WO2010091942A1 - Verfahren zur erwärmung einer turbinenwelle - Google Patents

Verfahren zur erwärmung einer turbinenwelle Download PDF

Info

Publication number
WO2010091942A1
WO2010091942A1 PCT/EP2010/050800 EP2010050800W WO2010091942A1 WO 2010091942 A1 WO2010091942 A1 WO 2010091942A1 EP 2010050800 W EP2010050800 W EP 2010050800W WO 2010091942 A1 WO2010091942 A1 WO 2010091942A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine shaft
water
turbine
steam
injection
Prior art date
Application number
PCT/EP2010/050800
Other languages
English (en)
French (fr)
Inventor
Matthias Heue
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US13/148,489 priority Critical patent/US20110308251A1/en
Priority to CN2010800073765A priority patent/CN102317576A/zh
Priority to JP2011548639A priority patent/JP2012517550A/ja
Priority to EP10702463.0A priority patent/EP2396514B1/de
Publication of WO2010091942A1 publication Critical patent/WO2010091942A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Definitions

  • the invention relates to a method for heating a turbine shaft and a steam turbine comprising a turbine shaft and a device for heating the turbine shaft.
  • a starting method for starting the steam turbine is started.
  • live steam valves are more or less opened.
  • the values for the starting temperature, the starting pressure and the starting quality of the steam are selected such that after startup of the steam turbine an idling operation or a load operation with a low load for the steam turbine can be realized.
  • Machine condition are reached by the application of hot steam regularly high material loads by the thermal expansion stresses occurring. Due to the liberalization of the energy market, it is currently common practice to decommission steam turbine plants over a longer period of time. These include short-term shutdowns or daily start / stop modes and weekend shutdowns.
  • the invention begins, whose task is to provide a method and a steam turbine, which can be heated quickly.
  • This object is achieved by a method for heating a turbine shaft, wherein the turbine shaft is heated by water injection.
  • the task directed towards the steam turbine is achieved by a steam turbine comprising a turbine shaft and a device for injecting water onto the turbine shaft.
  • the turbine shaft is a large component with a high mass and thus a comparatively high heat capacity. This leads to the fact that the turbine shaft is heated comparatively slowly with an energy supply.
  • An essential idea of the invention is to heat the turbine shaft faster by spraying warm water onto the turbine shaft. By this water injection takes place a rapid heat transfer of the warm water to the turbine shaft.
  • the term water is here understood to mean liquid in its state of aggregation.
  • the turbine shaft is sprayed with water until a maximum Anürmformatiere is reached.
  • the maximum heating speed hereby reaches values between 8 Hz and 25 Hz. Since there is a permanent transfer of heat to the turbine shaft via the injection of water, it is advantageous that the water is continuously injected onto the turbine shaft until the turbine shaft reaches the maximum heating speed during the warm-up process has reached. The start-up time is thereby further shortened.
  • the warm water is taken from a preheating or from a feed pump to ensure the required steam purity, z. B. from a parallel vapor source.
  • a steam circuit is generally present in such a way that water is available from the preheating section or from the feed pump.
  • the water from the preheat section is opposite the water from the pump so that it has a higher temperature, the pressure in the turbine is of crucial importance.
  • injection nozzles are arranged within the steam turbine, via which the warm water is sprayed onto the turbine shaft.
  • Figure 1 is a schematic representation of a water injection on a turbine shaft.
  • the turbine shaft 1 shows a schematic representation of a turbine shaft 1, which is designed to be double-flow.
  • the turbine shaft 1 comprises a left-hand flood 2 and a right-hand flood 3.
  • the turbine shaft 1 rotates about the rotation axis 4.
  • live steam flows into the steam turbine via an inflow region (not shown) and relaxes along the left-hand flood 2 and the right-hand side Flood 3.
  • the turbine shaft 1 includes blades not shown in detail.
  • the turbine shaft 1 can heat to above 300 0 C. The temperatures can even reach values up to 630 0 C. After a standstill, the temperature of the turbine shaft 1 may be less than 100 0 C.
  • the warm water 5 may have temperatures between 100 0 C and 350 0 C.
  • the water is passed through a valve 7 to the injection nozzle 6. With the valve 7, the amount of water that leads through a line 8 to the injection nozzle 6, are regulated.
  • the turbine shaft 1 is hereby heated by the water injection before the abutment. This means that the turbine shaft 1 is already sprayed with water during the turn operation, ie an externally supplied rotational movement via a motor. Care must be taken here, however, that the amount of water 5 injected from the injection nozzle 6 is constant over the surface of the turbine nozzle. wave 1, otherwise local tensions may arise. Furthermore, the turbine shaft 1 is sprayed so long by means of the injection nozzles 6 with warm water 5 until a maximum Anürmformatiere is reached. The heating speed assumes values between 8 Hz and 25 Hz.
  • the valve 7 is fluidically coupled to a line 9, wherein the line 9 is fluidly coupled in a manner not shown on a preheating or at a feed pump.
  • the turbine shaft 1 is part of a steam turbine, not shown.
  • This steam turbine comprises a housing, wherein the injection nozzles 6 are arranged for injecting the water 5 within the housing.
  • the position of the injectors 6 and the flow rate of hot water 5 should be selected appropriately so that the heat transfer coefficient is optimal.
  • the steam turbine housing drainages which are designed such that in the housing located water can flow. These drain casings are opened during the heating process so that the water can drain off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erwärmung einer Turbinenwelle (1), wobei die Turbinenwelle (1) durch Bespritzen mit warmen Wasser (5) aus einer Speisepumpe oder aus einer Vorwärmstrecke erwärmt wird sowie eine Dampfturbine, umfassend ein Gehäuse, wobei innerhalb des Gehäuses Einspritzdüsen (6) zum Einspritzen des Wassers (5) angeordnet sind.

Description

Beschreibung
Verfahren zur Erwärmung einer Turbinenwelle
Die Erfindung betrifft ein Verfahren zur Erwärmung einer Turbinenwelle sowie eine Dampfturbine umfassend eine Turbinenwelle und eine Vorrichtung zur Erwärmung der Turbinenwelle.
Bei Kraftwerken, die zur Stromerzeugung mit einer Dampfturbinenanlage ausgestattet sind, kann es in Abhängigkeit des aktuellen Strombedarfs erforderlich sein, eine einzelne Dampfturbine oder mehrere Dampfturbinen abzuschalten und bedarfsabhängig wieder zuzuschalten. Ein schnelles Starten der jeweiligen Dampfturbinenanlage ist hierbei von entscheidender Bedeutung. Dies gilt insbesondere für längere Stillstandzeiten, insbesondere nach einem Kaltstart und nach einem Warmstart, z.B. nach einem Wochenendstillstand. Bekannt ist es während des Startvorgangs zunächst einen Dampferzeuger hoch zu fahren bzw. zu erwärmen, um die Dampftemperatur und den
Dampfdruck zu erhöhen. Sobald für den Dampf eine vorbestimmte Starttemperatur und ein vorbestimmter Startdruck sowie eine vorbestimmte Startqualität vorliegen, wird ein Anfahrverfahren zum Anfahren der Dampfturbine gestartet. Dazu werden unter anderem Frischdampfventile mehr oder weniger stark geöffnet. Dabei sind die Werte für die Starttemperatur, dem Startdruck und die Startqualität des Dampfes so gewählt, dass nach dem Anfahren der Dampfturbine ein Leerlaufbetrieb oder ein Lastbetrieb mit geringer Last für die Dampfturbine reali- sierbar ist.
Bis zum Start des eigentlichen Anfahrverfahrens müssen diese Parameter stabil vorliegen. Je nach Kraftwerkstyp und Kesselbauart oder Kraftwerksgröße können hierbei regelmäßig etwa 1 bis 3 Stunden vergehen. Beim Anfahren aus einem kalten
Maschinenzustand werden durch die Beaufschlagung mit heißem Dampf regelmäßig hohe Materialbelastungen durch die auftretenden Wärmedehnungsspannungen erreicht. Durch die Liberalisierung des Energiemarktes ist es derzeit üblich, Dampfturbinenanlagen über eine längere Zeitspanne außer Betrieb zu nehmen. Dazu gehören kurzfristige Still- stände oder tägliche Start- bzw. Stoppfahrweisen sowie Wochenendstillstände .
Jedoch ist eine hohe Flexibilität gewünscht, die Kraftwerke jederzeit schnell Anfahren zu können. An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, ein Verfahren und eine Dampfturbine anzugeben, die schnell erwärmt werden kann.
Gelöst wird diese Aufgabe durch ein Verfahren zur Erwärmung einer Turbinenwelle, wobei die Turbinenwelle durch Wasserein- spritzung erwärmt wird. Die auf die Dampfturbine hin gerichtete Aufgabe wird gelöst durch eine Dampfturbine umfassend eine Turbinenwelle und Vorrichtung zur Einspritzung von Wasser auf die Turbinenwelle.
Üblicherweise ist die Turbinenwelle ein großes Bauteil mit einer hohen Masse und dadurch einer vergleichsweise hohen Wärmekapazität. Dies führt dazu, dass die Turbinenwelle bei einer Energiezufuhr vergleichsweise langsam erwärmt wird. Ein wesentlicher Gedanke der Erfindung liegt darin, die Turbinen- welle dadurch schneller zu erwärmen, indem auf die Turbinenwelle warmes Wasser gespritzt wird. Durch diese Wassereinspritzung erfolgt eine schnelle Wärmeübertragung des warmen Wassers auf die Turbinenwelle. Unter dem Begriff Wasser wird hier Wasser in seinem Aggregatzustand flüssig verstanden.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. Für eine ideale Wärmeübertragung des heißen Wassers auf die Turbinenwelle wird heißes Wasser bzw. warmes Wasser mit Temperaturen zwischen 1000C und 3500C verwendet. Das Wasser liegt bei den vorgenannten Temperaturen zwischen 1000C und 3500C gasförmig vor. In einer vorteilhaften Weiterbildung wird die Turbinenwelle vor dem Anstoßen durch die Wassereinspritzung erwärmt. Das führt dazu, dass bereits in einem sehr frühen Stadium, die Turbinenwelle in Folge der Wassereinspritzung erwärmt wird. Die Dampfturbine weist üblicher Weise sogenannte Gehäuseentwässerungen auf, die selbstverständlich geöffnet sind, während die Turbinenwelle mit Wasser bespritzt wird. Sofern der Druck in der Dampfturbine unter dem Druck des eingespritzten Wassers liegt, wird das eingespritzte Wasser verdampfen. Bei der anschließenden Kondensation des eingespritzten Wassers an den kalten Bauteilen wird dadurch die gewünschte Erwärmung erreicht. Dadurch erwärmt sich die Turbinenwelle schneller und kann früher die Betriebstemperatur erreichen, um an ein elektrisches Versorgungsnetz angeschlossen zu werden.
In einer vorteilhaften Weiterbildung wird die Turbinenwelle so lange mit Wasser bespritzt, bis eine maximale Anwärmdrehzahl erreicht wird. Die maximale Anwärmdrehzahl erreicht hierbei Werte zwischen 8 Hz und 25 Hz. Da über die Wasserein- spritzung ein permanenter Wärmeübertrag auf die Turbinenwelle erfolgt, ist es dadurch vorteilhaft, dass das Wasser ständig auf die Turbinenwelle gespritzt wird, bis die Turbinenwelle im Aufwärmvorgang die maximale Anwärmdrehzahl erreicht hat. Die Anfahrzeit wird dadurch weiter verkürzt.
Das warme Wasser wird hierbei aus einer Vorwärmstrecke oder aus einer Speisepumpe entnommen, um die geforderte Dampfreinheit sicherzustellen, z. B. aus einer parallelen Dampfquelle. In einer Dampfturbinenanlage ist ein Wasserdampfkreislauf in der Regel derart vorhanden, dass Wasser aus der Vorwärmstrecke bzw. aus der Speisepumpe zur Verfügung steht. Das Wasser aus der Vorwärmstrecke ist gegenüber dem Wasser aus der Pumpe derart, dass es eine höhere Temperatur aufweist, wobei der Druck in der Turbine von entscheidender Bedeutung ist.
In einer vorteilhaften Weiterbildung werden innerhalb der Dampfturbine Einspritzdüsen angeordnet, über die das warme Wasser auf die Turbinenwelle gespritzt wird. Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert.
Darin zeigt:
Figur 1 eine schematische Darstellung einer Wassereinspritzung auf eine Turbinenwelle.
Die Figur 1 zeigt in einer schematischen Darstellung eine Turbinenwelle 1, die zweiflutig ausgeführt ist. Das bedeutet, die Turbinenwelle 1 umfasst eine linke Flut 2 und eine rechte Flut 3. Die Turbinenwelle 1 rotiert um die Rotationsachse 4. Im Betrieb strömt über einen nicht näher dargestellten Einströmbereich Frischdampf in die Dampfturbine und entspannt sich entlang der linken Flut 2 und der rechten Flut 3. Des Weiteren umfasst die Turbinenwelle 1 nicht näher dargestellte Laufschaufeln . Im Betrieb kann sich die Turbinenwelle 1 auf über 3000C erwärmen. Die Temperaturen können sogar Werte bis zu 6300C erreichen. Nach einem Stillstand kann die Temperatur der Turbinenwelle 1 weniger als 1000C betragen.
Zur schnellen Erwärmung der Turbinenwelle 1 wird diese mit warmen Wasser 5 aus Einspritzdüsen 6 bespritzt. Das warme Wasser 5 kann Temperaturen zwischen 1000C und 3500C haben. Während der Aufwärmung wird hierbei das Wasser über ein Ventil 7 zur Einspritzdüse 6 geführt. Mit dem Ventil 7 kann die Menge des Wassers, die durch eine Leitung 8 zur Einspritzdüse 6 führt, geregelt werden.
Die Turbinenwelle 1 wird hierbei vor dem Anstoßen durch die Wassereinspritzung erwärmt. Das bedeutet, dass die Turbinenwelle 1 während des Turnbetriebs, d.h. eine extern zugeführte Rotationsbewegung über einen Motor bereits mit Wasser bespritzt wird. Es ist hierbei allerdings sorgfältig darauf zu achten, dass die Menge des aus der Einspritzdüse 6 spritzenden Wassers 5 konstant über die Oberfläche der Turbinen- welle 1 verteilt wird, da sonst lokale Spannungen entstehen können. Des Weiteren wird die Turbinenwelle 1 so lange mittels der Einspritzdüsen 6 mit warmen Wasser 5 bespritzt, bis eine maximale Anwärmdrehzahl erreicht wird. Die Anwärmdreh- zahl nimmt hierbei Werte zwischen 8 Hz und 25 Hz an.
Das Ventil 7 ist an eine Leitung 9 strömungstechnisch gekoppelt, wobei die Leitung 9 in nicht näher dargestellter Weise an einer Vorwärmstrecke oder an einer Speisepumpe strömungs- technisch angekoppelt ist. Das bedeutet, dass das warme Wasser 5 aus der Vorwärmstrecke oder aus der Speisepumpe entnommen wird. Die Wahl der Entnahme hängt von der gewünschten Temperatur des warmen Wassers 5 ab. Es sind auch Kombinationen denkbar, wobei das warme Wasser 5 aus der Vorwärmstrecke und der Speisepumpe gemischt wird oder auch aus einer parallelen Dampfquelle, z. B. aus einem zweiten Block kommt.
Die Turbinenwelle 1 ist Teil einer nicht näher dargestellten Dampfturbine. Diese Dampfturbine umfasst ein Gehäuse, wobei innerhalb des Gehäuses die Einspritzdüsen 6 zum Einspritzen des Wassers 5 angeordnet sind. Die Lage der Einspritzdüsen 6 und die Strömungsmenge an warmen Wasser 5 sollte geeignet gewählt werden, damit der Wärmeübertragungskoeffizient optimal ist. Des Weiteren weist die Dampfturbine Gehäuseentwässerun- gen auf, die derart ausgebildet sind, dass im Gehäuse befindliches Wasser abfließen kann. Diese Gehäuseentwässerungen sind während des Erwärmprozesses geöffnet, damit das Wasser abfließen kann.

Claims

Patentansprüche
1. Verfahren zur Erwärmung einer Turbinenwelle (1), wobei die Turbinenwelle (1) durch Wassereinspritzung mittels flüssigen Wassers erwärmt wird.
2. Verfahren nach Anspruch 1, wobei die Turbinenwelle (1) während der Wassereinspritzung um ihre Rotationsachse rotiert.
3. Verfahren nach Anspruch 2, wobei das Wasser (5) Temperaturwerte zwischen 1000C und 3500C aufweist.
4. Verfahren nach Anspruch 1, 2 oder 3, wobei die Turbinenwelle (1) vor dem Anstoßen durch die Wassereinspritzung erwärmt wird.
5. Verfahren nach Anspruch 1, 2 oder 3, wobei die Turbinenwelle (1) durch die Wassereinspritzung erwärmt wird, bis eine maximale Anwärmdrehzahl erreicht wird.
6. Verfahren nach Anspruch 5, wobei die maximale Anwärmdrehzahl Werte zwischen 8 Hz und 25 Hz annimmt.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das warme Wasser (5) aus einer Vorwärmstrecke entnommen wird.
8. Verfahren nach einem der Ansprüche 1 bis 6, wobei das warme Wasser (5) aus einer Speisepumpe entnommen wird.
9. Dampfturbine umfassend eine Turbinenwelle (1) mit einer Turbinenwellenoberflache und Vorrichtung zur Einspritzung von flüssigem Wasser (5) auf die Turbinenwellenoberflache .
10. Dampfturbine nach Anspruch 9, umfassend ein Gehäuse, wobei innerhalb des Gehäuses Einspritzdüsen (6) zum Einspritzen des Wassers (5) angeordnet sind.
PCT/EP2010/050800 2009-02-10 2010-01-25 Verfahren zur erwärmung einer turbinenwelle WO2010091942A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/148,489 US20110308251A1 (en) 2009-02-10 2010-01-25 Method for heating a turbine shaft
CN2010800073765A CN102317576A (zh) 2009-02-10 2010-01-25 用于加热汽轮机轴的方法
JP2011548639A JP2012517550A (ja) 2009-02-10 2010-01-25 タービンシャフトの加熱方法
EP10702463.0A EP2396514B1 (de) 2009-02-10 2010-01-25 Verfahren zur Erwärmung einer Turbinenwelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09001828.4 2009-02-10
EP09001828A EP2216506A1 (de) 2009-02-10 2009-02-10 Verfahren zur Erwärmung einer Turbinenwelle

Publications (1)

Publication Number Publication Date
WO2010091942A1 true WO2010091942A1 (de) 2010-08-19

Family

ID=41053762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050800 WO2010091942A1 (de) 2009-02-10 2010-01-25 Verfahren zur erwärmung einer turbinenwelle

Country Status (5)

Country Link
US (1) US20110308251A1 (de)
EP (2) EP2216506A1 (de)
JP (1) JP2012517550A (de)
CN (1) CN102317576A (de)
WO (1) WO2010091942A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359898B2 (en) * 2012-04-19 2016-06-07 General Electric Company Systems for heating rotor disks in a turbomachine
FR3007459B1 (fr) * 2013-06-19 2016-10-14 Airbus Operations Sas Systeme et procede de mise en rotation d'un element rotatif d'un dispositif mecanique, en particulier d'une turbomachine.
JP6479386B2 (ja) * 2014-09-26 2019-03-06 株式会社東芝 蒸気タービン
EP3029280B1 (de) 2014-12-04 2023-02-08 General Electric Technology GmbH Verfahren zum Anfahren einer Dampfturbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1230325A (de) * 1969-03-05 1971-04-28
US5498131A (en) * 1995-03-02 1996-03-12 General Electric Company Steam turbine with thermal stress reduction system
WO2001066273A1 (en) * 2000-03-03 2001-09-13 Hydrochem Industrial Services, Inc. Methods and apparatus for chemically cleaning turbines

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055048A (en) * 1976-08-20 1977-10-25 Reed Charles W Apparatus and method for side stream demineralization of condensate in a steam cycle
JPS5912105A (ja) * 1982-07-12 1984-01-21 Fuji Electric Co Ltd 再熱復水式蒸気タ−ビンの起動方式
JPS61237802A (ja) * 1985-04-12 1986-10-23 Hitachi Ltd 蒸気タ−ビンの暖機方法
JPS6267206A (ja) * 1985-09-20 1987-03-26 Hitachi Ltd 中圧タ−ビン暖機装置
JPS62159704A (ja) * 1986-01-09 1987-07-15 Mitsubishi Heavy Ind Ltd 蒸気タ−ビンの暖機方法
JPS63270410A (ja) * 1987-04-28 1988-11-08 Nkk Corp 低温物体の加熱方法
US5172553A (en) * 1992-01-21 1992-12-22 Westinghouse Electric Corp. Convective, temperature-equalizing system for minimizing cover-to-base turbine casing temperature differentials
US5433079A (en) * 1994-03-08 1995-07-18 General Electric Company Automated steam turbine startup method and apparatus therefor
JPH09177755A (ja) * 1995-12-28 1997-07-11 Toshiba Corp 蒸気タービンのロータ加熱装置
JPH11190205A (ja) * 1997-12-25 1999-07-13 Mitsubishi Heavy Ind Ltd ロータ熱的安定性試験方法
JP2003035108A (ja) * 2001-07-24 2003-02-07 Fuji Electric Co Ltd 軸流排気式蒸気タービン
JP4723884B2 (ja) * 2005-03-16 2011-07-13 株式会社東芝 タービン起動制御装置およびその起動制御方法
EP1707739A1 (de) * 2005-03-24 2006-10-04 Siemens Aktiengesellschaft Dampfturbine mit gekühlter Hohlwelle sowie entsprechendes Kühlverfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1230325A (de) * 1969-03-05 1971-04-28
US5498131A (en) * 1995-03-02 1996-03-12 General Electric Company Steam turbine with thermal stress reduction system
WO2001066273A1 (en) * 2000-03-03 2001-09-13 Hydrochem Industrial Services, Inc. Methods and apparatus for chemically cleaning turbines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BADAMI V V; ET AL ED - INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS: "FUZZY LOGIC SUPERVISORY CONTROL FOR STEAM TURBINE PREWARMING AUTOMATION", PROCEEDINGS OF THE CONFERENCE ON FUZZY SYSTEMS. ORLANDO, JUNE 26 - 29, 1994; 19940626 NEW YORK, IEEE, US, vol. 2, 26 June 1994 (1994-06-26), pages 1045 - 1050, XP000518372, ISBN: 9780780318977 *

Also Published As

Publication number Publication date
JP2012517550A (ja) 2012-08-02
US20110308251A1 (en) 2011-12-22
EP2216506A1 (de) 2010-08-11
EP2396514A1 (de) 2011-12-21
CN102317576A (zh) 2012-01-11
EP2396514B1 (de) 2014-03-05

Similar Documents

Publication Publication Date Title
EP1934434B1 (de) Verfahren zum aufwärmen einer dampfturbine
DE2934340C2 (de) Verfahren zum Abschalten und Wiederanfahren einer kombinierten Gas - Dampfkraftanlage
EP1368555B1 (de) Verfahren zum betrieb einer dampfkraftanlage sowie dampfkraftanlage
EP2396514B1 (de) Verfahren zur Erwärmung einer Turbinenwelle
EP2326800B1 (de) Dampfkraftanlage zur erzeugung elektrischer energie
WO2008104465A2 (de) Verfahren zum betreiben einer mehrstufigen dampfturbine
DE19640298A1 (de) Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
DE3047008A1 (de) "dampfstroemungsvorrichtung fuer eine dampfturbine mit zwischenueberhitzung und verfahren zum betreiben derselben"
EP3420202B1 (de) Kondensatrezirkulation
DE4446862C2 (de) Verfahren zur Kühlung des Kühlmittels einer Gasturbine und Vorrichtung zur Durchführung des Verfahrens
EP2884060B1 (de) Vorrichtung und Verfahren zum Betrieb von volumetrischen Expansionsmaschinen
EP2829691A1 (de) Verfahren zum Betreiben einer GuD-Anlage
DE19944920B4 (de) Kombikraftwerk mit Einspritzvorrichtung zum Einspritzen von Wasser in den Frischdampf
EP1775429A1 (de) Verfahren zum Aufwärmen einer Dampfturbine
WO2007137960A2 (de) Verfahren und vorrichtung zur steuerung eines kraftwerks
EP1953351A1 (de) Konzept zum Vorwärmen und Anfahren von Dampfturbinen mit Eintrittstemperaturen über 650°C
EP2138677B1 (de) Gas- und Dampfturbinenanlage
DE1228623B (de) Dampfkraftanlage mit Zwanglaufdampferzeuger und Zwischenueberhitzer
WO2016062532A1 (de) Verfahren zur verkürzung des anfahrvorgangs einer dampfturbine
EP1674669A1 (de) Verfahren zur Kühlung einer Dampfturbine
EP1121510B1 (de) Verfahren zum wiederanfahren einer gas- und dampfturbinenanlage
DE10253640A1 (de) Verfahren und Anordnung zur Reduzierung der Speisewassertemperatur in einem Speisewasserbehälter eines Dampferzeugers
EP2942493A1 (de) Wasserdampfkreislauf sowie ein Verfahren zum Betreiben eines Wasserdampfkreislaufes
DE102013205053B4 (de) Verfahren zum Betrieb eines einen Wasser-Dampf-Kreislauf aufweisenden Kraftwerks
EP2781832A1 (de) Verfahren zum Anfahren eines solarthermischen Kraftwerks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007376.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010702463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148489

Country of ref document: US

Ref document number: 2011548639

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE