WO2010094173A1 - 传输上行物理共享信道的方法及设备 - Google Patents

传输上行物理共享信道的方法及设备 Download PDF

Info

Publication number
WO2010094173A1
WO2010094173A1 PCT/CN2009/070460 CN2009070460W WO2010094173A1 WO 2010094173 A1 WO2010094173 A1 WO 2010094173A1 CN 2009070460 W CN2009070460 W CN 2009070460W WO 2010094173 A1 WO2010094173 A1 WO 2010094173A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
bandwidth
user data
subband
frequency band
Prior art date
Application number
PCT/CN2009/070460
Other languages
English (en)
French (fr)
Inventor
李元杰
张晓娜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/070460 priority Critical patent/WO2010094173A1/zh
Priority to CN200980153879.0A priority patent/CN102301769B/zh
Publication of WO2010094173A1 publication Critical patent/WO2010094173A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for transmitting an uplink physical shared channel.
  • bandwidth resources located in the middle of the communication band are generally used for transmission of user data, and bandwidth resources at both ends of the communication band are used for control signaling transmission.
  • the PUSCH Physical Uplink Share Channel
  • the PUCCH Physical Uplink Control Channel
  • Control signaling such as CQI (channel quality indication), ACK/NACK (acknowledgement/negative acknowledgement).
  • the embodiments of the present invention provide a method and a device for transmitting an uplink physical shared channel, so as to implement frequency hopping transmission of user data allocated to reserved bandwidth resources at both ends of the frequency band, thereby improving resource utilization and transmission performance of reserved bandwidth at both ends of the frequency band.
  • the technical solutions are as follows:
  • An embodiment of the present invention provides a method for transmitting an uplink physical shared channel PUSCH, including: transmitting a PUSCH on a reserved bandwidth of an uplink frequency band edge, where
  • the edge reserved bandwidths at the two ends of the uplink frequency band are respectively divided into a first edge sub-band and a second edge sub-band, and user data carried on the PUSCH is in the first edge sub-band and the second edge sub-band Upper frequency hopping transmission.
  • the embodiment of the present invention further provides another method for transmitting an uplink physical shared channel PUSCH, including: transmitting a PUSCH on a reserved bandwidth of an uplink frequency band edge, where
  • All or part of the reserved bandwidth of the uplink frequency band is divided into a plurality of edge subbands, and user data carried on the PUSCH is frequency hopped and transmitted on the subbands of the intermediate bandwidth of the plurality of edge subbands and the uplink frequency band. .
  • An embodiment of the present invention provides an apparatus for transmitting an uplink physical shared channel PUSCH, including: a transmission unit, The transmission unit is configured to transmit a PUSCH on an uplink frequency band edge reserved bandwidth, where the edge reserved bandwidths at both ends of the uplink frequency band are respectively divided into a first edge subband and a second edge subband, and are carried in the User data on the PUSCH is frequency hopped over the first edge subband and the second edge subband.
  • An embodiment of the present invention further provides another device for transmitting an uplink physical shared channel PUSCH, including: a transmission unit,
  • the transmission unit is configured to transmit a PUSCH on an uplink frequency band edge reserved bandwidth, where all or part of the uplink frequency band edge reserved bandwidth is divided into several edge sub-bands, and user data carried on the PUSCH is The plurality of edge subbands and the subbands of the intermediate bandwidth of the uplink frequency band are frequency hopped.
  • the reserved bandwidth resources at both ends of the frequency band are respectively divided into one user data sub-band, and the user data allocated in the part of the resources is subjected to frequency hopping transmission between the two sub-bands; or the bandwidth resources are reserved at both ends of the frequency band.
  • Divided into one or more user data subbands user data is frequency hopped between the subbands of the frequency band and the subbands divided at both ends. Therefore, the user data allocated to the reserved bandwidth resources at both ends of the frequency band can obtain the frequency hopping gain, reduce the influence of the frequency selective interference on the user data transmission at both ends of the frequency band, thereby improving the performance of the reserved bandwidth and enabling it to satisfy the user data.
  • the need for transmission can be effectively utilized.
  • FIG. 1 is a schematic diagram of a method for allocating a frequency band resource according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frequency hopping method according to a third embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a frequency hopping method according to a fourth embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another frequency hopping method according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of a frequency hopping method according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic diagram of another frequency hopping method according to Embodiment 5 of the present invention.
  • Figure ⁇ is a schematic diagram of a frequency hopping method according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a frequency hopping method according to Embodiment 7 of the present invention.
  • FIG. 9 is a schematic diagram of a method for calculating a frequency hopping position according to a seventh embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a frequency hopping method according to Embodiment 8 of the present invention. detailed description
  • the bandwidth in the middle of the uplink frequency band refers to the bandwidth between two PUCCHs in the uplink frequency band, which can be used to transmit the PUSCH;
  • the bandwidth reserved in the uplink frequency band refers to two PUCCHs in the uplink frequency band.
  • the bandwidth, the reserved bandwidth at the two ends of the frequency band can also be used for transmission.
  • the first embodiment of the present invention provides a method for transmitting an uplink physical shared channel PUSCH, and the method includes:
  • Transmitting the PUSCH on the reserved bandwidth of the uplink frequency band wherein the edge reserved bandwidths at the two ends of the uplink frequency band are respectively divided into a first edge subband and a second edge subband, and the user data carried on the PUSCH is in the foregoing Frequency hopping is transmitted on an edge subband and a second edge subband.
  • the frequency hopping transmission of the user data on the first edge subband and the second edge subband further includes: a relative position of the resource block occupied by the transmission of the user data in the first edge subband
  • the relative positions of the resource blocks occupied by the transmission of the user data in the second edge subband are the same or mirror images of each other.
  • the edge reserved bandwidth in the first embodiment may be provided by a higher layer.
  • the high layer signaling may include related information of the edge reserved bandwidth ⁇ "- ⁇ ; or may be determined according to the high layer providing information, for example, obtaining high layer signaling.
  • the total bandwidth of the edge ⁇ ⁇ and the control signaling bandwidth, then the frequency hopping transmission in the CSH - t embodiment 1 may include: at the Nth time, the user data is transmitted on the first edge subband; at the N+M time, User data is transmitted on the second edge subband; where N and M are positive integers.
  • the value of the preset M is changed, and the value of N is changed, and the value of N+M that does not overlap with the value of N is obtained. Then, the user data can determine which edge subband is transmitted at different times, thereby implementing frequency hopping transmission.
  • the user data of the subband allocated in the middle bandwidth of the frequency band is hopped and transmitted on the subband of the intermediate bandwidth, for example, using uplink grant frequency hopping transmission, or performing frequency hopping transmission according to the frequency hopping pattern.
  • the second embodiment of the present invention provides another method for transmitting a PUSCH, where the method includes: transmitting a PUSCH on an uplink frequency band edge reserved bandwidth, where all or part of the uplink bandwidth reserved bandwidth is divided into several edge subbands
  • the user data carried on the PUSCH is frequency hopped and transmitted on the subbands of the plurality of edge subbands and the intermediate frequency band of the uplink frequency band.
  • This embodiment enables the user data allocated to the reserved bandwidth resources at both ends of the frequency band to obtain the frequency hopping increase.
  • each user data can obtain a larger frequency hopping range in the same frequency band, thereby further improving the anti-interference of data transmission.
  • the bandwidth of the edge subband divided by the uplink band edge reserved bandwidth in the second embodiment is equal to the bandwidth of the subband of the intermediate bandwidth.
  • the user data in the second embodiment may be frequency hopped and transmitted on the subbands of the plurality of edge subbands and the intermediate frequency band of the uplink frequency band according to the frequency hopping pattern.
  • the relative position of the resource block occupied by the transmission of the user data in the edge subband and the resource occupied by the transmission of the user data in the edge subband at the next moment are the same or mirror images of each other.
  • the bandwidth may be further divided, for example, the PUSCH of the foregoing transmission that is located at one end of the uplink frequency band.
  • the difference bandwidth between the edge reserved bandwidth and the bandwidth of the plurality of edge subbands is divided into a third edge subband, and the difference bandwidth of the other end is divided into a fourth edge subband.
  • user data allocated to the third edge sub-band and the fourth edge sub-band may be in the third edge sub-band and The fourth edge subband is hopped over.
  • the edge reserved bandwidth in the second embodiment may be directly provided by the upper layer or determined according to the total edge bandwidth and the control signaling bandwidth provided by the upper layer.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • each small square in Fig. 2 represents a bandwidth unit, which is represented by BU (Bandwidth Unit).
  • the dot filling pattern portion represents the control signaling bandwidth resource, and the bandwidth occupied at both ends of the frequency band is 2BU, and the portion outside the control signaling bandwidth (the portion between the dotted lines at both ends of the frequency band shown in FIG. 2) is the frequency band two.
  • the reserved bandwidth of the terminal is 2BU at both ends of the band.
  • the reserved bandwidths at both ends of the frequency band are respectively divided into one user data sub-band, which may be referred to as a first edge sub-band and a second edge sub-band respectively, as shown in FIG. 2, between the dotted lines at both ends of the band, That is, the divided two user data subbands.
  • User data can be distributed among the two sub-bands, such as the left slash fill portion and the right slash fill portion in Fig. 2, respectively representing two different sets of user data.
  • the data is located in the first edge sub-band at the initial N time, then at the N+T time (T is the frequency hopping time interval).
  • T is the frequency hopping time interval.
  • the data will be hopped to the second edge subband; after a hopping time interval T, the data is hopped to the second edge subband, and so on, the frequency hopping pattern of the data is as shown by the dotted line in FIG. The arrow shows.
  • the user data represented by the portion is filled with a right slash pattern, and a similar method is used for frequency hopping (not indicated by an arrow in Fig. 2).
  • the user data allocated to the reserved bandwidth resources at both ends of the frequency band can obtain the frequency hopping gain, and reduce the influence of the frequency selective interference on the user data transmission at both ends of the frequency band.
  • the user data allocated in the middle subband of the frequency band is frequency hopped on the subband in the middle of the frequency band, as indicated by the horizontal line filling pattern shown in FIG.
  • User data may be frequency hopped according to UL-grant (uplink authorization), assuming that the frequency hopping amplitude specified by the authorization is half of the bandwidth of the intermediate user data band (ie, the portion between the control signaling bands at both ends), then the data is The frequency hopping mode is shown by the solid arrow in Figure 2.
  • Embodiment 4 is shown by the solid arrow in Figure 2.
  • the portion between the dotted lines at both ends represents the user data subband (ie, the first edge subband and the second edge subband) divided in the reserved bandwidth, and the bandwidth is 2BU, respectively, similar to the third embodiment.
  • the dotted arrow in 3 is shown.
  • the user data allocated in the intermediate sub-band of the frequency band in this embodiment can be frequency hopped according to a predetermined pattern. As shown in FIG. 3, a portion between every two adjacent solid lines represents a sub-band divided in the middle of the frequency band, and there are 4 sub-bands, each of which has a bandwidth of 4BU, and is allocated in each of the four sub-bands.
  • the edge subbands of the edge reserved bandwidth division and the subbands divided by the frequency band may have the same bandwidth or different bandwidths.
  • four sub-bands are divided in the middle of the frequency band, and the bandwidth of each sub-band is 3BU.
  • the user data sub-bands in the reserved bandwidth are both ends, and the bandwidth is 4BU respectively, and the users on the edge sub-bands are allocated.
  • the data is frequency hopped on two edge subbands, as indicated by the dashed arrows; the user data allocated on the subbands in the middle of the band can be frequency hopped according to a predetermined pattern, as indicated by the solid arrows, of course, Uplink authorized frequency hopping transmission can be performed.
  • Embodiment 5 Embodiment 5:
  • the hopping interval of the user data allocated in the two edge subbands and the hopping interval of the user data allocated in the intermediate subband are not necessarily related.
  • the frequency hopping intervals of the two parts of data are the same.
  • the frequency hopping intervals of the two parts of data may be different. Referring to FIG. 5, the hopping interval of the user data allocated in the intermediate subband is one hopping time interval T, and the hopping interval of the user data allocated in the edge subband is 2T.
  • the user data allocated in the intermediate sub-band it may not be equal-interval frequency hopping, for example, as shown in FIG. 6, assuming that the starting time is ⁇ , the data located in the edge sub-band is respectively ⁇ +2 ⁇ , ⁇ +5 ⁇ ...
  • the frequency hopping transmission is performed at all times, and such a situation should also be included in the protection scope of the present invention.
  • the relative positions of the resource blocks occupied by the user data in the first edge subband are the same as the relative positions of the resource blocks occupied by the user data in the second edge subband.
  • the relative position of the resource block occupied by the user data in the first edge subband and the relative position of the resource block occupied by the user data in the second edge subband may also be mirror images of each other.
  • the bandwidth occupied by each of the resource blocks is 1 BU. Referring to FIG. 7, taking the user data represented by the left slash fill pattern as an example, assuming that the initial time is N, the data is transmitted in the first (bottom-up count) resource block in the first edge sub-band. At time N+1, the user data is transmitted in the last resource block in the second edge subband, and the transmission mode is the image frequency hopping transmission mode.
  • the user data allocated in the two terminal strips is subjected to frequency hopping transmission between the sub-bands at both ends; the user data allocated in the intermediate sub-band is used, and frequency hopping is performed between the intermediate sub-bands. transmission.
  • the user data allocated to the reserved bandwidth resources at both ends of the frequency band can also obtain the frequency hopping gain, reduce the influence of the frequency selective interference on the user data transmission at both ends of the frequency band, thereby improving the reserved bandwidth. Its performance enables it to meet the needs of user data transmission, which can be effectively utilized.
  • the second embodiment and the following seventh embodiment can obtain a larger frequency hopping range in the same frequency band for each group of user data. Therefore, the anti-interference of data transmission is further improved.
  • the dot fill pattern portion represents the control signaling bandwidth resource, which is 2BU in size, and the reserved bandwidth at both ends of the band is 4BU.
  • the portion between every two adjacent solid lines represents the user data subband divided in the frequency band, and there are four, and each subband has a bandwidth of 3BU.
  • the subband bandwidth divided in the reserved bandwidth is the same as the subband bandwidth in the middle of the band, that is, 3BU.
  • one or several edge subbands may be divided in the reserved bandwidth according to the size of the reserved bandwidth.
  • a sub-band of 3BU can be respectively divided, as shown in the portion between the dotted lines at both ends of the frequency band in FIG.
  • the reserved bandwidth as many subbands as the bandwidth of the intermediate subband of the frequency band can be divided as much as possible, or the subbands can be divided according to specific requirements. For example, if the reserved bandwidth is 7BU and the bandwidth of the intermediate subband is 2BU, then up to three subbands can be divided. Of course, only one or two sub-bands of 2BU can be divided in the reserved bandwidth of the 7BU, which does not affect the implementation of the solution in this embodiment.
  • the control signaling band represented by the dot filling pattern portion is removed in the entire frequency band.
  • Different user data are respectively allocated in the six sub-bands, and are represented by different filling patterns.
  • User data allocated in any one of the subbands can be frequency hopped in all six subbands.
  • the data can be frequency hopped and transmitted according to a predetermined frequency hopping pattern, and the frequency hopping mode is as shown by a solid arrow in FIG.
  • the user data represented by the other fill patterns is also similarly used for frequency hopping transmission in all six sub-bands (not indicated by arrows in Figure 8).
  • the existing method of frequency hopping according to a predetermined pattern is for the sub-band of the middle portion of the frequency band, so the method for calculating the frequency hopping position at the next moment is also for the sub-bands that are successively divided.
  • the division of the sub-bands is not continuous. Therefore, after the frequency hopping position of the next time is calculated according to the existing method, the calculation result is converted according to the actual division manner of the sub-bands.
  • the numbers 1-5 represent different user data
  • the right part of FIG. 9 is the frequency hopping position of each user data calculated at the next moment according to the existing method, but according to the actual division manner of the sub-band, right
  • the positions where the side portions 1 and 5 are located are not user data sub-bands. Therefore, it is necessary to map the positions of the two portions of data to the corresponding band edge portions according to the actual division manner of the sub-bands, and the calculated frequency hopping position is
  • the value of the frequency hopping position may be increased (or decreased) by the bandwidth of the subband in which the PUCCH is located, thereby obtaining the actual frequency hopping position.
  • the resulting frequency hopping position as shown on the left side of Figure 9.
  • Example 8 is the resulting frequency hopping position as shown on the left side of Figure 9.
  • the remaining bandwidth at both ends of the frequency band may be separately divided into one user data subband.
  • FIG. 10 similar to FIG. 8, after dividing the user data subband, there is a bandwidth of 1 BU remaining at each end of the frequency band.
  • the two parts of the bandwidth resources may be respectively divided into one user data sub-band, which are referred to as a third edge sub-band and a fourth edge sub-band respectively in this embodiment.
  • User data assigned to these two edge subbands can also be frequency hopped.
  • the manner of frequency hopping transmission may be similar to the frequency hopping transmission mode of user data at both ends of the frequency band in Embodiment 3 to Embodiment 6, that is, user data allocated in the third edge subband and the fourth edge subband are on the third edge.
  • the subband and the fourth edge subband are subjected to frequency hopping transmission.
  • the user data represented by the oblique grid pattern filling portion is at the beginning.
  • the first N time is located in the fourth edge subband, and the frequency hopping pattern of the data is as indicated by the chain line arrow in FIG.
  • the solution of the embodiment can further effectively utilize the frequency band resources.
  • User data allocated to the remaining bandwidth subbands can also be used in frequency hopping transmission to reduce the impact of frequency selective interference on data transmission.
  • the data hopping transmission in the seventh embodiment and the eighth embodiment may also adopt a mirroring manner, that is, the relative position of the resource block occupied by the edge subband transmission user data, and the transmission of the user data in the edge subband at the next moment.
  • the relative positions of the occupied resource blocks are mirror images of each other.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • An embodiment of the present invention provides a device for transmitting a PUSCH, where the device includes a transmission unit, configured to transmit a PUSCH on a reserved bandwidth of an uplink frequency band, where the edge reserved bandwidths at both ends of the uplink frequency band are respectively divided into first The edge subband and the second edge subband, user data carried on the PUSCH are frequency hopped and transmitted on the first edge subband and the second edge subband.
  • the device further includes an obtaining unit, configured to obtain the edge reserved bandwidth.
  • the edge reserved bandwidth may be provided by a higher layer; or may be determined by a total edge bandwidth and a control signaling bandwidth provided by a higher layer.
  • the device provided in this embodiment distributes user data allocated in two terminal strips, and performs frequency hopping transmission between sub-bands at both ends; user data allocated in the intermediate sub-band, and frequency hopping transmission between the intermediate sub-bands .
  • the user data allocated to the reserved bandwidth resources at both ends of the frequency band can obtain the frequency hopping gain, reduce the influence of the frequency selective interference on the user data transmission at both ends of the frequency band, thereby improving the reserved bandwidth. Performance, so that it can meet the needs of user data transmission, and thus can get To effective use.
  • An embodiment of the present invention further provides another apparatus for transmitting a PUSCH, where the apparatus includes a transmission unit, configured to transmit a PUSCH on an uplink frequency band edge reserved bandwidth, where all or part of the uplink bandwidth reserved bandwidth is divided into A plurality of edge subbands, user data carried on the PUSCH are frequency hopped and transmitted on the subbands of the plurality of edge subbands and the intermediate frequency band of the uplink frequency band.
  • the apparatus includes a transmission unit, configured to transmit a PUSCH on an uplink frequency band edge reserved bandwidth, where all or part of the uplink bandwidth reserved bandwidth is divided into A plurality of edge subbands, user data carried on the PUSCH are frequency hopped and transmitted on the subbands of the plurality of edge subbands and the intermediate frequency band of the uplink frequency band.
  • the device further includes an obtaining unit, configured to obtain the edge reserved bandwidth.
  • the edge reserved bandwidth may be provided by a higher layer; or may be determined by a total edge bandwidth and a control signaling bandwidth provided by a higher layer.
  • the device provided in this embodiment uses the same frequency hopping mode for user data at both ends of the frequency band and user data in the frequency band, and can be obtained in the same frequency band for each group of user data.
  • the larger frequency hopping range further increases the noise immunity of data transmission.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically located or may be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

传输上行物理共享信道的方法及设备
技术领域
本发明涉及通信技术领域,特别是涉及传输上行物理共享信道的方法及设 备。
背景技术
在 LTE (长期演进)系统中, 一般使用位于通信频带中间的带宽资源来进 行用户数据的传输, 而通信频带两端的带宽资源则用于控制信令的传输。 以 LTE上行系统为例 , PUSCH ( Physical Uplink Share Channel, 上行物理共享信 道)位于频带的中间部分,用于传输用户数据; PUCCH( Physical Uplink Control Channel, 上行物理控制信道)位于频带的两端, 用于传输 CQI (信道质量指 示)、 ACK/NACK (肯定应答 /否定应答)等控制信令。
在实现本发明的过程中,发明人发现现有技术中至少存在如下问题: 在现 有的 LTE系统中, 在频带两端预留带宽的资源利用率和传输性能不高。
发明内容
本发明实施例提供传输上行物理共享信道的方法及设备,以实现分配到频 带两端预留带宽资源的用户数据进行跳频传输,从而提高频带两端预留带宽的 资源利用率和传输性能。 技术方案如下:
本发明实施例提供一种传输上行物理共享信道 PUSCH的方法, 包括: 在上行频带边缘预留带宽上传输 PUSCH, 其中,
将位于上行频带两端的所述边缘预留带宽分别划分为第一边缘子带和第 二边缘子带, 承载在所述 PUSCH上的用户数据在所述第一边缘子带和第二边 缘子带上跳频传输。
本发明实施例还提供另一种传输上行物理共享信道 PUSCH的方法,包括: 在上行频带边缘预留带宽上传输 PUSCH, 其中,
将所述上行频带边缘预留带宽的全部或部分划分为若干个边缘子带,承载 在所述 PUSCH上的用户数据在所述若干个边缘子带和上行频带中间带宽的子 带上跳频传输。
本发明实施例提供一种传输上行物理共享信道 PUSCH的设备, 包括: 传 输单元, 所述传输单元用于在上行频带边缘预留带宽上传输 PUSCH, 其中, 将位 于上行频带两端的所述边缘预留带宽分别划分为第一边缘子带和第二边缘子 带, 承载在所述 PUSCH上的用户数据在所述第一边缘子带和第二边缘子带上 跳频传输。
本发明实施例还提供另一种传输上行物理共享信道 PUSCH的设备,包括: 传输单元,
所述传输单元用于在上行频带边缘预留带宽上传输 PUSCH, 其中, 将所 述上行频带边缘预留带宽的全部或部分划分为若干个边缘子带, 承载在所述 PUSCH上的用户数据在所述若干个边缘子带和上行频带中间带宽的子带上跳 频传输。
以上技术方案 , 将频带两端预留带宽资源各自划分为一个用户数据子带, 分配在这部分资源的用户数据在这两个子带之间进行跳频传输;或者将频带两 端预留带宽资源划分为一个或多个用户数据子带,用户数据在频带中间子带和 两端所划分的子带之间进行跳频传输。 因此,分配到频带两端预留带宽资源的 用户数据能够获得跳频增益,减少频率选择性干扰对频带两端用户数据传输的 影响, 从而提高了预留带宽的性能, 使其能够满足用户数据传输的需要, 进而 可以得到有效的利用。
附图说明
图 1为本发明实施例的频带资源分配方式示意图;
图 2为本发明具体实施例三的一种跳频方式的示意图;
图 3为本发明具体实施例四的一种跳频方式的示意图;
图 4为本发明具体实施例四的另一种跳频方式的示意图;
图 5为本发明具体实施例五的一种跳频方式的示意图;
图 6为本发明具体实施例五的另一种跳频方式的示意图;
图 Ί为本发明具体实施例六的一种跳频方式的示意图;
图 8为本发明具体实施例七的一种跳频方式的示意图;
图 9为本发明具体实施例七中跳频位置计算方法的示意图;
图 10为本发明具体实施例八的一种跳频方式的示意图。 具体实施方式
参见图 1所示, 本发明实施例中, 上行频带中间的带宽指上行频带中两个 PUCCH之间的带宽,可用于传输 PUSCH;上行频带边缘预留带宽指上行频带 中两个 PUCCH之外的带宽,这部分位于频带两端的预留带宽也可以用于传输 本发明实施例一提供一种传输上行物理共享信道 PUSCH的方法, 该方法 包括:
在上行频带边缘预留带宽上传输 PUSCH, 其中, 将位于上行频带两端的 上述边缘预留带宽分别划分为第一边缘子带和第二边缘子带, 承载在上述 PUSCH上的用户数据在上述第一边缘子带和第二边缘子带上跳频传输。
应用上述方案,分配到频带两端预留带宽资源的用户数据能够获得跳频增 输性能。
进一步的,在实施例一中, 用户数据在上述第一边缘子带和第二边缘子带 上跳频传输还包括:第一边缘子带中上述用户数据的传输所占用的资源块的相 对位置与第二边缘子带中上述用户数据的传输所占用的资源块的相对位置相 同或互为镜像。
此外, 在实施例一中的边缘预留带宽可以由高层提供, 例如, 高层信令可 以包含边缘预留带宽 ^"— 的相关信息; 也可以根据高层提供信息确定, 例如获取高层信令包含的边缘总带宽 ^ ^和控制信令带宽 , 则 CSHt 实施例一中的跳频传输可以包括: 在第 N时刻, 用户数据在第一边缘子 带上传输; 在第 N+M时刻, 用户数据在第二边缘子带上传输; 其中, N和 M 为正整数。 优选的, 预设 M的取值, 变化 N的取值, 并获得与 N取值不重复 的 N+M取值, 则用户数据可以确定不同时刻在哪一个边缘子带上传输, 从而 实现跳频传输。
进一步的,实施例一中分配在频带中间带宽的子带的用户数据在该中间带 宽的子带上跳频传输, 例如采用上行授权跳频传输,或根据跳频图案进行跳频 传输。 本发明实施例二提供另一种传输 PUSCH的方法, 该方法包括: 在上行频带边缘预留带宽上传输 PUSCH, 其中, 将上述上行频带边缘预 留带宽的全部或部分划分为若干个边缘子带, 承载在上述 PUSCH上的用户数 据在上述若干个边缘子带和上行频带中间带宽的子带上跳频传输。
本实施例使得分配到频带两端预留带宽资源的用户数据能够获得跳频增
方式,各用户数据在相同的频带内能够获得更大的跳频范围,从而进一步提高 数据传输的抗干扰性。
优选的,在实施例二中的上行频带边缘预留带宽所划分的边缘子带的带宽 与上述中间带宽的子带的带宽相等。
进一步的 ,实施例二中的用户数据可以根据跳频图案在上述若干个边缘子 带和上行频带中间带宽的子带上跳频传输。
进一步的, 实施例二中, 在某一时刻, 上述边缘子带中上述用户数据的传 输所占用的资源块的相对位置,与在下一时刻上述边缘子带中上述用户数据的 传输所占用的资源块的相对位置相同或互为镜像。
进一步优选的, 实施例二中传输 PUSCH的边缘预留带宽大于上述划分的 若干个边缘子带的带宽之和时,可以这部分带宽做进一步的划分, 例如将位于 上行频带一端的上述传输 PUSCH的边缘预留带宽与上述若干个边缘子带的带 宽之和的差值带宽划分为第三边缘子带,另一端的差值带宽划分为第四边缘子 带。
进一步的, 当存在差值带宽所划分的第三边缘子带和第四边缘子带时, 分 配在上述第三边缘子带和第四边缘子带的用户数据可以在上述第三边缘子带 和第四边缘子带上跳频传输。
此外, 与实施例一类似的, 实施例二中的边缘预留带宽可以由高层直接提 供, 或者根据高层提供的边缘总带宽和控制信令带宽确定。 下面将结合附图,通过实施例三至实施例六, 以及实施例七至实施例八 别详细介绍上述实施例一和实施例二提供的传输 PUSCH的方法。
实施例三:
参见图 2所示, 图 2中每一个小方格的纵向长度代表一个带宽单位,这里 以 BU ( Bandwidth Unit )来表示。 圆点填充图案部分代表控制信令带宽资源, 在频带两端分别占用带宽为 2BU, 在控制信令带宽之外的部分(图 2所示频 带两端虚线之间的部分), 即为频带两端的预留带宽, 在频带两端分别占用带 宽为 2BU。
将频带两端预留带宽,分别划分为一个用户数据子带,可以分别将其称为 第一边缘子带和第二边缘子带, 如图 2所示, 频带两端虚线之间的部分, 即为 所划分的两个用户数据子带。 可以在这两个子带中分配用户数据, 例如图 2 中的左斜线图案填充部分和右斜线图案填充部分,分别表示两组不同的用户数 据。
如图 2所示, 以左斜线图案填充部分所表示的用户数据为例,假设该数据 在初始的 N时刻位于第一边缘子带, 则在 N+T时刻 ( T为跳频时间间隔 )该 数据将跳频至第二边缘子带;再经过一个跳频时间间隔 T后,该数据又跳频至 第二边缘子带, 以此类推, 该数据的跳频方式如图 2中的虚线箭头所示。
同理, 以右斜线图案填充部分所表示的用户数据, 也采用类似的方法进行 跳频(在图 2中未用箭头标出)。 这样, 就使得分配到频带两端预留带宽资源 的用户数据能够获得跳频增益,减少频率选择性干扰对频带两端用户数据传输 的影响。
此外, 对于分配在频带中间子带(即两部分控制信令带宽之间的部分)的 用户数据在频带中间的子带上进行跳频传输,如图 2所示的横线填充图案所表 示的用户数据可以根据 UL-grant (上行授权 )进行跳频传输, 假设授权所规定 的跳频幅度为中间用户数据频带(即两端的控制信令频带之间的部分)带宽的 一半, 则该数据的跳频方式如图 2中的实线箭头所示。 实施例四:
参见图 3所示,两端的虚线之间部分表示在预留带宽中所划分的用户数据 子带(即第一边缘子带和第二边缘子带), 带宽分别为 2BU, 与实施例三类似, 分配在这两个边缘子带的用户数据,在这两个边缘子带上进行跳频传输,如图
3中的虚线箭头所示。 本实施例中分配在频带中间子带的用户数据可以根据预 定的图案进行跳频。 如图 3所示, 每两条相邻实线之间的部分, 表示在频带中 间所划分的一个子带, 共有 4个子带, 每个子带的带宽为 4BU, 在这 4个子 带中分别分配有不同的用户数据, 用不同的填充图案表示。 以横线填充图案所 表示的用户数据为例,该数据按照预定跳频图案进行跳频传输,跳频方式如图 3中的实线箭头所示。
本实施例中,边缘预留带宽划分的边缘子带与频带中间划分的子带的带宽 可以相同, 也可以不同。 例如, 参见图 4所示, 频带中间划分出 4个子带, 每 个子带的带宽为 3BU, 两端预留带宽中所划分的用户数据子带, 带宽分别为 4BU, 分配边缘子带上的用户数据在两个边缘子带上进行跳频传输, 如虚线箭 头所示; 分配在频带中间的子带上的用户数据,可以根据预定的图案进行跳频 传输, 如实线箭头所示, 当然, 也可以进行上行授权跳频传输。 实施例五:
本发明实施例中,分配在两个边缘子带的用户数据的跳频间隔和分配在中 间子带的用户数据的跳频间隔没有必然联系。例如,在实施例三和实施例四中, 这两部分数据的跳频间隔相同,本实施例以图 5为例,这两部分数据的跳频间 隔也可以不同。参见图 5所示,分配在中间子带的用户数据的跳频间隔为一个 跳频时间间隔 T, 而分配在边缘子带的用户数据的跳频间隔为 2T。
此外, 对于分配在中间子带的用户数据, 也可以不是等间隔跳频, 例如图 6所示, 假设起始时刻为 Ν, 位于边缘子带的数据分别在 Ν+2Τ、 Ν+5Τ……时 刻进行跳频传输, 这种情况也应包含在本发明的保护范围内。 实施例六:
在以上几个实施例中,第一边缘子带中传输用户数据所占用的资源块的相 对位置与第二边缘子带中传输用户数据所占用的资源块的相对位置都是相同 的,在实际应用中, 第一边缘子带中传输用户数据所占用的资源块的相对位置 与第二边缘子带中传输用户数据所占用的资源块的相对位置也可以是互为镜 像的。 以下描述中, 均假设每一个所述资源块占用的带宽为 1BU。 参见图 7 所示, 以左斜线填充图案所表示的用户数据为例, 假设初始时刻为 N, 该数据 在第一边缘子带中的第一个(由下往上计数) 资源块中传输, 在 N+1 时刻, 用户数据在第二边缘子带中的倒数第一个资源块中传输,这种传输方式即为镜 像跳频传输方式。
在实施例三至实施例六中,分配在两端子带的用户数据,在两端的子带之 间进行跳频传输; 分配在中间子带的用户数据,在中间的子带之间进行跳频传 输。 这样, 在现有技术的基础上, 分配到频带两端预留带宽资源的用户数据也 能够获得跳频增益, 减少频率选择性干扰对频带两端用户数据传输的影响,从 而提高了预留带宽的性能,使其能够满足用户数据传输的需要,进而可以得到 有效的利用。 与实施例一、 实施例三至实施例六相比, 上述实施例二和以下实施例七至 式, 对每一组用户数据而言, 在相同的频带内能够获得更大的跳频范围, 因此 进一步提高了数据传输的抗干扰性。
实施例七:
参见图 8所示, 圆点填充图案部分代表控制信令带宽资源, 大小为 2BU, 频带两端的预留带宽分别为 4BU。 每两条相邻实线之间的部分表示在频带中 间所划分的用户数据子带, 共有 4个, 每个子带的带宽为 3BU。 优选的, 在 预留带宽中所划分的子带带宽与频带中间的子带带宽相同, 即为 3BU。 具体 来说, 可以根据预留带宽的大小, 在预留带宽中划分一个或若干个边缘子带。 本实施例中, 在频带每一端的 4BU的预留带宽中, 分别可以划分出一个 3BU 的子带, 如图 8中频带两端虚线之间的部分所示。
在预留带宽中, 既可以划分尽量多的与频带中间子带带宽相同的子带, 也 可以根据具体需求来划分子带。 例如, 预留带宽为 7BU, 频带中间子带带宽 为 2BU, 那么最多可以划分出三个子带。 当然, 也可以在 7BU的预留带宽中 仅划分出一个或两个 2BU的子带, 这些都不影响本实施例方案的实现。
如图 8所示,在整个频带内, 除去圆点填充图案部分所表示的控制信令带 宽资源之外, 共有 6个用户数据子带, 其中 4个位于频带中间, 另外 2个位于 频带两端。在这 6个子带中分别分配有不同的用户数据, 用不同的填充图案表 示。分配在任意一个子带的用户数据 ,可以在全部的 6个子带中进行跳频传输。 以横线填充图案所表示的用户数据为例,该数据可以按照预定跳频图案进行跳 频传输,跳频方式如图 8中的实线箭头所示。 以其他填充图案所表示的用户数 据也采用类似的方法,在全部 6个子带中进行跳频传输(在图 8中未用箭头标 出)。
需要说明的是,现有的按照预定图案跳频的方法,是针对频带中间部分子 带, 因此其计算下一时刻跳频位置的方法也是针对连续划分的子带而言的。 而 在本实施例中, 子带的划分并不是连续的, 因此在根据现有方法计算出下一时 刻的跳频位置之后, 还要根据子带的实际划分方式, 对计算结果进行转换。
如图 9所示, 数字 1-5表示不同的用户数据, 图 9右侧部分为根据现有方 法所计算出各用户数据在下一时刻的跳频位置, 然而根据子带的实际划分方 式, 右侧部分 1和 5所处的位置并不是用户数据子带, 因此, 需要根据子带的 实际划分方式,将这两部分数据的位置映射到相应的频带边缘部分,对于计算 所得的跳频位置为 PUCCH所在的子带的情况,可以根据情况将跳频位置的取 值增加(或减少) PUCCH所在的子带带宽, 从而得到实际跳频位置。 例如这 里如图 9左侧所示为最终得到的跳频位置。 实施例八:
如果在划分用户数据子带之后,在频带两端预留带宽中还有剩余带宽, 那 么可以将频带两端的剩余带宽, 再分别划分为一个用户数据子带。 以图 10为 例, 与图 8类似的, 在划分用户数据子带之后, 频带两端还各剩余 1BU的带 宽。 本实施例中, 如图 10所示, 这两部分带宽资源可以分别被划分为一个用 户数据子带,在本实施例中分别将其称为第三边缘子带和第四边缘子带。分配 到这两个边缘子带的用户数据,也可以进行跳频传输。跳频传输的方式可以与 实施例三至实施例六中频带两端用户数据的跳频传输方式类似, 即: 分配在第 三边缘子带和第四边缘子带的用户数据在上述第三边缘子带和第四边缘子带 上进行跳频传输。 如图 10所示, 斜方格图案填充部分所表示的用户数据在初 始的 N时刻位于第四边缘子带, 该数据的跳频方式如图 10中的点划线箭头所 示。
与实施例七相比,本实施例方案可以进一步有效利用频带资源。 并且分配 到剩余带宽子带的用户数据也可以采用跳频传输方式,以减少频率选择性干扰 对数据传输的影响。
实施例七及实施例八中的数据跳频传输也可以采用镜像方式, 即: 在边缘 子带传输用户数据所占用的资源块的相对位置,与在下一时刻上述边缘子带中 传输上述用户数据所占用的资源块的相对位置互为镜像。 关于镜像跳频传输 , 可以参照实施例六中的相关描述, 这里不再赘述。
在上述实施例中,各个实施例之间相同或相似的部分互相参见即可,每个 实施例重点说明的都是与其他实施例的不同之处,某个实施例中没有详述的部 分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。 本发明实施例提供一种传输 PUSCH的设备, 该设备包括传输单元, 用于 在上行频带边缘预留带宽上传输 PUSCH, 其中, 将位于上行频带两端的所述 边缘预留带宽分别划分为第一边缘子带和第二边缘子带, 承载在所述 PUSCH 上的用户数据在所述第一边缘子带和第二边缘子带上跳频传输。
所述设备还包括获得单元, 用于获得所述边缘预留带宽。 其中, 所述边缘 预留带宽可以由高层提供;也可以由高层所提供的边缘总带宽和控制信令带宽 来确定。
本实施例所提供的设备,将分配在两端子带的用户数据,在两端的子带之 间进行跳频传输; 分配在中间子带的用户数据,在中间的子带之间进行跳频传 输。 这样, 在现有技术的基础上, 使得分配到频带两端预留带宽资源的用户数 据能够获得跳频增益, 减少频率选择性干扰对频带两端用户数据传输的影响, 从而提高了预留带宽的性能,使其能够满足用户数据传输的需要,进而可以得 到有效的利用。 本发明实施例还提供另一种传输 PUSCH的设备, 该设备包括传输单元, 用于在上行频带边缘预留带宽上传输 PUSCH, 其中, 将所述上行频带边缘预 留带宽的全部或部分划分为若干个边缘子带, 承载在所述 PUSCH上的用户数 据在所述若干个边缘子带和上行频带中间带宽的子带上跳频传输。
所述设备还包括获得单元, 用于获得所述边缘预留带宽。 其中, 所述边缘 预留带宽可以由高层提供;也可以由高层所提供的边缘总带宽和控制信令带宽 来确定。
与上一实施例相比,本实施例所提供的设备,频带两端的用户数据和频带 中间的用户数据采用相同的跳频方式,对每一组用户数据而言,在相同的频带 内能够获得更大的跳频范围 , 因此进一步提高了数据传输的抗干扰性。
对于装置实施例而言, 由于其基本相应于方法实施例, 所以描述得比较简 单,相关之处参见方法实施例的部分说明即可。 以上所描述的装置实施例仅仅 是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上 个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的 部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出 创造性劳动的情况下, 即可以理解并实施。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种传输上行物理共享信道 PUSCH的方法, 其特征在于, 包括: 在上行频带边缘预留带宽上传输 PUSCH, 其中,
将位于上行频带两端的所述边缘预留带宽分别划分为第一边缘子带和第 5 二边缘子带, 承载在所述 PUSCH上的用户数据在所述第一边缘子带和第二边 缘子带上跳频传输。
2、 根据权利要求 1所述的方法, 其特征在于, 所述用户数据在所述第一 边缘子带和第二边缘子带上跳频传输, 还包括:
第一边缘子带中传输用户数据所占用的资源块的相对位置 ,与第二边缘子 d 带中传输用户数据所占用的资源块的相对位置相同或互为镜像。
3、 根据权利要求 1所述的方法, 其特征在于,
所述边缘预留带宽由高层提供,或者,根据高层提供的边缘总带宽和控制 信令带宽确定。
4、 一种传输上行物理共享信道 PUSCH的方法, 其特征在于, 包括: 5 在上行频带边缘预留带宽上传输 PUSCH, 其中,
将所述上行频带边缘预留带宽的全部或部分划分为若干个边缘子带,承载 在所述 PUSCH上的用户数据在所述若干个边缘子带和上行频带中间带宽的子 带上跳频传输。
5、 根据权利要求 4所述的方法, 其特征在于, 所述边缘子带的带宽与所 3 述中间带宽的子带的带宽相等。
6、 根据权利要求 5所述的方法, 其特征在于, 所述用户数据在所述若干 个边缘子带和上行频带中间带宽的子带上跳频传输, 包括:
根据跳频图案进行跳频传输。
7、 根据权利要求 6所述的方法, 其特征在于, 所述跳频传输还包括:
5 在 N时刻, 所述边缘子带中传输用户数据所占用的资源块的相对位置, 与在 N+T时刻所述边缘子带中传输用户数据所占用的资源块的相对位置相同 或互为镜像, 其中 T为跳频时间间隔。
8、 根据权利要求 5至 7任一项所述的方法, 其特征在于, 还包括: 若所述传输 PUSCH的边缘预留带宽大于所划分的若干个边缘子带的带宽 之和, 将位于上行频带两端的所述传输 PUSCH的边缘预留带宽与所述若干个 边缘子带的带宽之和的差值带宽分别划分为第三边缘子带和第四边缘子带。
9、 根据权利要求 8所述的方法, 其特征在于, 还包括:
分配在所述第三边缘子带和第四边缘子带的用户数据在所述第三边缘子 带和第四边缘子带上跳频传输。
10、 根据权利要求 4所述的方法, 其特征在于,
所述边缘预留带宽由高层提供,或者,根据高层提供的边缘总带宽和控制 信令带宽确定。
11、 一种传输上行物理共享信道 PUSCH的设备, 其特征在于, 包括: 传 输单元,
所述传输单元用于在上行频带边缘预留带宽上传输 PUSCH, 其中, 将位 于上行频带两端的所述边缘预留带宽分别划分为第一边缘子带和第二边缘子 带, 承载在所述 PUSCH上的用户数据在所述第一边缘子带和第二边缘子带上 跳频传输。
12、 根据权利要求 11所述的设备, 其特征在于, 还包括: 获得单元, 所述获得单元用于获得由高层提供的所述边缘预留带宽,还用于获得由高 层提供的边缘总带宽和控制信令带宽并确定所述边缘预留带宽。
13、 一种传输上行物理共享信道 PUSCH的设备, 其特征在于, 包括: 传 输单元,
所述传输单元用于在上行频带边缘预留带宽上传输 PUSCH, 其中, 将所 述上行频带边缘预留带宽的全部或部分划分为若干个边缘子带, 承载在所述 PUSCH上的用户数据在所述若干个边缘子带和上行频带中间带宽的子带上跳 频传输。
14、 根据权利要求 13所述的设备, 其特征在于, 还包括: 获得单元, 所述获得单元用于获得由高层提供的所述边缘预留带宽,还用于获得由高 层提供的边缘总带宽和控制信令带宽并确定所述边缘预留带宽。
PCT/CN2009/070460 2009-02-18 2009-02-18 传输上行物理共享信道的方法及设备 WO2010094173A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2009/070460 WO2010094173A1 (zh) 2009-02-18 2009-02-18 传输上行物理共享信道的方法及设备
CN200980153879.0A CN102301769B (zh) 2009-02-18 2009-02-18 传输上行物理共享信道的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070460 WO2010094173A1 (zh) 2009-02-18 2009-02-18 传输上行物理共享信道的方法及设备

Publications (1)

Publication Number Publication Date
WO2010094173A1 true WO2010094173A1 (zh) 2010-08-26

Family

ID=42633420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070460 WO2010094173A1 (zh) 2009-02-18 2009-02-18 传输上行物理共享信道的方法及设备

Country Status (2)

Country Link
CN (1) CN102301769B (zh)
WO (1) WO2010094173A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9794039B2 (en) 2007-04-26 2017-10-17 Lg Electronics Inc. Method of transmitting reference signal in wireless communication system
CN108811113A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 下行控制信道接收的方法及用户设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883332B (zh) * 2014-02-28 2018-03-09 国际商业机器公司 用于信号调制的方法及装置
CN108737311A (zh) * 2017-04-17 2018-11-02 北京三星通信技术研究有限公司 上行控制信息传输的方法及用户设备
EP3596984B1 (en) 2017-04-17 2022-07-20 Samsung Electronics Co., Ltd. Method and device for uplink power control
CN110868240A (zh) * 2018-08-08 2020-03-06 维沃移动通信有限公司 Pusch重复传输时的跳频方法、终端及网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272175A (zh) * 2007-03-21 2008-09-24 大唐移动通信设备有限公司 时分双工ofdma系统上行控制信令传输方法与装置
CN101350707A (zh) * 2007-07-16 2009-01-21 大唐移动通信设备有限公司 一种tdd-ofdma系统上行控制信令传输的方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272175A (zh) * 2007-03-21 2008-09-24 大唐移动通信设备有限公司 时分双工ofdma系统上行控制信令传输方法与装置
CN101350707A (zh) * 2007-07-16 2009-01-21 大唐移动通信设备有限公司 一种tdd-ofdma系统上行控制信令传输的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9794039B2 (en) 2007-04-26 2017-10-17 Lg Electronics Inc. Method of transmitting reference signal in wireless communication system
CN108811113A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 下行控制信道接收的方法及用户设备
CN108811113B (zh) * 2017-05-05 2023-12-08 北京三星通信技术研究有限公司 下行控制信道接收的方法及用户设备

Also Published As

Publication number Publication date
CN102301769A (zh) 2011-12-28
CN102301769B (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP7257421B2 (ja) 信号伝送方法、装置、および端末
JP4944206B2 (ja) 単一キャリア周波数分割多重接続システムにおけるリソース割当方法及び装置
CN112997443B (zh) 具有高可靠性条件的数据或控制信息的传输方法及其装置
ES2762859T3 (es) Aparato y método para la asignación dinámica de recursos sobre espectros con licencia y sin licencia
EP2863550B1 (en) Data transmission method and device
WO2017133451A1 (zh) 一种上行控制信息的传输方法及装置
CN102238737B (zh) Ack/nack/sr资源映射方法和设备
KR20180081464A (ko) 통신 시스템에서 제어 채널의 송수신 방법 및 장치
RU2547137C1 (ru) Способ и устройство для передачи по протоколу обратной передачи в беспроводной локальной сети
JP2020526960A (ja) 情報伝送方法及び装置
JP2019521558A (ja) Harqのフィードバック情報の伝送方法、ue、基地局及びシステム
WO2010094173A1 (zh) 传输上行物理共享信道的方法及设备
TW201707409A (zh) 一種資訊傳輸的方法及裝置
CN103546194B (zh) 数据传输方法及装置
CN107079491A (zh) 机会频谱接入的lbt机制的方法
WO2015066909A1 (zh) 跳频处理方法及装置
TW201828741A (zh) 實體上行共用通道(pusch)上的上行鏈路控制資訊(uci)的資源元素(re)分配方法及通訊裝置
WO2014154171A1 (zh) 一种确定上行信道状态信息的方法和装置
JP2020053851A5 (zh)
WO2014008847A1 (zh) 数据传输方法及装置
CN109818895B (zh) 确定序列组的方法及装置,确定循环移位的方法及装置
WO2024067693A1 (zh) 边链路资源确定方法、设备及存储介质
WO2012028065A1 (zh) 一种资源分配方法及装置
WO2018006762A1 (zh) 伪随机序列的处理方法、装置及系统、存储介质
CN104272831A (zh) 通信资源的分配方法、基站及用户设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153879.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840224

Country of ref document: EP

Kind code of ref document: A1