WO2010092665A1 - Photovoltaic cell inspecting device - Google Patents

Photovoltaic cell inspecting device Download PDF

Info

Publication number
WO2010092665A1
WO2010092665A1 PCT/JP2009/052225 JP2009052225W WO2010092665A1 WO 2010092665 A1 WO2010092665 A1 WO 2010092665A1 JP 2009052225 W JP2009052225 W JP 2009052225W WO 2010092665 A1 WO2010092665 A1 WO 2010092665A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
stress
photovoltaic cell
unit
image data
Prior art date
Application number
PCT/JP2009/052225
Other languages
French (fr)
Japanese (ja)
Inventor
蒲田 喜彦
Original Assignee
株式会社ヒューブレイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヒューブレイン filed Critical 株式会社ヒューブレイン
Priority to JP2010550363A priority Critical patent/JP5261505B2/en
Priority to KR1020117015536A priority patent/KR101290520B1/en
Priority to PCT/JP2009/052225 priority patent/WO2010092665A1/en
Publication of WO2010092665A1 publication Critical patent/WO2010092665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic cell inspection apparatus capable of reliably detecting the presence or absence of fine cracks.
  • photovoltaic module in which a plurality of photoelectric conversion cells mainly made of silicon are electrically connected to form a panel.
  • the photovoltaic cell and photovoltaic module are generally expensive because the operation (output) inspection is difficult and they are still in the development stage.
  • Examples of the inspection method include a method (method 1) of evaluating photoelectric conversion output using a light source that changes sunlight, and a method of measuring current and voltage induced using an electron beam or a laser beam. Generally used (Method 2).
  • a photovoltaic module made of a gallium arsenide single crystal semiconductor used for a light emitting diode has been developed.
  • electroluminescence is generated by biasing in the forward direction.
  • a method of inspecting by observing has also been proposed (Method 3).
  • the method 1 and the method 2 are complicated in the evaluation method in the inspection.
  • the method 1 evaluates the output of the entire photovoltaic module (which is a product)
  • the photovoltaic cell is evaluated individually. is not.
  • Method 3 cannot be employed in photovoltaic cells using silicon materials that are currently most popular.
  • Patent Document 1 proposes a technique that can easily and accurately evaluate the photoelectric conversion performance of the photovoltaic cell (and photovoltaic module) without requiring a large facility.
  • Patent Document 1 discloses that when forward current is injected into at least one of single crystal and polycrystalline semiconductor silicon, electroluminescence is observed even under normal carrier injection conditions at room temperature, and the light emission thereof. Based on the fact that the intensity corresponds one-to-one with the distribution of the diffusion length of minority carriers, the main feature is that the inspection is performed as follows.
  • Patent Document 1 is a technique in which a photovoltaic cell composed mainly of a silicon semiconductor is caused to emit light by introducing a direct current in the forward direction, and is evaluated based on the light emission characteristics of the cell.
  • the photovoltaic module generates fine wrinkles (hereinafter referred to as microcracks) on its surface due to contact or the like in the manufacturing stage.
  • This microcrack is so difficult to detect that it may be in the manufacturing and shipping stage of the photovoltaic cell itself.
  • an external force such as slight distortion or bending (hereinafter referred to as stress) when assembling a photovoltaic module, Growing, the entire photovoltaic module may become unusable.
  • the problem to be solved is that it is extremely difficult to discriminate microcracks and noise in image data obtained by generating electroluminescence in a photovoltaic cell and erroneous detection occurs frequently.
  • the photovoltaic cell inspection apparatus of the present invention includes a stress applying unit for applying stress to the photovoltaic cell, an imaging unit for imaging the photovoltaic cells before and after the stress applying by the stress applying unit,
  • the main feature is that it includes a processing unit that determines the presence / absence of a defect based on the difference between the two image data obtained by the imaging unit.
  • the photovoltaic cell inspection apparatus of the present invention grows microcracks that exist by applying stress to the photovoltaic cell by the stress applying unit, and determines the presence or absence of defects based on the difference between the image data before and after the stress is applied. Therefore, there is an advantage that it is possible to reliably determine the presence or absence of a microcrack that is minute in existence and is difficult to discriminate due to confusion with noise in the image data.
  • FIG. 1 shows a configuration of a photovoltaic cell inspection apparatus according to the present invention, in which (a) is a perspective view, (b) is a view from arrow A in (a), and (c) is a view from arrow B in (a).
  • FIG. 2 is a block diagram showing the configuration of the photovoltaic cell inspection apparatus of the present invention (Example 1).
  • FIG. 3 is a diagram showing another configuration of the photovoltaic cell inspection apparatus of the present invention (Example 1).
  • FIG. 4 is a diagram showing the configuration of the photovoltaic cell inspection apparatus of the present invention (Example 2).
  • FIG. 5 is a diagram showing a microcrack inspection situation (Example 2).
  • FIG. 6 is a diagram showing another configuration using the photovoltaic cell inspection apparatus of the present invention (Example 3).
  • both photovoltaic cells before and after being stressed by the stress applying unit are imaged, and both image data This was realized by determining the presence / absence of a defect based on the difference.
  • FIGS. 1 to 3 show a mode of the first embodiment relating to the photovoltaic cell inspection apparatus 1 (hereinafter referred to as the inspection apparatus 1) of the present invention.
  • the inspection apparatus 1 is not particularly limited in its main material, but in this example, for example, a rectangular photovoltaic cell C (hereinafter referred to as a cell C), for example, made of silicon that is most widely used at present, for example, Inspects for the presence of microcracks.
  • the servo motor 2 a and the servo motor 2 a move downward together with the servo motor 2 a to the cell C. It consists of a press head 2b that contacts and presses. The press head 2b is provided with a load cell 2c.
  • the load cell 2c measures the pressing force by the press head 2b.
  • the measurement data from the load cell 2c is fed back to the control unit 11 (stress calculation unit 11A) described later for driving control of the servo motor 2a.
  • the stress applying unit 2 shown in FIG. 3 is of a type that presses in a non-contact manner, unlike the type that contacts the cell C of FIG.
  • the stress applying unit 2 shown in FIG. 3 has a compressed air nozzle 2c that moves downward until just before contacting the cell C together with the servo motor 2a and injects air of a predetermined pressure at that position.
  • the stress applying unit 2 is applied with stress by, for example, a method of hitting and playing the cell C in contact or non-contact with an external force that does not damage the normal cell C. If it does not specifically limit.
  • the stress applying unit 2 in this example is configured to be movable together with a camera 5 described later by the switching unit 11C of the control unit 11 between the center upper portion of the cell C and the position where the central part is retracted. ing.
  • the distance sensor 3 is a distance sensor provided in the cell C in contact with, for example, the back side of the portion where the stress applying unit 2 presses the cell C in this example.
  • the distance sensor 3 is connected to the stress detection unit 11B of the control unit 11.
  • the distance sensor 3 detects the amount of bending of the cell C when it is pressed with reference to the state where it is not yet pressed by the stress applying unit 2.
  • the distance sensor 3 is a contact type in this example, but may be a non-contact type.
  • the inspection apparatus 1 applies stress to the cell C to the extent necessary for the inspection by using the distance sensor 3 (with the load cell 2c in this example) without damaging the cell C in which defects such as microcracks have not occurred. It can be done.
  • the support portion 4 is a support part on which the corner of the cell C is placed.
  • the support portion 4 includes a fixed support portion 4A (with hatching shown) and a follow-up support portion 4B provided at diagonal positions of the rectangular cell C.
  • the fixed support part 4A is fixed to the installation surface and does not follow the bending of the cell C by the stress applying part 2.
  • the follower support part 4B presses the cell C from the stress applying part 2 in the installation surface direction, the follower support part 4B changes its height so as to follow this bending and sink in the installation surface direction.
  • the support portion 4 may be configured only by the fixed support portion 4A, but in particular, by providing the follow-up support portion 4B, the cell C can be easily bent, and damage caused by the stress applying portion 2 can be prevented. Can be suppressed.
  • 5 is a camera as an imaging unit that moves in place of the stress applying unit 2 above the center of the cell C. That is, the camera 5 images the cell C before and after the stress is applied by the stress applying unit 2.
  • FIG. 2 shows the configuration of the entire inspection apparatus 1.
  • the entire inspection apparatus 1 is configured to be controlled by a control unit 11 as a processing unit.
  • the control unit 11 includes a stress calculation unit 11A that is connected to the stress applying unit 2 and calculates a stress amount in the stress applying unit 2, that is, a pressing force. Further, the control unit 11 includes a stress detection unit 11B that is connected to the distance sensor 3 and detects the amount of bending of the cell C as described above.
  • control unit 11 is provided with an image processing unit 11C that performs a collation process on both pre-stressed and post-stressed image data captured by the camera 5, and performs a difference process between these image data.
  • control unit 11 includes a determination unit 11C that determines the presence or absence of a microcrack based on the difference processing result of the image processing unit 11C.
  • Reference numeral 11E denotes a switching unit that controls switching of the positions of the stress applying unit 2 and the camera 5.
  • the inspection apparatus 1 configured as described above determines the presence or absence of microcracks as follows.
  • a method is adopted in which the cell C is heated and discriminated from the degree of heat distribution.
  • the camera 5 uses an infrared camera, and the presence / absence of a microcrack is determined based on the infrared image data processed by the image processing unit 11C.
  • Example 1 the cell C is heated, and then the infrared image data A before applying stress is obtained by the camera 5. Subsequently, the camera 5 is retracted from the upper center of the cell C by the switching unit 11E, and the stress applying unit 2 is positioned above the center of the cell C.
  • the stress applying unit 2 is actuated and bent to such an extent that the cell C is not damaged. At this time, if a microcrack exists in the cell C, the crack grows. On the other hand, if there are no microcracks in cell C, no damage will occur.
  • the stress applying unit 2 After the cell C is pressed by the stress applying unit 2 and stress is applied, the stress applying unit 2 retreats again, and the camera 5 is positioned again above the center of the cell C. Then, the infrared image data B after applying stress is obtained by the camera 5.
  • the infrared image data A and B are input to the image processing unit 11C, where the image data is collated, and the difference processing between the infrared image data B and the infrared image data A is performed.
  • the infrared image data B shows microcracks that have grown if stressed.
  • the noise originally reflected in the infrared image data A and the microcracks (if present) are removed. Then, if it exists in the difference image data, only the grown microcracks remain. Of course, if it does not exist, nothing remains on the difference image data.
  • the discriminating unit 11D determines that there is any image on the difference image data, the discriminating unit discriminates that the inspected cell C has microcracks. Of course, if there is nothing, good product discrimination is performed.
  • Example 2 shown in FIG. 4 instead of the inspection method for heating the cell C in Example 1 described above, a method for introducing electroluminescence into the cell C proposed in Patent Document 1 (see FIG. 4).
  • the inspection method is referred to as EL method).
  • the inspection apparatus 1 includes a dark room 6, a probe 7, a sheet 8, and a power source 9 in addition to the configuration of the first embodiment.
  • the dark room 6 is for making it easy to capture the light emission state of the cell C with the camera 5.
  • the configuration excluding the control unit 11 is provided in the dark room 6.
  • the probe 7 is connected to the surface side of the cell C and has a comb-like shape that forms a pair connected to the negative pole of the power source 9.
  • one of the comb teeth corresponds to one of the electrodes of the cell C.
  • the sheet 8 is provided so as to contact the back side of the cell C and is connected to the positive electrode of the power source 9.
  • the sheet 8 is placed on the fixed support portion 4A and the follow-up support portion 4B. Therefore, the cell C is supported by the support portion 4 by being placed on the sheet 8.
  • the presence or absence of microcracks is inspected as follows.
  • a current is introduced from the power source 9 into the cell C through the probe 7 and the sheet 8. Then, the cell C emitted before the application of stress is imaged by the camera 5 to obtain image data A as shown in FIG. Thereafter, the stress applying unit 2 applies stress to the cell C. Note that the cell C does not need to emit light during this stress application.
  • the cell C After applying the stress, the cell C is made to emit light again under the same conditions and picked up by the camera 5 to obtain image data B as shown in FIG. Then, the image data A and B are input to the image processing unit 11C, where the image data is collated, and difference processing between the image data B and the image data A is performed.
  • image data as shown in FIG. 5C is obtained. That is, the noise originally reflected in the image data A and the microcracks (if present) are removed. Then, in the difference image data, if it exists, only the grown microcracks remain, and if it does not exist, nothing remains.
  • the discriminating unit 11D determines that there is any image on the difference image data, the discriminating unit discriminates that the inspected cell C has microcracks. Of course, if there is nothing, good product discrimination is performed. Thus, even the inspection apparatus 1 according to the second embodiment can obtain the same effects as those of the first embodiment.
  • Example 3 shown in FIG. 6 is a process in which the cell C is transported from upstream to downstream instead of the configuration in which stressing and imaging before and after stressing are performed at the same location in the above-described Examples 1 and 2. These are performed, and finally, the non-defective product and the defective product are separated.
  • Example 3 has the conveyance part 10 which mounts the cell C intermittently and conveys it sequentially from upstream to downstream.
  • This conveyance part 10 consists of a belt conveyor, and the stress provision part 2 is provided in the site
  • conveyance part 10 is divided
  • mounting conveyors 10a and 10b for individually mounting the cells C on the support part 4 are provided, respectively. Yes.
  • the camera 5 first imaging unit and the camera 5 (immediately before the site where the stress applying unit 2 is provided on the upstream side 10A and immediately after the site where the stress applying unit 2 is provided on the downstream side 10B, respectively.
  • a second imaging unit is provided.
  • a separation unit 10C for sending the cell C determined to be defective to the defective product collection path is provided downstream of the position where the camera 5 for imaging the cell C after applying stress is provided. It has been.
  • the classification unit 10C is controlled by a signal from the determination unit 11D in FIG. Moreover, in Example 3, the switching part 11E in the structure of the control part 11 shown in FIG. 2 is unnecessary.
  • Example 3 the inspection procedure will be described below assuming that the cell C is heated in the same manner as in Example 1 and is imaged by the camera 5 for infrared imaging. At this time, heating means is provided immediately upstream (upstream) of the camera 5 on the upstream side 10A, but the illustration is omitted.
  • the cells C that are sequentially sent are heated in order from the upstream side 10A, and immediately after being imaged by the camera 5 (infrared image data A) and sent to the position of the stress applying unit 2, stress is applied here. .
  • the cell C moves to the downstream side 10B and is imaged by the camera 5 (infrared image data B), and the microcrack is generated based on the infrared image data B and A during conveyance of the downstream side 10B. The presence or absence of is determined.
  • the defective cell C determined to have a microcrack is sorted into the collection path by the operation of the sorting unit 10C based on the control of the determination unit 11D of the control unit 11. On the other hand, a non-defective cell C determined to have no microcracks. Since the sorting unit 10C does not operate, the sorting unit 10C is transported as it is to the downstream of the downstream side 10B, such as a non-defective product collecting unit, packaging, and assembly. *
  • the time for switching between the camera 5 and the stress applying unit 2 can be shortened, so that a large number of microcracks can be inspected in a short time and efficiently. Therefore, it can contribute to the cost reduction of the cell C and the photovoltaic module and panel.
  • the inspection can be performed regardless of the state of imaging by the camera. Therefore, it can be applied in various situations, whether indoors or outdoors.

Abstract

Fine cracks of a photovoltaic cell are surely detected from image data. A stress is applied to the photovoltaic cell, images of the photovoltaic cell before and after the stress is applied are picked up, and whether there is a defect or not is judged based on a difference between the data of the both images.

Description

光発電セル検査装置Photovoltaic cell inspection device
 本発明は、微細なクラックの有無を確実に検知できる光発電セル検査装置に関する。 The present invention relates to a photovoltaic cell inspection apparatus capable of reliably detecting the presence or absence of fine cracks.
 シリコンを主材料とする光電変換セルを複数電気的に接続してパネル状とした光発電モジュールが知られている。この光発電セル及び光発電モジュールは、動作(出力)検査が困難で、かつ未だ開発段階にあるため、一般的に高コストとなっている。 There is known a photovoltaic module in which a plurality of photoelectric conversion cells mainly made of silicon are electrically connected to form a panel. The photovoltaic cell and photovoltaic module are generally expensive because the operation (output) inspection is difficult and they are still in the development stage.
 上記検査の手法としては、例えば太陽光の変わりとなる光源を用いて光電変換出力を評価する手法(手法1)、電子線やレーザビームを用いて誘起される電流や電圧を測定する手法、が一般的に用いられている(手法2)。 Examples of the inspection method include a method (method 1) of evaluating photoelectric conversion output using a light source that changes sunlight, and a method of measuring current and voltage induced using an electron beam or a laser beam. Generally used (Method 2).
 また、発光ダイオードに用いられるガリウムヒ素系単結晶半導体からなる光発電モジュールが開発され、この光発電モジュールに関しては、発光ダイオードと同様に、順方向にバイアスすることでエレクトロルミネセンスを生じ、これを観察することで検査する手法も提案されている(手法3)。 In addition, a photovoltaic module made of a gallium arsenide single crystal semiconductor used for a light emitting diode has been developed. As for the photovoltaic module, as in the light emitting diode, electroluminescence is generated by biasing in the forward direction. A method of inspecting by observing has also been proposed (Method 3).
 ところが、上記手法1及び手法2は検査における評価方法が複雑であり、また、特に手法1は(製品となる)光発電モジュール全体の出力を評価するから、光発電セル個別の評価が行われるわけではない。さらに、手法3は、現状最も普及しているシリコン系材料を用いた光発電セルにおいて採用できない。 However, the method 1 and the method 2 are complicated in the evaluation method in the inspection. In particular, since the method 1 evaluates the output of the entire photovoltaic module (which is a product), the photovoltaic cell is evaluated individually. is not. Furthermore, Method 3 cannot be employed in photovoltaic cells using silicon materials that are currently most popular.
 そこで、以下の特許文献1には、大型の設備を要することなく、簡便かつ正確に光発電セル(及び光発電モジュール)の光電変換性能について評価することができる手法が提案されている。
再公表WO2006/059615号公報
Therefore, Patent Document 1 below proposes a technique that can easily and accurately evaluate the photoelectric conversion performance of the photovoltaic cell (and photovoltaic module) without requiring a large facility.
Re-published WO2006 / 059615
 特許文献1は、単結晶、多結晶、の少なくとも一方の半導体シリコンに対して順方向電流を注入した際、室温下の通常のキャリア注入条件においてもエレクトロルミネセンスが観測される点と、その発光強度が少数キャリアの拡散長の分布と1対1で対応している点とに基づいて、次のように検査する点を主要な特徴としている。 Patent Document 1 discloses that when forward current is injected into at least one of single crystal and polycrystalline semiconductor silicon, electroluminescence is observed even under normal carrier injection conditions at room temperature, and the light emission thereof. Based on the fact that the intensity corresponds one-to-one with the distribution of the diffusion length of minority carriers, the main feature is that the inspection is performed as follows.
 すなわち、特許文献1は、シリコン半導体を主要部材として構成された光発電セルに対して、順方向に直流電流を導入して発光させ、該セルの発光特性により評価する、という手法である。 That is, Patent Document 1 is a technique in which a photovoltaic cell composed mainly of a silicon semiconductor is caused to emit light by introducing a direct current in the forward direction, and is evaluated based on the light emission characteristics of the cell.
 ところで、最近では、シリコン系材料を用いた光発電セルの厚さがしだいに薄くなってきている。こうした状況にあって、光発電モジュールは、製造段階において接触などによりその面に微細な疵(以下、マイクロクラックという)が発生する。 By the way, recently, the thickness of photovoltaic cells using silicon-based materials has been gradually reduced. Under such circumstances, the photovoltaic module generates fine wrinkles (hereinafter referred to as microcracks) on its surface due to contact or the like in the manufacturing stage.
 このマイクロクラックは、そのままで光発電セル自体の製造及び出荷段階されることもあるほど検出が困難である。そして、マイクロクラックが生じている光発電セルは、例えば光発電モジュールを構成する際、組み立て時に些細な歪みや撓みなどの外的な力を受ける(以下、これらをストレスという)と、マイクロクラックが成長し、光発電モジュール全体が使用不可能となる場合がある。 This microcrack is so difficult to detect that it may be in the manufacturing and shipping stage of the photovoltaic cell itself. When a photovoltaic cell in which microcracks are generated receives, for example, an external force such as slight distortion or bending (hereinafter referred to as stress) when assembling a photovoltaic module, Growing, the entire photovoltaic module may become unusable.
 特許文献1における手法では、エレクトロルミネセンスが生じた光発電セルを撮像して得た画像データを解析することでクラックを発見する。しかし、画像データ中には、いわゆるデータノイズが多数含まれているほか、マイクロクラックを見付けようとするとかなりの倍率でデータを拡大するなどする必要があるうえ、それがマイクロクラックかノイズかを判別することが困難であった。 In the method in Patent Document 1, a crack is found by analyzing image data obtained by imaging a photovoltaic cell in which electroluminescence has occurred. However, the image data contains a lot of so-called data noise, and when trying to find a microcrack, it is necessary to enlarge the data at a considerable magnification and determine whether it is a microcrack or noise. It was difficult to do.
 解決しようとする問題点は、光発電セルにエレクトロルミネセンスを生じさせて撮像した画像データにおいてマイクロクラックとノイズを判別することが極めて困難で、誤検知が多発する点である。 The problem to be solved is that it is extremely difficult to discriminate microcracks and noise in image data obtained by generating electroluminescence in a photovoltaic cell and erroneous detection occurs frequently.
 本発明の光発電セル検査装置は、光発電セルにストレスを与えるためのストレス付与部と、前記ストレス付与部によるストレスが与えられる前と後の両者の光発電セルを撮像する撮像部と、この撮像部で得た両者の画像データの差分に基づいて欠陥の有無を判定する処理部とを備えたことを最も主要な特徴とする。 The photovoltaic cell inspection apparatus of the present invention includes a stress applying unit for applying stress to the photovoltaic cell, an imaging unit for imaging the photovoltaic cells before and after the stress applying by the stress applying unit, The main feature is that it includes a processing unit that determines the presence / absence of a defect based on the difference between the two image data obtained by the imaging unit.
 本発明の光発電セル検査装置は、ストレス付与部により光発電セルにストレスを与えて存在しているマイクロクラックを成長させ、ストレスが与えられる前後の画像データの差分に基づいて欠陥の有無を判定するから、存在自体が微細でかつ画像データ中のノイズと混同して判別が困難なマイクロクラックの有無を確実に判別することが可能となるという利点がある。 The photovoltaic cell inspection apparatus of the present invention grows microcracks that exist by applying stress to the photovoltaic cell by the stress applying unit, and determines the presence or absence of defects based on the difference between the image data before and after the stress is applied. Therefore, there is an advantage that it is possible to reliably determine the presence or absence of a microcrack that is minute in existence and is difficult to discriminate due to confusion with noise in the image data.
図1は本発明の光発電セル検査装置の構成を示し、(a)は斜視図、(b)は(a)のA矢視図、(c)は(a)のB矢視図、である(実施例1)。FIG. 1 shows a configuration of a photovoltaic cell inspection apparatus according to the present invention, in which (a) is a perspective view, (b) is a view from arrow A in (a), and (c) is a view from arrow B in (a). There is (Example 1). 図2は本発明の光発電セル検査装置の構成を示すブロック図である(実施例1)。FIG. 2 is a block diagram showing the configuration of the photovoltaic cell inspection apparatus of the present invention (Example 1). 図3は本発明の光発電セル検査装置の他の構成を示す図である(実施例1)。FIG. 3 is a diagram showing another configuration of the photovoltaic cell inspection apparatus of the present invention (Example 1). 図4は本発明の光発電セル検査装置の構成を示す図である(実施例2)。FIG. 4 is a diagram showing the configuration of the photovoltaic cell inspection apparatus of the present invention (Example 2). 図5はマイクロクラック検査状況を示す図である(実施例2)。FIG. 5 is a diagram showing a microcrack inspection situation (Example 2). 図6は本発明の光発電セル検査装置を用いた他の構成を示す図である(実施例3)。FIG. 6 is a diagram showing another configuration using the photovoltaic cell inspection apparatus of the present invention (Example 3).
符号の説明Explanation of symbols
 1  (光発電セル)検査装置
 2  ストレス付与部
 3  距離センサ
 4  支持部
 4A 固定支持部
 4B 追従支持部
 5  カメラ
 11C画像処理部
 11D判別部
DESCRIPTION OF SYMBOLS 1 (Photovoltaic cell) Inspection apparatus 2 Stress application part 3 Distance sensor 4 Support part 4A Fixed support part 4B Following support part 5 Camera 11C Image processing part 11D discrimination | determination part
 画像処理技術を用いた場合におけるマイクロクラックとノイズを判別して誤検知を抑制するという目的を、ストレス付与部によるストレスが与えられる前と後の両者の光発電セルを撮像し、両者の画像データの差分に基づいて欠陥の有無を判定することで実現した。 In order to suppress micro-detection by detecting microcracks and noise when using image processing technology, both photovoltaic cells before and after being stressed by the stress applying unit are imaged, and both image data This was realized by determining the presence / absence of a defect based on the difference.
 図1~図3には、本発明の光発電セル検査装置1(以下、検査装置1と記す)に関する実施例1の態様を示している。検査装置1は、その主材料を特に限定しないが、本例では例えば現状最も普及しているシリコンを主原料とした、例えば矩形の光発電セルC(以下、セルCと記す)の疵、特にマイクロクラックの有無を検査するものである。 FIGS. 1 to 3 show a mode of the first embodiment relating to the photovoltaic cell inspection apparatus 1 (hereinafter referred to as the inspection apparatus 1) of the present invention. The inspection apparatus 1 is not particularly limited in its main material, but in this example, for example, a rectangular photovoltaic cell C (hereinafter referred to as a cell C), for example, made of silicon that is most widely used at present, for example, Inspects for the presence of microcracks.
 2は、セルCの中央上方から、設置面へ向けて該セルCを押圧するストレス付与部である。ストレス付与部2は、上記のとおり、セルCの上方から設置面に向けて押圧するものであり、図1に示す構成ではサーボモータ2aと、このサーボモータ2aと共に下方へ移動してセルCに接触して押圧するプレスヘッド2bとからなる。また、プレスヘッド2bにはロードセル2cが設けられている。 2 is a stress applying unit that presses the cell C from above the center of the cell C toward the installation surface. As described above, the stress applying unit 2 is pressed from above the cell C toward the installation surface. In the configuration shown in FIG. 1, the servo motor 2 a and the servo motor 2 a move downward together with the servo motor 2 a to the cell C. It consists of a press head 2b that contacts and presses. The press head 2b is provided with a load cell 2c.
 ロードセル2cは、プレスヘッド2bによる押圧力を測定している。ロードセル2cによる測定データは、後述の制御部11(ストレス算出部11A)へ、サーボモータ2aの駆動制御のためにフィードバックされる。 The load cell 2c measures the pressing force by the press head 2b. The measurement data from the load cell 2c is fed back to the control unit 11 (stress calculation unit 11A) described later for driving control of the servo motor 2a.
 一方、図3に示すストレス付与部2は、図1のセルCに接触するタイプとは異なり、非接触にて押圧するタイプのものである。図3に示すストレス付与部2は、サーボモータ2aと共にセルCに接触する直前まで下方へ移動して、その位置にて所定圧力の空気を噴射する圧空ノズル2cを有している。 On the other hand, the stress applying unit 2 shown in FIG. 3 is of a type that presses in a non-contact manner, unlike the type that contacts the cell C of FIG. The stress applying unit 2 shown in FIG. 3 has a compressed air nozzle 2c that moves downward until just before contacting the cell C together with the servo motor 2a and injects air of a predetermined pressure at that position.
 ストレス付与部2は、図3の他、正常なセルCを損傷することのない程度の外力によって、例えばセルCに接触又は非接触にて、叩く、弾く、などの手法によりストレスが付与されるならば特に限定しない。 In addition to FIG. 3, the stress applying unit 2 is applied with stress by, for example, a method of hitting and playing the cell C in contact or non-contact with an external force that does not damage the normal cell C. If it does not specifically limit.
 なお、本例におけるストレス付与部2は、セルCの中央上方と、この中央部位を退避した位置との間で、制御部11の切換部11Cにより、後述のカメラ5と共に移動可能な構成とされている。 Note that the stress applying unit 2 in this example is configured to be movable together with a camera 5 described later by the switching unit 11C of the control unit 11 between the center upper portion of the cell C and the position where the central part is retracted. ing.
 3は、セルCにおいて、ストレス付与部2がセルCを押圧する部位の裏面側に本例では例えば接触して設けられた距離センサである。この距離センサ3は、制御部11のストレス検知部11Bと接続している。距離センサ3は、ストレス付与部2により未だ押圧されていない状態を基準とし、押圧された際のセルCの撓み量を検知する。距離センサ3は、本例では接触式にしているが非接触式であってもよい。 3 is a distance sensor provided in the cell C in contact with, for example, the back side of the portion where the stress applying unit 2 presses the cell C in this example. The distance sensor 3 is connected to the stress detection unit 11B of the control unit 11. The distance sensor 3 detects the amount of bending of the cell C when it is pressed with reference to the state where it is not yet pressed by the stress applying unit 2. The distance sensor 3 is a contact type in this example, but may be a non-contact type.
 すなわち、検査装置1は、(本例ではロードセル2cと)距離センサ3により、マイクロクラック等の欠陥が発生していないセルCを損傷させることなく検査に必要な程度に該セルCにストレスを与えることができるのである。 That is, the inspection apparatus 1 applies stress to the cell C to the extent necessary for the inspection by using the distance sensor 3 (with the load cell 2c in this example) without damaging the cell C in which defects such as microcracks have not occurred. It can be done.
 4は、セルCの隅部を載置する支持部である。この支持部4は、本例においては、矩形のセルCの対角位置に設けられた、固定支持部4A(図示ハッチング付)と追従支持部4Bとからなる。 4 is a support part on which the corner of the cell C is placed. In this example, the support portion 4 includes a fixed support portion 4A (with hatching shown) and a follow-up support portion 4B provided at diagonal positions of the rectangular cell C.
 固定支持部4Aは、設置面に対して固定であり、ストレス付与部2によるセルCの撓みに追従しない。一方、追従支持部4Bは、ストレス付与部2から設置面方向にセルCを押圧した場合には、この撓みに追従して設置面方向に沈むように高さが変更する。 The fixed support part 4A is fixed to the installation surface and does not follow the bending of the cell C by the stress applying part 2. On the other hand, when the follower support part 4B presses the cell C from the stress applying part 2 in the installation surface direction, the follower support part 4B changes its height so as to follow this bending and sink in the installation surface direction.
 支持部4は、固定支持部4Aのみで構成しても構わないが、特に、追従支持部4Bを設けていることで、セルCを撓みやすくさせることができると共に、ストレス付与部2による損傷を抑制することができる。 The support portion 4 may be configured only by the fixed support portion 4A, but in particular, by providing the follow-up support portion 4B, the cell C can be easily bent, and damage caused by the stress applying portion 2 can be prevented. Can be suppressed.
 5は、本例の場合は、セルCの中央上方において、ストレス付与部2と交代で移動する撮像部としてのカメラである。すなわち、カメラ5は、ストレス付与部2によるストレスが与えられる前と後のセルCを撮像する。 In the case of this example, 5 is a camera as an imaging unit that moves in place of the stress applying unit 2 above the center of the cell C. That is, the camera 5 images the cell C before and after the stress is applied by the stress applying unit 2.
 上記が、セルC周辺に設けられる検査装置1の構成であり、図2には検査装置1全体の構成を示している。図2において、検査装置1は、全体が処理部としての制御部11により制御されるように構成されている。 The above is the configuration of the inspection apparatus 1 provided around the cell C, and FIG. 2 shows the configuration of the entire inspection apparatus 1. In FIG. 2, the entire inspection apparatus 1 is configured to be controlled by a control unit 11 as a processing unit.
 制御部11には、ストレス付与部2と接続し、該ストレス付与部2におけるストレス量、すなわち押圧力などを算出するストレス算出部11Aを有している。また、制御部11には、距離センサ3と接続し、上記のようにセルCの撓み量を検知するストレス検知部11Bを有している。 The control unit 11 includes a stress calculation unit 11A that is connected to the stress applying unit 2 and calculates a stress amount in the stress applying unit 2, that is, a pressing force. Further, the control unit 11 includes a stress detection unit 11B that is connected to the distance sensor 3 and detects the amount of bending of the cell C as described above.
 さらに、制御部11には、カメラ5で撮像した、ストレス付与前とストレス付与後の両画像データを照合処理し、これら画像データの差分処理を行う画像処理部11Cを設けている。また、制御部11には、この画像処理部11Cの差分処理の結果に基づいて、マイクロクラックの有無を判別する判別部11Cを有している。なお、11Eは、ストレス付与部2とカメラ5との位置の切換を制御する切換部である。 Furthermore, the control unit 11 is provided with an image processing unit 11C that performs a collation process on both pre-stressed and post-stressed image data captured by the camera 5, and performs a difference process between these image data. In addition, the control unit 11 includes a determination unit 11C that determines the presence or absence of a microcrack based on the difference processing result of the image processing unit 11C. Reference numeral 11E denotes a switching unit that controls switching of the positions of the stress applying unit 2 and the camera 5.
 上記構成の検査装置1は、実施例1においては、次のようにしてマイクロクラックの有無を判別する。実施例1では、セルCを加熱してその熱量分布の度合いから判別する手法を採用する。このとき、カメラ5は赤外線カメラを用い、画像処理部11Cにて処理した赤外線画像データに基づいてマイクロクラックの有無の判別が行われる。 In the first embodiment, the inspection apparatus 1 configured as described above determines the presence or absence of microcracks as follows. In the first embodiment, a method is adopted in which the cell C is heated and discriminated from the degree of heat distribution. At this time, the camera 5 uses an infrared camera, and the presence / absence of a microcrack is determined based on the infrared image data processed by the image processing unit 11C.
 実施例1では、セルCを加熱し、その後、カメラ5により、ストレス付与前の赤外線画像データAを得る。続いて、切換部11Eによって、カメラ5をセルCの中央上方から退避させると共に、ストレス付与部2をセルCの中央上方に位置させる。 In Example 1, the cell C is heated, and then the infrared image data A before applying stress is obtained by the camera 5. Subsequently, the camera 5 is retracted from the upper center of the cell C by the switching unit 11E, and the stress applying unit 2 is positioned above the center of the cell C.
 そして、ストレス付与部2を作動させ、セルCを損傷させることのない程度に撓ませる。このとき、セルCにマイクロクラックが存在するならば、クラックは成長する。一方、セルCにマイクロクラックが存在しないならば、何ら損傷しない。 Then, the stress applying unit 2 is actuated and bent to such an extent that the cell C is not damaged. At this time, if a microcrack exists in the cell C, the crack grows. On the other hand, if there are no microcracks in cell C, no damage will occur.
 ストレス付与部2によりセルCを押圧してストレスを付与した後、該ストレス付与部2が再度退避すると共に、再度カメラ5がセルCの中央上方に位置する。そして、カメラ5により、ストレス付与後の赤外線画像データBを得る。 After the cell C is pressed by the stress applying unit 2 and stress is applied, the stress applying unit 2 retreats again, and the camera 5 is positioned again above the center of the cell C. Then, the infrared image data B after applying stress is obtained by the camera 5.
 赤外線画像データA,Bは、画像処理部11Cに入力され、ここで画像データが照合され、赤外線画像データBと赤外線画像データAの差分処理を行う。すなわち赤外線画像データBにはストレス付与によって存在するとすれば成長したマイクロクラックが映っている。 The infrared image data A and B are input to the image processing unit 11C, where the image data is collated, and the difference processing between the infrared image data B and the infrared image data A is performed. In other words, the infrared image data B shows microcracks that have grown if stressed.
 赤外線画像データBからストレス付与前の赤外線画像データAを差し引くことで、赤外線画像データAに元々映っていたノイズと(存在する場合の)マイクロクラックが除去される。すると、差分画像データには、存在するとした場合には成長したマイクロクラックのみが残ることとなる。もちろん、存在しないならば、差分画像データ上には何も残らない。 By subtracting the infrared image data A before applying stress from the infrared image data B, the noise originally reflected in the infrared image data A and the microcracks (if present) are removed. Then, if it exists in the difference image data, only the grown microcracks remain. Of course, if it does not exist, nothing remains on the difference image data.
 判別部11Dは、この差分画像データ上に、何らかの像の存在が有ると判断した場合、今、検査したセルCには、マイクロクラックが存在するものとして不良品判別を行う。もちろん、何も存在しない場合は、良品判別を行う。 When the discriminating unit 11D determines that there is any image on the difference image data, the discriminating unit discriminates that the inspected cell C has microcracks. Of course, if there is nothing, good product discrimination is performed.
 このように、本発明の検査装置1であれば、例えノイズが多い状況下にあっても、ストレスを付与し、ストレス付与前後の画像データの差分を取るから、極めて微細なマイクロクラックの有無を確実に行うことができる。 Thus, with the inspection apparatus 1 of the present invention, stress is applied even in a noisy situation, and the difference between the image data before and after the stress is applied. It can be done reliably.
 図4に示す実施例2は、上記実施例1おけるセルCを加熱する検査手法に代えて、特許文献1で提案されている、セルCに電流を導入してエレクトロルミネセンスを生じさせる手法(以下、EL法という)による検査手法とした。 In Example 2 shown in FIG. 4, instead of the inspection method for heating the cell C in Example 1 described above, a method for introducing electroluminescence into the cell C proposed in Patent Document 1 (see FIG. 4). Hereinafter, the inspection method is referred to as EL method).
 検査装置1は、実施例1の構成に加えて、暗室6、プローブ7、シート8、電源9、を備えている。暗室6は、セルCの発光状態をカメラ5により撮像しやすくするためのものである。実施例1の構成のうち制御部11を除く構成は暗室6内に設けられる。 The inspection apparatus 1 includes a dark room 6, a probe 7, a sheet 8, and a power source 9 in addition to the configuration of the first embodiment. The dark room 6 is for making it easy to capture the light emission state of the cell C with the camera 5. In the configuration of the first embodiment, the configuration excluding the control unit 11 is provided in the dark room 6.
 プローブ7は、セルCの表面側に接続されると共に電源9のマイナス極に接続された対をなす櫛状とされたものである。このプローブ7は、櫛の歯の1つがセルCの電極の1つに対応している。 The probe 7 is connected to the surface side of the cell C and has a comb-like shape that forms a pair connected to the negative pole of the power source 9. In the probe 7, one of the comb teeth corresponds to one of the electrodes of the cell C.
 シート8は、セルCの裏面側に接触するように設けられると共に電源9のプラス極に接続されている。また、シート8は、実施例2の場合、固定支持部4A及び追従支持部4Bに載置されている。よって、セルCは、このシート8上に載置することで支持部4に支持されることとなる。 The sheet 8 is provided so as to contact the back side of the cell C and is connected to the positive electrode of the power source 9. In the case of Example 2, the sheet 8 is placed on the fixed support portion 4A and the follow-up support portion 4B. Therefore, the cell C is supported by the support portion 4 by being placed on the sheet 8.
 EL法によってセルCを発光させる原理及びその詳細な手法や条件はここでは割愛するが、本発明の検査装置1における実施例2においては、次のようにしてマイクロクラックの有無を検査する。 Although the principle of light emission of the cell C by the EL method and its detailed method and conditions are omitted here, in the second embodiment of the inspection apparatus 1 of the present invention, the presence or absence of microcracks is inspected as follows.
 暗室6内において、電源9からプローブ7及びシート8を介してセルCに電流を導入する。そして、ストレス付与前に発光させたセルCをカメラ5にて撮像し、図5(a)に示すような画像データAを得る。その後、ストレス付与部2によりセルCにストレスを付与する。なお、このストレス付与時においては、セルCは発光させていなくてもよい。 In the dark room 6, a current is introduced from the power source 9 into the cell C through the probe 7 and the sheet 8. Then, the cell C emitted before the application of stress is imaged by the camera 5 to obtain image data A as shown in FIG. Thereafter, the stress applying unit 2 applies stress to the cell C. Note that the cell C does not need to emit light during this stress application.
 ストレス付与後に、再度同じ条件でセルCを発光させて、カメラ5にて撮像し、図5(b)に示すような画像データBを得る。そして、画像データA,Bは、画像処理部11Cに入力され、ここで画像データが照合され、画像データBと画像データAの差分処理を行う。 After applying the stress, the cell C is made to emit light again under the same conditions and picked up by the camera 5 to obtain image data B as shown in FIG. Then, the image data A and B are input to the image processing unit 11C, where the image data is collated, and difference processing between the image data B and the image data A is performed.
 画像データBからストレス付与前の画像データAを差し引くことで、図5(c)に示すような画像データが得られる。すなわち、画像データAに元々映っていたノイズと(存在する場合の)マイクロクラックが除去される。すると、差分画像データには、存在するとした場合には成長したマイクロクラックのみが残り、存在しない場合には何も残らない。  By subtracting the image data A before applying stress from the image data B, image data as shown in FIG. 5C is obtained. That is, the noise originally reflected in the image data A and the microcracks (if present) are removed. Then, in the difference image data, if it exists, only the grown microcracks remain, and if it does not exist, nothing remains. *
 判別部11Dは、この差分画像データ上に、何らかの像の存在が有ると判断した場合、今、検査したセルCには、マイクロクラックが存在するものとして不良品判別を行う。もちろん、何も存在しない場合は、良品判別を行う。このように、実施例2の検査装置1であっても実施例1と同様の作用効果を得ることができる。 When the discriminating unit 11D determines that there is any image on the difference image data, the discriminating unit discriminates that the inspected cell C has microcracks. Of course, if there is nothing, good product discrimination is performed. Thus, even the inspection apparatus 1 according to the second embodiment can obtain the same effects as those of the first embodiment.
 図6に示す実施例3は、上記実施例1及び2では、同一箇所にてストレス付与とストレス付与前後の撮像を行っていた構成に代えて、セルCを上流から下流へと搬送する過程で、これらを行って、最終的に良品と不良品とを分別するように構成している。 Example 3 shown in FIG. 6 is a process in which the cell C is transported from upstream to downstream instead of the configuration in which stressing and imaging before and after stressing are performed at the same location in the above-described Examples 1 and 2. These are performed, and finally, the non-defective product and the defective product are separated.
 すなわち、実施例3は、セルCを間欠的に載置して順次上流から下流へと搬送する搬送部10を有している。この搬送部10は、ベルトコンベアでなり、搬送経路の途中部位にストレス付与部2が設けられている。 That is, Example 3 has the conveyance part 10 which mounts the cell C intermittently and conveys it sequentially from upstream to downstream. This conveyance part 10 consists of a belt conveyor, and the stress provision part 2 is provided in the site | part of the conveyance path | route.
 そして、搬送部10は、ストレス付与部2が設けられて位置を中心に、上流側10Aと下流側10Bとに分断されている。上流側10Aと渦流側10Bの互いに対向する端部には、セルCを支持部4(固定支持部4A及び追従支持部4B)に個別に載置する載置コンベア10a,10bが各々設けられている。 And the conveyance part 10 is divided | segmented into the upstream 10A and the downstream 10B centering on the position in which the stress provision part 2 was provided. On opposite ends of the upstream side 10A and the vortex side 10B, mounting conveyors 10a and 10b for individually mounting the cells C on the support part 4 (fixed support part 4A and follow-up support part 4B) are provided, respectively. Yes.
 また、上流側10Aにおけるストレス付与部2が設けられた部位直前と、下流側10Bにおけるストレス付与部2が設けられた部位直後とには、各々カメラ5(第1の撮像部)とカメラ5(第2の撮像部)が設けられている。 The camera 5 (first imaging unit) and the camera 5 (immediately before the site where the stress applying unit 2 is provided on the upstream side 10A and immediately after the site where the stress applying unit 2 is provided on the downstream side 10B, respectively. A second imaging unit) is provided.
 さらに、下流側10Bにおいて、ストレス付与後のセルCを撮像するカメラ5が設けられた位置の下流には、不良品と判別されたセルCを不良品回収経路に送るための分別部10Cが設けられている。この分別部10Cは、図2における判別部11Dからの信号によって制御されている。また、実施例3では、図2に示す制御部11の構成における切換部11Eは不要である。 Further, on the downstream side 10B, a separation unit 10C for sending the cell C determined to be defective to the defective product collection path is provided downstream of the position where the camera 5 for imaging the cell C after applying stress is provided. It has been. The classification unit 10C is controlled by a signal from the determination unit 11D in FIG. Moreover, in Example 3, the switching part 11E in the structure of the control part 11 shown in FIG. 2 is unnecessary.
 実施例3においては、実施例1と同じくセルCを加熱し、これを赤外線撮像用のカメラ5で撮像するものとして、以下、検査手順を説明する。なお、このとき、上流側10Aのカメラ5の直前(上流)には、加熱手段を設けているが図示は省略している。 In Example 3, the inspection procedure will be described below assuming that the cell C is heated in the same manner as in Example 1 and is imaged by the camera 5 for infrared imaging. At this time, heating means is provided immediately upstream (upstream) of the camera 5 on the upstream side 10A, but the illustration is omitted.
 順次送られるセルCは、上流側10Aから、順に、加熱され、直後にカメラ5にて撮像され(赤外線画像データA)、ストレス付与部2の位置に送られると、ここでストレスが付与される。 The cells C that are sequentially sent are heated in order from the upstream side 10A, and immediately after being imaged by the camera 5 (infrared image data A) and sent to the position of the stress applying unit 2, stress is applied here. .
 ストレスが付与された後、セルCは、下流側10Bに移行してカメラ5にて撮像され(赤外線画像データB)、下流側10Bの搬送中に、赤外線画像データB及びAに基づいてマイクロクラックの有無が判別される。 After the stress is applied, the cell C moves to the downstream side 10B and is imaged by the camera 5 (infrared image data B), and the microcrack is generated based on the infrared image data B and A during conveyance of the downstream side 10B. The presence or absence of is determined.
 マイクロクラックが有ると判断された不良品のセルCは、制御部11の判別部11Dの制御に基づいて分別部10Cの作動によって、回収経路に分別される。一方、マイクロクラックが無いと判断された良品のセルCは。分別部10Cが作動しないので、そのまま下流側10Bのさらに下流の、良品回収部、こん包、組み立て、などの工程へ搬送される。  The defective cell C determined to have a microcrack is sorted into the collection path by the operation of the sorting unit 10C based on the control of the determination unit 11D of the control unit 11. On the other hand, a non-defective cell C determined to have no microcracks. Since the sorting unit 10C does not operate, the sorting unit 10C is transported as it is to the downstream of the downstream side 10B, such as a non-defective product collecting unit, packaging, and assembly. *
 実施例3であれば、実施例1の作用効果に加え、カメラ5とストレス付与部2の切換の時間を短縮できるので、短時間でかつ大量のすなわち効率よくマイクロクラックの検査が可能になる。したがって、セルCひいては光発電モジュールやパネルの低廉化に寄与できる。 In the third embodiment, in addition to the operational effects of the first embodiment, the time for switching between the camera 5 and the stress applying unit 2 can be shortened, so that a large number of microcracks can be inspected in a short time and efficiently. Therefore, it can contribute to the cost reduction of the cell C and the photovoltaic module and panel.
 ストレス付与前後の画像データによりマイクロクラックの有無を判別するから、カメラによる撮像状況に左右されずに検査が可能である。よって、屋内外を問わず、様々な状況下でも適用できる。 Since the presence or absence of microcracks is determined based on the image data before and after applying stress, the inspection can be performed regardless of the state of imaging by the camera. Therefore, it can be applied in various situations, whether indoors or outdoors.

Claims (4)

  1.  光発電セルの欠陥を検出する光発電セル検査装置において、光発電セルにストレスを与えるためのストレス付与部と、前記ストレス付与部によるストレスが与えられる前と後の両者の光発電セルを撮像する撮像部と、この撮像部で得た両者の画像データの差分に基づいて欠陥の有無を判定する処理部とを備えたことを特徴とする光発電セル検査装置。 In a photovoltaic cell inspection apparatus for detecting a defect in a photovoltaic cell, a stress applying unit for applying stress to the photovoltaic cell, and both photovoltaic cells before and after the stress applied by the stress applying unit are imaged A photovoltaic cell inspection apparatus comprising: an imaging unit; and a processing unit that determines the presence / absence of a defect based on a difference between the image data obtained by the imaging unit.
  2.  光発電セルの隅部に設けられ、固定的に支持する固定支持部と、ストレス付与部による光発電セルのストレス付与方向に追従して支持する追従支持部と、を備えたことを特徴とする請求項1記載の光発電セル検査装置。 A fixed support portion provided at a corner of the photovoltaic cell and fixedly supported, and a follow-up support portion that supports and supports the stress applying direction of the photovoltaic cell by the stress applying portion. The photovoltaic cell inspection apparatus according to claim 1.
  3.  ストレス付与部による光発電セルに対するストレス量を検知するストレス検知部を設けたことを特徴とする請求項1又は2記載の光発電セル検査装置。 3. The photovoltaic cell inspection apparatus according to claim 1, further comprising a stress detection unit that detects the amount of stress applied to the photovoltaic cell by the stress applying unit.
  4.  光発電セルを間欠的に載置して順次上流から下流へと搬送する搬送部を有し、この搬送部の上流側から順に、第1の撮像部、ストレス付与部、第2の撮像部、とを設けたことを特徴とする請求項1~請求項3のいずれかに記載の光発電セル検査装置。 It has a transport unit that intermittently mounts photovoltaic cells and transports them sequentially from upstream to downstream, and in order from the upstream side of this transport unit, in order, a first imaging unit, a stress applying unit, a second imaging unit, The photovoltaic cell inspection apparatus according to any one of claims 1 to 3, wherein the photovoltaic cell inspection apparatus is provided.
PCT/JP2009/052225 2009-02-10 2009-02-10 Photovoltaic cell inspecting device WO2010092665A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010550363A JP5261505B2 (en) 2009-02-10 2009-02-10 Photovoltaic cell inspection device
KR1020117015536A KR101290520B1 (en) 2009-02-10 2009-02-10 Photovoltaic cell inspecting device
PCT/JP2009/052225 WO2010092665A1 (en) 2009-02-10 2009-02-10 Photovoltaic cell inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052225 WO2010092665A1 (en) 2009-02-10 2009-02-10 Photovoltaic cell inspecting device

Publications (1)

Publication Number Publication Date
WO2010092665A1 true WO2010092665A1 (en) 2010-08-19

Family

ID=42561518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052225 WO2010092665A1 (en) 2009-02-10 2009-02-10 Photovoltaic cell inspecting device

Country Status (3)

Country Link
JP (1) JP5261505B2 (en)
KR (1) KR101290520B1 (en)
WO (1) WO2010092665A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2488548A (en) * 2011-02-28 2012-09-05 Rec Wafer Norway As On-line testing for mechanical stability of sheet material by applying twist
KR101282293B1 (en) * 2011-07-13 2013-07-10 한국에너지기술연구원 Stress testing device for photovoltaic module and testing method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219538A (en) * 1988-02-26 1989-09-01 Shimadzu Corp Test-piece cracking observing device
JPH02236142A (en) * 1989-03-08 1990-09-19 Nec Corp Adhesion strength measuring apparatus
JP2002343989A (en) * 2001-05-11 2002-11-29 Mitsubishi Electric Corp Substrate screening device and substrate screening method
JP2003298081A (en) * 2002-04-04 2003-10-17 Toyama Kikai Kk Method and system for inspecting solar cell
JP2004251641A (en) * 2003-02-18 2004-09-09 Sharp Corp Apparatus and method for inspecting semiconductor wafer
JP2008026113A (en) * 2006-07-20 2008-02-07 Japan Aerospace Exploration Agency Defect inspection device of solar cell and method for inspecting defect of solar cell
JP2008224432A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Defect inspection device and method by photo luminescence of solar battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517635B1 (en) * 2003-04-21 2005-09-28 용인송담대학 System for detecting and taking out defective

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219538A (en) * 1988-02-26 1989-09-01 Shimadzu Corp Test-piece cracking observing device
JPH02236142A (en) * 1989-03-08 1990-09-19 Nec Corp Adhesion strength measuring apparatus
JP2002343989A (en) * 2001-05-11 2002-11-29 Mitsubishi Electric Corp Substrate screening device and substrate screening method
JP2003298081A (en) * 2002-04-04 2003-10-17 Toyama Kikai Kk Method and system for inspecting solar cell
JP2004251641A (en) * 2003-02-18 2004-09-09 Sharp Corp Apparatus and method for inspecting semiconductor wafer
JP2008026113A (en) * 2006-07-20 2008-02-07 Japan Aerospace Exploration Agency Defect inspection device of solar cell and method for inspecting defect of solar cell
JP2008224432A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Defect inspection device and method by photo luminescence of solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2488548A (en) * 2011-02-28 2012-09-05 Rec Wafer Norway As On-line testing for mechanical stability of sheet material by applying twist
WO2012117327A1 (en) * 2011-02-28 2012-09-07 Rec Wafer Norway As On-line testing for mechanical stability of sheet material
KR101282293B1 (en) * 2011-07-13 2013-07-10 한국에너지기술연구원 Stress testing device for photovoltaic module and testing method of the same

Also Published As

Publication number Publication date
JP5261505B2 (en) 2013-08-14
JPWO2010092665A1 (en) 2012-08-16
KR101290520B1 (en) 2013-07-26
KR20110114557A (en) 2011-10-19

Similar Documents

Publication Publication Date Title
TWI653450B (en) Linear inspection system
JP4915991B2 (en) Solar cell defect inspection apparatus and method
JP6131250B2 (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
JP4235685B1 (en) Solar cell inspection apparatus and solar cell defect determination method
US20050252545A1 (en) Infrared detection of solar cell defects under forward bias
US20120248335A1 (en) Method and apparatus for inspecting solar cell
JP5907180B2 (en) Solar cell inspection device and solar cell processing device
US20100182421A1 (en) Methods and apparatus for detection and classification of solar cell defects using bright field and electroluminescence imaging
US8461857B2 (en) Distance adjustment system for use in solar wafer inspection machine and inspection machine provided with same
KR20100075875A (en) Photovoltaic cell manufacturing
EP2284520A1 (en) Assembly for the inspection in a continuous manner of cells, strings and photovoltaic modules and inspection method thereof
JP2008002858A (en) Optical semiconductor inspecting apparatus
CN101988904A (en) Solar cell defect detection method
JP5261505B2 (en) Photovoltaic cell inspection device
CN102384913A (en) Solar wafer position calibrating device and detection machine station with the same
JP2009145154A (en) Substrate crack inspection device and substrate crack inspection method
JP5274043B2 (en) Semiconductor substrate inspection equipment
JP2010025566A (en) Foreign matter detection device of material for electrode
JP3833928B2 (en) Semiconductor device electrical defect inspection method using semiconductor device electrical defect inspection apparatus
CN102788769A (en) Wafer detection device and wafer detection method therefor
US20210262949A1 (en) Inspecting method and inspection apparatus for membraneelectrode assembly
TWI407094B (en) Solar wafer speed photoelectric detection system, detection methods and testing machine
Trautmann et al. Non-contact microcrack detection from as-cut wafer to finished solar
TWI396296B (en) A solar wafer position alignment device, and a detection machine having the detection device
CN117096045A (en) Wafer detection method and wafer detection equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550363

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117015536

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839987

Country of ref document: EP

Kind code of ref document: A1