WO2010093025A1 - ろ過ユニットおよびこれを備えたバラスト水製造装置 - Google Patents

ろ過ユニットおよびこれを備えたバラスト水製造装置 Download PDF

Info

Publication number
WO2010093025A1
WO2010093025A1 PCT/JP2010/052104 JP2010052104W WO2010093025A1 WO 2010093025 A1 WO2010093025 A1 WO 2010093025A1 JP 2010052104 W JP2010052104 W JP 2010052104W WO 2010093025 A1 WO2010093025 A1 WO 2010093025A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filtration unit
raw water
filter medium
ballast
Prior art date
Application number
PCT/JP2010/052104
Other languages
English (en)
French (fr)
Inventor
井上敬道
西山正一
田島康宏
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009185223A external-priority patent/JP5764285B2/ja
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020117019036A priority Critical patent/KR101724166B1/ko
Priority to CN201080007901.3A priority patent/CN102316952B/zh
Publication of WO2010093025A1 publication Critical patent/WO2010093025A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water

Definitions

  • the present invention relates to an apparatus for producing ballast water mounted on a ship such as a cargo ship.
  • ballast water is discharged out of the ship when loading cargo at the port where it stops, but on ocean-going ships, aquatic organisms contained in the ballast water travel between countries and point out problems that affect ecosystems as alien species. Has been.
  • ballast water discharge regulations have been undertaken. Specifically, it regulates the number of plankton (mainly zooplankton) and 10-50 ⁇ m plankton (mainly phytoplankton) and fungi (such as E. coli and enterococci) contained in ballast water. is there.
  • Treatment methods to satisfy these regulations usually combine filtration, mechanical treatment such as cavitation that kills plankton by high-speed, high-pressure jet flow, and chemical treatment that uses chemicals, ozone, etc. (For example, Non-Patent Document 1).
  • the pore size of the filter for filtration was about 50 ⁇ m, which is relatively large. This is because clogging is likely to occur when the hole diameter is small, and it is necessary to increase the filtration area of the filter in order to avoid this, so that the apparatus becomes large and disadvantageous for mounting the ship. Therefore, plankton having a size of 50 ⁇ m or less is treated by cavitation in which seawater is sprayed on the screen at high speed and high pressure to crush plankton, or by drug administration.
  • a filtration unit is a filtration unit comprising a filter medium and a casing that accommodates the filter medium, and the casing supplies a raw water supply port that supplies raw water to the filter medium, and a filtration A water outlet, a fluid supply port for supplying a backwashing fluid to the filter medium, and a discharge port for discharging the fluid backwashed with the filter medium and the raw water, wherein the filter medium has a depth of 1 to 25 ⁇ m. It is a filter.
  • a gas or a liquid is used, preferably a gas, and more preferably an inert gas such as air or nitrogen.
  • the pore diameter is defined as follows. Particles having a certain diameter, preferably spherical polystyrene or glass beads added at 10000 particles / L in water, are added to a depth filter (outer diameter 60 mm, inner diameter 30 mm, length 250 mm) at 25 ° C. and 1.0 m 3 / hr. Obtained by dividing the difference in the number of particles present in the liquid before and after the water flow by the number of particles present in the liquid before the water flow. The collection rate (R%) obtained is measured for a plurality of particles, and the value of the diameter (S) of the particles at which R becomes 80 in the following approximate expression (1) is obtained based on the measured values. The hole diameter.
  • a depth filter having a pore diameter of 1 to 25 ⁇ m is used for the filter medium, so that small plankton can be removed and the initial introduction cost can be reduced as compared with the case of using a surface filter.
  • the filtration performance of the filter medium can be recovered and used, so the frequency of replacement of the filter medium can be reduced, and maintenance costs can be reduced.
  • the fluid supply port and the filtered water outlet are the same. According to this configuration, the fluid supply port and the filtered water outlet can be shared, and the configuration can be simplified.
  • the filter medium is formed by fixing both ends of a plurality of filters with a fixing plate. According to this configuration, by combining a plurality of depth filters, the filtration area is increased, and since the plurality of depth filters become one subunit by integration, the filter medium can be easily replaced.
  • the filter medium may be arranged so as to be inclined obliquely downward at an inclination angle of 20 to 70 ° toward the filtered water outlet.
  • the side opposite to the filtered water outlet in the filtration unit is high, for example, when filtering raw water after backwashing with gas, the gas in the housing is likely to escape from the opposite side, resulting in filtered water. The risk of air contamination is reduced.
  • the tilt angle is too large, the vertical dimension of the filtration unit will increase, so a large space for extracting the filter medium is required above the filtration unit during maintenance such as removal, and if it is too small, the filtration unit The fluid inside is difficult to escape.
  • the filter medium may be disposed so as to be inclined obliquely upward at an inclination angle of 20 to 70 degrees toward the filtrate outlet. According to this configuration, since the opening end of the depth filter located on the filtered water outlet side opens obliquely upward, air near the closed end of the lower depth filter escapes from the opening end. Air can be prevented from remaining in the interior, and the entire depth filter can be used for efficient filtration.
  • the ballast water production apparatus is an apparatus that has the filtration unit according to the present invention and supplies the filtered water taken out from the filtration unit as ballast water to a ballast tank of a ship, wherein the filtration unit The fluid supply passage connected to the fluid supply port in the filter unit for supplying fluid for cleaning the filter medium and the fluid connected to the discharge port in the filtration unit for cleaning the filter medium together with the raw water in the filtration unit And a discharge passage for discharging to the outside.
  • the ballast water production apparatus preferably further includes an ultraviolet irradiation unit that irradiates the filtered water filtered by the filtration unit with ultraviolet rays.
  • an ultraviolet irradiation unit that irradiates the filtered water filtered by the filtration unit with ultraviolet rays.
  • the filter medium is preferably a depth filter having a pore diameter of 1 to 10 ⁇ m.
  • large-scale plankton requires a large amount of ultraviolet energy to kill, and killing plankton requires a much larger amount of irradiation energy than killing bacteria. Therefore, removing planktons as much as possible before irradiating with ultraviolet rays is extremely important for downsizing the ultraviolet irradiation unit and reducing power consumption.
  • almost all of the large plankton having a size of 50 ⁇ m or more can be removed, and most of the small plankton having a size of 10 ⁇ m or more can be removed.
  • plankton but also suspended particles (SS component) having a size up to about 1 ⁇ m can be removed.
  • SS component suspended particles having a size up to about 1 ⁇ m
  • the turbidity in the raw water is greatly reduced, and the transparency is remarkably increased.
  • the transmittance of the ultraviolet rays in the raw water is greatly improved, and the transmittance of the ultraviolet rays is improved, so that the amount of irradiated ultraviolet rays can be reduced. Reduction is achieved.
  • the dirt adhering to the surface of the ultraviolet lamp is remarkably reduced, and the maintainability of the unit can be improved.
  • the ballast water production apparatus preferably further includes a chemical treatment unit for introducing solid calcium hypochlorite into the filtered water filtered by the filtration unit.
  • a chemical treatment unit for introducing solid calcium hypochlorite into the filtered water filtered by the filtration unit.
  • chemicals such as chlorine and sodium hypochlorite are added to generate hypochlorous acid and treat plankton, not only a large amount of chemical is required to kill plankton, but also ballast water is used.
  • a reducing agent such as sodium thiosulfate
  • the depth of the depth filter is 1 to 25 ⁇ m, most of the plankton can be captured and discharged outside the ship, and a large amount of the plankton for processing the conventional plankton can be discharged. Since there is no need for drug administration, the amount of calcium hypochlorite used is small, and a neutralization step with a reducing agent when returning ballast water to seawater is also unnecessary. As a result, a small system with a low processing cost can be constructed.
  • the chemical treatment unit puts a container containing solid calcium hypochlorite and a concentrated solution in which the solid calcium hypochlorite taken out from the container is dissolved into the filtered water.
  • a unit for treating microorganisms with the generated hypochlorous acid is preferable.
  • solid calcium hypochlorite unlike liquid drugs, transportation is easy and economical regardless of land and sea, and restrictions on transportation regulations are eased.
  • calcium hypochlorite since calcium hypochlorite has a high melting point, it can be easily stored even in a ship that tends to be hot.
  • the volume is small and the storage space is small.
  • the apparatus itself can be miniaturized, which is advantageous when it is installed in a limited ship space.
  • the chemical treatment unit dissolves the solid calcium hypochlorite in a part of the filtered water that is branched and taken out from the water supply passage for supplying the filtrate, and filters the water supply passage.
  • a squeezing means for reducing the flow rate of filtered water in the water supply passage is provided between the branching point and the merging point. According to this configuration, the excess filtered water due to the reduced flow rate is supplied to the solid calcium hypochlorite from the branch point, so that a supply means such as a dedicated pump is not required, and the configuration is In addition to being simple, it can reduce power requirements.
  • a small-capacity small injection pump may be provided, and a part of the filtrate water may be taken out from the water supply passage.
  • the solid calcium hypochlorite is preferably stored in a sealed container. According to this structure, it is suppressed that the smell of chlorine leaks into the ship. In addition, when replacing the solid calcium hypochlorite, it is only necessary to replace the entire container, so that the calcium hypochlorite does not come into direct contact with people or the air in the ship.
  • the method for producing filtered water according to the present invention is a method for producing filtered water by filtering raw water through a depth filter having a pore size of 1 to 25 ⁇ m, and supplying the raw water to the depth filter while supplying the depth filter from the filtered water side. And a backwashing process for discharging the fluid together with the raw water.
  • the depth filter can collect the substance to be filtered in the entire thickness direction of the filter. There is no time clogging.
  • the method for producing ballast water according to the present invention is a ballast water production method using the ballast water production apparatus of the present invention, and the supply of filtered water from the filter medium to the ballast tank and the supply of fluid to the filter medium are stopped.
  • the raw water is supplied to the filtration unit in a state where the preparation process of discharging the fluid together with the raw water from the outlet through the filtration unit, and the discharge of the raw water from the filter medium and the fluid supply to the filter medium are stopped, While supplying the filtered water to the filtration medium and supplying the filtered water to the ballast tank, while supplying the raw water to the filter medium, the fluid is supplied from the filtered water side to the filter medium.
  • a backwashing process for discharging the raw water from the discharge port to the outside of the ship through the discharge passage.
  • plankton living in the sea can be returned to the outside of the ship without damaging as much as possible, and the processing cost can be reduced with a small size.
  • raw water is always supplied to the filtration unit, it is possible to avoid sudden pressure fluctuations in the passage and to prevent occurrence of water hammer.
  • the backwashing fluid can be smoothly drained without flowing back to the raw water supply side.
  • ballast water manufacturing apparatus It is a driving
  • FIG. 1 is a schematic system diagram of a ballast water production apparatus for a ship provided with a filtration unit according to the first embodiment of the present invention.
  • the ballast water production apparatus 1 is installed in the ship S, and includes a ballast pump 2 that takes the raw water RW into the ship S and a filtration unit 4 that filters the raw water RW taken into the ship.
  • the filtration unit 4 includes a raw water passage 5 to which the raw water RW is supplied by the ballast pump 2, a water supply passage 8 for supplying the filtrate FW from the filtration unit 4 to the ballast tank 6 installed in the ship S, and a filtration unit 4 is connected to a discharge passage 14 for discharging raw water RW together with compressed air A, which will be described later, to the outside of the ship, and a gas supply passage 12 for supplying the compressed air A to the filtration unit 4 is connected to the water supply passage 8.
  • the filtration unit is replaced with the filtration unit 4 of the present invention, and the gas supply passage 12 is further connected to the existing water supply passage.
  • the present invention can be easily applied to this ballast water production apparatus.
  • the filtration unit 4 houses a depth filter 10 which is a filter medium forming a filtration membrane in a cylindrical housing 9.
  • the ballast pump 2 is mounted on the ship, but may be provided outside the ship, for example, may be installed in a port.
  • a mixer 26 is provided on the upstream side of the ballast tank 6 in the water supply passage 8, and the sterilizing chemical and filtered water FW introduced from the chemical tank 28 are agitated by the mixer 26.
  • medical agent thrown in is hypochlorous acid and a peroxide, for example. Moreover, it may replace with the method of throwing in a chemical
  • the gas supply passage 12 is connected to a third automatic opening / closing valve MV3 that acts as a compressed air introduction valve, and the drain passage 14 is connected to a fourth automatic opening / closing valve MV4 that acts as a drainage valve.
  • One end of the gas supply passage 12 is connected to an air compressor (not shown), and the other end is connected to the secondary side below the filtration unit 4.
  • the other end of the gas supply passage 12 may be connected to the vicinity of the filtration unit 4 in the water supply passage 8, more specifically, between the filtration unit 4 and the secondary pressure sensor P2.
  • Driving of the ballast pump 2 and the first to fourth automatic opening / closing valves MV1 to MV4 is controlled by the controller 30.
  • the outputs of the primary pressure sensor P1 and the secondary pressure sensor P2 are input to the controller 30.
  • ⁇ An air compressor may be used that is mounted on the ship for another purpose, or a dedicated one may be installed.
  • an air drive valve an electric valve, an electromagnetic valve, a manual valve that does not use a controller, or the like is used.
  • the depth filter 10 has a hollow cylindrical shape with one end opened and the other end closed with a closing member 13, and the hollow end of the depth filter 10 is directed toward the filtered water outlet 16 with the opening end 10 a being one end thereof. 11 is communicated with the filtered water outlet 16.
  • the depth filter 10 is also detachably housed in the housing 9 of the filtration unit 4 so that the open end 10a is below the closed end 10b which is the other end, that is, the filtration unit 4 is connected to the filtered water outlet. It is arrange
  • the inclination angle ⁇ which is an angle formed by the center line C in the longitudinal direction of the depth filter 10 and the horizontal plane H, is preferably 20 to 70 °, more preferably 30 to 60 °.
  • FIG. 2 which is an enlarged cross-sectional view of the filtration unit 4
  • a filtered water outlet 16 is provided in the lower end wall 9 a of the inclined filtration unit 4 and the housing 9 of the filtration unit 4.
  • a raw water supply port 18 is provided at a lower portion of the peripheral wall 9b near the one end wall 9a, and a discharge port 22 is provided above the raw water supply port 18 and at an upper portion of the peripheral wall 9b of the housing 9 near the other end wall 9c. .
  • the raw water passage 5 is connected to the raw water supply port 18, the water supply passage 8 is connected to the filtered water outlet 16, and the drainage passage 14 is connected to the discharge port 22.
  • the filtered water outlet 16 is connected to the gas supply passage 12, and the filtered water outlet 16 also serves as the gas supply port 24 of the compressed air A in the filtration unit 4, so that the gas supply port 24 is compressed. It is provided at a position lower than the discharge port 22 that is the outlet for the air A and the raw water RW. Thereby, the air lift effect by the pressure of the compressed air A is utilized, that is, the raw water RW in the drainage passage 14 is pushed up by the air and the raw water RW is drained, so that the raw water RW and the compressed air A can be discharged smoothly. it can.
  • the raw water supply port 18 and the discharge port 22 are provided on the primary side of the depth filter 10, and the filtered water outlet 16 is provided on the secondary side.
  • Depth filter 10 is an external pressure type cylindrical filter, and has a U-shaped longitudinal section.
  • Examples of the depth filter 10 include what is called a laminated type in which synthetic fibers or chemical fibers are welded / formed in the form of a web, non-woven fabric, paper, woven fabric or the like and processed into a cylindrical shape.
  • synthetic fiber polyolefin, polyester, heat-meltable polymer such as nylon or ethylene vinyl alcohol copolymer, or polymer such as polyvinyl alcohol or polyacrylonitrile can be used.
  • polyolefin and polyester, specifically, polypropylene are preferable from the viewpoint of liquid drainage at the time of filter replacement.
  • the filter preferably has a structure in which the fiber density and fineness are changed in the thickness direction, and the fiber density is low or the fineness is large on the outside (raw water inflow side) of the filter.
  • the depth filter 10 includes a so-called thread wound filter in which filaments and spun yarns are spirally wound, and a so-called resin molded type that is a resin molded body such as a sponge.
  • the pore size of the filtration membrane is 1 to 25 ⁇ m, more preferably 1 to 10 ⁇ m. If the pore diameter is too small, clogging occurs and pressure loss increases. If the hole diameter is too large, small plankton will pass through, and in order to reduce this, additional means such as cavitation is required, which increases the cost of producing ballast water.
  • the depth filter 10 can be backwashed in the filtration unit 4 and can be used without increasing the differential pressure during filtration by recovering the filtration performance by backwashing.
  • the backwashing is performed by compressed air A supplied from a compressor (not shown) through the gas supply passage 12 (FIG. 1), and the supply pressure of the compressed air A from the gas supply port 24 is The pressure is 0.05 to 0.2 MPa higher than the indicated pressure of the primary pressure sensor P1.
  • the fluid used for backwashing may be a gas other than air, such as nitrogen, or a liquid such as fresh water or filtered seawater.
  • the operation method of the ballast water production apparatus includes an air venting process, a first switching process, a filtering process, a second switching process, a third switching process, and a backwashing process, which are preparatory processes for filtration.
  • the ballast pump 2 When the ballast water production apparatus 1 is operated by operating a start button (not shown) installed in the controller 30, the ballast pump 2 is activated first, and the first automatic open / close valve MV1 and the fourth automatic open / close valve MV4 are opened. To enter the air venting process. In the air venting process, the second automatic open / close valve MV2 and the third automatic open / close valve MV3 are closed, and the supply of filtered water FW from the depth filter 10 to the ballast tank 6 and the supply of compressed air A to the depth filter 10 are stopped. In the state, the raw water RW flows through the discharge passage 14 through the filtration unit 4 and is discharged to the outside of the ship, whereby the raw water passage 5 and the filtration unit 4 are vented.
  • the second automatic opening / closing valve MV2 is opened to enter the first switching step.
  • the first switching step in a state where the supply of the compressed air A to the depth filter 10 is stopped, the raw water RW is supplied to the discharge passage 14 and the filtered water FW is supplied to the water supply passage 8 through the filtration unit 4.
  • the fourth automatic opening / closing valve MV4 is closed and the filtration process is started.
  • the raw water RW is supplied to the filtration unit 4 while the drainage from the depth filter 10 and the compressed air supply to the depth filter 10 are stopped, and the filtrate FW is sent to the water supply passage 8.
  • the raw water RW passes through the filtration membrane of the depth filter 10 from the outside of the depth filter 10 and flows into the hollow portion 11, thereby removing foreign substances in the raw water RW and filtering.
  • the filtered water FW is supplied to the ballast tank 6 through the water supply passage 8.
  • the fourth automatic opening / closing valve MV4 is opened to enter the second switching step.
  • the second switching step in a state where the supply of the compressed air A to the depth filter 10 is stopped, the raw water RW is supplied to the filtration unit 4 so that the filtered water FW flows through the water supply passage 8 and the raw water RW is discharged into the discharge passage 14. Shed.
  • the second automatic opening / closing valve MV2 is closed and the third switching step is entered.
  • the raw water RW is caused to flow through the discharge passage 14 in a state where supply of the filtered water FW from the depth filter 10 to the ballast tank 6 and supply of the compressed air A to the depth filter 10 are stopped.
  • the supply of the filtrate FW from the depth filter 10 is stopped to prepare for the start of the supply of the compressed air A in the direction opposite to the flow direction of the filtrate FW in the next backwashing step.
  • the third automatic opening / closing valve MV3 is opened and the back washing process is started.
  • the compressed air A is supplied to the hollow portion 11 of the depth filter 10 while supplying the raw water RW to the filtration unit 4 while the supply of the filtered water FW to the ballast tank 6 is stopped.
  • the air A is passed through the discharge passage 14 together with the raw water RW.
  • the compressed air A passes through the depth filter 10 in the direction opposite to that of the filtration step, and the foreign matter adhering to the depth filter 10 and the foreign matter accumulated in the housing 9 are led out of the filtration unit 4, and the discharge passage 14 To the outside of the ship S.
  • the time of a filtration process and a backwash process changes with the water quality of raw
  • the ultraviolet irradiation unit 3 When the ultraviolet irradiation unit 3 is provided at this position, the fungi in the filtered water FW are reduced while being stored in the ballast tank 6, so that the ultraviolet irradiation is further suppressed and the power consumption of the ultraviolet irradiation unit 3 is reduced. be able to. Further, when the chemical processing unit 33 is provided at this position, liquid containing hypochlorous acid does not flow into the ballast tank 6, and corrosion of the ballast tank 6 can be suppressed. Therefore, such a thing is also included in the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 船舶Sのバラスト水製造装置におけるろ過システム1であって、船舶S内に取り込まれた原水RWをろ過してバラストタンク6へ供給するろ過ユニット4と、ろ過ユニット4におけるろ過膜を形成するデプスフィルタ10に圧縮空気Aを供給して洗浄する気体供給通路12と、ろ過ユニット4に接続され、デプスフィルタ10を洗浄した圧縮空気Aを、デプスフィルタ10内の原水RWとともに船舶Sの外部へ排出する排出通路14とを備え、デプスフィルタ10を形成するろ過膜の孔径が1~25μmである。

Description

ろ過ユニットおよびこれを備えたバラスト水製造装置 関連出願
 本出願は、2009年2月16日出願の特願2009-32872、2009年8月7日出願の特願2009-185223、2009年8月18日出願の特願2009-189188および2009年9月7日出願の特願2009-205570の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、例えば貨物船のような船舶に搭載されるバラスト水の製造を行う装置に関するものである。
 例えば、船舶、特に貨物船では、積荷を搭載していないときは、船の重心を下げるために、船内に設けたバラストタンクに海水などを積んで船体を安定させる対策が取られている。バラスト水は立ち寄る港で荷物を積載する際に船外へ排出されるが、外航船では、バラスト水に含まれる水生生物が多国間を行き来し、外来種として生態系に影響を与える問題が指摘されている。
 近年、このようなバラスト水に関する問題を解決するために、国際的にバラスト水排出規則の取り組みが行われている。具体的には、バラスト水中に含まれる50μm以上のプランクトン(主に動物性プランクトン)、10~50μmのプランクトン(主に植物性プランクトン)および菌類(大腸菌、腸球菌等)の数を規制するものである。これらの規制を満たすための処理方法は、通常、フィルトレーション、高速・高圧のジェット流によりプランクトンを死滅させるキャビテーションなどの機械的処理と、薬剤、オゾンなどを投入する化学的処理とを組み合わせて行われる(例えば、非特許文献1)。
海事総合誌 隔月間コンパス 2007年9月号 32~39頁
 上述の従来のバラスト水製造装置では、フィルトレーション用のフィルタの孔径は比較的大きい50μm程度であった。これは、孔径が小さいと目詰まりが起こり易くなり、これを避けるためにフィルタのろ過面積を大きくする必要があるので、装置が大型化して船舶の搭載に不利となるからである。そこで、50μm以下のプランクトンは、高速高圧でスクリーンに海水を吹き付けてプランクトンをすり潰すキャビテーションや、薬剤投与によって処理している。
 しかしながら、キャビテーションによる処理では、高速高圧で海水を吹き付けるので、動力が過大になるうえに、プランクトンの数を必要以上に減らしてしまうので、バラスト水積込み側の海洋の生態系に影響を与える恐れがある。また、薬剤等でプランクトンを処理する場合は、多量の薬剤が必要となり、毎回の処理費用が高額となってしまう。
 本発明は、上記課題に鑑みてなされたもので、微粒子も取り除くことができ、かつ初期導入費用および維持管理費用を低く抑えることができるろ過ユニットと、海中に生息するプランクトンを可能な限り損傷させることなく船外へ戻すことができ、かつ小型で処理コストを低く抑えることのできるバラスト水製造装置とを提供することを目的としている。
 上記目的を達成するために、本発明に係るろ過ユニットは、ろ材とそれを収容する筐体からなるろ過ユニットであって、前記筐体が、前記ろ材に原水を供給する原水供給口と、ろ過水の取出口と、前記ろ材に逆洗用の流体を供給する流体供給口と、前記ろ材を逆洗した流体および前記原水を排出する排出口を有し、前記ろ材が孔径1~25μmのデプスフィルタである。逆洗用の流体としては、気体や液体が用いられ、好ましくは気体であり、より好ましくは、空気、窒素等の不活性ガスである。
 孔径は、以下のように定義される。一定の直径を有する粒子、好ましくは球状ポリスチレンまたはガラスビーズを水中に10000個/L添加した液を、デプスフィルタ(外径60mm、内径30mm、長さ250mm)に25℃、1.0m3/hrの条件で通水させ、デプスフィルタを透過した粒子数を光学式カウンターで測定し、通水前後の液中に存在する粒子数の差を通水前の液に存在する粒子数で除して得られる捕集率(R%)を複数の粒子について測定し、その測定値を元にして下記の近似式(1)において、Rが80となる粒子の直径(S)の値を求め、これを孔径とする。
 R=100/(1-m×exp{-a×log(S)})  (1)
 ここで、m,aは、デプスフィルタの性状により決まる定数である。
 例えば、粒子の直径が1μmの場合は、球形ポリスチレン微粒子(10000個/L)を添加した液を、デプスフィルタ(外径60mm、内径30mm、長さ250mm)に上記の条件で通水させることで測定が可能である。
 この構成によれば、ろ材に孔径1~25μmのデプスフィルタを用いているので、小さなプランクトンも取り除くことができるうえに、サーフェスフィルタを用いる場合に比べて、初期導入費用を抑えることができる。また、逆流洗浄を行うことで、ろ材のろ過性能を回復させて使用できるので、ろ材の交換頻度を少なくして、維持管理費用を抑えることができる。
 本発明において、前記流体供給口と前記ろ過水取出口とが同一であることが好ましい。この構成によれば、流体供給口とろ過水取出口とを共通化して、構成を簡略化することができる。
 本発明において、前記ろ材は複数のフィルタの両端を固定板で固定して一体化したものであることが好ましい。この構成によれば、複数のデプスフィルタを組み合わせることで、ろ過面積が大きくなるうえに、一体化により、複数のデプスフィルタが1つのサブユニットとなるので、ろ材の交換が容易になる。
 本発明において、前記ろ材が前記ろ過水取出口に向かって斜め下方へ20~70°の傾斜角で傾斜するように配置してもよい。この構成によれば、ろ過ユニットにおけるろ過水取出口と反対側が高位となるから、例えば、気体による逆流洗浄後に原水をろ過する場合、筐体内の気体が前記反対側から抜け易くなり、ろ過水にエアが混入する恐れが少なくなる。また、傾斜角が大き過ぎると、ろ過ユニットの上下方向寸法が大きくなるので、取り外し等のメンテナンスの際に、ろ過ユニットの上方にろ材を抜き出すための広いスペースが必要となり、小さ過ぎると、ろ過ユニット内の流体が抜け難くなる。
 本発明において、前記ろ材が前記ろ過水取出口に向かって斜め上方へ20~70°の傾斜角で傾斜するように配置することもできる。この構成によれば、ろ過水取出口側に位置する、デプスフィルタの開口端が斜め上方に開口することになるので、低位のデプスフィルタの閉止端付近の空気が開口端から抜けるから、デプスフィルタ内に空気が残るのを防いで、デプスフィルタの全体を使って効率的にろ過を行うことができる。
 本発明において、前記排出口が前記原水供給口よりも上方に設けられていることが好ましい。この構成によれば、初動時または逆流洗浄を気体で行った後に、ろ過ユニット内に原水を供給して、ユニット内のいわゆる「エア抜き」を行う際に、ろ過ユニット内の気体が円滑に排出される。
 また、本発明に係るバラスト水製造装置は、本発明に係るろ過ユニットを有し、前記ろ過ユニットから取り出したろ過水をバラスト水として、船舶のバラストタンクへ供給する装置であって、前記ろ過ユニットにおける流体供給口に接続され、ろ材を洗浄するための流体を供給する流体供給通路と、前記ろ過ユニットにおける排出口に接続され、前記ろ材を洗浄した流体を、ろ過ユニット内の原水とともに船舶の外部へ排出する排出通路とを備えている。
 この構成によれば、ろ材を形成するデプスフィルタの孔径が1~25μmであるので、大部分のプランクトンを生かしたまま捕捉して船外へ排出することができ、バラスト水積込み側の海洋の生態系を壊さないうえに、従来のようなプランクトンを処理するためのキャビテーションや薬剤投与の必要がなくなるから、動力の消費電力量や薬剤の使用量が少なくて済む。その結果、小型で処理費用の安いシステムを構築することができる。また、ろ材を逆流洗浄しているので、ろ材のろ過性能を回復させて使用することができ、処理費用をさらに削減することができる。
 本発明に係るバラスト水製造装置において、さらに、前記ろ過ユニットでろ過されたろ過水に紫外線を照射する紫外線照射ユニットを備えていることが好ましい。紫外線を照射してプランクトンを処理する場合、海水中の浮遊粒子などによって紫外線の強度が低下すると、その対策として、紫外線ランプの本数を増やすことが必要となり、装置の大型化および消費電力の増大につながる。この構成によれば、上述のように海水中のプランクトンの大部分がデプスフィルタによって予め除去されることで、紫外線の強度が低下するのが抑制されるから、紫外線の照射量が少なくて済むので、例えば、紫外線ランプの本数を減らすことにより、装置の小型化および消費電力の減少が達成される。
 前記紫外線照射ユニットを用いる場合、前記ろ材が孔径1~10μmのデプスフィルタであることが好ましい。一般に大型のプランクトンほど殺滅するのに多量の紫外線エネルギーが必要で、プランクトン類の殺滅にはバクテリア類の殺滅に比べて極めて多量の照射エネルギーが必要となる。したがって、紫外線を照射する前にプランクトン類をできるだけ除去することは、紫外線照射ユニットの小型化および消費電力の減少にとって極めて重要である。この構成のろ過ユニットでは、50μm以上の大型のプランクトンをほぼ全量除去することができ、10μm以上の小型プランクトンの大部分を除去できる。また、プランクトンだけではなく、1μm程度までの大きさの浮遊粒子(SS成分)も除去するとこができる。これにより、原水中の濁度は大幅に低下し、透明度が格段に上昇する。その結果、紫外線の照射時に、紫外線の原水中の透過度が大きく向上し、紫外線の透過度が向上することで、紫外線の照射量を低減させることができるので、ユニットの小型化および消費電力の減少が達成される。また、紫外線ランプ表面に付着する汚れが著しく減少し、ユニットのメンテナンス性を向上させることができる。
 本発明に係るバラスト水製造装置において、さらに、前記ろ過ユニットでろ過されたろ過水に固形次亜塩素酸カルシウムを投入する化学処理ユニットを備えていることが好ましい。塩素や次亜塩素酸ナトリウムなどの薬剤を投入して、次亜塩素酸を発生させ、プランクトンを処理する場合、プランクトンを殺滅するのに多量の薬剤が必要となるばかりでなく、バラスト水を海洋に排出する際にはチオ硫酸ナトリウムなどの還元剤を投与して中和する必要があり、環境側面からも負荷が高い上、毎回の処理費用が高額になる。この構成によれば、デプスフィルタの孔径が1~25μmであるので、大部分のプランクトンを生かしたまま捕捉して船外へ排出することができ、従来のようなプランクトンを処理するための多量の薬剤投与の必要がなくなるから、次亜塩素酸カルシウムの使用量が少なくて済み、バラスト水を海水に戻す際の還元剤による中和工程も不要となる。その結果、小型で処理費用の安いシステムを構築することができる。
 前記化学処理ユニットを用いる場合、前記化学処理ユニットが、固形次亜塩素酸カルシウムを収納した容器と、この容器から取り出された固形次亜塩素酸カルシウムを溶解させた濃縮液を前記ろ過水に投入して、発生する次亜塩素酸により微生物を処理するユニットであることが好ましい。この構成によれば、固形の次亜塩素酸カルシウムを用いているので、液体の薬剤とは異なり、陸上海上を問わず輸送が容易かつ経済的であり、輸送に関する法規上の制約が緩和される。また、次亜塩素酸カルシウムは融点が高いので、高温になりやすい船内であっても保管が容易である。さらに、固形であるから容積が小さく、保管場所が小さくて済み、同時に装置自体も小型化することができ、限られた船内スペースに設置する場合に有利である。
 前記化学処理ユニットを用いる場合、前記化学処理ユニットは、前記ろ過水を供給する送水通路から分岐して取り出したろ過水の一部に前記固形次亜塩素酸カルシウムを溶解させ、前記送水通路のろ過水に合流させるものであり、前記分岐箇所と合流箇所との間に、前記送水通路のろ過水の流量を減少させる絞り手段が設けられていることが好ましい。この構成によれば、流量を減少させたことで余剰となったろ過水が、分岐箇所から固形次亜塩素酸カルシウムに供給されるので、専用のポンプのような供給手段が不要となり、構成が簡単になるうえに、必要な電力を減らすことができる。前記絞り手段に代えて、小容量の小型注入ポンプを設けて、ろ過水の一部を前記送水通路から取り出してもよい。
 前記化学処理ユニットを用いる場合、前記固形次亜塩素酸カルシウムは密閉された容器に収納されていることが好ましい。この構成によれば、塩素の臭いが船内に漏れるのが抑制される。また、固形次亜塩素酸カルシウムを交換する際には、容器ごと交換すればよいので、次亜塩素酸カルシウムが人や船内の空気に直接触れることがない。
 本発明に係るろ過水の製造方法は、原水を孔径1~25μmのデプスフィルタでろ過してろ過水を製造する方法であって、前記デプスフィルタに原水を供給しながら、ろ過水側からデプスフィルタへ流体を供給し、この流体を前記原水とともに排出する逆洗工程を備えている。
 この構成によれば、逆流洗浄を行うことで、ろ材のろ過性能を回復させて使用されるので、維持管理費用を抑えることができる。また、逆流洗浄中もろ過ユニットに原水が常に供給されているので、逆洗用の流体を原水供給側に逆流させることなく、スムーズに排水できる。また、デプスフィルタは、被ろ過物質をフィルタの表面のみで捕集するサーフェスフィルタと異なり、フィルタの厚み方向全体で被ろ過物質を捕集することができるので、捕集量が多く、フィルタが長時間目詰まりを起こすことがない。
 本発明に係るバラスト水の製造方法は、本発明のバラスト水製造装置を用いたバラスト水製造方法であって、前記ろ材からバラストタンクへのろ過水の供給およびろ材への流体の供給を停止した状態で、前記ろ過ユニットを経て前記排出口から流体を原水とともに排出する準備工程と、ろ材からの原水の排出とろ材への流体供給とを停止した状態で、ろ過ユニットに原水を供給して、ろ過水を前記ろ過水取出口に送るろ過工程と、バラストタンクへのろ過水の供給を停止した状態で、ろ材に原水を供給しながら、ろ過水側からろ材へ流体を供給し、この流体を前記原水とともに前記排出口から前記排出通路を経て船舶の外部へ排出する逆洗工程とを備えている。
 この構成によれば、海中に生息するプランクトンを可能な限り損傷させることなく船外へ戻すことができ、かつ小型で処理コストを低く抑えることができる。また、ろ過ユニットへは原水が常に供給されているので、通路内に急激な圧力変動が起こるのを避けることができ、水撃の発生を防止することができる。さらに、逆洗工程においても原水がろ過ユニットへ供給されるので、逆洗用流体を原水供給側に逆流させることなく、スムーズに排水できる。
 この発明は、添付の図面を参考にした以下の好適な実施例の説明からより明瞭に理解されるであろう。しかしながら、実施例および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の第1実施形態に係るろ過ユニットを備えたバラスト水製造装置の系統図である。 同上ろ過ユニットの拡大断面図である。 同上ろ過システムの運転工程表である。 デプスフィルタの孔径を変えたときの原水の供給流量と圧力損失との関係を示したグラフである。 本発明の第2実施形態に係るろ過ユニットの斜視図である。 第2実施形態に係るろ過ユニットの固定板の平面図である。 本発明の第3実施形態に係るバラスト水製造装置の系統図である。 第3実施形態に係るバラスト水製造装置の一方のろ過ユニットでろ過するときの系統図である。 第3実施形態に係るバラスト水製造装置の他方のろ過ユニットでろ過するときの系統図である。 本発明の第4実施形態に係るろ過ユニットの斜視図である。 本発明の第5実施形態に係るバラスト水製造装置の系統図である。 第5実施形態に係るろ過システムの運転工程表である。 本発明の第6実施形態に係るバラスト水製造装置の系統図である。 本発明の第7実施形態に係るバラスト水製造装置における化学処理ユニットの系統図である。
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は、本発明の第1実施形態に係るろ過ユニットを備えた船舶のバラスト水製造装置の概略系統図である。バラスト水製造装置1は船舶S内に設置されており、原水RWを船舶S内に取り込むバラストポンプ2と、船舶内に取り込まれた原水RWをろ過するろ過ユニット4とを備えている。ろ過ユニット4には、バラストポンプ2により原水RWが供給される原水通路5と、ろ過ユニット4からのろ過水FWを船舶S内に設置されたバラストタンク6に供給する送水通路8と、ろ過ユニット4内の原水RWを後述する圧縮空気Aとともに船外へ排出する排出通路14とが接続され、送水通路8にはろ過ユニット4へ圧縮空気Aを供給する気体供給通路12が接続されている。これにより、船舶Sに搭載済みの既存のバラスト水製造装置に対して、そのろ過ユニットを本発明のろ過ユニット4に交換し、さらに既存の送水通路に気体供給通路12を接続することで、既存のバラスト水製造装置にも本発明を容易に適用できる。
 各通路5,8,12,14は配管により形成されている。ろ過ユニット4は、筒形の筐体9内にろ過膜を形成するろ材であるデプスフィルタ10が収納されている。本実施形態では、バラストポンプ2は船舶に搭載されているが、船外に設けられてもよく、例えば、港に設置されていてもよい。
 原水通路5には、原水流量の調整弁として機能する第1自動開閉弁MV1が接続され、原水通路5における第1自動開閉弁MV1とろ過ユニット4の間、つまりろ過ユニット4の一次側に一次圧力センサP1が設けられている。送水通路8には、ろ過水FWの送水弁として機能する第2自動開閉弁MV2が接続され、送水通路8における第2自動開閉弁MV2とろ過ユニット4の間、つまりろ過ユニット4の二次側に二次圧力センサP2が設けられている。さらに、送水通路8におけるバラストタンク6の上流側にミキサー26が設けられ、このミキサー26により、薬剤タンク28から投入された殺菌用の薬剤とろ過水FWとが撹拌されている。投入される薬剤は、例えば、次亜塩素酸類、過酸化物である。また、薬剤を投入する方法に代えて、バラスト水管理条約で規定された基準に適合した処理水を製造するための、その他の公知の殺菌手段を用いてもよい。具体例として、オゾンと接触させる方法、紫外線を照射する方法などである。
 気体供給通路12には圧縮空気導入弁として作用する第3自動開閉弁MV3が接続され、排水通路14には、排水弁として作用する第4自動開閉弁MV4が接続されている。前記気体供給通路12の一端は図示しない空気圧縮機に接続されており、他端がろ過ユニット4の下部の二次側に接続されている。なお、気体供給通路12の他端は、送水通路8におけるろ過ユニット4近傍、より具体的には、ろ過ユニット4と二次圧力センサP2との間に接続してもよい。バラストポンプ2および第1~4自動開閉弁MV1~MV4の駆動は、コントローラ30により制御されている。また、一次圧力センサP1および二次圧力センサP2の出力はコントローラ30に入力されている。
 空気圧縮機は船舶に別の用途で搭載されているものを使用してもよいし、専用のものを設置してもよい。また、各自動開閉弁MV1~4としては、エア駆動弁、電動弁、電磁弁あるいはコントローラを使用しない手動弁などが用いられる。
 デプスフィルタ10は、一端が開口し、他端が閉止部材13により閉塞された中空円筒状であり、その一端である開口端10aをろ過水取出口16に向けることにより、デプスフィルタ10の中空部11をろ過水取出口16に連通させている。原水RWは、デプスフィルタ10を径方向に通過する際に、フィルタ内部の空孔により異物が捕捉され、ろ過水FWが得られる。デプスフィルタ10はまた、ろ過ユニット4の筐体9内に着脱自在に収納されて、開口端10aが他端である閉止端10bよりも下になるよう、つまり、ろ過ユニット4がろ過水取出口16に向かって斜め下方へ傾斜するように配置されている。デプスフィルタ10の長手方向の中心線Cと水平面Hとのなす角である傾斜角αは20~70°が好ましく、より好ましくは、30~60°である。
 ろ過ユニット4の拡大断面図である図2に示すように、傾斜したろ過ユニット4の筐体9の下側の一端壁9aにろ過水取出口16が設けられ、ろ過ユニット4の筐体9の周壁9bにおける一端壁9a寄りの下部に原水供給口18が設けられ、原水供給口18よりも上方で、筐体9の周壁9bにおける他端壁9c寄りの上部に排出口22が設けられている。
 前記原水通路5が原水供給口18に接続され、送水通路8がろ過水取出口16に接続され、排水通路14が排出口22に接続されている。ろ過水取出口16には、気体供給通路12が接続されており、ろ過水取出口16は、ろ過ユニット4における圧縮空気Aの気体供給口24も兼ねているので、気体供給口24が、圧縮空気Aおよび原水RWの導出口である排出口22よりも低い位置に設けられていることになる。これにより、圧縮空気Aの圧力によるエアリフト効果を利用して、すなわちエアによって排水通路14内の原水RWを押し上げて、原水RWを排水するので、原水RWおよび圧縮空気Aをスムーズに排出することができる。原水供給口18および排出口22は、デプスフィルタ10の一次側に設けられており、ろ過水取出口16は二次側に設けられている。
 デプスフィルタ10は外圧方式の円筒状フィルタであり、縦断面形状がコ字形である。該デプスフィルタ10は、例えば、合成繊維や化学繊維をウェブ、不織布、紙、織物等の形態にして溶着・成形等を行い、円筒状に加工した積層タイプと呼ばれるものが例示される。合成繊維としては、ポリオレフィン、ポリエステル、あるいはナイロンやエチレンビニルアルコール共重合体などの熱溶融性ポリマーまたはポリビニルアルコールやポリアクリロニトリルなどのポリマーを用いることができる。中でも、気体による逆流洗浄を行う場合、フィルタ交換時の液きり性の観点から、ポリオレフィンおよびポリエステル、具体的には、ポリプロピレンが好ましい。また、フィルタはその厚み方向において、繊維の密度や繊度を変更し、フィルタの外側(原水流入側)において、繊維密度が低い、あるいは繊度が大きい構造が好ましい。該デプスフィルタ10としては、他にも、フィラメントや紡績糸をスパイラル状に巻きつけた糸巻きフィルタと呼ばれるものや、スポンジのような樹脂成形体である樹脂成形タイプと呼ばれるものがある。
 ろ過膜の孔径は、1~25μmであり、より好ましくは1~10μmである。孔径が小さ過ぎると目詰まりが発生し、圧力損失が大きくなる。孔径が大き過ぎると小さいプランクトンが通過してしまうので、これを減らすためにキャビテーションなどの別途手段が必要となり、バラスト水製造費用が高くなる。
 デプスフィルタ10は当該ろ過ユニット4においては逆洗可能であり、逆洗によりろ過性能を回復させて、ろ過時の差圧が上昇することなく使用できる。本実施形態では、逆洗は、コンプレッサ(図示しない)から気体供給通路12(図1)を通って供給される圧縮空気Aにより行っており、気体供給口24からの圧縮空気Aの供給圧は、一次圧力センサP1の指示圧力よりも0.05~0.2MPa高い圧力である。逆洗に用いられる流体は空気以外の気体、例えば窒素等でもよく、また、真水、ろ過された海水等の液体でもよい。
 次に、図1および図3を用いて、バラスト水製造装置の運転方法、つまり、本実施形態に係るろ過ユニットによるろ過水製造方法について説明する。図3に示すように、バラスト水製造装置の運転方法は、ろ過の準備工程であるエア抜き工程、第1切替工程、ろ過工程、第2切替、第3切替および逆洗工程からなる。
 コントローラ30に設置された始動ボタン(図示しない)を操作してバラスト水製造装置1を作動させると、まずバラストポンプ2が起動し、第1自動開閉弁MV1と第4自動開閉弁MV4とを開いてエア抜き工程に入る。エア抜き工程では、第2自動開閉弁MV2と第3自動開閉弁MV3を閉じて、デプスフィルタ10からバラストタンク6へのろ過水FWの供給およびデプスフィルタ10への圧縮空気Aの供給を停止した状態で、ろ過ユニット4を経て排出通路14に原水RWを流して、船外へ排出することにより、原水通路5およびろ過ユニット4のエア抜きを行う。
 次に、第2自動開閉弁MV2を開いて第1切替工程に入る。第1切替工程では、デプスフィルタ10への圧縮空気Aの供給を停止した状態で、ろ過ユニット4を経て、排出通路14に原水RWを、送水通路8にろ過水FWをそれぞれ供給する。
 つづいて、第4自動開閉弁MV4を閉じてろ過工程に入る。ろ過工程では、デプスフィルタ10からの排水とデプスフィルタ10への圧縮空気供給とを停止した状態で、ろ過ユニット4に原水RWを供給して、ろ過水FWを送水通路8に送る。このとき、原水RWはデプスフィルタ10の外側からデプスフィルタ10のろ過膜を通過して中空部11へ流入することにより、原水RW中の異物が除去されてろ過される。ろ過水FWは送水通路8を通って、バラストタンク6へ供給される。
 次に、第4自動開閉弁MV4を開いて第2切替工程に入る。第2切替工程では、デプスフィルタ10への圧縮空気Aの供給を停止した状態で、原水RWをろ過ユニット4に供給することにより、ろ過水FWを送水通路8に流し、原水RWを排出通路14に流す。
 つづいて、第2自動開閉弁MV2を閉じて第3切替工程に入る。第3切替工程では、デプスフィルタ10からバラストタンク6へのろ過水FWの供給およびデプスフィルタ10への圧縮空気Aの供給を停止した状態で、原水RWを排出通路14に流す。こうしてデプスフィルタ10からのろ過水FWの供給を停止することにより、次の逆洗工程におけるろ過水FWの流れ方向と逆方向への圧縮空気Aの供給開始に備える。
 次に、第2自動開閉弁MV2を閉じたままで、第3自動開閉弁MV3を開けて逆洗工程に入る。逆洗工程では、バラストタンク6へのろ過水FWの供給が停止されている状態で、ろ過ユニット4に原水RWを供給しながらデプスフィルタ10の中空部11へ圧縮空気Aを供給し、この圧縮空気Aを原水RWとともに排出通路14に流す。これにより、圧縮空気Aがろ過工程とは逆方向にデプスフィルタ10を通過して、デプスフィルタ10に付着した異物および筐体9内に溜まった異物をろ過ユニット4外へ導出させ、排出通路14から船舶Sの外部へ排出する。
 逆洗工程が完了すると、第3自動開閉弁MV3を閉めてエア抜き工程に戻る。以降このループが繰り返される。エア抜き工程の継続時間は、タイマのような時限装置により可変設定される。設定時間は処理設備の規模によって異なるが、例えば、数秒~1分程度である。第1、第2および第3切替工程はごく短時間、例えば数秒程度であり、これもタイマのような時限装置により可変設定される。このように、ろ過工程および逆洗工程に入る前に、第1、第2および第3切替工程を経由させることで、通路内に急激な圧力変動が起こるのを避けることができる。ろ過工程および逆洗工程の時間は、原水の水質や設備の規模により異なるが、例えば、10分程度で、これもタイマのような時限装置により可変設定される。ろ過工程から第2切替工程への移行は、一次圧力センサP1と二次圧力センサP2との差圧△P(=P1-P2)が規定値よりも大きくなった時点で行うようにしてもよい。
 ろ過工程中は、コントローラ30が常時差圧△Pを監視しており、差圧△Pが警報値H1を上回ると、例えばブザーのような警報を発し注意を促す。この時点では水処理装置1は運転を継続する。さらに、差圧△Pが大きくなり非常停止値H2を上回ると、例えばベルのような警報を発し、水処理装置1が緊急停止する。具体的には、コントローラ30がバラストポンプ2を停止させ、すべての自動開閉弁MV1~4を閉止させる。
 急激な圧力変化や、流速変化はプランクトンに損傷を与えるだけでなく、パラストポンプ2、各自動開閉弁MV1~4、各通路5,8,12,14に水撃(ウォータハンマ)が発生してしまうが、図3の運転方法のように、バラストポンプ2が常に運転してバラストポンプ2からの原水RWの供給が止まることがなく、しかも各自動開閉弁MV1~4の開閉タイミングを調節しているので、マイルドな運転を行うことができる。また、原水RWを流しながら逆洗を行うので、バラストポンプ2の吐出圧と圧縮空気Aの空気圧によりスムーズに排水できるうえに、別途ドレンポンプやドレン配管が不要となり、システムを簡素化できる。
 上記構成において、デプスフィルタ10を形成するろ過膜の孔径が1~25μmであるので、フィルタの目詰まりによる圧力損失を抑えつつ、大部分のプランクトンを生かしたまま捕捉することができ、バラスト水積込み側の海洋の生態系を壊さないうえに、従来のようなプランクトンを処理するためのキャビテーションや薬剤投与をする必要がなくなるから、動力の消費電力量や薬剤の使用量が少なくて済む。その結果、小型で処理費用の安いバラスト水製造装置を構築することができる。また、デプスフィルタ10を逆流洗浄しているので、デプスフィルタ10のろ過性能を回復させて使用することができ、処理費用をさらに削減することができる。さらに、安価なデプスフィルタ10を用いているので、平膜のようなフィルタ表面で異物を捕捉するサーフェスフィルタを用いる場合に比べて、初期導入費用を抑えることができる。
 気体供給口24とろ過水取出口16とが同一であるので、気体供給口24とろ過水取出口16とを共通化して、構成を簡単にすることができる。
 さらに、ろ過ユニット4がろ過水取出口16に向かうにつれて下方へ傾斜するように配置されているので、ろ過ユニット4におけるろ過水取出口16と反対側が高位となり、気体による逆流洗浄後に原水RWをろ過する際に、ろ過ユニット4内の空気Aが抜け易くなり、ろ過水FWにエアが混入する恐れが少なくなる。また、この水平方向に対する傾斜角αが大き過ぎると、ろ過ユニット4の上下寸法が大きくなるので、取り外し等のメンテナンスの際に、ろ過ユニット4の上方にデプスフィルタ10を抜き出すための広いスペースが必要となり、小さ過ぎると、ろ過ユニット4内の空気Aが抜け難くなる。したがって、この傾斜角αは20~70°であることが好ましい。
 排出口22が原水供給口18よりも上方に設けられているので、ろ過運転のために原水を供給し始める初動時、または逆流洗浄後に原水の供給を再開することによりろ過ユニット4内のエア抜きを行う際に、ろ過ユニット4内の空気Aが円滑に排出される。
 さらに、上記運転方法によれば、図3に示すように、システム稼働中はバラストポンプ2が常に運転している、つまり、ろ過ユニット4へは原水RWが常に供給されているので、通路内に急激な圧力変動が起こるのを避けることができ、水撃の発生を防止することができる。また、逆洗工程においても原水RWがろ過ユニット4へ供給されるので、圧縮空気Aの供給圧と原水RWの供給圧とにより、圧縮空気Aを原水通路5内に逆流させることなく、原水流にのせてスムーズに排水できる。
 また、デプスフィルタは、被ろ過物質をフィルタの表面のみで捕集するサーフェスフィルタと異なり、フィルタの厚み方向全体で被ろ過物質を捕集することができるので、捕集量が多く、フィルタが長時間目詰まりを起こすことがない。
 本実施形態におけるデプスフィルタ10を用いて、検証実験を行った。原水は海水で、原水の供給圧力、流量は、それぞれ0.03MPa、0.037m/minである。逆洗用の流体には圧縮空気を用いて、圧縮空気の供給圧力、流量は、それぞれ0.13MPa、0.4Nm/minである。使用したデプスフィルタは、長さ25cmで、孔径は1μm,25μmとした。また、デプスフィルタの軸心を水平面に対して45°傾斜させて配置した。
 検証1:初期圧力損失
 表1は、原水温度が25℃のときの孔径0.5μm、1μmおよび25μmのデプスフィルタにおいて、原水を供給した際のデプスフィルタの一次側と二次側との圧力の差を示したもので、図4は、原水の供給流量と圧力損失の関係を示したグラフである。表1および図4から明らかなように、1μmおよび25μmのデプスフィルタにおいては圧力損失が小さいが、0.5μmのデプスフィルタにおいては圧力損失が極めて大きく、ほとんど原水が流れなくなった。したがって、デプスフィルタの孔径は1μm以上であることが好ましい。
Figure JPOXMLDOC01-appb-T000001
 検証2:逆洗効果
 表2は、孔径1μmと25μmのデプスフィルタのそれぞれにおいて、連続ろ過運転した場合と、ろ過運転・逆洗運転を交互に行った場合のデプスフィルタの状態(差圧の状況)を示したものである。ろ過・逆洗の交互運転は、ろ過運転と逆洗運転を5分毎に交互に繰り返した。連続ろ過運転をした場合、25μmのデプスフィルタでは約2時間で、1μmのデプスフィルタでは約40分間で差圧が上昇し、デプスフィルタが閉塞した。ろ過・逆洗の交互運転では、1μm、25μmのどちらのデプスフィルタにおいても、5時間連続運転後も差圧の上昇はなく、デプスフィルタの閉塞はなかった。
Figure JPOXMLDOC01-appb-T000002
 検証3:ろ過水の水質
 表3は、孔径1μm、10μm、25μmのデプスフィルタそれぞれにおける、原水およびろ過水1ml中に含まれるサイズ別の粒子の数(水中パーティクル数)と、除去率を示している。各データの分母が原水における水中パーティクル数、分子がろ過水における水中パーティクル数を表し、括弧内の数値は除去率を表している。孔径が25μmのデプスフィルタでは、粒子径が25μm以上の粒子の約96%、10μm以上の粒子の約88%が除去され、1μm以上の粒子でも60%以上が除去されている。さらに、孔径が1μmのデプスフィルタでは、粒子径が25μm以上の粒子の99%以上、10μm以上の粒子の約94%が除去され、1μm以上の粒子でも90%以上が除去されている。
Figure JPOXMLDOC01-appb-T000003
 検証4:薬剤投入量
 表4は、デプスフィルタ10を通過後のろ過水に残留した菌および微生物を処分するのに必要な薬剤(次亜塩素酸)の濃度を示している。「なし」は、ろ過を行わない、すなわち生の海水であり、孔径50μmのデプスフィルタ10は、従来のバラスト水製造用に用いられているものである。表4からわかるように、孔径が30μmの場合は、従来の50μmのものと比べて効果が薄いが、25μmのデプスフィルタ10を使用すると、従来の50μmの3分の1程度の濃度で済み、1μmの場合では、8分の1以下の濃度で済む。したがって、デプスフィルタの孔径は25μm以下であることが好ましい。
Figure JPOXMLDOC01-appb-T000004
 検証1の結果から分かるように、本実施形態に使用するデプスフィルタ10は、孔径が1μmであっても圧力損失がほとんどないので、デプスフィルタ10の投影面積が少なくて済み、ろ過ユニット4が大型化するのを抑えることができる。また、検証2の結果から分かるように、逆洗を行うことで、繰り返し使用可能となる。これにより、寿命が格段に長くなる。さらに、検証3の結果から分かるように、孔径が25μmのもので、50μm以上のプランクトンの90%以上、10μm以上のプランクトンの80%以上を除去している。また、検証4の結果から分かるように、孔径を25μmとしたもので、従来の孔径50μmのフィルタを使用する場合と比べて、3分の1の濃度の薬剤で済む。したがって、デプスフィルタ10の孔径は1~25μmとすることができる。
 図5は、複数のデプスフィルタ10を備えた、本発明の第2実施形態に係るろ過ユニット4Aを示す斜視図である。第1実施形態と同様に、ろ過ユニット4Aは、ろ材38とそれを収容する円筒状の筐体9Aとからなり、筐体9Aはろ過水取出口16Aと、原水供給口18Aと、排出口22Aと、気体供給口24Aとを有しており、ろ過水取出口16Aと気体供給口24Aとは共通としている。これらろ過水取出口16A、原水供給口18A、排出口22Aおよび気体供給口24Aの配置、機能は第1実施形態と同様である。
 筐体9Aの上部には蓋部9Acが開閉自在に設けられ、下部には底板9Adが設けられている。底板9Adには、各デプスフィルタ10に対応する位置に円形の貫通孔52が設けられ、各デプスフィルタ10の中空部11がろ過水取出口16Aおよび気体供給口24Aと連通している。第2実施形態では、ろ材38として複数のデプスフィルタ10の両端を固定板40で固定して一体化したサブユニットを使用している。固定手段は、例えば接着剤による固着であるが、これに限定されない。各デプスフィルタ10は、閉止部材13(図2)で一端を閉塞していないこと、すなわち、両端が開口した中空円筒状であることを除いて、第1実施形態と同様のものである。この実施形態では、19本のデプスフィルタ10を用いているが、デプスフィルタ10の数はこれに限定されない。
 図6は固定板40の平面図である。固定板40は、例えば樹脂製の板材からなり、各デプスフィルタ10に対応する位置に円形の開口46が形成されている。開口46の直径はデプスフィルタ10の外径よりも小さく設定されている。この実施形態では、固定板40は六角形であるが、他の多角形あるいは円形でもよい。固定板40の一側部には被係合溝48が形成され、筐体9Aの係合板44に係合されて、筐体9Aに対するろ材38の周方向の位置決めが行われている。
 次に図5を用いて第2実施形態のろ過ユニット4Aの組立方法を説明する。まず、接着剤などを用いて、デプスフィルタ10の両端が開口46に合致するように、各デプスフィルタ10を固定板40に固定することで一体化して、ろ材38をサブユニットとして完成させる。
 つづいて、図5に示す固定板40の被係合溝48を筐体9Aの係合板44に係合させた状態で、ろ材38を筐体9Aに挿入する。さらに、蓋部9Acを閉めることで、ろ材38が蓋部9Acと底板9Adとにより挟持されて強固に支持される。
 ここで、デプスフィルタ10の上部は蓋部9Acにより閉止されるので、デプスフィルタ10の中空部11内のろ過水FWは、下部の底板9Adの貫通孔52を通ってろ過水取出口16Aから導出される。また、気体供給口24Aからろ過ユニット4Aに導入された逆流洗浄用の圧縮空気Aは、底板9Adの貫通孔52からデプスフィルタ10の中空部11に導かれ、デプスフィルタ10を洗浄する。
 第2実施形態によれば、第1実施形態と同様の効果を奏することができるうえに、複数のデプスフィルタ10を組み合わせてろ材38を形成しているので、ろ過面積が大きくなり、効率よくろ過を行うことができる。さらに、複数のデプスフィルタ10をサブユニットとして一体化しているから、一体化されたろ材38を交換することで複数のデプスフィルタ10を容易に交換できる。
 図7は、第3実施形態に係るバラスト水製造装置の概略系統図である。図1の実施形態との違いは、2つの第1および第2ろ過ユニット4B,4Cを備えており、一方のろ過ユニット4B(4C)でろ過している間に他方のろ過ユニット4C(4B)を逆流洗浄する点で、その他の構造、動作は図1の装置と同様である。ろ過ユニット4B,4Cは、第1実施形態のろ過ユニット4であっても、第2実施形態のろ過ユニット4Aであってもよい。
 第3実施形態では、バラストポンプ2から原水RWが供給される原水通路5が2つの原水枝通路5B,5Cに分岐して、第1および第2原水枝通路5B,5Cがそれぞれ第1および第2ろ過ユニット4B,4Cの原水供給口18B,18Cに接続されている。第1および第2原水枝通路5B,5Cには、それぞれ第1および第2原水流入弁B1,C1が設けられている。ミキサー26、薬剤タンク28を経由してろ過水FWをバラストタンク6に送る送水通路8も、2つの第1および第2ろ過水枝通路8B,8Cに分岐して、第1および第2ろ過水枝通路8B,8Cがそれぞれ第1および第2ろ過ユニット4B,4Cのろ過水取出口16B,16Cに接続されている。第1および第2ろ過水枝通路8B,8Cには、それぞれ第1および第2ろ過水送水弁B2,C2が設けられている。
 逆流洗浄用の圧縮空気Aを供給する空気供給通路12も2つの第1および第2空気枝通路12B,12Cに分岐して、第1および第2空気枝通路12B,12Cがそれぞれ第1および第2ろ過水枝通路8B,8Cにおける第1および第2ろ過水送水弁B2,C2の上流側、すなわちろ過ユニット4B,4C側に接続される。第1および第2空気枝通路12B,12Cには、それぞれ第1および第2空気供給弁B3,C3が設けられている。各ろ過ユニット4B,4C内の原水RWを圧縮空気Aとともに排出する排出通路14も2つの第1および第2排出枝通路14B,14Cに分岐して、第1および第2排水枝通路14B,14Cがそれぞれ第1および第2ろ過ユニット4B,4Cの排出口22B,22Cに接続される。第1および第2排出枝通路14B,14Cには、それぞれ第1および第2排出弁B4,C4が設けられている。
 この実施形態でも、バラストポンプ2、バラストタンク6、ミキサー26、薬剤タンク28および原水通路5、送水通路8、空気供給通路12、排出通路14は、船舶に既存のものを使用することができ、本実施形態に係るろ過ユニット4B,4Cと、これに接続される各枝配管のみを既存のものと交換することもできる。また各弁B1~4およびC1~4としては、エア駆動弁、電動弁、電磁弁あるいはコントローラを使用しない手動弁などが用いられる。
 次に図8および図9を用いて、本実施形態のバラスト水製造装置の運転方法を説明する。図8は、第1ろ過ユニット4Bでろ過を行い、第2ろ過ユニット4Cを逆流洗浄しているときの系統図である。このとき、第1原水流入弁B1、第1ろ過水送水弁B2,第2原水流入弁C1,第2空気供給弁C3および第2排出弁C4が開いており、第1空気供給弁B3,第1排出弁B4および第2ろ過水送水弁C2が閉じている。バラストポンプ2により供給される原水RWは、第1および第2原水枝通路5B,5Cを通って、第1および第2ろ過ユニット4B,4Cに供給される。第1ろ過ユニット4Bに供給された原水RWはデプスフィルタ10によりろ過され、第1送水枝通路8Bから送水通路8を通ってバラストタンク6に送られる。一方、空気圧縮機(図示しない)から供給された圧縮空気Aは、第2空気枝通路12Cを通って第2ろ過ユニット4Cに供給され、デプスフィルタ10を逆流洗浄して、原水RWとともに第2排出枝通路14Cから排出通路14を通って船舶の外へ排出される。図中の矢印RAは原水RWの流れを、矢印FAはろ過水FWの流れを、矢印AAは圧縮空気Aの流れをそれぞれ示している。
 図9は、第2ろ過ユニット4Cでろ過を行い、第1ろ過ユニット4Bを逆流洗浄しているときの系統図である。このとき、第1原水流入弁B1、第1空気供給弁B3、第1排出弁B4、第2原水流入弁C1および第2ろ過水送水弁C2が開いており、第1ろ過水送水弁B2、第2空気供給弁C3および第2排出弁C4が閉じている。バラストポンプ2により供給される原水RWは、第1および第2原水枝通路5A,5Bを通って、第1および第2ろ過ユニット4B,4Cに供給される。第2ろ過ユニット4Cに供給された原水RWはデプスフィルタ10によりろ過され、第2送水枝通路8Cから送水通路8を通ってバラストタンク6に送られる。一方、空気圧縮機(図示しない)から供給された圧縮空気Aは、第1空気枝通路12Bを通って第1ろ過ユニット4Bに供給され、デプスフィルタ10を逆流洗浄して、原水RWとともに第1排出枝通路14Bから排出通路14を通って船舶の外へ排水される。
 タイマなどの時限装置により、図8と図9の各弁B1~4およびC1~4の開閉状態を交互に繰り返すことで、一方のろ過ユニット4B(4C)が逆流洗浄中であっても、他方のろ過ユニット4C(4B)でろ過を行うことができる。本実施形態では、2つのろ過ユニット4B,4Cを設けているが、3つ以上であってもよい。
 第3実施形態によれば、第1および第2ろ過ユニット4B,4Cの洗浄、ろ過が同時に行われるので、常にろ過を継続することが可能となり、バラスト水製造時間を短縮することができる。また、仮に、一方のろ過ユニット4B(4C)に異常が発生した場合でも、他方のろ過ユニット4C(4B)をろ過と逆流洗浄を交互に行うようにして使用することで、バラスト水を製造することができるので、システム全体の信頼性が向上する。
 図10は、第4実施形態のろ過ユニット4Dを示す。この実施形態では、傾斜したろ過ユニット4Dの円筒状の筐体9Dは、下側の一端壁9Daと、周壁9Dbと、上側の他端壁9Dcとからなり、軸心Cが傾斜して、一端壁9Daから他端壁9Dcに向かって斜め上方へ傾斜するように配置されている。デプスフィルタ10の長手方向の中心線Cと水平面Hとのなす角である傾斜角αは20~70°が好ましく、より好ましくは、30~60°である。傾斜角αが大き過ぎると、ろ過ユニット4Dの上下寸法が大きくなるので、取り外し等のメンテナンスの際に、ろ過ユニット4Dの上方にデプスフィルタ10Dを抜き出すための広いスペースが必要となり、小さ過ぎると、筐体9D内の空気Aが抜け難くなる。
 筐体9Dの一端壁9Daに排出通路14に接続される排出口22Dが、周壁9Dbにおける一端壁9Da付近に原水通路5に接続される原水供給口18Dが、周壁9Dbにおける他端壁9Dc付近に気体供給通路12に接続される気体供給口24Dおよび送水通路8に接続されるろ過水取出口16Dが、それぞれ形成されている。ろ過水取出口16は、傾斜した周壁9bにおける周方向の最上部に配置されている。
 筐体9Dの周壁9Dbにおける気体供給口24Dおよびろ過水取出口16Dよりも軸方向の下方に環状の底板9Ddが設けられ、デプスフィルタ10Dの開口端10Daが該底板9Ddに支持されている。つまり、筐体9Dにおける他端壁9Dcと底板9Ddとの間には空間Sが形成され、この空間Sに気体供給口24D、ろ過水取出口16Dおよびデプスフィルタ10Dの開口端10Daが臨んでおり、デプスフィルタ10Dの中空部11Dと空間Sが連通している。筐体9Dと同心のデプスフィルタ10Dも傾斜しており、開口端10Daが閉止端10Dbよりも上になるように配置されている。その他の構成は、第1実施形態と同じである。
 第4実施形態によれば、デプスフィルタ10Dの開口端10Daが斜め上方に開口しているので、逆洗工程からエア抜き工程に切り換えた際に、デプスフィルタ10Dの閉止端10Db付近の空気が開口端10Daから抜けるから、デプスフィルタ10Dに空気が残るのを防いで、ろ過工程においてデプスフィルタ10Dの全体を使って効率的にろ過を行うことができる。
 第4実施形態において、第2実施形態のようにデプスフィルタ10Dを複数とすることもでき、また、第3実施形態のように、ろ過ユニット4Dを2つとした装置を構成することもでき、さらに、これらを組み合わせることもできる。
 図11は、本発明の第5実施形態に係るバラスト水製造装置の概略系統図である。本実施形態のバラスト水製造装置1Aは、図1のバラスト水製造装置1とは異なり、ろ過水FWに紫外線を照射する紫外線照射ユニット3を備えている。また、ろ過ユニット4には、図10に示す第4実施形態のろ過ユニット4Dが用いられ、送水通路8がろ過ユニット4に接続されるろ過水取出口16には、排出通路14に連なるエア抜き用通路19が接続されている。エア抜き用通路19にはエア抜き弁として作用する第5自動開閉弁MV5が接続され、この第5自動開閉弁MV5の駆動は、コントローラ30により制御されている。第5自動開閉弁MV5として、エア駆動弁、電動弁、電磁弁あるいはコントローラを使用しない手動弁などが用いられる。その他の構成は、図1のバラスト水製造装置1と同様である。
 紫外線照射ユニット3は、送水通路8におけるバラストタンク6の上流側に設けられている。紫外線照射ユニット3は、ろ過ユニット4によりろ過されたろ過水FW内に残留したプランクトンや菌類を紫外線を照射して処理するもので、複数の紫外線ランプ34が収納されたユニットケース36を有している。ユニットケース36は円筒状で、その周壁における一端付近にろ過水FWの流入口29が形成され、他端付近に流出口31が形成されている。各紫外線ランプ34は、例えば石英ガラスのような保護管(図示しない)で覆われている。流入口29からユニットケース36内に入ったろ過水FWは、紫外線ランプ34の間の通路を通る際に、残留したプランクトン、菌類等が処理され、流出口31から送水通路8に戻される。
 次に、図11および図12を用いて、第5実施形態のバラスト水製造装置の運転方法、つまり、本実施形態に係るろ過ユニットによるろ過水製造方法および紫外線照射ユニット3による処理方法について説明する。図12に示すように、第5実施形態のバラスト水製造装置の運転方法は、図1の実施形態と同様に、ろ過の準備工程であるエア抜き工程、第1切替工程、ろ過工程、第2切替、第3切替および逆洗工程からなる。
 コントローラ30に設置された始動ボタン(図示しない)を操作してバラスト水製造装置1Aを作動させると、まずバラストポンプ2が起動し、第1自動開閉弁MV1と第5自動開閉弁MV5とを開いてエア抜き工程に入る。エア抜き工程では、第2自動開閉弁MV2、第3自動開閉弁MV3および第4自動開閉弁MV4を閉じて、デプスフィルタ10からバラストタンク6へのろ過水FWの供給およびデプスフィルタ10への圧縮空気Aの供給を停止した状態で、ろ過ユニット4のろ過水取出口16からエア抜き通路19を経て排出通路14にろ過水FWを流して、船外へ排出することにより、原水通路5およびろ過ユニット4のエア抜きを行う。ろ過水取出口16は、ろ過ユニット4の最上部付近に位置しているので、ろ過ユニット4内の空気がろ過水取出口16からエア抜き通路19に円滑に排出される。
 次に、第2自動開閉弁MV2を開いて第1切替工程に入る。第1切替工程では、デプスフィルタ10への圧縮空気Aの供給を停止した状態で、ろ過ユニット4を経て、排出通路14および送水通路8にろ過水FWをそれぞれ供給する。
 つづいて、第5自動開閉弁MV5を閉じてろ過工程に入る。ろ過工程では、デプスフィルタ10からの排水とデプスフィルタ10への圧縮空気供給とを停止した状態で、ろ過ユニット4に原水RWを供給して、ろ過水FWを送水通路8に送る。このとき、原水RWはデプスフィルタ10の外側からデプスフィルタ10のろ過膜を通過して中空部11へ流入することにより、原水RW中の異物が除去されてろ過される。ろ過水FWは流入口29を通って、紫外線照射ユニット3へ供給される。
 紫外線照射ユニット3において、ユニットケース36に入ったろ過水FWは、ユニットケース36内を通過する際に紫外線ランプ34により紫外線を照射され、プランクトン、菌類等が処理された後、バラストタンク6へ供給される。
 次に、第4自動開閉弁MV4を開いて第2切替工程に入る。第2切替工程では、デプスフィルタ10への圧縮空気Aの供給を停止した状態で、原水RWをろ過ユニット4に供給することにより、ろ過水FWを送水通路8に流し、原水RWを排出通路14に流す。
 つづいて、第2自動開閉弁MV2を閉じて第3切替工程に入る。第3切替工程では、デプスフィルタ10からバラストタンク6へのろ過水FWの供給およびデプスフィルタ10への圧縮空気Aの供給を停止した状態で、原水RWを排出通路14に流す。こうしてデプスフィルタ10からのろ過水FWの供給を停止することにより、次の逆洗工程におけるろ過水FWの流れ方向と逆方向への圧縮空気Aの供給開始に備える。
 次に、第2自動開閉弁MV2を閉じたままで、第3自動開閉弁MV3を開けて逆洗工程に入る。逆洗工程では、バラストタンク6へのろ過水FWの供給が停止されている状態で、ろ過ユニット4に原水RWを供給しながらデプスフィルタ10の中空部11へ圧縮空気Aを供給し、この圧縮空気Aを原水RWとともに排出通路14に流す。これにより、圧縮空気Aがろ過工程とは逆方向にデプスフィルタ10を通過して、デプスフィルタ10に付着した異物および筐体9内に溜まった異物をろ過ユニット4外へ導出させ、排出通路14から船舶Sの外部へ排出する。逆洗工程が完了すると、第3自動開閉弁MV3および第4自動開閉弁MV4を閉め、第5自動開閉弁MV5を開けてエア抜き工程に戻る。以降このループが繰り返される。
 第5実施形態によれば、図1のバラスト水製造装置1と同様の効果を奏する。さらに、海水中のプランクトンの大部分がデプスフィルタ10によって予め除去されることで、紫外線の強度が低下するのが抑制されるから、紫外線ランプ34の本数が少なくて済み、紫外線照射ユニット3の小型化および消費電力の減少が達成される。
 さらに、ろ過膜の孔径を1~10μmとすると、プランクトンだけではなく、1μm程度までの大きさの浮遊粒子(SS成分)も除去されるので、原水RW中の濁度は大幅に低下し、透明度が格段に上昇する。その結果、紫外線の照射時に、紫外線の原水RW中の透過度が大きく向上し、紫外線の透過度が向上することで、紫外線の照射量が少なくて済むので、例えば、紫外線ランプ34の本数を減らすことにより、紫外線照射ユニット3の小型化および消費電力の減少が達成される。保護管の汚れを除去して紫外線の汚れによる吸収を防ぐために、保護管にワイパを設けたものもあるが、本実施形態では、紫外線ランプ34表面に付着する汚れが著しく減少するので、このようなワイパを設ける必要がなくなり消費電力を一層抑えることができるうえに、紫外線照射ユニット3のメンテナンス性を向上させることができる。
 さらに、デプスフィルタ10の開口端10aが斜め上方に開口しているので、逆洗工程からエア抜き工程に切り換えた際に、デプスフィルタ10の閉止端10b付近の空気が開口端10aから抜けるから、デプスフィルタ10に空気が残るのを防いで、ろ過工程においてデプスフィルタ10の全体を使って効率的にろ過を行うことができる。この水平方向に対する傾斜角αが大き過ぎると、ろ過ユニット4の上下寸法が大きくなるので、取り外し等のメンテナンスの際に、ろ過ユニット4の上方にデプスフィルタ10を抜き出すための広いスペースが必要となり、小さ過ぎると、ろ過ユニット4内の閉止端10b付近の空気Aが抜け難くなる。したがって、この傾斜角αは20~70°であることが好ましい。
 実施例1~6、比較例1
 本実施形態におけるデプスフィルタ10を用いて、検証実験を行った。使用したデプスフィルタは、長さ250mm、外径60mm、内径30mmの中空円柱状で、孔径は1μm(実施例1),3μm(実施例2),5μm(実施例3),10μm(実施例4),15μm(実施例5),25μm(実施例6),30μm(比較例1)とし、デプスフィルタ10の軸心を水平面に対して45°傾斜させて配置した。原水として、自然海水(水温26℃)を流量25L/分でろ過させた際の、濁度変化(原海水濁度は5.5NTU)を測定した。測定結果を表5に示す。孔径が大きくなるほど差圧は低下するが、孔径が25μmを超えると処理水の濁度が高くなり、実用的でない。
Figure JPOXMLDOC01-appb-T000005
 つづいて、原海水中と、実施例1~6および比較例1のろ過水中とに存在する10μm以上の粒子をパーティクルカウンターにてそれぞれ測定し、除去率を求めた。さらに、このろ過水を、光路長30mmの石英セルに入れ、紫外線(20Wランプ)を照射し、石英セルを透過した紫外線照度(波長254nm)をUV強度計にて測定した。これらの結果を表6に示す。表2より、浮遊粒子が除去されるほど、紫外線透過度が向上することがわかる。
Figure JPOXMLDOC01-appb-T000006
 1Lあたり動物性プランクトン(最も小さい部分が50μm以上)を3.0×10個、また1ccあたり植物性プランクトンを(大きさ8~12μm)1.5×10個含む海水(水温25℃)を、流量25L/分で表5の実施例1~6、比較例1のデプスフィルタおよび孔径が50μm(比較例2)のデプスフィルタでろ過し、ろ過水中に存在するプランクトン数を実測した。その結果を表7に示す。実施例1~6では、動物性プランクトンはほぼすべて除去されていたが、比較例1では20%以上、比較例2では約40%の動物性プランクトンがそれぞれ残留していた。また、植物性プランクトンにおいても、実施例1、2ではほぼ除去されており、実施例3で99%以上が、実施例4で約99%が、実施例5で96%以上が、実施例6で約92%がそれぞれ除去されていた。これに対し、比較例1では60%以上が、比較例2では90%以上がそれぞれ残留していた。
Figure JPOXMLDOC01-appb-T000007
 さらに、ろ過水中に植物性プランクトンが100個/cc以上観察された場合に、このろ過水を、光路長10mmの石英セルに入れ、紫外線ランプ(20W)を照射した。動物性、植物性プランクトンの各生存数がそれぞれろ過水中の100分の1以下になるまで紫外線を照射し、照射した紫外線量も表7に示した。比較例1および2では、動物性プランクトンがろ過水中に相当量残存しているため、プランクトン数を減少させるのに、比較例1でも実施例6の5倍以上、比較例2では6倍以上の紫外線エネルギーが必要であった。
 実施例7、比較例3
 自然海水(水温26℃)を孔径3μmのデプスフィルタ(外径60mm、内径30mm、長さ250mmの中空円柱状)を用いて、流量25L/分で連続ろ過試験を行った。その際に、ろ過を連続で行った場合(比較例3)と、ろ過を3分間行う度にエア逆洗(エア圧100kPa、5秒間)させた場合(実施例7)とを比較した。結果を表8に示す。ろ過を連続で行った場合にはフィルタが閉塞して30分で差圧が急激に上昇し以降はほとんど海水が流れなくなったが、エア逆洗を行った場合には600分経過後も差圧は安定していた。
Figure JPOXMLDOC01-appb-T000008
 図13は、本発明の第6実施形態に係るバラスト水製造装置の概略系統図である。第6実施形態のバラスト水製造装置1Bは、図11の紫外線照射ユニット3に代えて、ろ過水FWに次亜塩素酸カルシウムを投入する化学処理ユニット33を備えている点で、図11の第5実施形態と相違しており、その他の構成、運転方法は第5実施形態と同様である。
 化学処理ユニット33は、送水通路8におけるバラストタンク6の上流側に設けられている。化学処理ユニット33は、ろ過ユニット4によりろ過されたろ過水FW内に残留したプランクトンや菌類を次亜塩素酸カルシウムで処理するもので、固形次亜塩素酸カルシウムが収納された容器35を有している。
 容器35は固形の次亜塩素酸カルシウムが収納された密閉式の容器である。化学処理ユニット33は、さらに送水通路8の分岐点8aからろ過水FWの一部を分岐させて容器35にろ過水FWを供給する分岐通路15と、容器35内の固形次亜塩素酸カルシウムを溶解させた濃縮液を送水通路8における分岐点8aの下流の合流点8bに合流させる合流通路17とを有している。ろ過水FWの一部は分岐通路15を通じて容器35に入り、容器35内に収納された顆粒状の固形次亜塩素酸カルシウムの間を通るうちに固形次亜塩素酸カルシウムを徐々に溶解させ、高濃度の次亜塩素酸溶液となる。これにより、例えば飽和濃度に対して90%の濃度の次亜塩素酸カルシウム濃縮液が得られ、これが、合流通路17を通って送水通路8のろ過水FWと合流する。合流したろ過水FWと次亜塩素酸濃縮液は、送水通路8に設けたミキサー39で撹拌されて均一化され、ろ過水FW内に残留したプランクトン、菌類等を処理する。
 分岐点8aと合流点8bとの間には、送水通路8を通過するろ過水FWの流量を減少させる、オリフィスのような絞り手段25が設けられている。絞り手段25は、通路面積を小さく絞るので、これにより、絞り手段25の入口の圧力が、出口の圧力よりも高くなる。その圧力差は1~10kPa程度が好ましい。この圧力差により、高圧力側の分岐点8aのろ過水FWの一部が、分岐通路15に流入し、容器35および合流通路17を経由して、低圧力側の合流点8bに戻される。したがって、送水通路8から容器35へろ過水FWを供給するためのポンプは不要である。
 合流通路17には濃縮液の流量を調整する第6自動調整弁MV6が設けられ、送水通路8におけるミキサー39の下流側には、ろ過水FW内の残留塩素濃度を計測する残留塩素計Mが設けられ、第6自動調整弁MV6で濃縮液の流量を調整することで、ろ過水FW内の残留塩素濃度が設定値となるように制御されている。第6自動開閉弁MV6の駆動は、コントローラ30により制御され、第6自動開閉弁MV6としては、エア駆動弁、電動弁、電磁弁あるいはコントローラを使用しない手動弁などが用いられる。
 第6実施形態においても、図1のバラスト水製造装置1と同様の効果を奏する。さらに、大部分のプランクトンを生かしたまま捕捉することにより、従来のようなプランクトンを処理するために多量の薬剤投与をする必要がなくなるから、薬剤の使用量が少なくて済み、バラスト水を海水に戻す際の還元剤による中和工程も不要となる。その結果、小型で処理費用の安いバラスト水製造装置を構築することができる。
 また、化学処理ユニット33は、固形の次亜塩素酸カルシウムを用いているので、液体の薬剤とは異なり輸送が容易である。また、次亜塩素酸カルシウムは融点が高いので、高温になりやすい船内であっても保管が容易である。
 さらに、送水通路8の分岐点8aと合流点8bとの間に、ろ過水FWの流量を減少させる絞り手段25が設けられており、流量を減少させたことで余剰となったろ過水FWが、分岐点8aから固形次亜塩素酸カルシウムを収納した容器35に供給されるので、専用のポンプのような供給手段が不要で、構成が簡単になるうえに、必要な電力を減らすことができる。
 また、固形次亜塩素酸カルシウムは密閉された容器35に収納されているので、塩素の臭いが船内に漏れるのが抑制される。さらに、固形次亜塩素酸カルシウムを交換する際には、容器35ごと交換すればよいので、次亜塩素酸カルシウムが人や船内の空気に直接触れることがない。
 図14は第7実施形態に係るバラスト水製造装置における化学処理ユニット33Aの系統図である。第7実施形態は、第6実施形態の化学処理ユニット33を化学処理ユニット33Aに置き換えたもので、それ以外の構成は第6実施形態と同じである。第6実施形態では、使用する顆粒状固形次亜塩素酸カルシウムの全量を一度に溶解させるように構成されているが、同図における化学処理ユニット33Aでは、顆粒状の固形次亜塩素酸カルシウムの大部分はホッパー50に顆粒状のまま保管され、適宜、計量管51で計量された一部が溶解槽53で溶解されるようになっている。この実施形態では、計量管51は、重量センサ(図示せず)を有しており、顆粒状の固形次亜塩素酸カルシウムが所望の重量に達したことを検知できるようになっている。計量管51の構成はこれに限定されず、例えば、所定の容積に達したことを検知するようなものでもよい。ホッパー50の下部とその下方の計量管51とが第1バルブ54を介して接続され、計量管51とその下方の溶解槽53とが第2バルブ55を介して接続されている。
 第7実施形態では、ホッパー50に多量(例えば1000g)の顆粒状固形次亜塩素酸カルシウムが充填され、任意のタイミングで第1バルブ54が開いて、計量管51に顆粒状固形次亜塩素酸カルシウムが導入される。計量管51で必要量(例えば45g)の顆粒状固形次亜塩素酸カルシウムを量り取り、第1バルブ54が閉じた後に第2バルブ55が開いて、溶解槽53に必要量の顆粒状固形次亜塩素酸カルシウムが導入される。導入後、第2バルブ55は閉じる。溶解槽53には、送水通路8から分岐した分岐通路15を通ってろ過水FWが流入し、溶解槽53に設けられた撹拌機56で撹拌することで顆粒状固形次亜塩素酸カルシウムをろ過水FWに溶解させて高濃度(例えば、3000mg/L)の次亜塩素酸カルシウムを製造し、合流通路17を経由して送水通路8に合流させた後、ミキサー39で撹拌して、例えば有効塩素濃度1mg/Lの処理水を調製している。顆粒状固形次亜塩素酸カルシウムを投入するタイミング、すなわち第1バルブ54を開くタイミングは、本実施形態では、残留塩素計Mの数値で決定しているが、タイマのような時限装置で設定しても良く、その他の手段を用いてもよい。
 第7実施形態によれば、第6実施形態と同様の効果を奏するうえに、高濃度の次亜塩素酸カルシウム溶液が必要量のみ製造されるので、高濃度の次亜塩素酸カルシウム溶液が溶解槽53内に長時間滞留することがなくなり、溶解槽53の腐食が軽減される。さらに、ホッパー50が完全なドライ空間に設けられているので、顆粒状固形次亜塩素酸カルシウムの補充も容易である。
 実施例8~12、比較例4~5
 本実施形態におけるデプスフィルタ10を用いて、検証実験を行った。使用したデプスフィルタは、長さ250mm、外径60mm、内径30mmの中空円柱状で、孔径は1μm(実施例8),3μm(実施例9),10μm(実施例10),15μm(実施例11),25μm(実施例12)、30μm(比較例4),50μm(比較例5)とし、デプスフィルタの軸心を水平面に対して45°傾斜させて配置した。原水として、1Lあたり動物性プランクトン(最も小さい部分が50μm以上)を3.0×10個、また1ccあたり植物性プランクトンを(大きさ8~12μm)1.5×10個含む海水(水温25℃)を、流速25L/分でろ過し、ろ過水中に存在するプランクトン数を実測した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例8~12では、動物性プランクトンはほぼすべて除去されていたが、比較例4では20%以上、比較例5では、40%の動物性プランクトンが残留していた。また、植物性プランクトンにおいても、実施例8ではほぼ除去されており、実施例9では99%以上が、実施例10では約99%が、実施例11では96%以上が、実施例12でも約92%がそれぞれ除去されていた。これに対し、比較例4では60%以上が残留し、比較例5では90%以上が残留していた。
 つづいて、所定量の顆粒状次亜塩素酸カルシウムを海水1000L中に添加した濃縮液を作成し、これを表10に示す有効塩素濃度になるよう、表9の実施例8~12および比較例4~5のデプスフィルタでろ過されたろ過水に添加した。有効塩素濃度は、DPD試薬を用いて発色させ、吸光光度計(シマヅ製UV-1700)にて測定した。次亜塩素酸カルシウムで処理された水は、顕微鏡観察で生存しているプランクトン数を測定し、XM-G培地にて25℃にて7日間培養して大腸菌数を測定、さらにMarineAgar培地を用いて同条件で培養し、従属栄養細菌数を測定した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 実施例8~10では、有効塩素濃度が1mg/Lであっても大腸菌および従属栄養細菌は検出されなかった。また、実施例11,12では、1mg/Lで大腸菌は検出されず、2mg/Lで従属栄養細菌も検出されなくなった。これに対し、比較例4および5では、動物性プランクトンがろ過水中に相当量残存していたため、プランクトン数を減少させるのに、有効塩素濃度を5mg/Lとする必要があり、また、細菌類を完全に死滅させるためにも、有効塩素濃度をそれぞれ2mg/L,5mg/Lとする必要があった。このように、比較例4および5では、実施例8~10の5倍以上、実施例11,12の2倍以上の次亜塩素酸が必要であった。以上より、デプスフィルタの孔径は、1~25μmが好ましく、1~10μmがより好ましいといえる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、図11の第5実施形態、図13の第6実施形態では、ろ過ユニット4とバラストタンク6との間に紫外線照射ユニット3、化学処理ユニット33がそれぞれ設けられているが、バラストタンク6の排水側、すなわちバラストタンク6から外部へ排出する通路の途中に紫外線照射ユニット3、化学処理ユニット33を設けてもよい。この位置に紫外線照射ユニット3を設けた場合、バラストタンク6に貯留されている間にろ過水FW内の菌類が減少するので、紫外線照射が一層抑制され、紫外線照射ユニット3の消費電力を低減することができる。また、この位置に化学処理ユニット33を設けた場合、バラストタンク6に次亜塩素酸を含んだ液体が流入することがなく、バラストタンク6の腐食を抑制できる。したがって、そのようなものも本発明の範囲内に含まれる。
1 バラスト水製造装置(ろ過システム)
4 ろ過ユニット
6 バラストタンク
8 送水通路
9 筐体
10 デプスフィルタ(ろ材)
12 気体供給通路
14 排出通路
16 ろ過水取出口
18 原水供給口
22 排出口
24 気体供給口
38 ろ材
A 圧縮空気
FW ろ過水
RW 原水

Claims (15)

  1.  ろ材とそれを収容する筐体からなるろ過ユニットであって、
     前記筐体が、前記ろ材に原水を供給する原水供給口と、ろ過水の取出口と、前記ろ材に逆洗用の流体を供給する流体供給口と、前記ろ材を逆洗した流体および前記原水を排出する排出口を有し、
     前記ろ材が孔径1~25μmのデプスフィルタであるろ過ユニット。
  2.  請求項1において、前記流体供給口と前記ろ過水取出口とが同一であるろ過ユニット。
  3.  請求項1において、前記ろ材は複数のデプスフィルタの両端を固定板で固定して一体化したものであるろ過ユニット。
  4.  請求項1において、前記ろ材が前記ろ過水取出口に向かって斜め下方へ傾斜するように配置されており、この傾斜角が水平方向に対して20~70°であるろ過ユニット。
  5.  請求項1において、前記排出口が前記原水供給口よりも上方に設けられているろ過ユニット
  6.  請求項1において、前記ろ材が前記ろ過水取出口に向かって斜め上方へ傾斜するように配置されており、この傾斜角が水平方向に対して20~70°であるろ過ユニット。
  7.  請求項1に記載のろ過ユニットを有し、前記ろ過ユニットから取り出したろ過水をバラスト水として、船舶のバラストタンクへ供給する装置であって、
     前記ろ過ユニットにおける流体供給口に接続され、ろ材を洗浄するための流体を供給する流体供給通路と、
     前記ろ過ユニットにおける排出口に接続され、前記ろ材を洗浄した流体を、ろ過ユニット内の原水とともに船舶の外部へ排出する排出通路と、
     を備えたバラスト水製造装置。
  8.  請求項7において、さらに、前記ろ過ユニットでろ過されたろ過水に紫外線を照射する紫外線照射ユニットを備えたバラスト水製造装置。
  9.  請求項8において、前記ろ材が孔径1~10μmのデプスフィルタであるバラスト水製造装置。
  10.  請求項7において、さらに、前記ろ過ユニットでろ過されたろ過水に固形次亜塩素酸カルシウムを投入する化学処理ユニットを備えたバラスト水製造装置。
  11.  請求項10において、前記化学処理ユニットが、固形次亜塩素酸カルシウムを収納した容器と、この容器から取り出された固形次亜塩素酸カルシウムを溶解させた濃縮液を前記ろ過水に投入して、発生する次亜塩素酸により微生物を処理するユニットであるバラスト水製造装置。
  12.  請求項10において、前記化学処理ユニットは、前記ろ過水を供給する送水通路から分岐して取り出したろ過水の一部に前記固形次亜塩素酸カルシウムを溶解させ、前記送水通路のろ過水に合流させるものであり、
     前記分岐箇所と合流箇所との間に、前記送水通路のろ過水の流量を減少させる絞り手段が設けられているバラスト水製造装置。
  13.  請求項10において、前記固形次亜塩素酸カルシウムは密閉された容器に収納されているバラスト水製造装置。
  14.  原水を孔径1~25μmのデプスフィルタでろ過してろ過水を製造する方法であって、
     前記デプスフィルタに原水を供給しながら、ろ過水側からデプスフィルタへ流体を供給し、この流体を前記原水とともに排出する逆洗工程を備えたろ過水製造方法。
  15.  請求項7に記載のバラスト水製造装置を用いたバラスト水製造方法であって、
     前記ろ材からバラストタンクへのろ過水の供給およびろ材への流体の供給を停止した状態で、前記ろ過ユニットを経て前記排出口から流体を原水とともに排出する準備工程と、
     ろ材からの原水の排出とろ材への流体供給とを停止した状態で、ろ過ユニットに原水を供給して、ろ過水を前記ろ過水取出口に送るろ過工程と、
     バラストタンクへのろ過水の供給を停止した状態で、ろ材に原水を供給しながら、ろ過水側からろ材へ流体を供給し、この流体を前記原水とともに前記排出口から前記排出通路を経て船舶の外部へ排出する逆洗工程と、
     を備えたバラスト水製造方法。
PCT/JP2010/052104 2009-02-16 2010-02-12 ろ過ユニットおよびこれを備えたバラスト水製造装置 WO2010093025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117019036A KR101724166B1 (ko) 2009-02-16 2010-02-12 여과 유닛 및 이것을 구비한 밸러스트수 제조 장치
CN201080007901.3A CN102316952B (zh) 2009-02-16 2010-02-12 过滤单元以及具备该过滤单元的压载水制造装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-032872 2009-02-16
JP2009032872 2009-02-16
JP2009-185223 2009-08-07
JP2009185223A JP5764285B2 (ja) 2009-02-16 2009-08-07 ろ過ユニットおよびこれを備えたバラスト水製造装置
JP2009189188 2009-08-18
JP2009-189188 2009-08-18
JP2009205570A JP5723088B2 (ja) 2009-02-16 2009-09-07 バラスト水製造装置
JP2009-205570 2009-09-07

Publications (1)

Publication Number Publication Date
WO2010093025A1 true WO2010093025A1 (ja) 2010-08-19

Family

ID=42561865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052104 WO2010093025A1 (ja) 2009-02-16 2010-02-12 ろ過ユニットおよびこれを備えたバラスト水製造装置

Country Status (1)

Country Link
WO (1) WO2010093025A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527798A (ja) * 2011-03-15 2013-07-04 セバーン トレント デ ノラ,エルエルシー バラスト水及びフィルタ処理用の方法並びにシステム
KR101303349B1 (ko) 2011-12-02 2013-09-03 (주) 테크로스 연속측정방식의 티알오 측정장치
WO2016140009A1 (ja) * 2015-03-04 2016-09-09 株式会社クラレ バラスト水の製造方法及びバラスト水処理システム
KR20190091386A (ko) 2015-04-30 2019-08-05 주식회사 쿠라레 밸러스트수 처리 장치 및 밸러스트수 처리 방법
CN111517540A (zh) * 2020-04-28 2020-08-11 江南造船(集团)有限责任公司 一种排气精滤装置
CN112973332A (zh) * 2015-03-04 2021-06-18 三星重工业株式会社 污染物质减少装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261407U (ja) * 1988-10-24 1990-05-08
JP2005342626A (ja) * 2004-06-03 2005-12-15 Jfe Engineering Kk バラスト水処理方法及び装置、該装置を搭載した船舶
JP2006142261A (ja) * 2004-11-24 2006-06-08 Takeo Yoshida 濾過器
WO2006132157A1 (ja) * 2005-06-10 2006-12-14 Jfe Engineering Corporation バラスト水の処理装置および処理方法
JP2007038172A (ja) * 2005-08-04 2007-02-15 Mitsui Eng & Shipbuild Co Ltd 膜処理装置
JP2007284531A (ja) * 2006-04-14 2007-11-01 Mitsubishi Chemicals Corp ポリ塩化ビニル樹脂溶解液からの不溶物の除去方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261407U (ja) * 1988-10-24 1990-05-08
JP2005342626A (ja) * 2004-06-03 2005-12-15 Jfe Engineering Kk バラスト水処理方法及び装置、該装置を搭載した船舶
JP2006142261A (ja) * 2004-11-24 2006-06-08 Takeo Yoshida 濾過器
WO2006132157A1 (ja) * 2005-06-10 2006-12-14 Jfe Engineering Corporation バラスト水の処理装置および処理方法
JP2007038172A (ja) * 2005-08-04 2007-02-15 Mitsui Eng & Shipbuild Co Ltd 膜処理装置
JP2007284531A (ja) * 2006-04-14 2007-11-01 Mitsubishi Chemicals Corp ポリ塩化ビニル樹脂溶解液からの不溶物の除去方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527798A (ja) * 2011-03-15 2013-07-04 セバーン トレント デ ノラ,エルエルシー バラスト水及びフィルタ処理用の方法並びにシステム
KR101303349B1 (ko) 2011-12-02 2013-09-03 (주) 테크로스 연속측정방식의 티알오 측정장치
WO2016140009A1 (ja) * 2015-03-04 2016-09-09 株式会社クラレ バラスト水の製造方法及びバラスト水処理システム
JPWO2016140009A1 (ja) * 2015-03-04 2018-01-18 株式会社クラレ バラスト水の製造方法及びバラスト水処理システム
US10500527B2 (en) 2015-03-04 2019-12-10 Kuraray Co., Ltd. Ballast water production method and ballast water treatment system
CN112973332A (zh) * 2015-03-04 2021-06-18 三星重工业株式会社 污染物质减少装置及方法
CN112973332B (zh) * 2015-03-04 2023-03-28 三星重工业株式会社 污染物质减少装置及方法
KR20190091386A (ko) 2015-04-30 2019-08-05 주식회사 쿠라레 밸러스트수 처리 장치 및 밸러스트수 처리 방법
CN111517540A (zh) * 2020-04-28 2020-08-11 江南造船(集团)有限责任公司 一种排气精滤装置

Similar Documents

Publication Publication Date Title
TWI387480B (zh) 過濾單元及具備該過濾單元之壓艙水製造裝置
JP5764285B2 (ja) ろ過ユニットおよびこれを備えたバラスト水製造装置
CA2948433C (en) System and method for cleaning and sterilizing a water flow
JP4844244B2 (ja) バラスト水処理装置及び処理方法
WO2010093025A1 (ja) ろ過ユニットおよびこれを備えたバラスト水製造装置
CN104703922B (zh) 卸压载过滤
US20070246424A1 (en) Process For Producing Ship Ballast Water, Ship Ballast Water Producing Apparatus And Use Thereof
JP2010207800A (ja) ろ過ユニットおよびこれを備えたろ過装置
JP2009039680A (ja) バラスト水処理装置
JP2014018782A (ja) バラスト水処理用濾過膜の洗浄システム及び洗浄方法
JP4598643B2 (ja) 浄水処理システム及び浄水処理方法
WO2016031388A1 (ja) バラスト水処理装置およびバラスト水の処理方法
KR20100001423A (ko) 다중 스트로 여과막을 구비한 복합 수처리 장치
JP6652958B2 (ja) バラスト水の製造方法及びバラスト水処理システム
JP2012206025A (ja) バラスト水製造装置およびその運転方法
JP2006000729A (ja) 船舶用バラスト水の製造方法及び製造装置
JP2007137260A (ja) バラスト水槽構造体、バラスト水製造装置及びバラスト水の製造方法
JP2012239936A (ja) 浄水処理方法及び装置
JP2008119644A (ja) バラスト水の処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007901.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117019036

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741302

Country of ref document: EP

Kind code of ref document: A1