and polarization effects between fiber optic devices have a significant impact on the stability and sensitivity of the accelerometer.
  • the development of integrated optics technology has provided a new development direction for optical sensors.
  • Micro-nano fine processing technology is used to integrate various optical components on the same substrate, and optical components can be connected to discrete functional devices.
  • the integrated optical device has many advantages such as high stability, high reliability, simplified preparation process, and richer optional materials, which meets the technical requirements for developing high-precision optical acceleration sensor devices.
  • all-polymer optical waveguide devices using organic polymer materials as substrates, claddings, and core layers have been called popular research directions.
  • the optical waveguides of this structure are temperature-insensitive and, at the same time, due to the device.
  • the substrate is an organic polymer material. Compared with the conventional silicon wafer and quartz substrate, the organic polymer material has the advantages of smaller elastic modulus, higher sensitivity to stress and strain, stronger toughness, and less fracture. Can be applied to the development of high precision mechanical sensors. Summary of the invention
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a resonant integrated optical waveguide accelerometer of a cantilever beam structure, which adopts an organic polymer optical waveguide to form a cantilever beam structure, and utilizes a brand new
  • the waveguide structure and detection principle realize a high-precision monolithic integrated optical accelerometer chip, which has the advantages of high detection precision, small device volume, simple preparation process, and easy mass production.
  • the accelerometer proposed by the present invention is an input waveguide, a Mach-Zehnder interferometer with an asymmetric structure, a micromechanical vibration cantilever beam, and a short curved waveguide.
  • the output waveguide is characterized in that: the input waveguide, the asymmetric Mach-Zehnder interferometer, the micromechanical vibration cantilever beam, the short curved waveguide, and the output waveguide are all composed of an organic polymer substrate, an organic polymer waveguide core layer,
  • the organic polymer waveguide cladding is composed of: the inner end of the first 2 X 2 port directional coupler is respectively connected to one end of the first short waveguide and the curved waveguide, and the inner end of the second 2 X 2 port directional coupler is respectively connected to the second short waveguide And the other end of the curved waveguide, a phase modulator is connected between the first short waveguide and the second short waveguide, and the Mach-Zehnder interferometer which constitutes the asymmetric structure; the input waveguide, the short curved waveguide, the output waveguide, the first 2 The X 2 port directional coupler, the first short waveguide, the phase modulator, the second short waveguide, and the second 2 X 2 port directional couple
  • the microcantilever of the accelerometer proposed by the invention is composed of an organic polymer substrate, an organic polymer waveguide core layer and an organic polymer waveguide cladding layer, wherein the organic polymer waveguide core layer has a rectangular structure with a thickness and a width of several micrometers.
  • the organic polymer waveguide cladding and the organic polymer substrate are equal in width, between 20 and 1000 microns, the organic polymer waveguide cladding is between 10 and 20 microns, and the organic polymer substrate is 20 thick. Between microns and 1000 microns.
  • the detection principle of the accelerometer proposed by the invention is as follows:
  • the optical signal enters the closed optical loop composed of the asymmetric structure Mach-Zehnder interferometer and the short curved waveguide from the input waveguide, and forms multi-beam interference, the interference optical signal
  • the output waveguide outputs to the photodetector and the peripheral detecting circuit to demodulate the optical signal, and detects the phase difference of the optical signal caused by the acceleration by detecting the change of the intensity of the resonant frequency, thereby realizing the detection of the acceleration.
  • the present invention has the following advantages over the prior art:
  • the accelerometer proposed by the invention utilizes an integrated optical device processing technology, and adopts a temperature-insensitive organic polymer optical waveguide structure to prepare all sensing structures such as an optical waveguide device, a substrate and a micromechanical vibration cantilever beam, and the device can be realized.
  • Monolithic integration Compared with traditional fiber optic sensors and inorganic integrated optical sensors, the key technical indicators such as elastic modulus, detection sensitivity, and dynamic range can be adjusted in a wide range.
  • the device is small in size, light in weight, high in stability, and simple in preparation process. Mass production can be achieved, significantly reducing device costs.
  • the accelerometer proposed by the invention detects the phase difference of the optical signal caused by the acceleration by detecting the change of the intensity of the resonant frequency, and realizes the acceleration.
  • the detection during the test, the signal light is at the resonant frequency, which greatly improves the detection sensitivity, and has the advantage of being undisturbed by the ambient temperature and not affected by the waveguide birefringence.
  • FIG. 1 is a top plan view of a resonant integrated optical waveguide accelerometer of a cantilever beam structure.
  • Figure 2 is a schematic view showing the structure of a micromechanical vibration cantilever beam.
  • Figure 3 is a schematic view of the structure of the microcantilever.
  • Figure 4 is a schematic view showing the structure of the microcantilever beam perpendicular to the transmission direction of the waveguide.
  • Figure 5 is a schematic view showing the structure of the micro cantilever beam parallel to the transmission direction of the waveguide.
  • Figure 6 is a schematic diagram of the output spectral curve corresponding to different phase differences caused by acceleration.
  • Figure 7 is a schematic diagram of the comparison of the detection sensitivity of the accelerometer. detailed description:
  • the structure of the resonant integrated optical waveguide accelerometer of the cantilever beam structure proposed by the present invention is shown in FIG.
  • the channel constituting the optical signal includes: an input waveguide 1, an Mach-Zehnder interferometer of an asymmetric structure, a short curved waveguide 4, an output waveguide 5, an Mach-Zehnder interferometer 2 of an asymmetric structure, and a short curved waveguide 4, wherein
  • the asymmetric structure of the Mach-Zehnder interferometer 2 is composed of a first 2 X 2 port directional coupler 6, a short waveguide 71, a phase modulator 9, a short waveguide 72, a long curved waveguide 8, and a second 2 X 2 port directional coupler 10 components.
  • Input waveguide 1 short curved waveguide 4, output waveguide 5, first 2 X 2 port directional coupler 6, short waveguide 71, phase modulator 9, short waveguide 72, and second 2 X 2 port directional coupling in the accelerometer chip
  • the devices 10 are each fixed to the base 11.
  • the substrate region where the long curved waveguide 8 is located is processed by microfabrication technology, and part of the organic polymer substrate and the cladding layer are removed to form the microcantilever beam 16 and the mass block 17, which together constitute a sensitive component of the accelerometer - micromechanical vibration Cantilever beam 3.
  • the structure of the micromechanical vibration cantilever beam 3 is shown in Fig. 2:
  • the micromechanical vibration cantilever beam 3 is a double beam structure composed of two parallel and symmetrically distributed microcantilever beams 16 and masses 17, micromechanical vibration cantilever beam 3 One end is fixed to the base 11 and the other end is freely suspended.
  • the structure of the microcantilever 16 is as shown in FIG. 3 and FIG.
  • the organic polymer waveguide core layer 13 is rectangular.
  • the structure, thickness and width are on the order of several micrometers, and the organic polymer waveguide cladding 14 and the organic polymer substrate 12 are equal in width, each between 20 and 1000 micrometers, and the organic polymer waveguide cladding 14 is 10 to 20 micrometers thick.
  • the organic polymer substrate 12 has a thickness between 20 microns and 1000 microns.
  • the plane of the waveguide core layer 13 of the long curved waveguide 8 is located above the neutral plane 15 of the microcantilever 16, as shown in FIG.
  • the transmission path of the optical signal in the accelerometer chip is: the input optical signal is a single polarization state laser signal, enters the asymmetric structure of the Mach-Zehnder interferometer 2 through the input waveguide 1, and passes through the first 2 X 2 port directional coupler 6 is divided into two optical signals with different powers, respectively entering the short waveguide 71 and the long curved waveguide 8, and the two optical signals are outputted at the output end of the second 2 X 2 port directional coupler 10, and are again divided into two optical signals, respectively entering Short curved waveguide 4 and output waveguide 5.
  • the signal forms a multi-beam interference in a closed optical cavity composed of an asymmetric structure of the Mach-Zehnder interferometer 2 and the short curved waveguide 4, and finally forms a stable output optical signal, and the output optical signal passes through the output waveguide 5 to enter the light.
  • the detector demodulates the signal through a photoelectric conversion circuit (not shown) and converts it into an electrical signal for detecting acceleration.
  • Mach-Zehnder interference is an asymmetric structure
  • the optical phase difference between the two arms of the device 2 is the coupling ratio of the first 2X2 port directional coupler 6 and the second 2X2 port directional coupler 10, and is the insertion loss of the Mach-Zehnder interferometer 2 of the asymmetric structure.
  • "It is the resonant waveguide transmission loss, and J is the resonant cavity length.
  • Figure 6 is a graph showing the output spectrum of the chip corresponding to different phase differences.
  • the optical signal When the system acceleration is zero, the optical signal has a stable initial phase as it passes through the long curved waveguide 8.
  • the inertial force generated by the mass 17 is uniformly applied to the microcantilever beam 16.
  • the microcantilever beam 16 will have a certain degree of elastic bending, causing internal stress and strain, resulting in a change in the effective refractive index of the optical waveguide.
  • the phase change is caused in the long curved waveguide 8, and the phase difference is changed. From the equations (1) to (3), the phase difference caused by the acceleration in the dynamic range is linear with the output intensity of the resonant frequency.
  • the design of the accelerometer proposed by the invention in the structural parameters is realized as follows: Since the organic polymer material has a negative thermal coefficient and a positive thermal expansion coefficient, temperature insensitivity can be achieved by selecting a matching organic polymer material and a waveguide structure.
  • the principle of the optical waveguide is well known in the art and will not be repeated here.
  • the optical waveguide device and the micromechanical vibration cantilever beam 3 are prepared by using the temperature-insensitive optical waveguide, and the detection noise caused by the environmental temperature fluctuation can be eliminated.
  • the coupling ratio of the first 2X2 port directional coupler 6 and the second 2X2 port directional coupler 10 is designed to be 0.1, which ensures that the resonant frequency drift of the resonant cavity can be ignored when the acceleration causes a phase difference.
  • the detection method of the accelerometer proposed by the present invention is implemented as follows: When testing, firstly, the frequency of the input optical signal is modulated to the resonant frequency, and the phase modulator 9 is adjusted to make the asymmetric structure of Mach one.
  • the initial phase difference between the two arms of the Zender interferometer 2 is at the detection zero point (as shown in Fig. 7).
  • the relative intensity of the output terminal is 0.5, it is the detection zero point, and the acceleration detection sensitivity is the highest.
  • the core layer of the long curved waveguide is located above the neutral plane 15 of the cantilever beam.
  • the acceleration causes the micromechanical vibration of the cantilever beam 3 to be deformed downward by the inertial force, the optical waveguide is stretched, and conversely, the phase difference is ⁇ The fluctuations, so the accelerometer can simultaneously test the magnitude and direction of the acceleration.
  • phase modulation optical accelerometer and frequency modulation optical acceleration:
  • the detection sensitivity of the accelerometer proposed by the present invention is several times higher than that of the conventional phase modulation optical accelerometer (Mach-Zehnder structure). (See Figure 7).
  • the conventional frequency modulation optical acceleration obtains an acceleration value by detecting the horizontal displacement of the resonance frequency, and the optical signal is not always at the resonance frequency, so the resonance spectrum is required to be completely symmetrical to ensure accuracy.
  • the horizontal displacement and asymmetric distribution of the resonant line will lead to a significant decrease in device detection sensitivity.
  • the accelerometer proposed by the invention is detecting, the optical signal is always at the resonant frequency, the detection noise is the lowest at the resonant frequency, and is not affected by the ambient temperature disturbance and the waveguide birefringence, and always maintains high sensitivity and high stability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

一种悬臂梁结构的谐振式集成光波导加速度计 技术领域
本发明属于集成光学和传感技术领域, 特别涉及一种悬臂梁结构的谐振 式集成光波导加速度计, 更确切的说是一种单片集成的高灵敏度的加速度计。 背景技术
加速度计是惯性导航、 惯性制导和控制检测设备的重要测试元件。 无论 是惯性导航还是惯性制导都是利用加速度计敏感这一特性来测试载体的运动 加速度。 目前, 加速度计以已广泛应用于航空、 航海、 宇航、 地震检测、 精 确制导和控制。 加速度计的种类众多, 包括摆式加速度计、 挠性加速度计、 电磁加速度计、 微机电 (MEMS ) 加速度计、 光学加速度计等。
光学加速度计具有抗电磁干扰, 高灵敏度和高信噪比, 稳定性高等众多 优点, 是近年来加速度计研究领域的主要研究方向之一。 光学加速度计的检 测原理如下: 由于敏感元件 (质量块) 中的光信号受到被测加速度的调制, 经光学回路的透射、 反射或干涉后, 光探测器接收到的光信号所对应的光学 性质如光强、 相位或谐振频率发生变化, 再送入光电探测器, 通过相应的解 调技术以获得被测物理量。 目前研究较多的光学加速度计主要包括相位调制 型和频率 (波长) 调制型。 相位调制型光学加速度计是传感光学元件, 如光 纤等受惯性力的作用导致传输光相位变化, 通过相位变化量检测加速度值。 这类加速度计一般采用迈克尔逊、 马赫一曾德尔或法罗布一珀罗腔等光学结 构, 通过检测信号光和参考光干涉后的光强变化检测加速度。 其主要的缺点 是当两束光信号之间的相位差较小时, 光强变化不明显, 因此其检测灵敏度 不高。 频率调制型光学加速度计是在相位调制型的基础上发展而来的, 采用 具有周期性频率选择功能的特殊器件结构, 如光栅、 光纤光栅、 谐振环等, 利用谐振频率和惯性力之间的关系检测加速度, 当被测敏感元件由于加速运 动而产生惯性力或位移时, 引起光路系统谐振频率的位移变化, 通过检测谐 振频率的水平位移量得到加速度值。 由于信号光相位差的微小变化经多光束 干涉增强进一步被放大, 因此其检测灵敏度更高。 但由于环境温度扰动和波 导双折射等因素的影响导致的谐振谱线水平位移和不对称分布, 会导致器件 检测灵敏度明显下降。
从元器件的系统构成来看, 目前的光学加速度计的光学敏感器件和传输 光路的系统构成主要由光纤、 光栅、 光纤光栅、 反射镜等分立器件组成, 器 件体积较大, 工艺制备成本高, 系统稳定性较差。 此外, 光纤器件对温度变 化敏感, 光纤器件之间的接头损耗、 偏振效应等均会对加速度计的稳定性和 检测灵敏度造成明显的影响。
集成光学器件技术的发展为光学传感器提供了新的发展方向, 通过微纳 精细加工技术, 将各种光学元器件集成在同一衬底之上, 通过光波导连接各 分立的功能器件, 即可实现光学传感系统体积的进一步减小。 此外, 集成光 学器件还具有高稳定性、 高可靠性、 制备工艺简化、 可选材料更丰富等众多 优点, 符合研制高精度光学加速度传感器件的技术需要。 最近几年, 由有机 聚合物材料作为衬底、 包层、 芯层的全聚合物光波导器件称为热门的研究方 向, 这种结构的光波导具有温度不敏感的特性, 同时, 由于器件的衬底为有 机聚合物材料, 和传统的硅片、 石英衬底相比较, 有机聚合物材料具有弹性 模量更小, 对应力、 应变的敏感度更高, 靭性更强, 不易断裂等优点, 可应 用于研制高精度的力学传感器。 发明内容
技术问题: 本发明的目的是为了克服已有技术的不足之处, 提出一种悬 臂梁结构的谐振式集成光波导加速度计, 采用有机聚合物光波导构成悬臂梁 结构, 并利用一种全新的波导结构和检测原理, 实现一种高精度的单片集成 光学加速度计芯片, 具有检测精度高、 器件体积小、 制备工艺简单、 易实现 批量生产等优点。
技术方案: 本发明的技术方案是这样实现的: 从结构上看, 本发明所提 出的加速度计是由输入波导、 不对称结构的马赫一曾德尔干涉器、 微机械振 动悬臂梁、 短弯曲波导、 输出波导构成, 其特征在于: 输入波导、 不对称结 构的马赫一曾德尔干涉器、 微机械振动悬臂梁、 短弯曲波导、 输出波导均由 有机聚合物衬底、 有机聚合物波导芯层、 有机聚合物波导包层组成; 第一 2 X 2 端口方向耦合器的内端分别接第一短波导和弯曲波导的一端, 第二 2 X 2 端口方向耦合器的内端分别接第二短波导和弯曲波导的另一端, 在第一短波 导与第二短波导之间连接有相位调制器, 组成不对称结构的马赫一曾德尔干 涉器; 输入波导、 短弯曲波导、 输出波导、 第一 2 X 2端口方向耦合器、 第一 短波导、 相位调制器、 第二短波导和第二 2 X 2端口方向耦合器均固定在基座 上; 第一 2 X 2端口方向耦合器的外端分别接输入波导和长弯曲波导的一端, 第二 2 X 2端口方向耦合器的外端分别接输出波导和长弯曲波导的另一端, 长 弯曲波导集成于微机械振动悬臂梁之上; 微机械振动悬臂梁为双梁结构, 由 两根平行且对称分布的微悬臂梁与质量块连接构成, 微悬臂梁的一端固定在 基座上, 另一端连接质量块, 质量块自由悬空, 有机聚合物波导芯层所在平 面位于微悬臂梁的中性面上方。
本发明所提出的加速度计的微悬臂梁由有机聚合物衬底、 有机聚合物波 导芯层、 有机聚合物波导包层组成, 其中有机聚合物波导芯层为矩形结构, 厚度和宽度均为数微米量级, 有机聚合物波导包层和有机聚合物衬底宽度相 等, 均在 20至 1000微米之间, 有机聚合物波导包层厚度在 10至 20微米之 间, 有机聚合物衬底厚度在 20微米至 1000微米之间。
本发明所提出的加速度计的检测原理如下: 光信号由输入波导进入由不 对称结构的马赫一曾德尔干涉器和短弯曲波导构成的闭合光学回路, 并形成 多光束干涉, 干涉后的光信号由输出波导输出到光探测器和外围检测电路, 对光信号进行解调, 通过检测谐振频率光强变化, 测量加速度引起的光信号 相位差, 实现加速度的检测。
有益效果: 本发明与现有的技术相比具有以下的优点:
1、 本发明所提出的加速度计利用集成光学器件加工技术, 采用温度不敏 感的有机聚合物光波导结构制备光波导器件、 衬底和微机械振动悬臂梁等全 部传感结构, 可实现器件的单片集成。 和传统的光纤传感器、 无机集成光学 传感器等相比较, 其弹性系数、 检测灵敏度、 动态范围等关键技术指标可实 现大范围的调整, 器件体积小、 质量轻、 稳定性高, 制备工艺简单, 并可实 现批量生产, 显著降低器件成本。
2、 在检测原理上, 和目前现有的相位调制型、 频率调制型光学加速度计 相比较, 本发明提出的加速度计通过检测谐振频率光强变化, 测量加速度引 起的光信号相位差, 实现加速度的检测, 测试过程中信号光始中处于谐振频 率, 大幅提高了检测灵敏度, 并且具有不受环境温度扰动、 不受波导双折射 影响的优点。 附图说明
图 1是悬臂梁结构的谐振式集成光波导加速度计的结构俯视图。
图 2微机械振动悬臂梁的结构示意图。
图 3 是微悬臂梁的结构示意图。 图 4 是微悬臂梁垂直于波导传输方向截面的结构示意图。
图 5 是微悬臂梁平行于波导传输方向截面的结构示意图。
图 6是由加速度导致不同相位差所对应输出光谱曲线示意图。
图 7是加速度计的检测灵敏度对比示意图。 具体实施方式:
以下结合附图对本发明的技术方案作进一步描述。
本发明所提出的悬臂梁结构的谐振式集成光波导加速度计的结构如图 1 所示。 构成光信号的通道包括: 输入波导 1、 不对称结构的马赫一曾德尔干涉 器 2、 短弯曲波导 4、 输出波导 5, 不对称结构的马赫一曾德尔干涉器 2和短 弯曲波导 4, 其中不对称结构的马赫一曾德尔干涉器 2由第一 2 X 2端口方向 耦合器 6、 短波导 71、 相位调制器 9、 短波导 72、 长弯曲波导 8和第二 2 X 2 端口方向耦合器 10组成。 加速度计芯片中的输入波导 1、 短弯曲波导 4、 输 出波导 5、 第一 2 X 2端口方向耦合器 6、 短波导 71、 相位调制器 9、 短波导 72和第二 2 X 2端口方向耦合器 10均固定在基座 11上。
利用微细加工技术对长弯曲波导 8 所在衬底区域进行处理, 去除部分有 机聚合物衬底和包层, 制成微悬臂梁 16和质量块 17, 共同构成加速度计的敏 感元件——微机械振动悬臂梁 3。微机械振动悬臂梁 3的结构如图 2所示: 微 机械振动悬臂梁 3为双梁结构, 由两根平行且对称分布的微悬臂梁 16和质量 块 17构成, 微机械振动悬臂梁 3的一端固定在基座 11上, 另一端自由悬空。 其中微悬臂梁 16的结构如图 3、 图 4所示, 由有机聚合物衬底 12、 有机聚合 物波导芯层 13、 有机聚合物波导包层 14组成, 有机聚合物波导芯层 13为矩 形结构, 厚度和宽度均为数微米量级, 有机聚合物波导包层 14和有机聚合物 衬底 12宽度相等, 均在 20至 1000微米之间, 有机聚合物波导包层 14厚度 在 10至 20微米之间, 有机聚合物衬底 12厚度在 20微米至 1000微米之间。 长弯曲波导 8的波导芯层 13所在平面位于微悬臂梁 16的中性面 15上方, 如 图 5所示。
光信号在加速度计芯片中的传输路径为: 输入光信号为单偏振态的激光 信号, 经过输入波导 1进入不对称结构的马赫一曾德尔干涉器 2, 经过第一 2 X 2端口方向耦合器 6分为两束功率不同的光信号, 分别进入短波导 71和长 弯曲波导 8, 两束光信号在第二 2 X 2端口方向耦合器 10输出端输出, 再次分 成两束光信号, 分别进入短弯曲波导 4和输出波导 5。进入短弯曲波导 4的光 信号在由不对称结构的马赫一曾德尔干涉器 2和短弯曲波导 4所组成的闭合 光学谐振腔内形成多光束干涉, 最终形成稳定的输出光信号, 输出光信号经 过输出波导 5, 进入光探测器, 经过光电转换电路(图中未标出)对信号进行 解调, 转变为电信号, 用于检测加速度。
输出波导 5输出信号的相对光强由公式 (1) 表示:
^(1-^-^)/(1-^)
ΕΊΙΕλ =(l-r0) 1- (1)
l + ^-2^1/2cos(^J + ^82)
A = (l- K)(l - r0 ) Qxp(-2 L) (2) K = 4(l-k)kcos2(^-) (3) 式中, 为不对称结构的马赫一曾德尔干涉器 2两臂之间的光学相位差, Α是第一 2X2端口方向耦合器 6、第二 2X2端口方向耦合器 10的耦合比, 是不对称结构的马赫一曾德尔干涉器 2 的插入损耗, 《是谐振腔波导传输损 耗, J是谐振腔长度。 图 6是不同相位差 对应的芯片输出光谱曲线。
当系统加速度为零时, 光信号通过长弯曲波导 8 时, 具有稳定的初始相 位。 当系统存在加速度时, 质量块 17 产生的惯性力均匀施加在微悬臂梁 16 上, 微悬臂梁 16会产生一定程度的弹性弯曲, 引起内应力和应变, 导致光波 导的有效折射率发生变化, 引起长弯曲波导 8 内传输相位变化, 从而导致相 位差 变化, 由公式 (1)- (3)可知, 在动态范围内加速度引起的相位差 与 谐振频率的输出光强呈线性关系。
本发明提出的加速度计在结构参数上的设计是这样实现的: 由于有机聚 合物材料具有负热光系数, 正热膨胀系数, 因此可通过选择匹配的有机聚合 物材料和波导结构, 实现温度不敏感的光波导, 其原理为本领域中的公知技 术, 在此不予重复。 利用温度不敏感的光波导, 利用该技术制备光波导器件 和微机械振动悬臂梁 3, 可以消除环境温度波动引起的检测噪声。 第一 2X2 端口方向耦合器 6、 第二 2X2端口方向耦合器 10的耦合比 k参数设计为 0.1, 确保加速度引起相位差 变化时, 可以忽略谐振腔的谐振频率漂移。 通过对 微机械振动悬臂梁 3 的结构参数, 包括波导宽度、 厚度, 衬底宽度、 厚度的 设计, 可以使加速度计的检测灵敏度和动态范围在大范围内调整, 满足不同 的测试需求。
本发明提出的加速度计的检测方法是这样实现的: 测试时, 首先将输入 光信号的频率调制到谐振频率, 并调节相位调制器 9, 令不对称结构的马赫一 曾德尔干涉器 2两臂之间的初始相位差位于检测零点 (如图 7所示), 当输出 端相对光强为 0.5时, 即为检测零点, 此时加速度检测灵敏度最高。 长弯曲波 导 8芯层位于悬臂梁中性面 15的上方, 当加速度导致微机械振动悬臂梁 3受 到惯性力产生向下弯曲形变时, 光波导拉伸, 反之收缩, 相位差 在 ± ^皿之 间波动, 因此该加速度计可同时测试加速度大小和方向。
从检测原理上与现有技术, 包括相位调制型光学加速度计、 频率调制型 光学加速度相比较:
1.在材料弹性模量、悬臂梁由于加速度导致相位差相同的情况下, 本发明 所提出的加速度计的检测灵敏度比传统的相位调制型光学加速度计 (马赫一 曾德尔结构) 提高了数倍 (见图 7)。
2.传统的频率调制型光学加速度,通过检测谐振频率的水平位移量得到加 速度值, 光信号并非始终处于谐振频率, 因此要求谐振谱线完全对称以保证 精度。 但由于环境温度扰动和波导双折射等因素导致的谐振谱线水平位移和 不对称分布, 会导致器件检测灵敏度明显下降。 本发明提出的加速度计在检 测时, 光信号始终处于谐振频率, 谐振频率处检测噪声最低, 并且不受环境 温度扰动和波导双折射影响, 始终保持高灵敏度和高稳定性。

Claims

权 利 要 求 书
1. 一种悬臂梁结构的谐振式集成光波导加速度计, 该加速度计包括输入 波导 (1)、 不对称结构的马赫一曾德尔干涉器 (2)、 微机械振动悬臂梁 (3)、 短弯曲波导 (4)、 输出波导 (5), 其特征在于:
输入波导 (1)、 不对称结构的马赫一曾德尔干涉器 (2)、 微机械振动悬 臂梁 (3)、 短弯曲波导 (4)、 输出波导 (5) 均包括有机聚合物衬底 (12)、 有机聚合物波导芯层 (13)、 有机聚合物波导包层 (14);
第一 2X2 端口方向耦合器 (6) 的内端分别接第一短波导 (71) 和弯曲 波导 (4) 的一端, 第二 2X2 端口方向耦合器 (10) 的内端分别接第二短波 导 (72)和弯曲波导 (4) 的另一端, 在第一短波导 (71) 与第二短波导 (72) 之间连接有相位调制器 (9), 组成不对称结构的马赫一曾德尔干涉器 (2); 输入波导 (1)、 短弯曲波导 (4)、 输出波导 (5)、 第一 2X2端口方向耦 合器 (6)、 第一短波导 (71)、 相位调制器 (9)、 第二短波导 (72) 和第二 2 X2端口方向耦合器 (10) 均固定在基座 (11) 上;
第一 2X2端口方向耦合器 (6) 的外端分别接输入波导 (1) 和长弯曲波 导(8) 的一端, 第二 2X2端口方向耦合器(10) 的外端分别接输出波导(5) 和长弯曲波导 (8) 的另一端, 长弯曲波导 (8)集成于微机械振动悬臂梁(3) 之上;
微机械振动悬臂梁 (3) 为双梁结构, 由两根平行且对称分布的微悬臂梁 (16)与质量块(17)连接构成, 微悬臂梁(16) 的一端固定在基座(11)上, 另一端连接质量块 (17), 质量块 (17) 自由悬空。
2. 根据权利要求 1 所述的一种悬臂梁结构的谐振式集成光波导加速度 计, 其特征在于微悬臂梁 (16) 中, 有机聚合物波导包层 (14) 位于有机聚 合物衬底(12)上, 有机聚合物波导芯层(13)位于有机聚合物波导包层(14) 中, 其中有机聚合物波导芯层 (13) 为矩形结构, 厚度和宽度均为数微米量 级, 有机聚合物波导包层 (14) 和有机聚合物衬底 (12) 宽度相等, 均在 20 至 1000微米之间, 有机聚合物波导包层 (14) 厚度在 10至 20微米之间, 有 机聚合物衬底 (12) 厚度在 20微米至 1000微米之间。
3.根据权利要求 1所述的一种悬臂梁结构的谐振式集成光波导加速度计, 其特征在于光信号由输入波导 (1 ) 进入由不对称结构的马赫一曾德尔干涉器 (2) 和短弯曲波导 (4) 构成的闭合光学回路, 并形成多光束干涉, 干涉后 的光信号由输出波导 (5 ) 输出到光探测器和外围检测电路, 外围检测电路对 光信号进行解调, 通过检测谐振频率光强变化, 测量加速度引起的光信号相 位差, 实现对加速度的检测。
PCT/CN2009/074144 2009-02-23 2009-09-23 一种悬臂梁结构的谐振式集成光波导加速度计 WO2010094190A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/202,755 US8640542B2 (en) 2009-02-23 2009-09-23 Cantilever beam structural resonant-type integrated optical waveguide accelerometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100244753A CN101482575B (zh) 2009-02-23 2009-02-23 一种悬臂梁结构的谐振式集成光波导加速度计
CN200910024475.3 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010094190A1 true WO2010094190A1 (zh) 2010-08-26

Family

ID=40879777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074144 WO2010094190A1 (zh) 2009-02-23 2009-09-23 一种悬臂梁结构的谐振式集成光波导加速度计

Country Status (3)

Country Link
US (1) US8640542B2 (zh)
CN (1) CN101482575B (zh)
WO (1) WO2010094190A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285390B2 (en) 2012-06-06 2016-03-15 Northrop Grumman Systems Corporation Optical accelerometer system
US9992581B2 (en) 2016-03-25 2018-06-05 Northrop Grumman Systems Corporation Optical microphone system
US11079230B2 (en) 2019-05-10 2021-08-03 Northrop Grumman Systems Corporation Fiber-optic gyroscope (FOG) assembly

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482575B (zh) 2009-02-23 2011-02-09 东南大学 一种悬臂梁结构的谐振式集成光波导加速度计
CN102080986B (zh) * 2009-11-30 2012-11-14 同方威视技术股份有限公司 光纤光栅振动传感部件、光纤光栅振动传感装置、测振系统及方法
CN105388322A (zh) * 2009-12-01 2016-03-09 原相科技股份有限公司 光学式侦测方法、光学式微机电侦测计及其制法
CN101871950B (zh) * 2010-06-21 2011-07-13 中北大学 基于集成输入输出端的光学谐振腔微加速度计
GB2493585B (en) * 2011-08-11 2013-08-14 Ibm Scanning probe microscopy cantilever comprising an electromagnetic sensor
JP5858476B2 (ja) * 2012-07-18 2016-02-10 日本電信電話株式会社 光素子
JP5871240B2 (ja) * 2013-03-07 2016-03-01 日本電信電話株式会社 光素子
US9778042B2 (en) 2013-12-13 2017-10-03 Intel Corporation Opto-mechanical inertial sensor
US9341644B2 (en) 2013-12-13 2016-05-17 Intel Corporation MEMS apparatus with a movable waveguide section
US9239340B2 (en) * 2013-12-13 2016-01-19 Intel Corporation Optomechanical sensor for accelerometry and gyroscopy
US9285391B2 (en) * 2013-12-13 2016-03-15 Intel Corporation Optomechanical inertial sensor
CN103954347A (zh) * 2014-05-12 2014-07-30 哈尔滨工业大学(威海) 一种平面光波导振动传感器芯片悬臂梁的制作方法
JP6183957B2 (ja) * 2014-05-15 2017-08-23 日本電信電話株式会社 光変調装置
US10330697B2 (en) 2015-05-15 2019-06-25 Honeywell International Inc. Active, in-situ, calibration of MEMS accelerometers using optical forces
US9874581B2 (en) 2015-05-15 2018-01-23 Honeywell International Inc. In-situ bias correction for MEMS accelerometers
US9983225B2 (en) 2015-06-29 2018-05-29 Honeywell International Inc. Optical-mechanical vibrating beam accelerometer
JP2017054113A (ja) * 2015-09-09 2017-03-16 日東電工株式会社 光導波路およびそれを用いた位置センサならびに光回路基板
CN105158508B (zh) * 2015-10-09 2018-07-27 华北电力大学(保定) 一种结构简单的新型光纤振动加速度传感器
CN106443881A (zh) * 2016-11-22 2017-02-22 聊城大学 一种全光开关及其制作方法
IT201700124320A1 (it) * 2017-10-31 2019-05-01 St Microelectronics Srl Sistema di risonatore microelettromeccanico con migliorata stabilita' rispetto a variazioni di temperatura
US10830787B2 (en) * 2018-02-20 2020-11-10 General Electric Company Optical accelerometers for use in navigation grade environments
CN109633204B (zh) * 2018-12-03 2020-10-16 东南大学 一种低温漂的混合表面等离激元加速度计
CN110133322B (zh) * 2019-05-13 2020-08-25 浙江大学 基于电光效应的单片集成光学加速度计
US11408912B2 (en) 2019-08-13 2022-08-09 Honeywell International Inc. Feedthrough rejection for optomechanical devices
US11372019B2 (en) * 2019-08-13 2022-06-28 Honeywell International Inc. Optomechanical resonator stabilization for optomechanical devices
CN113267648B (zh) * 2021-03-26 2022-03-25 浙江大学 基于迈克尔逊干涉的混合集成光学加速度计
CN113405474B (zh) * 2021-08-03 2022-08-12 重庆大学 挠性摆片位移测试装置及测试方法
CN114137254B (zh) * 2021-11-30 2023-08-04 中北大学 一种基于微纳波导倏逝场耦合的单片式光学mems加速度计
CN114755452B (zh) * 2022-03-11 2023-02-03 浙江大学 带电磁反馈的推挽式光子晶体拉链腔光学加速度计
CN114755453B (zh) * 2022-03-11 2023-02-03 浙江大学 基于腔长可调f-p腔的差分检测型光学加速度计
CN114778890B (zh) * 2022-03-30 2023-06-20 北京卫星环境工程研究所 微悬臂梁光纤加速度传感器机构
CN114839397B (zh) * 2022-03-31 2023-05-05 武汉大学 基于微环谐振腔的moems三轴加速度传感器及其制备方法
CN114966110B (zh) * 2022-04-26 2023-05-12 浙江大学 一种非厄米奇异点光学微腔加速度传感器
DE102022207770A1 (de) 2022-07-28 2024-02-22 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisch-optischer Beschleunigungssensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276322A (en) * 1990-10-17 1994-01-04 Edjewise Sensor Products, Inc. Fiber optic accelerometer
CN1209553A (zh) * 1997-08-26 1999-03-03 三星电子株式会社 混合光波导及其制造方法
JPH1183894A (ja) * 1997-09-10 1999-03-26 Japan Aviation Electron Ind Ltd 光学式加速度計
CN1693899A (zh) * 2005-06-03 2005-11-09 中国科学院上海光学精密机械研究所 加速度传感器
US20060279835A1 (en) * 2005-06-09 2006-12-14 Fujitsu Limited Wavelength conversion system, optical integrated device and wavelength conversion method
CN101482575A (zh) * 2009-02-23 2009-07-15 东南大学 一种悬臂梁结构的谐振式集成光波导加速度计

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613752A (en) * 1983-08-04 1986-09-23 Optical Technologies, Inc. Fiber optic force measuring device
US4900918A (en) * 1987-08-06 1990-02-13 Allied-Signal Inc. Resonant fiber optic accelerometer with noise reduction using a closed loop feedback to vary pathlength
US5313266A (en) * 1992-08-17 1994-05-17 Keolian Robert M Demodulators for optical fiber interferometers with [3×3] outputs
US5345522A (en) * 1992-09-02 1994-09-06 Hughes Aircraft Company Reduced noise fiber optic towed array and method of using same
US5420688A (en) * 1992-12-14 1995-05-30 Farah; John Interferometric fiber optic displacement sensor
FR2748578B1 (fr) * 1996-05-10 1998-05-29 Commissariat Energie Atomique Dispositif optomecanique et application a des capteurs en optique integree
US6240226B1 (en) * 1998-08-13 2001-05-29 Lucent Technologies Inc. Polymer material and method for optical switching and modulation
JP2000276920A (ja) 1999-03-26 2000-10-06 Matsushita Electric Works Ltd 照明器具及びランプ
US6525307B1 (en) * 1999-09-16 2003-02-25 Ut-Battelle, Llc Integrated optical interrogation of micro-structures
US6529659B2 (en) * 2000-05-02 2003-03-04 Parvenu, Inc. Waveguide tunable Bragg grating using compliant microelectromechanical system (MEMS) technology
US6947621B2 (en) * 2002-01-22 2005-09-20 Lockheed Martin Corporation Robust heterodyne interferometer optical gauge
US7518731B2 (en) * 2005-02-01 2009-04-14 Chian Chiu Li Interferometric MOEMS sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276322A (en) * 1990-10-17 1994-01-04 Edjewise Sensor Products, Inc. Fiber optic accelerometer
CN1209553A (zh) * 1997-08-26 1999-03-03 三星电子株式会社 混合光波导及其制造方法
JPH1183894A (ja) * 1997-09-10 1999-03-26 Japan Aviation Electron Ind Ltd 光学式加速度計
CN1693899A (zh) * 2005-06-03 2005-11-09 中国科学院上海光学精密机械研究所 加速度传感器
US20060279835A1 (en) * 2005-06-09 2006-12-14 Fujitsu Limited Wavelength conversion system, optical integrated device and wavelength conversion method
CN101482575A (zh) * 2009-02-23 2009-07-15 东南大学 一种悬臂梁结构的谐振式集成光波导加速度计

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285390B2 (en) 2012-06-06 2016-03-15 Northrop Grumman Systems Corporation Optical accelerometer system
US9992581B2 (en) 2016-03-25 2018-06-05 Northrop Grumman Systems Corporation Optical microphone system
US11079230B2 (en) 2019-05-10 2021-08-03 Northrop Grumman Systems Corporation Fiber-optic gyroscope (FOG) assembly

Also Published As

Publication number Publication date
CN101482575B (zh) 2011-02-09
US8640542B2 (en) 2014-02-04
CN101482575A (zh) 2009-07-15
US20110303008A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2010094190A1 (zh) 一种悬臂梁结构的谐振式集成光波导加速度计
US4495411A (en) Fiber optic sensors operating at DC
Sheikhaleh et al. An optical MEMS accelerometer based on a two-dimensional photonic crystal add-drop filter
US20040149037A1 (en) Fiber optic accelerometer
Tabib-Azar et al. Modern trends in microstructures and integrated optics for communication, sensing, and actuation
CN110133322B (zh) 基于电光效应的单片集成光学加速度计
WO2015080662A1 (en) Opto-mechanical accelerometer
Sheikhaleh et al. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system
Long et al. A MEMS accelerometer based on wavelength modulation using an integrated blazed grating
CN201382956Y (zh) 集成光波导加速度计
CN108845387A (zh) 一种能同时测量海水温度盐度压力的楔型微孔光纤光栅
De Carlo et al. Design of an exceptional-surface-enhanced silicon-on-insulator optical accelerometer
Nie et al. A proposal to enhance high-frequency optical MEMS accelerometer sensitivity based on a one-dimensional photonic crystal wavelength modulation system
CN112285060A (zh) 双芯微结构光纤模间干涉型高灵敏度折射率传感器
Dong et al. An on-chip opto-mechanical accelerometer
Bao et al. An optomechanical accelerometer with a high-finesse hemispherical optical cavity
CN111308125A (zh) 一种基于光纤Sagnac干涉仪的加加速度探测方法及加加速度计
CN113156162B (zh) 加速度计结构及其制备方法、加速度测量方法
CN108982913B (zh) 一种共光路结构的微型光纤非本征型迈克尔逊加速度传感器
Zhao et al. Optical interferometric MEMS accelerometers
Xiao-qi et al. An optical fibre MEMS pressure sensor using dual-wavelength interrogation
CN115435885A (zh) Mems光纤悬臂梁声传感器及制备方法
Yang et al. Highly sensitive micro-opto-electromechanical systems accelerometer based on MIM waveguide wavelength modulation
Zhu et al. An optical fiber Fabry–Pérot pressure sensor using an SU-8 structure and angle polished fiber
Bremer et al. Fabrication of a high temperature-resistance optical fibre micro pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202755

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840241

Country of ref document: EP

Kind code of ref document: A1