WO2010091795A1 - Methode zur herstellung von holografischen photopolymeren auf polymerfolien - Google Patents

Methode zur herstellung von holografischen photopolymeren auf polymerfolien Download PDF

Info

Publication number
WO2010091795A1
WO2010091795A1 PCT/EP2010/000565 EP2010000565W WO2010091795A1 WO 2010091795 A1 WO2010091795 A1 WO 2010091795A1 EP 2010000565 W EP2010000565 W EP 2010000565W WO 2010091795 A1 WO2010091795 A1 WO 2010091795A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
coating
film
photopolymer
roll
Prior art date
Application number
PCT/EP2010/000565
Other languages
English (en)
French (fr)
Other versions
WO2010091795A8 (de
Inventor
Dennis Hönel
Marc-Stephan Weiser
Friedrich-Karl Bruder
Thomas RÖLLE
Thomas Fäcke
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to CN201080007532.8A priority Critical patent/CN102317337B/zh
Priority to SG2011049616A priority patent/SG172900A1/en
Priority to PL10702439T priority patent/PL2396358T3/pl
Priority to ES10702439T priority patent/ES2400346T3/es
Priority to US13/148,694 priority patent/US8715888B2/en
Priority to EP10702439A priority patent/EP2396358B1/de
Priority to JP2011549462A priority patent/JP2012517512A/ja
Publication of WO2010091795A1 publication Critical patent/WO2010091795A1/de
Publication of WO2010091795A8 publication Critical patent/WO2010091795A8/de

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/775Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/776Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/035Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2535Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2536Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polystyrene [PS]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2538Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycycloolefins [PCO]

Definitions

  • the invention relates to a method for producing novel photopolymers based on pre-polymer-based polyurethane compositions, which are suitable for the production of holographic media, in particular for the visual display of images.
  • Photopolymers are materials that can be exposed by the superposition of two coherent light sources, forming a three-dimensional structure in the photopolymers, which can generally be described by a regional change in the refractive index in the material. Such structures are called holograms. They can also be described as diffractive optical elements. It depends on the specific exposure, which optical functions such a hologram forms.
  • EP 08017277.8 and EP 08017273.7 describe polyether-based and prepolymer-based polyurethane compositions which are generally suitable for producing holographic media.
  • EP 08017275.2 describes polyurethane formulations with special acrylates which are suitable for recording holograms.
  • EP 08017279.4 described for the first time a typical film structure and the application of various polyurethane formulations as a photopolymer in the film composite.
  • Film coating is generally understood to mean the application of a liquid substance to a moving film material.
  • the coating methods differ among others according to the properties of the layer to be applied (e.g., viscosity, surface tension, solid concentration, etc.), the target layer thickness to be applied, or the production speed.
  • the film coating systems to be used for production typically consist of: • A roll handling, which ensures the feeding of the substrate (film substrate).
  • Pretreatment of Coating Material For the pretreatment, accessory units and peripherals such as e.g. Dissolvers and kneaders, weighing systems, various pump systems, automatic solids feeders, metering systems, filter units, degassing and mixing systems.
  • accessory units and peripherals such as e.g. Dissolvers and kneaders, weighing systems, various pump systems, automatic solids feeders, metering systems, filter units, degassing and mixing systems.
  • the pretreatment units used in the coating industry are web cleaning systems for carrier material cleaning, ionization units known to those skilled in the art for homogenizing the electrical charges, plasma or corona treatments on the support material.
  • web control systems are employed which are provided by means such as e.g. Web edge control and web storage systems are supported.
  • Application system for the application of a coating material As application systems in the coating industry, there are various doctoring and coating systems, slot casters and roll application systems, as well as for multilayer application systems such as e.g.
  • Applicable coating devices such as e.g. Curtain or cascade coater or slot dies are disclosed in previous publications e.g. (Swiss PM, "Predosed Coating Processes: Advantages and Applications", Coating, issue 12/1998, pages 462 - 465): This is how Swiss describes pre-dosing coating processes that were developed in the fifties, among others, in the photographic industry These processes are used for single-layer and multi-layer products (slot nozzle ⁇ 3, cascade and curtain method> 10) In the curtain process, the nozzle is located several centimeters from the substrate, so that the liquid distribution from the coating process is largely decoupled.
  • the coating material to be applied can be stored either in a trough or in the gap between two horizontally arranged rollers for metering.
  • the speed of the wetted rolls, the procurement (screening, smooth rolling) of the rolls, viscosity and surface tension influences the layer thickness to be applied in relation to the substrate speed. ness.
  • further rollers are used, which cause a further stretching of the coating material due to differently adapted rotational speeds of the rollers and a defined gap spacing between two rollers.
  • roller speed, gap distance, substrate speed and viscosity are critical factors in setting desired wet film thicknesses.
  • a 5 or 6 roll application system is used e.g. by Maschinenfabrik Max Kroenert GmbH & Co. KG (M. Schmalz, N. Hansen, W. Neumann, "5- or 6-roller coating process", Coating, Issue 10/2006, pages 410-413).
  • the authors compare the advantages and disadvantages of a 5- to a 6-roll application system using a solvent-free silicone coating with thermally and UV-curable silicones.
  • Dryer units To dry the coating material on the carrier material, among other things, hot air dryers with pre-tempered air, IR emitters or UV devices are used. For the aftertreatment of the coated support materials come
  • Chill rolls, spreader rolls, laminators, calender rolls, cutting equipment (such as edge trimmers) are used.
  • the processes mentioned can also be used for solvent-containing systems and are thus equipped as an explosion-proof unit.
  • Winding device for winding the coated product or carrier film.
  • the product is intended to be a film composite of bast film, photopolymer and a cover film.
  • the present invention is a continuous process for the production of photopolymer films, comprising a carrier film according to the roll-to-roll principle with a photopolymer formulation
  • Photoinitiators based on combinations of borate salts and one or more dyes with absorption bands which at least partially cover the spectral range from 400 to 800 nm
  • polymer films obtainable by the process according to the invention which are suitable for recording visual holograms and their further use as optical elements, images or for image presentation or projection.
  • prepolymers are used which are known to the person skilled in the art in a manner which is well known per se by reaction of monomeric, oligomeric or polyisocyanates Al) with isocyanate-reactive compounds A2) in suitable stoichiometry with the optional use of catalysts. catalysts and solvents can be obtained.
  • Preferred prepolymers are urethanes or allophanates from aliphatic isocyanate-functional compounds and oligomeric or polymeric isocyanate-reactive compounds, the prepolymers having number-average molar masses of 200 to 10,000 g / mol and NCO functionalities of 1.9 to 5.0.
  • difunctional urethanes and allophanates having functionalities of from greater than 1.9 to 3.2 or from 3.9 to 4.2, with number-average molar masses of from 650 to 8,200 g / mol, prepared from aliphatic isocyanate-functional compounds and oligomeric or polymeric polyols or any mixtures thereof.
  • urethanes having NCO functionalities of from 1.9 to 2.1 and number-average molar masses of from 1900 to 4100 g / mol prepared from aliphatic isocyanate-functional compounds and oligomeric or polymeric polyols and allophanates having functionalities greater than 2, 0 to 3.2 or from 3.9 to 4.2 with number average molecular weights of 1900 to 4100 g / mol, prepared from aliphatic isocyanate-functional compounds and oligomeric or polymeric polyols or any mixtures thereof.
  • component B) isocyanate-reactive polyether polyols which preferably have on average at least 1.5 isocyanate-reactive groups per molecule.
  • Preferred compounds of component B) are poly (propylene oxide) s, poly (ethylene oxides) and combinations thereof in the form of random or block copolymers and block copolymers of propylene oxide and / or ethylene oxide.
  • the ethylene oxide fraction based on the weight percent of the entire product, is preferably less than 55%, particularly preferably either between 55% and 45% or less than 30% and very particularly preferably less than 10%.
  • Very particularly preferred compounds of component B) are difunctional polyether polyols based on propylene oxide and ethylene oxide with an ethylene oxide content of less than 10 percent by weight, based on the total mass of the underlying polyether, and a number average molecular weight between 2000 and 4200 g / mol.
  • the components A) and B) are used in the preparation of the photopolymer formulation in an OH / NCO ratio to each other of typically 0.9 to 1.2, preferably 0.95 to 1.05.
  • urethane acrylates and / or urethane methacrylates having at least one aromatic structural unit and a refractive index of greater than 1.50 at 405 nm.
  • Urethane (meth) acrylates are understood as meaning compounds having at least one acrylate or methacrylate group which additionally have at least one urethane bond.
  • Particularly preferred compounds to be used as component C) are urethane acrylates and urethane methacrylates based on aromatic isocyanates and 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, polyethylene oxide mono (meth) acrylate, polypropylene oxide mono (meth) acrylate, polyalkylene oxide mono (meth) acrylate and poly (e-caprolactone) mono (meth) acrylates.
  • component C) the Addition products of aromatic triisocyanates (very particularly preferably tris (4-phenyl isocyanato) thiophosphate or trimers of aromatic diisocyanates such as tolylene diisocyanate) with hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate used.
  • aromatic triisocyanates very particularly preferably tris (4-phenyl isocyanato) thiophosphate or trimers of aromatic diisocyanates such as tolylene diisocyanate
  • 3-thiomethylphenyl isocyanate with hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate are used as component C.
  • Suitable compounds of component D) are inhibitors and antioxidants. Preference is given to 2,6-di- / tert-butyl-4-methylphenol, phenothiazine, p-methoxyphenol, 2-methoxy-p-hydroquinone and benzhydrol.
  • photoinitiators E are mixtures of tetrabutylammonium tetrahexylborate, tetrabutylammonium triphenylhexylborate, tetrabutylammonium tris (3-fluorophenyl) hexylborate and tetrabutylammonium tris (3-chloro-4-methylphenyl) hexylborate (component E1)) with dyes such as Astrazon Orange G, for example , Methylene blue, new methylene blue, azure A, pyrillium I, safranine O, cyanine, gallocyanine, brilliant green, crystal violet, ethyl violet and thionine (component E2)). Particularly preferred is the combination of one blue-sensitive, one green-sensitive and one red-sensitive dye (for example Astrazon Orange G, Ethyl Violet and New Methylene Blue) and
  • catalysts it is optionally possible to use one or more catalysts. Preference is given to dibutyltin dilaurate, dimethylbis [(1-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, 1,4-diazabicyclo [2.2.2] octane, diazabicyclononane, diazabicycloundex, 1,1,3,3-tetramethylguanidine, l, 3,4 , 6,7,8-hexahydro-l-methyl-2H-pyrimido (l, 2-a) pyrimidine.
  • additives G can be used.
  • these may be, for example, conventional additives in the field of coating technology, such as solvents, plasticizers, leveling agents, defoaming agents or adhesion promoters.
  • the plasticizers used are preferably liquids having good release properties, low volatility and high boiling point.
  • As a leveling agent surface-active compounds such as e.g. Polydimethylsiloxanes are used. It may also be advantageous to simultaneously use several additives of one type. Of course, it may also be beneficial to use several additives of several types.
  • the described photopolymer formulations comprise:
  • radical stabilizers D 0.02 to 0.1% by weight of radical stabilizers D
  • the coating process of the carrier film comprises the following individual steps for the treatment of the aforementioned photopolymer compounds:
  • component A conveying and metering, on the one hand, component A), if appropriate mixed with one or more of components E), F) and G) and, secondly, separately of component B), if appropriate mixed with one or more of components C), D), E), F) and G)
  • Preferred metering amounts depend on the dimensioning of the carrier film to be coated, but are usually in the range from 2 ml / min to 2000 ml / min, more preferably in the range from 2 ml / min to 500 ml / min.
  • degassing (II) of the individual components or of the entire mixture can also be carried out under a reduced pressure of, for example, 1 mbar. Degassing, in particular after addition of component A), is preferred in order to prevent bubble formation by residual gases or easily vaporizable components in the photopolymers produced.
  • Degassing removes dissolved gases or easily volatilizable components such as volatile solvents (e.g., ambient air) from the fluids, and optionally, can additionally saturate the fluid being degassed.
  • volatile solvents e.g., ambient air
  • degassers vacuum degassers, membrane deaerators, centrifugal deaerators, ultrasonic deaerators and thin-film deaerators and combinations of the mentioned technologies can be used.
  • the filtration (ITI) serves to separate solid particles from the liquid medium and is used especially as a cleaning step for the liquid components.
  • Candle filters and plate filters are generally used in the coating industry.
  • Preferred particle size distributions are between 0.1 .mu.m and 5 .mu.m, and particularly preferred particle size distributions are in the range of 0.2 .mu.m and 1 .mu.m.
  • the temperatures are from 0 to 100 ° C., preferably from 10 to 80 ° C., particularly preferably from 20 to 60 ° C.
  • the mixtures of components B) to G) can be stored as a storage-stable intermediate, if appropriate for several months.
  • a clear, liquid formulation is obtained which, depending on the composition, cures at room temperature within a few seconds to a few hours.
  • the ratio and the type and reactivity of the structural components of the polyurethane compositions is preferably adjusted so that the curing occurs after admixture of component A) at room temperature within minutes to one hour.
  • the curing is accelerated by the formulation after admixing to temperatures between 30 and 180 0 C, preferably 40 to 120 0 C, particularly preferably 50 to 100 0 C is heated.
  • the polyurethane compositions have immediately after complete mixing of all components viscosities at 25 ° C of typically 10 to 100,000 mPas, preferably 100 to 20,000 mPas, more preferably 200 to 10,000 mPas, particularly preferably 500 to 5000 mPas so that they are already in solvent-free form very good processing Own properties.
  • viscosities at 25 ° C below 10000 mPas, preferably below 2000 mPas, more preferably below 500 mPas can be adjusted.
  • Polyurethane compositions of the abovementioned type which cure with a catalyst content (component F) of 0.004% by weight to 0.1% by weight at 80 ° C. under 6 minutes have proven advantageous, concentrations between 0.01% by weight are preferred .-% and 0.08 wt .-%, more preferably concentrations between 0.04 wt .-% and 0.06 wt .-%.
  • V The development (V) of the carrier material takes place in discontinuous processes with single-roll unwinders known to the person skilled in the art.
  • a single uncoated roll is used in the unwinding device and fed to the coating process in full length.
  • the coating process is interrupted and the finished coated and wound carrier material is removed from the process at the winding station and packaged product-specifically.
  • a new uncoated roll is inserted and attached to the end of the pre-produced substrate with suitable adhesive sheets. After starting the machine preference of the carrier material can be continued with the coating process.
  • Continuous coating of substrates involves the use of multi-roll unwinders arranged as indexable wipers or reversing crosses.
  • the critical transition from a discontinuous process of using an uncoated substrate roll to a continuous coating process without this coating process is carried out either with the aid of a web memory or a flying Anklebreaes known in the art.
  • a web memory serves as a buffer for the phase of standstill during roll change and sticking of the roll handling.
  • the preferred speed is increased stepwise to a value above the actual optimum coating speed.
  • the web store is filled with carrier material until it is complete. Subsequently, the preferred speed is adapted to the actual coating speed.
  • the second material handling device in the multi-roll unwinder is equipped with another uncoated roll. At the end of the previous role, the preferred speed is immediately greatly reduced and stopped. In this case, the web store is continuously emptied by maintaining the coating speed.
  • the beginning of the roll already loaded on the second material unwinder is fastened to the end of the preceding roll with correspondingly suitable adhesive materials.
  • the preferred speed is restarted and incrementally raised above the coating speed to refill the web store.
  • the multi-roll unwinder in turntable design or as a turning cross
  • the coating speed is kept constant via the process control with the help of additional auxiliary drives.
  • web control units To control the carrier material in the transverse direction to the preferred direction known in the art web control units are used.
  • the position of the web edge is determined by means of optical sensors, e.g. Reflection sensors, transmission light sensors or ultrasonic sensors are determined and mechanically corrected by means of control roller systems, which are positioned on a driven rotating frame.
  • contacting and non-contact surface cleaning When cleaning the substrate, a distinction is made between two different cleaning methods: contacting and non-contact surface cleaning.
  • the contacting cleaning process involves cleaning brushes equipped with special soft brush materials. Disadvantage of this method is the occurrence of disturbances in the carrier material, which can be caused by the contact of the brush with the carrier material. In this regard, process parameters such as rotational speed, brush material, and the distance to the carrier material have to be adapted.
  • Non-contact methods such as Ionticiansticianen, suction ducts or air blower are in this respect material protection methods. These ionization units generate positive and negative ions that neutralize the surface charges on the substrate. This will Static charges on the substrate that attract dust and particles from the environment are avoided.
  • the cleaning systems are equipped with additional suction channels, which remove particles from the surface of the carrier material. This is supported by the use of a specially arranged flat jet nozzle, which with a fine compressed air jet dust and particles from the surface and blow away. These particles are also transported away via the installed suction ducts and filtered.
  • the described methods for web cleaning can be arranged and combined in any order and positioning.
  • corona and plasma pretreatment systems To improve the adhesion properties of the support materials, known in the art known corona and plasma pretreatment systems.
  • the substrate is subjected to a high voltage electronic discharge that occurs between a grounded and polished steel or aluminum roller and a tight-fitting insulated electrode. Only the side facing the electrode is treated.
  • Common electrodes are supplied with high-frequency generators with an alternating voltage of 10 to 2OkV and a frequency between 10 and 60 kHz.
  • surface tensions of the polyurethane compositions described are adapted to the person skilled in the art with the aid of the additives described.
  • Preferred surface tensions are between 10 raN / m and 50 mN / m, more preferably from 20 mN / m to 40 mN / m.
  • Preferred coating widths are between 100 mm and 3000 mm, more preferred are widths in the range of 300 mm to 2000 mm.
  • Substrate speeds are preferably in the range of 0.2 m / min to 300 m / min. Particularly preferred substrate speeds are found in the range of 1.0 m / min to 50 m / min.
  • Applied dry film thicknesses for doctor blade and slot nozzles are preferably not more than 200 .mu.m, more preferably from 3 .mu.m to 100 .mu.m, very particularly preferably from 15 .mu.m to 60 .mu.m.
  • the drying (VII) of the coated substrate is preferably carried out at a temperature of from 30 ° C. to 180 ° C., more preferably from 40 ° C. to 120 ° C., very particularly preferably from 50 ° C. to 100 ° C.
  • the metering of the starting materials takes place either by gear pumps or eccentric screw pumps. Centrifugal deaerators are used for degassing the feedstock and plate filters for filtering.
  • the mixture of the individual components takes place via a static mixer with correspondingly designed mixing geometries, such as length and diameter.
  • the preferred coating unit used is a slot die.
  • the coated material is dried over air dryers with the desired air temperature and moisture content over a defined period of time.
  • FIG. 1 shows an overview of the described combination of the individual manufacturing stages of a coated substrate.
  • Figure 1 Schematic structure of a typical coating system, including arrangement of the pretreatment of the Be Mrsungsmate ⁇ als (1-5), schematic course of Toomate ⁇ als (8 + 9), coating device for application to a Susun ⁇ al (6) and subsequent drying process (7).
  • Another object of the present invention is the article obtained by coating a transparent substrate with the described prepolymer-based polyurethane formulation.
  • the film composite may contain other films.
  • Preferred materials or composite materials of the support layer are based on polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene, polypropylene, cellulose acetate, cellulose hydrate, cellulose nitrate, Cycloolefmpolymere, polystyrene, polyepoxides, polysulfone, cellulose triacetate (CTA), polyamide, polymethyl methacrylate, polyvinyl chloride , Polyvinyl butyral or polydicyclopentadiene or mixtures thereof.
  • material composites such as film laminates or coextrudates can be used as carrier film.
  • PC and PET are particularly preferably used as a carrier film.
  • the Haze is measurable over the Haze value, which is less than 3.5%, preferably less than 1%, more preferably less than 0.3%.
  • the Haze value describes the proportion of transmitted light that is scattered forward by the irradiated sample. Thus, it is a measure of the opacity or turbidity of transparent materials and quantifies material defects, particles, inhomogeneities, or crystalline phase boundaries in the material or its surface that interfere with clear viewing.
  • the method of measuring turbidity is described in the standard ASTM D 1003.
  • the support has a not too high birefringence, i. typically has a mean optical retardation of less than 1000 nm, preferably less than 700 nm, more preferably less than 300 nm.
  • the retardation R is the mathematical product of the birefringence ⁇ n and the thickness of the carrier d.
  • the automatic and objective measurement of the retardation is carried out with a polarimeter, e.g. from the company ilis GmbH, model StainMatic® M3 / M.
  • the retardation is measured in vertical incidence.
  • the values given for the wearer for the retardation are lateral averages.
  • the support typically has a thickness of 5 to 2000 .mu.m, preferably 8 to 300 .mu.m, particularly preferably 30 to 200 .mu.m and in particular 125 to 175 .mu.m or 30 to 45 .mu.m.
  • the film composite can have one or more cover layers on the photopolymer layer in order to protect it from dirt and environmental influences.
  • cover layers plastic films or composite film systems, but also clearcoats can be used.
  • the cover layers used are preferably film materials analogous to the materials used in the carrier layer, wherein these have a thickness of typically 5 to 200 .mu.m, preferably 8 to 125 .mu.m, particularly preferably 20 to 50 .mu.m.
  • the roughness is determined as a measure in accordance with DIN EN ISO 4288 "Geometrical Product Specification (GPS) - Surface Texture " ("Geometrical Product Specifications (GPS) - Surface texture ", test condition R3z front and back Preferred roughnesses are in the range of less than or equal to 2 ⁇ m, preferably less than or equal to 0.5 ⁇ m.
  • laminating PE or PET films of a thickness of 20 to 60 microns are preferably used, more preferably a polyethylene film of 40 microns thickness is used.
  • Another object of the present invention is the use of the media according to the invention for recording visual holograms, for the production of optical elements, images, representations and a method for recording holograms using the polyurethane compositions according to the invention and the media or holograf ⁇ schen accessible therefrom.
  • holograms for optical applications in the entire visible range and in the near UV range can be produced by appropriate exposure processes.
  • Visual holograms include all holograms that can be recorded by methods known to those skilled in the art, including but not limited to in-line (gabor) holograms, off-axis holograms, full-aperture holograms, white-light transmission holograms ("rainbow holograms"), and denisyukho- lograms, off-axis reflection holograms, edge-lit holograms and holographic stereograms, preference is given to reflection holograms, denisy-holograms, transmission holograms.
  • gabor in-line
  • off-axis holograms full-aperture holograms
  • white-light transmission holograms (“rainbow holograms")
  • denisyukho- lograms off-axis reflection holograms
  • edge-lit holograms and holographic stereograms preference is given to reflection
  • holographic images or representations can also be produced by means of the photopolymer foils essential to the invention, for example for personal portraits, biometric representations in security documents, or generally for images or image structures for advertising, security labels, trademark protection, brand branding, labels, design elements, decorations, illustrations , Trading cards, pictures and the like, as well as pictures that can represent digital data, including in combination with the products shown above.
  • Holographic images can have the impression of a three-dimensional image, but they can also represent image sequences, short films or a number of different objects, depending on which angle, with which (even moving) light source, etc., this is illuminated. Due to these diverse design possibilities, holograms, in particular volume holograms, represent an attractive technical solution for the above-mentioned application.
  • Desmodur ® XP 2599 is an experimental product of Bayer MaterialScience AG, Leverkusen, DE, Vollallophanat of hexane diisocyanate on Acclaim 4200, NCO content: 5.6 to 6.4%
  • Prepolymer 1 is an experimental product of Bayer MaterialScience AG, Leverkusen, DE, urethane of hexane diisocyanate and Acclaim 2200, NCO content: 3.2 - 3.75%
  • Polyol 1 (Acclaim ® 4200) is a polypropylene oxide of number average molecular weight 4000 g / mol of Bayer MaterialScience AG, Leverkusen, DE.
  • Polyol 2 (Acclaim ® 4220 N) is an ethylene oxide-capped polypropylene oxide of number average molecular weight 4000 g / mol of Bayer MaterialScience AG, Leverkusen, DE.
  • Polyol 3 (Acclaim ® 2200) is a polypropylene oxide of number average molecular weight 2000 g / mol of Bayer MaterialScience AG, Leverkusen, DE.
  • Urethane acrylate 1 is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, urethane acrylate based on HEA and Desmodur ® RFE.
  • Fomrez ® UL28 Urethanization catalyst, dimethylbis [(l-oxoneodecl) oxy] stannane, commercial product from Momentive Performance Chemicals, Wilton, CT, USA (as 10% solution in N-ethylpyrrolidone).
  • CGI 909 borate-based co-initiator from Ciba Inc., Basel, Switzerland.
  • New Methylene blue (zinc-free) Dye of the company Sigma-Aldrich Chemie GmbH, Steinheim, Germany.
  • Ethyl Violet Dye from Messrs. Biomedicals LLC, Solon, Ohio, USA.
  • Astrazon Orange G dye from Sigma-Aldrich Chemie GmbH, Steinheim, Germany.
  • Byk 310 silicone-based surface additive from BYK-Chemie GmbH, Wesel, Germany (solution about 25% strength in xylene). Measurement of diffraction efficiency DE and refractive index contrast ⁇ n:
  • inventive and comparative media prepared in the experimental part were tested for their holographic properties by means of a measuring arrangement according to FIG. 7:
  • the laminating film is peeled off from the film composite and the photopolymer material is then laminated to glass so that the substrate film faces outward.
  • the beam of a He-Ne laser (emission wavelength 633 nm) was converted into a parallel homogeneous beam by means of the spatial filter (SF) and together with the collimation lens (CL).
  • the final cross sections of the signal and reference beam are defined by the iris diaphragms (I).
  • the diameter of the iris aperture is 4 mm.
  • the polarization-dependent beam splitters (PBS) divide the laser beam into two coherent identically polarized beams.
  • the power of the reference beam of 0.5 mW and the power of the signal beam were set to 0.65 mW via the ⁇ / 2 plates.
  • the performances were determined with the semiconductor detectors (D) with the sample removed.
  • the angle of incidence ( ⁇ ) of the reference beam is 21.8 °
  • the angle of incidence ( ⁇ ) of the signal beam is 41.8 °.
  • the interference field of the two overlapping beams produced a grid of bright and dark stripes perpendicular to the bisector of the two beams incident on the sample (reflection hologram).
  • the stripe spacing in the medium is ⁇ 225 nm (refractive index of the medium assumed to be -1.49).
  • Both shutters (S) are open for the exposure time t. Thereafter, with closed shutters (S), the medium was left for 5 minutes for the diffusion of the not yet polymerized writing monomer.
  • the written holograms have now been read out in the following way.
  • the shutter of the signal beam remained closed.
  • the shutter of the reference beam was open.
  • the iris diaphragm of the reference beam was closed to a diameter ⁇ 1 mm. It was thus achieved that for all rotation angles ( ⁇ ) of the medium, the beam was always located completely in the previously written hologram.
  • the powers of the zero-order transmitted beam were measured by means of the corresponding detector D and the powers of the first-order deflected beam were measured by the detector D.
  • the diffraction efficiency ⁇ was found at each approached angle ⁇ as the quotient of:
  • P D is the power in the detector of the diffracted beam and P ⁇ is the power in the detector of the transmitted beam.
  • the Bragg curve describes the diffraction efficiency ⁇ as a function of the rotation angle ⁇ of the written hologram measured and stored in a computer.
  • the intensity transmitted in the zeroth order was also recorded against the rotation angle ⁇ and stored in a computer.
  • the maximum diffraction efficiency (DE Tj max ) of the hologram, ie its peak value, was determined. It may be necessary to change the position of the detector of the diffracted beam in order to determine this maximum value.
  • is the lattice strength
  • is the detuning parameter
  • is the tilt angle of the refractive index lattice that was written
  • ⁇ 'and ⁇ ' correspond to the angles a and ß when writing the hologram, but in the medium.
  • is the winching tuning measured in the medium, ie the deviation from the angle ⁇ '.
  • is the angle tuning measured outside the medium, ie the deviation from the angle a.
  • n is the average refractive index of the photopolymer and was set to 1,504.
  • the measurement data of the diffraction efficiency, the theoretical Bragg curve and the transmitted intensity are plotted against the centered rotation angle ⁇ - ⁇ -shift as shown in FIG. Since, because of geometric shrinkage and the change in the average refractive index in the photopolymerization, the angle in the DE is measured from a. deviates, the x-axis is centered around this shift. The shift is typically 0 ° to 2 °.
  • the detector for the diffracted light can only detect a finite angular range, the Bragg curve of broad fathoms (small d) is not completely detected in an ⁇ scan but only the central area, with appropriate detector positioning. Therefore, the complementary to the Bragg curve shape of the transmitted intensity to adjust the layer thickness d is additionally used.
  • Figure 8 Representation of the Bragg curve ⁇ Kogelnik (dashed line), the measured diffraction efficiency (filled circles) and the transmitted power (black solid line) against the Winveidetuning ⁇ . Since, because of geometric shrinkage and the change in the average refractive index in the photopolymerization, the angle measured at the DE differs from ⁇ , the x-axis is centered around this shift. The shift is typically 0 ° to 2 °.
  • this procedure may be repeated several times for different exposure times t on different media to determine at which average absorbed dose of the incident laser beam is going to saturate upon writing the hologram DE.
  • the mean absorbed dose E is as follows:
  • the powers of the sub-beams have been adjusted so that the same power density is achieved in the medium at the angles ⁇ and ⁇ used.
  • a test equivalent to that shown in Figure 7 was also performed with a green laser having the emission wavelength ⁇ in the vacuum of 532 nm.
  • the physical layer thickness was determined with commercially available white light interferometers, e.g. the device FTM-Li te NIR Coating Thickness Gauge from Ingenieurs supra Fuchs.
  • the determination of the layer thickness is based in principle on interference phenomena on thin layers.
  • light waves are superimposed, which have been reflected at two interfaces of different optical density.
  • the undisturbed superimposition of the reflected partial beams now leads to periodic brightening and extinction in the spectrum of a white continuum radiator (eg halogen lamp). This superposition is called the expert interference.
  • These interference spectra are measured and mathematically evaluated.
  • the component C, the component D (which may already be pre-dissolved in the component C) and optionally the component G and F in the component B are optionally dissolved at 60 0 C and mixed thoroughly. Thereafter, in the dark or under suitable illumination, the component E is weighed in pure form or in dilute solution in NEP and mixed again. If necessary, it is heated to 60 ° C. in the drying oven for a maximum of 10 minutes. The resulting mixture can be degassed with stirring at ⁇ 10 mbar.
  • the component A can also be degassed with stirring at ⁇ 10 mbar. Subsequently, both formulations are continuously metered and mixed by means of forced metering pumps via one of the abovementioned mixing methods. Thereafter, the mixture is continuously and homogeneously applied to a carrier film via an application unit, such as a doctor blade or a slot die.
  • the coated Sufohen be dried at about 80 0 C and then covered with one of the above cover layers and packaged in a light-tight packaging.
  • the thickness d of the photopolymer layer results from the coating parameters known to those skilled in the art of the corresponding coating device.
  • FIG. 2 shows a topographical layer thickness distribution with a conventional laboratory coating device, such as e.g. Hand-pull frame, spiral applicators or an automatically driven film applicator (Comparative Example 1).
  • a conventional laboratory coating device such as e.g. Hand-pull frame, spiral applicators or an automatically driven film applicator (Comparative Example 1).
  • a sufficient volume of coating material is placed in front of the applicator.
  • the applicator is manually pulled over the substrate at a near-uniform speed to form a uniform film on the substrate.
  • This can be supplemented with an automatically driven film applicator and thus optimized.
  • the coating quality of the methods described is greatly influenced by the choice of a suitable substrate.
  • glass and rubber materials are preferably used.
  • FIG. 2 Layer thickness distribution during production with conventional laboratory scrubber devices
  • Example 1 As shown in FIGS. 3-7, a higher layer thickness accuracy can be achieved by the continuous roll coating shown in FIG. A summary of the results obtained is shown in Table 1.
  • the improvement in the layer thickness distribution of Example 1 can be clearly shown by the reduction of the standard deviation with the use of roll coating (Example 2-5).
  • the comparisons of the minimum and the maximum measured layer thicknesses show a significant reduction of the bandwidth of the invention. aimed at layer thicknesses. This results in more uniform coatings.
  • Achieving a uniform layer thickness distribution of the photopolymer is important in order to guarantee a uniform brightness of the holograms over a larger area. Since the brightness of the holograms depends directly on the diffraction efficiencies and the spectral angular bandwidths, there is thus also a direct influence of the layer thickness over these parameters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Holo Graphy (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Die Erfindung betrifft eine Methode zur Herstellung neuartiger Photopolymere basierend auf prepolymerbasierten Polyurethanzusammensetzungen, die sich für die Herstellung holographischer Medien, insbesondere zur visuellen Darstellung von Bildern eignen.

Description

Methode zur Herstellung von holografischen Photopolymeren auf Polymerfolien
Die Erfindung betrifft eine Methode zur Herstellung neuartiger Photopolymere basierend auf pre- polymerbasierten Polyurethanzusammensetzungen, die sich für die Herstellung holographischer Medien, insbesondere zur visuellen Darstellung von Bildern eignen.
Photopolymere stellen Materialien dar, die mittels der Überlagerung zweier kohärenter Lichtquellen belichtet werden können, wobei sich eine dreidimensionale Struktur in den Photopolymeren ausbildet, die sich im allgemeinen durch eine regionale Änderung des Brechungsindexes in dem Material beschreiben lässt. Derartige Strukturen werden Hologramme genannt. Sie können auch als diffraktive optische Elemente beschrieben werden. Dabei hängt es von der speziellen Belichtung ab, welche optischen Funktionen ein solches Hologramm ausbildet.
Polymerformulierungen zur Herstellung von holographischen Medien wurden unter anderem in den nicht vorveröffentlichten Patentanmeldungen EP 08017279.4, EP 08017277.8, EP 08017273.7, EP 08017275.2 beschrieben. In EP 08017277.8 und EP 08017273.7 sind polyether- basierte und prepolymer-basierte Polyurethanzusammensetzungen beschrieben, die sich zur Herstellung holographischer Medien im Allgemeinen eignen. In EP 08017275.2 wurden Polyurethanformulierungen mit speziellen Acrylaten beschrieben, die zur Aufzeichnung von Hologrammen geeignet sind. Weiterhin wurde in EP 08017279.4 erstmals ein typischer Folienaufbau und die Applikation verschiedener Polyurethanformulierungen als Photopolymer im Folienverbund beschrieben.
Die Herstellung solcher holografischen Medien als Glas- oder Folienverbund erfolgte im Stand der Technik bisher in verfahrenstechnischen Einzelschritten, die sich für eine produktionsähnliche und bedarfsgerechte Herstellung nicht eignen.
Für die produktionsähnliche Herstellung solcher Folienverbunde werden Folien- Beschichtungsanlagen, die als kontinuierlich betriebener Rolle-zu-Rolle Prozess zu verstehen sind, eingesetzt. Unter Folienbeschichtung werden im Allgemeinen das Aufbringen einer flüssigen Substanz auf ein sich bewegendes Folienmaterial verstanden. Die Beschichtungsverfahren unterscheiden sich unter anderen nach den Eigenschaften der aufzubringenden Schicht (z.B. Viskosität, O- berflächenspannung, Feststoffkonzentration, u.w.), der aufzubringenden Zielschichtdicke oder der Produktionsgeschwindigkeit.
Die für die Produktion einzusetzenden Folienbeschichtungsanlagen bestehen typischerweise aus: • Einer Rollenabwicklung, die die Zuführung des Trägermaterials (Foliensubstrat) gewährleistet.
• Vorbehandlung des Beschichtungsmaterials: Für die Vorbehandlung werden Zubehöreinheiten und Peripheriegeräte wie z.B. Dissolver und Knetwerke, Wiegesysteme, verschie- den Pumpensysteme, automatische Feststoffzufuhrungen, Verbrauchsmesssysteme, Filtereinheiten, Entgasungseinrichtungen und Mischsysteme eingesetzt.
• Vorbehandlung des Trägermaterials: Als Vorbehandlungseinheiten werden in der Be- schichtungsindustrie Bahnreinigungssysteme für die Trägermaterialreinigung, dem Fachmann bekannte Ionisierungseinheiten zum Homogenisieren der auf dem Trägermate- rial befindlichen elektrischen Ladungen, Plasma- oder Coronabehandlungen eingesetzt.
Des Weiteren werden Bahnsteuerungssysteme eingesetzt, die durch Einrichtungen wie z.B. Bahnkantensteuerung und Bahnspeichersysteme unterstützt werden.
• Auftragsystem für die Applikation eines Beschichtungsmaterials: Als Auftragsysteme kommen in der Beschichrungsindustrie diverse Rakel- und Streichsysteme, Schlitzgießer und Rollenantragssysteme, wie auch für den mehrschichtigen Antrag Systeme wie z.B.
Vorhang- oder Kaskadenverfahren zum Einsatz.
Einsetzbare Beschichtungseinrichtungen wie z.B. Vorhang- oder Kaskadenbeschichter oder Schlitzdüsen werden in früheren Veröffentlichungen z.B. (P. M. Schweizer, „Vordosierte Be- schichtungsverfahren: Vorzüge und Anwendungen", Coating, Ausgabe 12/1998, Seite 462 - 465) beschrieben: So beschreibt Schweizer vordosierende Beschichtungsverfahren, die bereits in den fünfziger Jahren unter anderem in der Fotoindustrie entwickelt wurden. Bei diesen Verfahren erfolgt die Flüssigkeitsverteilung in Querrichtung zum Trägermaterial durch eine homogene Druckverteilung innerhalb einer Düse. Diese Verfahren werden für einschichtige, wie auch für mehrschichtige Produkte eingesetzt (Schlitzdüse <3, Kaskaden- und Vorhangverfahren > 10). Beim Schlitz- und Kaskadenverfahren ist die Düse nur durch einen sehr engen Spalt vom Trägermaterial getrennt. Beim Vorhangverfahren befindet sich die Düse mehrere Zentimeter vom Trägermaterial entfernt, so dass die Flüssigkeitsverteilung vom Beschichtungsprozess weitgehend entkoppelt ist.
Des weiteren werden alle gängigen Walzenantragssysteme, die sich im Speziellen durch die Anordnung, Ausführungen und der Anzahl der Walzen unterscheiden, eingesetzt. Dabei kann das aufzutragende Beschichtungsmaterial entweder in einer Wanne oder im Spalt zwischen zwei horizontal angeordneter Walzen zur Dosierung aufbewahrt werden. In allen Fällen beeinflusst die Drehzahl der benetzten Walzen, die Beschaffung (Rasterung, Glattwalzen) der Walzen, Viskosität und Oberflächenspannung die anzutragende Schichtdicke im Verhältnis zur Substratgeschwindig- keit. Zusätzlich werden bei steigenden Substratgeschwindigkeiten weitere Walzen eingesetzt, die durch unterschiedlich angepassten Drehzahlen der Walzen und eines definierten Spaltabstands zwischen zwei Walzen eine weitere Verstreckung des Beschichtungsmaterials hervorrufen. Die letzte Walze in dem System steht in einem sehr engen Abstand zum Trägermaterial und somit wird das Beschichtungsmaterial entweder im Gegenlauf oder im Gleichlauf an das Trägermaterial ange- presst. Drehzahl der Walze, Spaltabstand, Geschwindigkeit des Trägermaterials und die Viskosität sind entscheidende Faktoren bei der Einstellung der gewünschten Nassschichtdicken.
Ein 5- bzw. 6- Walzenantragssystem wird z.B. von der Firma Maschinenfabrik Max Kroenert GmbH & Co. KG (M. Schmalz, N. Hansen, W. Neumann, „5- oder 6-Walzen Beschichtungsver- fahren", Coating, Ausgabe 10/2006, Seite 410-413) beschrieben. Die Autoren vergleichen in dieser Veröffentlichung die Vor- und Nachteile eines 5- zu einem 6- Walzenantragsystem anhand einer lösungsmittelfreien Silikonbeschichtung mit thermisch und UV härtbaren Silikonen.
• Trocknereinheiten: Zum Trocknen des Beschichtungsmaterials auf dem Trägermaterial werden unter anderem Heißlufttrockner mit vortemperierter Luft, IR-Strahler oder UV- Geräte eingesetzt. Zur Nachbehandlung der beschichteten Trägermaterialien kommen
Kühlwalzen, Breitstreckwalzen, Kaschierwerke, Kalanderwalzen, Schneideeinrichtung (wie z.B. Kantenschneider) zum Einsatz. Zusätzlich können die genannten Prozesse auch für lösungsmittelhaltige Systeme zum Einsatz kommen und werden somit als eine explo- sionsschützenden Einheit ausgerüstet.
• Aufwickeleinrichtung zum Wickeln des beschichteten Produkts bzw. Trägerfolie.
• Die genannten Prozessschritte werden in der Beschichtungsindustrie zusätzlich mit Systemen für die Qualitätssicherung, wie z.B. Schichtdickenmessungen, optischen Oberflä- chenkontrollsystemen, Luftfeuchte- oder Lösungsmittelkonzentrationsmessungen und Produktrestfeuchtemessungen ergänzt.
Aufgabe der vorliegenden Erfindung war es nun, ein großtechnisches Verfahren bereitzustellen, mit dem holografϊsche Photopolymerfolien, ausgehend von prepolymer-basierten Polyurethanformulierungen in kontinuierlicher Herstellweise produziert werden können. Das Produkt soll dabei ein Folienverbund aus Begussfolie, Photopolymer und einer Deckfolie sein.
Gelöst wurde diese Aufgabe durch die spezielle Kombination verschiedener Prozessschritte bei denen dem Fachmann bekannte Zwangsdosierpumpen, Vakuumentgaser, Plattenfilter, Statische Mischer, Schlitzdüsen oder verschiedene Rakelsysteme, Ein-Rollenabwickler, Lufttrockner, Trockenkaschiereinrichtung und eine Ein-Rollenaufwickeleinrichtung, eingesetzt werden. Speziell die Beschichtungseinrichtung, wie z.B. Schlitzdüsen und Rakelsysteme, sind für die Applikation von flüssigen Beschichtungsmaterialien, speziell in Verbindung mit Photopolymerformulierungen, bevorzugt prepolymer-basierte Polyurethanformulierungen nachstehender Zusammensetzungen, auf bewegende Trägermaterialien geeignet und zeichnen sich durch eine hohe Genauigkeit in der Applikationsschichtdicke aus.
Gegenstand der vorliegenden Erfindung ist ein kontinuierliches Verfahren zur Herstellung von Photopolymerfolien, bei dem eine Trägerfolie nach dem Rolle-zu-Rolle-Prinzip mit einer Photopolymerformulierung umfassend
A) eine Polyisocyanatkomponente, wenigstens enthaltend ein NCO-terminiertes PoIy- urethanprepolymer dessen NCO-Gruppen primär aliphatisch gebunden sind und welches auf hydroxyfunktionellen Verbindungen mit einer OH -Funktionalität von 1,6 bis 2,05 basiert,
B) Isocyanat-reaktive Polyetherpolyole
C) Urethanacrylate und/oder Urethanmethacrylate mit mindestens einer aromatischen Struktureinheit und einem Brechungsindex von größer 1,50 bei 405 nm, die selbst frei von NCO-Gruppen und OH-Gruppen sind
D) Radikalstabilisatoren
E) Photoinitiatoren auf Basis von Kombinationen aus Boratsalzen und einem oder mehreren Farbstoffen mit Absorptionsbanden, die zumindest teilweise den Spekt- ralbereich von 400 bis 800 nm abdecken
F) Gegebenenfalls Katalysatoren
G) Gegebenenfalls Hilfs- und Zusatzstoffe
beschichtet wird.
Weitere Gegenstände der Erfindung sind nach dem erfindungsgemäßen Verfahren erhältliche Pho- topolymerfolien, die geeignet sind zur Aufzeichnung visueller Hologramme und deren weitere Verwendung als optische Elemente, Bilder oder zur Bilddarstellung oder -projektion.
In Komponente A) werden Prepolymere eingesetzt, die dem Fachmann in an sich gut bekannter Art und Weise durch Umsetzung von monomeren, oligomeren oder Polyisocyanaten Al) mit iso- cyanatreaktiven Verbindungen A2) in geeigneter Stöchiometrie unter optionalem Einsatz von Ka- talysatoren und Lösemitteln erhalten werden können. Bevorzugte Prepolymere sind Urethane oder Allophanate aus aliphatischen Isocyanat-funktionellen Verbindungen und oligomeren oder poly- meren Isocyanat-reaktiven Verbindungen, wobei die Prepolymere zahlenmittlere Molmassen von 200 bis 10000 g/Mol und NCO-Funktionalitäten von 1,9 bis 5,0 aufweisen. Besonders bevorzugt sind difunktionelle Urethane und Allophanate mit Funktionalitäten von größer 1,9 bis 3,2 oder von 3,9 bis 4,2.mit zahlenmittleren Molmassen von 650 bis 8200 g/Mol hergestellt aus aliphatischen Isocyanat-funktionellen Verbindungen und oligomeren oder polymeren Polyolen oder deren beliebige Mischungen. Ganz besonders bevorzugt sind Urethane mit NCO-Funktionalitäten von 1,9 bis 2,1 und zahlenmittleren Molmassen von 1900 bis 4100 g/Mol, hergestellt aus aliphatischen Isocy- anat-funktionellen Verbindungen und oligomeren oder polymeren Polyolen und Allophanate mit Funktionalitäten von größer 2,0 bis 3,2 oder von 3,9 bis 4,2 mit zahlenmittleren Molmassen von 1900 bis 4100 g/Mol, hergestellt aus aliphatischen Isocyanat-funktionellen Verbindungen und oligomeren oder polymeren Polyolen oder deren beliebige Mischungen.
Als Komponente B) werden isocyanat-reaktive Polyetherpolyole eingesetzt, die bevorzugt im Mit- tel wenigstens 1,5 isocyanatreaktive -Gruppen pro Molekül aufweisen. Bevorzugte Verbindungen der Komponente B) sind Poly(propylenoxid)e, Poly(ethylenoxide) und deren Kombinationen in Form von statistischen oder Blockcopolymeren sowie Blockcopolymere aus Propylenoxid und/oder Ethylenoxid. Dabei ist der Ethylenoxidanteil bezogen auf Gewichtsprozent des gesamten Produktes bevorzugt kleiner als 55%, besonders bevorzugt entweder zwischen 55% und 45% oder kleiner als 30% und ganz besonders bevorzugt kleiner als 10%. Als ganz besonders bevorzugte Verbindungen der Komponente B) sind difunktionelle Polyetherpolyole, basierend auf Propylenoxid und Ethylenoxid mit einem Ethylenoxidanteil von kleiner 10 Gewichtsprozent bezogen auf die Gesamtmasse des zugrundeliegenden Polyethers, und einer zahlenmittleren Molmasse zwischen 2000 und 4200 g/mol eingesetzt. Die Komponenten A) und B) werden bei der Herstellung der Photopolymerformulierung in einem OH/NCO-Verhältnis zueinander eingesetzt von typischerweise 0,9 bis 1,2, bevorzugt 0,95 bis 1,05.
In Komponente C) werden bevorzugt Urethanacrylate und/oder Urethanmethacrylate mit mindestens einer aromatischen Struktureinheit und einem Brechungsindex von größer 1,50 bei 405 nm eingesetzt. Unter Urethan(meth)acrylaten versteht man Verbindungen mit mindestens einer Acry- lat- bzw. Methacrylatgruppe, die zusätzlich über mindestens eine Urethanbindung verfügen. Besonders bevorzugte als Komponente C) zu verwendende Verbindungen sind Urethanacrylate und Urethanmethacrylate auf Basis aromatischer Isocyanate und 2-Hydroxyethylacrylat, Hydroxypro- pylacrylat, 4-Hydroxybutylacrylat, Polyethylenoxid-mono(meth)acrylat, Polypropylenoxid- mono(meth)acrylat, Polyalkylenoxidmono(meth)acrylat und Poly(e-caprolacton)mono(meth)- acrylate. In einer ganz besonders bevorzugten Ausführungsform werden als Komponente C) die Additionsprodukte aromatischer Triisocyanate (ganz besonders bevorzugt Tris-(4- phenylisocyanato)-thiophosphat oder Trimere aromatischer Diisocyanate wie Toluylendiisocyanat) mit Hydroxyethylacrylat, Hydroxypropylacrylat, 4-Hydroxybutylacrylat eingesetzt. In einer weiteren ganz besonders bevorzugten Ausführungsform werden als Komponente C Additionsprodukte von 3-Thiomethyl-phenylisocyanat mit Hydroxyethylacrylat, Hydroxypropylacrylat, 4-Hydroxybutylacrylat eingesetzt.
Als Verbindungen der Komponente D) geeignet sind Inhibitoren und Antioxidantien. Bevorzugt sind 2,6-Di-/ert.-butyl-4-methylphenol, Phenothiazin, p-Methoxyphenol, 2-Methoxy-p- hydrochinon und Benzhydrol.
Als Komponente E) werden ein oder mehrere Photoinitiatoren eingesetzt. Bevorzugte Photoinitiatoren E) sind Mischungen aus Tetrabutylammonium Tetrahexylborat, Tetrabutylammonium Triphenylhexylborat, Tetrabutylammonium Tris-(3-fluorphenyl)-hexylborat und Tetrabutylammonium Tris-(3-Chlor-4-methylphenyl)-hexylborat (Komponente El)) mit Farbstoffen wie beispielsweise Astrazon Orange G, Methylenblau, Neu Methylenblau, Azur A, Pyrillium I, Safranin O, Cyanin, Gallocyanin, Brilliant Grün, Kristallviolett, Ethylviolett und Thionin (Komponente E2)). Insbesondere bevorzugt ist die Kombination von je einem blau-sensitiven, einem grün-sensitiven sowie einem rot-sensitiven Farbstoff (z.B. Astrazon Orange G, Ethylviolett und Neu Methylenblau) und einem der vorgenannten Boratsalze.
Als Verbindungen der Komponente F) können gegebenenfalls ein oder mehrere Katalysatoren eingesetzt werden. Bevorzugt sind Dibutylzinndilaurat, Dimethylbis[(l-oxoneodecyl)oxy]stannan, Dimethylzinndicarboxylat, 1,4-Diazabicyclo[2.2.2]octan, Diazabicyclononan, Diazabicyclounde- can, 1,1,3,3-Tetramethylguanidin, l,3,4,6,7,8-Hexahydro-l-methyl-2H-pyrimido(l,2-a)pyrimidin.
Selbstverständlich können gegebenenfalls weitere Zusatzstoffe G) eingesetzt werden. Dabei kann es sich beispielsweise um im Bereich der Lacktechnologie gängige Zusatzstoffe wie Lösemittel, Weichmacher, Verlaufsmittel, Entschäumungsmittel oder Haftvermittler handeln. Als Weichmacher werden dabei bevorzugt Flüssigkeiten mit guten Löseeigenschaften, geringer Flüchtigkeit und hoher Siedetemperatur eingesetzt. Als Verlaufsmittel können oberflächenaktive Verbindungen wie z.B. Polydimethylsiloxane verwendet werden. Es kann auch von Vorteil sein, gleichzeitig mehrere Zusatzstoffe eines Typs zu verwenden. Selbstverständlich kann es ebenfalls von Vorteil sein, meh- rere Zusatzstoffe mehrerer Typen zu verwenden.
Besonders bevorzugt umfassen die beschriebenen Photopolymerformulierungen:
18 bis 30 Gew.-% Komponente A) 35 bis 57,37 Gew.-% der Komponente B)
20 bis 35 Gew.-% der Komponente C)
0,02 bis 0,1 Gew.-% Radikalstabilisatoren D)
1 bis 1,5 Gew.-% Photoinitiatoren El)
jeweils 0,03 bis 0,1 Gew.-% der drei Farbstoffe E2), die im Absorptionsspektrum auf die Laserwellenlängen rot, grün und blau abgestimmt sind
0,02 bis 0,1 Gew.-% Katalysatoren F)
3,5 bis 5 Gew.-% Hilfs- und Zusatzstoffe G).
In einer bevorzugten Ausführungsform umfasst der Beschichtungsprozess der Trägerfolie die nachfolgenden Einzelschritte zur Behandlung vorgenannten Photopolymerverbindungen:
I. Fördern und Dosieren zum einen der Komponente A) gegebenenfalls gemischt mit einer oder mehrerer der Komponenten E), F) und G) sowie zum anderen separat dazu der Komponente B) gegebenenfalls gemischt mit einer oder mehrerer der Komponenten C), D), E), F) und G)
π. Entgasen der gemäß I) geförderten, dosierten und gegebenenfalls vorvermischten Ströme
EI. Filtrieren der nach II) erhaltenen Mischung
IV. Homogenisieren der nach HI) erhaltenen Mischung
V. Abwicklung und Vorbehandlung des Trägermaterials
VI. Beschichten des Trägermaterials mit der nach Schritt IV) erhaltenen Mischung
Vn. Trocknung des nach VI) beschichteten Films
VHI. Kaschieren des nach VII) erhaltenen beschichteten Films
IX. Aufwicklung des nach VHI) erhaltenen kaschierten Films
Für die Förderung und die benötigte Genauigkeit beim Dosieren (I) eignen sich alle dem Fachmann bekannten Pumpensysteme, die im Speziellen gegendruckunabhängig, pulsationsarm und präzise fördern. Bevorzugt werden demnach Membranpumpe, Zahnradpumpen, Excenterschne- ckenpumpen (Mohnopumpen), Schlauchpumpen und Kolbenpumpen. Besonders bevorzugt sind Zahnradpumpen und Excenterschneckenpumpen (Mohnopumpen).
Bevorzugte Dosiermengen sind abhängig von der Dimensionierung der zu beschichtenden Trägerfolie, liegen aber üblicherweise im Bereich von 2 ml/min bis 2.000 ml/min, besonders bevorzugt im Bereich von 2 ml/min bis 500 ml/min.
Falls notwendig kann auch eine Entgasung (II) der einzelnen Komponenten oder der gesamten Mischung unter einem reduzierten Druck von beispielsweise 1 mbar durchgeführt werden. Ein Entgasen, insbesondere nach Zugabe der Komponente A) ist bevorzugt, um Blasenbildung durch Restgase oder leicht verdampfbare Komponenten in den hergestellten Photopolymeren zu verhin- dem.
Beim Entgasen werden gelöste Gase oder leicht verdampfbare Komponenten wie leicht-flüchtige Lösungsmittel (z.B. durch eingetragene Umgebungsluft) aus den Fluiden entfernt und gegebenenfalls kann das zu entgasende Fluid zusätzlich untersättigt werden. Als technische Entgaser können unter anderem Vakuumentgaser, Membranentgaser, Zentrifugalentgaser, Ultraschallentgaser und Dünnschichtentgaser und Kombinationen der genannten Technologien eingesetzt werden.
Die Filtration (ITI) dient zur Abtrennung von Feststoffpartikeln aus dem flüssigen Medium und wird speziell als Reinigungsschritt für die flüssigen Komponenten eingesetzt. In der Beschich- tungsindustrie werden in der Regel Kerzenfϊlter und Plattenfilter eingesetzt. Bevorzugte Partikelgrößenverteilungen liegen zwischen 0, 1 μm bis 5 μm, besonderes bevorzugte Partikelgrößenvertei- lungen liegen im Bereich von 0,2 μm und 1 μm.
Zur Vermischung (IV) können alle dem Fachmann aus der Mischungstechnik an sich bekannten Verfahren und Apparate, wie beispielsweise Rührkessel oder sowohl dynamische als auch statische Mischer verwendet werden. Bevorzugt sind allerdings Apparate ohne oder mit nur geringen Toträumen. Weiterhin sind Verfahren bevorzugt, in denen die Vermischung innerhalb sehr kurzer Zeit und mit sehr starker Durchmischung der beiden zu mischenden Komponenten erfolgt. Hierfür eignen sich insbesondere dynamische Mischer, insbesondere solche, in denen die Komponenten erst im Mischer miteinander in Kontakt kommen.
Die Temperaturen betragen dabei 0 bis 100 0C, bevorzugt 10 bis 80 0C, besonders bevorzugt 20 bis 60 0C.
Vor Zumischung der Komponente A) können die Mischungen der Komponenten B) bis G) als lagerstabiles Zwischenprodukt gegebenenfalls über mehrere Monate gelagert werden kann. Nach der Zumischung der Komponente A) der erfindungsgemäßen Polyurethanzusammensetzungen wird eine klare, flüssige Formulierung erhalten, die je nach Zusammensetzung bei Raumtemperatur innerhalb weniger Sekunden bis zu einigen Stunden aushärtet.
Das Verhältnis sowie die Art und Reaktivität der Aufbaukomponenten der Polyurethanzusammen- Setzungen wird bevorzugt so eingestellt, dass die Aushärtung nach Zumischung der Komponente A) bei Raumtemperatur innerhalb von Minuten bis zu einer Stunde eintritt. In einer bevorzugten Ausführungsform wird die Aushärtung beschleunigt indem die Formulierung nach der Zumischung auf Temperaturen zwischen 30 und 180 0C, bevorzugt 40 bis 120 0C, besonders bevorzugt 50 bis 100 0C erwärmt wird.
Die Polyurethanzusammensetzungen besitzen unmittelbar nach vollständiger Vermischung aller Komponenten Viskositäten bei 25°C von typischerweise 10 bis 100000 mPas, bevorzugt 100 bis 20000 mPas, besonders bevorzugt 200 bis 10000 mPas, insbesondere bevorzugt 500 bis 5000 mPas so dass sie bereits in lösemittelfreier Form sehr gute verarbeitungstechnische Eigenschaften besitzen. In Lösung mit geeigneten Lösemitteln können Viskositäten bei 25°C unterhalb 10000 mPas, bevorzugt unterhalb 2000 mPas, besonders bevorzugt unterhalb 500 mPas eingestellt werden.
Als vorteilhaft haben sich Polyurethanzusammensetzungen der vorstehend genannten Art erwiesen, die mit einem Katalysatorgehalt (Komponente F) von 0,004 Gew.-% bis 0,1 Gew.-% bei 800C unter 6 Minuten aushärten, bevorzugt werden Konzentrationen zwischen 0,01 Gew.-% und 0,08 Gew.-%, besonders bevorzugt werden Konzentrationen zwischen 0,04 Gew.-% und 0,06 Gew.-% .
Die Abwicklung (V) des Trägermaterials erfolgt in diskontinuierlichen Prozessen mit dem Fachmann bekannten Einzelrollenabwicklern. Bei diesen diskontinuierlichen Prozessen wird eine einzelne unbeschichtete Rolle in der Abwicklungsvorrichtung eingesetzt und in kompletter Länge dem Beschichtungsprozess zugeführt. Am Ende der Rolle wird der Beschichtungsprozess unterbrochen und das fertig beschichtete und aufgewickelte Trägermaterial wird an der Aufwickelstati- on dem Prozess entnommen und produktspezifisch verpackt. An der Abwickelvorrichtung wird eine neue unbeschichtet Rolle eingesetzt und mit dem Ende des voranproduzierten Trägermaterials mit geeigneten Klebefolien befestigt. Nach dem Starten des Maschinenvorzugs des Trägermaterials kann mit dem Beschichtungsprozesses fortgeführt werden.
Bei der kontinuierlichen Beschichtung von Trägermaterialien kommen Mehrrollenabwicklern, die als Wendescheibenabwicklern oder Wendekreuze angeordnet sind, zum Einsatz. Der kritische Übergang von einem diskontinuierlichen Prozess beim Einsetzten einer unbeschichteten Trägermaterialrolle zu einem kontinuierlichen Beschichtungsprozess, ohne diesen Beschichtungsprozess zu unterbrechen, wird entweder mit Hilfe eines Bahnspeichers oder eines dem Fachmann bekannten fliegenden Anklebprozesses durchgeführt.
Ein Bahnspeicher dient als Puffer für die Phase des Stillstands beim Rollenwechsel und Ankleben der Rollenabwicklung. Hierbei wird nach dem Bestücken der Materialabwicklung die Vorzugsge- schwindigkeit schrittweise auf einen Wert oberhalb der eigentlichen optimalen Beschichtungsge- schwindigkeit erhöht. Nach dem Überschreiten der Beschichtungsgeschwindigkeit wird der Bahnspeicher mit Trägermaterial bis zur Vollständigkeit gefüllt. Anschließend wird die Vorzugsgeschwindigkeit auf die eigentliche Beschichtungsgeschwindigkeit angepasst. Parallel wird die zweite Materialabwicklungseinrichtung im Mehrrollenabwickler mit einer weiteren unbeschichteten Rolle bestückt. Am Ende der voranbenutzten Rolle wird die Vorzugsgeschwindigkeit sofort stark reduziert und gestoppt. Dabei wird durch Beibehalten der Beschichtungsgeschwindigkeit der Bahnspeicher kontinuierlich entleert. Parallel wird der Anfang der bereits am zweiten Materialabwickler bestückten Rolle an das Ende der voran eingesetzten Rolle mit entsprechend geeigneten Klebematerialen befestigt. Anschließend wird die Vorzugsgeschwindigkeit wieder gestartet und schrittweise über die Beschichtungsgeschwindigkeit angehoben, um den Bahnspeicher erneut zu füllen. Parallel wird der Mehrrollenabwickler (in Drehscheibenausführung oder als Wendekreuz) um 180° geschwenkt. Während des gesamten Ablaufs der Materialwechsel wird die Beschichtungsgeschwindigkeit über die Prozessteuerung mit Hilfe zusätzlicher Hilfsantriebe konstant gehalten.
Zur Steuerung des Trägermaterials in Querrichtung zur Vorzugsrichtung werden dem Fachmann bekannte Bahnlaufregelungseinheiten eingesetzt. Dabei wird die Position der Bahnkante mit Hilfe von optischen Sensoren, wie z.B. Reflexionssensoren, Transmissionslichtsensoren oder Ultraschallsensoren ermittelt und mit Hilfe von Steuerwalzensystemen, die auf einen angetriebenen Drehrahmen positioniert sind, mechanisch korrigiert.
Bei der Reinigung des Trägermaterials wird zwischen zwei unterschiedlichen Reinigungsverfahren unterschieden: Dem kontaktierenden und der berührungslosen Oberflächenreinigung. Beim kontaktierenden Reinigungsverfahren handelt es sich um Reinigungsbürsten, die mit speziellen weichen Bürstenmaterialien ausgestattet sind. Nachteil dieses Verfahrens ist das Auftreten von Störungen im Trägermaterial, welche durch den Kontakt der Bürste mit dem Trägermaterial entstehen können. Diesbezüglich sind Prozessparameter wie Umdrehungsgeschwindigkeit, Bürstenmaterial, und der Abstand zum Trägermaterial anzupassen.
Berührungslose Verfahren wie z.B. Ionisierungseinheiten, Absaugkanälen oder Luftgebläse sind diesbezüglich materialschützende Verfahren. Diese Ionisierungseinheiten erzeugen positive und negative Ionen, die die Oberflächenladungen auf dem Trägermaterial neutralisieren. Dadurch wer- den statische Ladungen auf dem Trägermaterial, die dazu fuhren, Staub und Partikel aus der Umgebung anzuziehen, vermieden. Optional werden die Reinigungssysteme mit zusätzlichen Absaugkanälen ausgestattet, die Partikel von der Oberfläche des Trägermaterials abtransportieren. Unterstützt wird dieses durch den Einsatz einer speziell angeordneten Flachstrahldüse, die mit einem feinen Druckluftstrahl Staub und Partikel von der Oberfläche lösen und wegblasen. Diese Partikel werden ebenfalls über die installierten Absaugkanäle abtransportiert und gefiltert. Die beschriebenen Verfahren zur Bahnreinigung können in beliebiger Reihenfolge und Positionierung angeordnet und kombiniert werden.
Zur Verbesserung der Haftungseigenschaften der Trägermaterialen werden dem Fachmann be- kannte Corona- und Plasma-Vorbehandlungssysteme eingesetzt. Das Trägermaterial wird einer elektronischen Hochspannungs-Entladung ausgesetzt, die zwischen einer geerdeten und polierten Stahl- oder Aluminiumwalze und einer eng anliegenden isolierten Elektrode auftritt. Dabei wird nur die zur Elektrode zugewandte Seite behandelt. Gängige Elektroden werden hierbei mit Hochfrequenzgeneratoren mit einer Wechselspannung von 10 bis 2OkV und einer Frequenz zwischen 10 und 60 kHz versorgt.
Zur Applikation auf ein Trägermaterial (Beschichten, VI) bzw. in eine Form sind alle jeweiligen gängigen, dem Fachmann bekannten Verfahren geeignet, wie insbesondere Rakeln, Gießen, Drucken, Siebdruck, Spritzen, oder Inkjet-Druck. Bevorzugt sind Rakel und Schlitzdüsen als Folienbe- schichtungsverfahren geeignet.
Für die beschriebenen Beschichtungsverfahren werden dem Fachmann bekannte Oberflächenspannungen der beschriebenen Polyurethanzusammensetzungen mit Hilfe der beschriebenen Additive angepasst. Bevorzugte Oberflächenspannungen liegen hierbei zwischen 10 raN/m und 50 mN/m, besonders bevorzugt von 20 mN/m bis 40 mN/m.
Bevorzugte Beschichtungsbreiten liegen zwischen 100 mm und 3000 mm, besonders bevorzugt sind Breiten im Bereich von 300 mm bis 2000 mm.
Substratgeschwindigkeiten liegen bevorzugt im Bereich von 0,2 m/min bis 300 m/min. Besonders bevorzugte Substratgeschwindigkeiten sind im Bereich von 1,0 m/min bis 50 m/min zu finden.
Applizierte Trockenschichtdicken für Rakel und Schlitzdüsen liegen bevorzugt bei höchstens 200 μm, besonders bevorzugt bei 3 μm bis 100 μm, ganz besonders bevorzugt 15 μm bis 60 μm.
Die Trocknung (VII) des beschichteten Substrats erfolgt bevorzugt bei einer Temperatur von 30 0C bis 180 0C, besonders bevorzugt von 40 0C bis 120 0C, ganz besonders bevorzugt von 50 0C bis 100 0C. In einer bevorzugten Ausfuhrung erfolgt dabei die Dosierung der Einsatzstoffe entweder durch Zahnrad- oder Excenterschneckenpumpen. Zur Entgasung der Einsatzstoffe werden Zentrifuga- lentgaser und zur Filterung Plattenfilter eingesetzt. Die Mischung der Einzelkomponenten erfolgt über einen statischen Mischer mit entsprechend ausgelegten Mischgeometrien, wie z.B. Länge und Durchmesser. Als bevorzugte Beschichtungsemheit wird eine Schlitzdüse eingesetzt. Das beschichtete Material wird über Lufttrockner mit der gewünschten Lufttemperatur und Feuchtgehalt über einen definierten Zeitraum getrocknet. Figur 1 zeigt eine Übersicht der beschriebenen Kombination der einzelnen Herstellschπtte eines beschichteten Substrats.
Figur 1 : Schematischer Aufbau einer typischen Beschichtungsanlage, inklusive Anordnung der Vorbehandlung des Beschichtungsmateπals (1-5), schematischer Verlauf des Trägermateπals (8 + 9), Beschichtungseinrichtung zum Applizieren auf ein Trägermateπal (6) und anschließenden Trocknungsprozess (7).
Bezugszeichen in Figur 1 :
1 Vorratsbehälter
2 Dosiereinrichtung
3 Vakuumentgasung
4 Filter
5 Statischer Mischer
6 Beschichtungseinrichtung
7 Trockner
8 Bahnlauf
9 Produkt-Kaschierung
Durch die Kombination der beschriebenen Prozessschritte wie in Figur 1 dargestellt, wird eine höhere Schichtdickengenauigkeit an applizierten Photopolymerschichtdicken auf bewegende Trä- germateπahen erzielt.
Em weiterer Gegenstand der vorliegenden Erfindung ist der Artikel, der durch Beschichtung eines transparenten Substrates mit der beschriebenen präpolymerbasierten Polyurethanformulierung erhalten wird.
Dabei handelt es sich um ein lichtsensitives (Spektraler Wellenlängenbereich 400 bis 800 nm des elektromagnetischen Spektrums) Produkt, welches einen Folienverbund aus mindestens Begussfo- he oder Trägermateπal (Substrat) aufweist, der Photopolymerschicht, die aus der beschriebenen Formulierung hergestellt wird sowie einer Deck- oder Kaschierfolie. Im Folienverbund können weitere Folien enthalten sein.
Bevorzugte Materialien oder Materialverbünde der Trägerschicht basieren auf Polycarbonat (PC), Polyethylenterephthalat (PET), Polybutylenterephthalat, Polyethylen, Polypropylen, Celluloseace- tat, Cellulosehydrat, Cellulosenitrat, Cycloolefmpolymere, Polystyrol, Polyepoxide, Polysulfon, Cellulosetriacetat (CTA), Polyamid, Polymethylmethacrylat, Polyvinylchlorid, Polyvinylbutyral oder Polydicyclopentadien oder deren Mischungen. Daneben können Materialverbünde wie Folienlaminate oder Coextrudate als Trägerfolie Anwendung finden. Beispiele für Materialverbünde sind Duplex- und Triplexfolien aufgebaut nach einem der Schemata A/B, A/B/A oder A/B/C wie PC/PET, PET/PC/PET und PC/TPU (TPU = Thermoplastisches Polyurethan). Besonders bevorzugt wird PC und PET als Trägerfolie verwendet.
Bevorzugt sind transparente Träger, die optisch klar, d.h. nicht trüb sind. Die Trübung (engl. Haze) ist messbar über den Haze -Wert, welcher kleiner als 3,5%, bevorzugt kleiner als 1%, besonders bevorzugt kleiner als 0,3% ist.
Der Haze-Wert beschreibt den Anteil des transmittierten Lichts, der von der durchstrahlten Probe nach vorne gestreut wird. Somit ist er ein Maß für die Opazität oder Trübung transparenter Materialien und quantifiziert Materialfehler, Partikel, Inhomogenitäten oder kristalline Phasengrenzen in dem Material oder seiner Oberfläche, die die klare Durchsicht stören. Das Verfahren zur Messung der Trübung wird in der Norm ASTM D 1003 beschrieben.
Bevorzugt weist der Träger eine nicht zu hohe Doppelbrechung auf, d.h. typischerweise eine mittlere optische Retardation von weniger als 1000 nm, bevorzugt von weniger als 700 nm, besonders bevorzugt von weniger als 300 nm auf.
Die Retardation R ist das mathematische Produkt aus der Doppelbrechung Δn und der Dicke des Trägers d. Die automatische und objektive Messung der Retardation erfolgt mit einem bildgeben- den Polarimeter, z.B. von der Firma ilis GmbH, Modell StainMatic® M3/M.
Die Retardation wird in senkrechter Inzidenz gemessen. Die für den Träger angegebenen Werte für die Retardation sind laterale Mittelwerte.
Der Träger hat, einschließlich eventueller ein oder beidseitiger Beschichtungen, typischerweise eine Dicke von 5 bis 2000 μm, bevorzugt 8 bis 300 μm, besonders bevorzugt 30 bis 200 μm und insbesondere 125 bis 175 μm oder 30 bis 45 μm. Zusätzlich zu den Bestandteilen kann der Folienverbund ein oder mehrere Abdeckschichten auf der Photopolymerschicht aufweisen, um diese vor Schmutz und Umwelteinflüssen zu schützen. Hierzu können Kunststofffolien oder Folienverbundsysteme, aber auch Klarlacke verwendet werden.
Als Abdeckschichten werden bevorzugt Folienmaterialien analog den in der Trägerschicht einge- setzten Materialien verwendet, wobei diese eine Dicke von typischerweise 5 bis 200 μm, bevorzugt 8 bis 125 μm, besonders bevorzugt 20 bis 50 μm.
Bevorzugt sind Abdeckschichten mit einer möglichst glatten Oberfläche. Als Maß gilt die Rauig- keit bestimmt nach DIN EN ISO 4288 „Geometrische Produktspezifikation (GPS) - Oberflächenbeschaffenheit..." (engl. „Geometrical Product Specifications (GPS) - Surface texture...", Prüfbe- dingung R3z Vorderseite und Rückseite. Bevorzugte Rauigkeiten liegen im Bereich kleiner oder gleich 2 μm, bevorzugt kleiner oder gleich 0,5 μm.
Als Kaschierfolien werden bevorzugt PE- oder PET-Folien einer Dicke von 20 bis 60 μm verwendet, besonders bevorzugt wird eine Polyethylenfolie von 40 μm Dicke verwendet.
Es können weitere Schutzschichten, so z.B. eine untere Kaschierung der Trägerfolie Anwendung finden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Medien zur Aufzeichnung visueller Hologramme, zur Herstellung von optischen Elementen, Bildern, Darstellungen sowie ein Verfahren zur Aufzeichnung von Hologrammen unter Verwendung der erfindungsgemäßen Polyurethanzusammensetzungen und den daraus zugänglichen Medien oder holografϊschen Filmen.
Mit den erfindungswesentlichen Photopolymerfolien können durch entsprechende Belichtungsprozesse Hologramme für optische Anwendungen im gesamten sichtbaren Bereich sowie im nahen UV-Bereich (300 - 800 nm) hergestellt werden. Visuelle Hologramme umfassen alle Hologramme, die nach dem Fachmann bekannten Verfahren aufgezeichnet werden können, darunter fallen unter anderem In-Line (Gabor) Hologramme, Off-Axis Hologramme, Full-Aperture Transfer Hologramme, Weißlicht-Transmissionshologramme ("Regenbogenhologramme"), Denisyukho- logramme, Off-Axis Reflektionshologramme, Edge-Lit Hologramme sowie Holographische Stereogramme, bevorzugt sind Reflexionshologramme, Denisyukhologramme, Transmissionshologramme. Bevorzugt sind optische Elemente wie Linsen, Spiegel, Umlenkspiegel, Filter, Streu- Scheiben, Beugungselemente, Lichtleiter, Lichtlenker (waveguides), Projektionsscheiben und/oder Masken. Häufig zeigen diese optischen Elemente eine Frequenzselektivität je nachdem wie die Hologramme belichtet wurden und welche Dimensionen das Holgramm hat. Zudem können mittels der erfindungswesentlichen Photopolymerfolien auch holographische Bilder oder Darstellungen hergestellt werden, wie zum Beispiel für persönliche Portraits, biometrische Darstellungen in Sicherheitsdokumenten, oder allgemein von Bilder oder Bildstrukturen für Werbung, Sicherheitslabels, Markenschutz, Markenbranding, Etiketten, Designelementen, Dekoratio- nen, Illustrationen, Sammelkarten, Bilder und dergleichen sowie Bilder, die digitale Daten repräsentieren können u.a. auch in Kombination mit den zuvor dargestellten Produkten. Holographische Bilder können den Eindruck eines dreidimensionalen Bildes haben, sie können aber auch Bildsequenzen, kurze Filme oder eine Anzahl von verschiedenen Objekten darstellen, je nachdem aus welchem Winkel, mit welcher (auch bewegten) Lichtquelle etc. diese beleuchtet wird. Aufgrund dieser vielfältigen Designmöglichkeiten stellen Hologramme, insbesondere Volumenhologramme, eine attraktive technische Lösung für die oben genannten Anwendung dar.
Beispiele:
Einsatzstoffe:
Desmodur® XP 2599 ist ein Versuchsprodukt der Bayer MaterialScience AG, Leverkusen, DE, Vollallophanat von Hexandiisocyanat auf Acclaim 4200, NCO-Gehalt: 5,6 - 6,4 %
Präpolymer 1 ist ein experimentelles Produkt der Bayer MaterialScience AG, Leverkusen, DE, Urethan von Hexandiisocyanat und Acclaim 2200, NCO-Gehalt: 3,2 - 3,75 %
Polyol 1 (Acclaim® 4200) ist ein Polypropylenoxid der zahlenmittleren Molmasse 4000 g/Mol der Bayer MaterialScience AG, Leverkusen, DE.
Polyol 2 (Acclaim® 4220 N) ist ein ethylenoxid-gecapptes Polypropylenoxid der zahlenmittleren Molmasse 4000 g/Mol der Bayer MaterialScience AG, Leverkusen, DE.
Polyol 3 (Acclaim® 2200) ist ein Polypropylenoxid der zahlenmittleren Molmasse 2000 g/Mol der Bayer MaterialScience AG, Leverkusen, DE.
Urethanacrylat 1 ist ein experimentelles Produkt der Bayer MaterialScience AG, Leverkusen, DE, Urethanacrylat auf Basis von HEA und Desmodur® RFE.
Fomrez® UL28: Urethanisierungskatalysator, Dimethylbis[(l-oxoneodecl)oxy]stannan, Handelsprodukt der Fa. Momentive Performance Chemicals, Wilton, CT, USA (als 10%ige Lösung in N- Ethylpyrrolidon eingesetzt).
CGI 909: Co-Initiator auf Boratbasis der Firma Ciba Inc., Basel, Schweiz.
Neu Methylenblau (zinkfrei): Farbstoff der Fa. Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland.
Ethylviolett: Farbstoff der Fa.MP Biomedicals LLC, Solon, Ohio, USA.
Astrazon Orange G: Farbstoff der Fa. Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland.
Byk 310: silikonbasiertes Oberflächenadditiv der Fa. BYK-Chemie GmbH, Wesel, Deutschland (Lösung ca. 25%-ig in Xylol). Messung von Beugungswirkungsgrad DE und Brechungsindexkontrast Δn:
Die im Rahmen des experimentellen Teils hergestellten erfindungsgemäßen und Vergleichsmedien wurden mittels einer Messanordnung gemäß Figur 7 auf ihre holographischen Eigenschaften geprüft:
Figur 7: Geometrie eines Holographie Media Testers bei λ = 633 nm (He-Ne Laser)zum Schreiben eines Reflexionshologrammes: M = Spiegel, S = Verschluss, SF = Raumfilter, CL = Kollimatorlin- se, λ/2 = λ/2 Platte, PBS = polarisationsempfindlicher Strahlteiler, D = Detektor, I = Irisblende, a = 21.8° und ß = 41.8° sind die Einfallswinkel der kohärenten Strahlen ausserhalb der Probe (des Mediums) gemessen.
Dabei wird die Kaschierfolie vom Folienverbund abgezogen und das Photopolymermaterial anschließend so auf Glas laminiert, dass die Substratfolie nach außen zeigt.
Der Strahl eines He-Ne Lasers (Emissionswellenlänge 633 nm) wurde mit Hilfe des Raumfilter (SF) und zusammen mit der Kollimationslinse (CL) in einen parallelen homogenen Strahl umgewandelt. Die finalen Querschnitte des Signal und Referenzstrahls werden durch die Irisblenden (I) festgelegt. Der Durchmesser der Irisblendenöffnung beträgt 4 mm. Die polarisationsabhängigen Strahlteiler (PBS) teilen den Laserstrahl in zwei kohärente gleich polarisierte Strahlen. Über die λ/2 Plättchen wurden die Leistung des Referenzstrahls of 0.5 mW und die Leistung des Signalstrahls auf 0.65 mW eingestellt. Die Leistungen wurden mit den Halbleiterdetektoren (D) bei ausgebauter Probe bestimmt. Der Einfallswinkel (α) des Referenzstrahls beträgt 21.8°, der Einfalls- winkel (ß) des Signalstrahls beträgt 41.8°. Am Ort der Probe (Medium) erzeugte das Interferenzfeld der zwei überlappenden Strahlen ein Gitter heller und dunkler Streifen die senkrecht zur Winkelhalbierenden der zwei auf die Probe einfallenden Strahlen liegen (Reflexionshologramm). Der Streifenabstand im Medium beträgt ~ 225 nm (Brechungsindex des Mediums zu -1.49 angenommen).
Es wurden auf folgende Weise Hologramme in das Medium geschrieben:
Beide Shutter (S) sind für die Belichtungszeit t geöffnet. Danach wurde bei geschlossenen Shuttern (S) dem Medium 5 Minuten Zeit für die Diffusion der noch nicht polymerisierten Schreibmonome- re gelassen. Die geschriebenen Hologramme wurden nun auf folgende Weise ausgelesen. Der Shutter des Signalstrahls blieb geschlossen. Der Shutter des Referenzstrahls war geöffnet. Die Irisblende des Referenzstrahls wurde auf einen Durchmesser < 1 mm geschlossen. Damit erreichte man, dass für alle Drehwinkel (Ω) des Mediums der Strahl immer vollständig im zuvor geschriebenen Hologramm lag. Der Drehtisch überstrich nun computergesteuert den Winkelbereich von Ω = 0° bis Ω = 20° mit einer Winkelschrittweite von 0.05°. An jedem angefahrenen Winkel wurden die Leistungen des in der nullten Ordnung transmittierten Strahls mittels des entsprechenden Detektors D und die Leistungen des in die erste Ordnung abgebeugten Strahls mittels des Detektors D gemessen. Die Beugungseffizienz η ergab sich bei jedem angefahrenen Winkel Ω als der Quotient aus:
P + P
PD ist die Leistung im Detektor des abgebeugten Strahls und Pτ ist die Leistung im Detektor des transmittierten Strahls.
Mittels des oben beschriebenen Verfahrens wurde die Braggkurve, sie beschreibt den Beugungs- Wirkungsgrad η in Abhängigkeit des Drehwinkels Ω des geschriebenen Hologramms gemessen und in einem Computer gespeichert. Zusätzlich wurde auch die in die nullte Ordnung transmittierte Intensität gegen der Drehwinkel Ω aufgezeichnet und in einem Computer gespeichert.
Die maximale Beugungseffizienz (DE = Tjmax) des Hologramms, also sein Spitzenwert, wurde ermittelt. Eventuell musste dazu die Position des Detektors des abgebeugten Strahls verändert wer- den, um diesen maximalen Wert zu bestimmen.
Der Brechungsindexkontrast Δn und die Dicke d der Photopolymerschicht wurde nun mittels der Coupled Wave Theorie (siehe; H. Kogelnik, The Bell System Technical Journal, Volume 48, November 1969, Number 9 Seite 2909 - Seite 2947) an die gemessene Braggkurve und den Winkelverlauf der transmittierten Intensität ermittelt. Das Verfahren wird im folgenden beschrieben:
Für die Braggkurve η/(Ω ) eines Reflexionshologramms gilt nach Kogelnik:
Figure imgf000019_0001
mit:
Figure imgf000020_0001
sin(α'-ψ) d χ = AΘ
Λ cos(α'-2ψ) 2 ß'-α1
Ψ =
A =
2 • n ■ cos(ψ - α') n ■ sin(α') = sin(α), n • sin(ß') = sin(ß)
Figure imgf000020_0002
Φ ist die Gitterstärke,χ ist der Detuning Parameter und Ψ der Kippwinkel des Brechungsindexgitters, das geschrieben wurde, α' und ß' entsprechen den Winkeln a und ß beim Schreiben des Hologramms, aber im Medium. ΔΘ ist das Winkeidetuning gemessen im Medium, also die Abweichung vom Winkel α'. ΔΩ ist das Winkeidetuning gemessen außerhalb des Mediums, also die Abweichung vom Winkel a. n ist der mittlere Brechungsindex des Photopolymers und wurde zu 1.504 gesetzt.
Die maximale Beugungseffizienz (DE = T]n^x) ergibt sich dann für χ = 0, also ΔΩ = 0 zu:
Figure imgf000020_0003
Die Messdaten der Beugungseffizienz, die theoretische Braggkurve und die transmittierte Intensität werden wie in Figur 8 gezeigt gegen den zentrierten Drehwinkel Ω-α-Shift aufgetragen. Da wegen geometrischem Schrumpf und der Änderung des mittleren Brechungsindexes bei der Photopolymerisation der Winkel bei dem DE gemessen wird von a. abweicht wird die x-Achse um diesen Shift zentriert. Der Shift beträgt typischerweise 0° bis 2°.
Da DE bekannt ist wird die Form der theoretischen Braggkurve nach Kogelnik nur noch durch die Dicke d der Photopolymerschicht bestimmt. Δn wird über DE für gegebene Dicke d so nachkorrigiert, dass Messung und Theorie von DE immer übereinstimmen, d wird nun solange angepasst bis die Winkelpositionen der ersten Nebenminima der theoretischen Braggkurve mit den Winkelpositionen der ersten Nebenmaxima der transmittierten Intensität übereinstimmen und zudem die volle Breite bei halber Höhe (FWHM) für theoretische Braggkurve und die transmittierte Intensität ü- bereinstimmen. Da die Richtung, in die ein Reflexionshologramm bei der Rekonstruktion mittels eines Ω -Scans mitrotiert, der Detektor für das abgebeugte Licht aber nur einen endlichen Winkelbereich erfassen kann, wird die Braggkurve von breiten Holgrammen (kleines d) bei einem Ω -Scan nicht vollständig erfasst, sondern nur der zentrale Bereich, bei geeigneter Detektorpositionierung. Daher wird die zur Braggkurve komplementäre Form der transmittierten Intensität zur Anpassung der Schichtdicke d zusätzlich herangezogen.
Figur 8: Darstellung der Braggkurve η nach Kogelnik (gestrichelte Linie), des gemessenen Beugungswirkungsgrades (ausgefüllte Kreise) und der transmittierten Leistung (schwarz durchgezogene Linie) gegen das Winkeidetuning ΔΩ. Da wegen geometrischem Schrumpf und der Änderung des mittleren Brechungsindexes bei der Photopolymerisation der Winkel bei dem DE gemessen wird von α abweicht wird die x-Achse um diesen Shift zentriert. Der Shift beträgt typischerweise 0° bis 2°.
Für eine Formulierung wurde diese Prozedur eventuell mehrfach für verschiedene Belichtungszeiten t an verschiedenen Medien wiederholt, um festzustellen bei welcher mittleren Energiedosis des einfallenden Laserstrahls beim Schreiben des Hologramms DE in den Sättigungswert übergeht. Die mittlere Energiedosis E ergibt sich wie folgt:
_ 2 • [O.SO mW + 0.67 mW] • t (s)
E (mJ/cm2 ) = , , π - 0.42 cm2
Die Leistungen der Teilstrahlen wurden so angepasst, dass in dem Medium bei den verwendeten Winkeln a und ß, die gleiche Leistungsdichte erreicht wird.
Alternativ wurde auch ein dem in Figur 7 dargestellten Aufbau äquivalenter Test mit einem grünen Laser mit der Emissionswellenlänge λ im Vakuum von 532 nm durchgeführt. Dabei beträgt a = 11.5° und ß = 33.5° und Pα = 1.84 mW und Pß = 2.16 mW.
Die physikalische Schichtdicke wurde mit marktgängigen Weisslichtinterferometern ermittelt, wie z.B. das Gerät FTM-Li te NIR Schichtdickenmessgerät der Firma Ingenieursbüro Fuchs.
Die Bestimmung der Schichtdicke beruht im Prinzip auf Interferenzerscheinungen an dünnen Schichten. Dabei überlagern sich Lichtwellen, die an zwei Grenzflächen unterschiedlicher optischer Dichte reflektiert worden sind. Die ungestörte Überlagerung der reflektierten Teilstrahlen führt nun zur periodischen Aufhellung und Auslöschung im Spektrum eines weißen Kontinuum- strahlers (z.B. Halogenlampe). Diese Überlagerung nennt der Fachmann Interferenz. Diese Interfe- renzspektren werden gemessen und mathematisch ausgewertet. Herstellung des Urethanacrylats 1 :
In einem 500 mL Rundkolben wurden 0.1 g 2,6-Di-tert.-butyl-4-methylphenol, 0.05 g Dibutylzinn- dilaurat (Desmorapid Z, Bayer MaterialScience AG, Leverkusen, Deutschland) sowie und 213.07 g einer 27 %-igen Lösung von Tris(p-isocyanatophenyl)thiophosphat in Ethylacetat (Desmodur® RPE, Produkt der Bayer MaterialScience AG, Leverkusen, Deutschland) vorgelegt und auf 60 0C erwärmt. Anschließend wurden 42.37 g 2-Hydroxyethylacrylat zugetropft und die Mischung weiter auf 60 0C gehalten, bis der Isocyanatgehalt unter 0.1 % gesunken war. Danach wurde abgekühlt und im Vakuum das Ethylacetat vollständig entfernt. Das Produkt wurde als teilkristalliner Feststoff erhalten.
Vergleichsbeispiel 1 (Photopolvmer, intern HOEN 0076):
10,222 g Polyol 1 (Komponente B) wurden schrittweise mit 5,00 g Urethanacrylat 1 (Komponente C), dann 0,100 g Fomrez® UL 28 (Komponente F) und 0,060 g Byk 310 (Komponente G), und zuletzt einer Lösung von 0,300 g CGI 909, 0.010 g Neu Methylenblau, 0,010 g Ethylviolett und 0,010 g Astrazon Orange G (zusammen Komponente E) in 0,610 g N-Ethylpyrolidon (Komponente G) im Dunkeln versetzt und gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurden bei 30 0C 3,678 g Desmodur® XP 2599 (Komponente A) zugegeben und erneut gemischt. Die erhaltene, flüssige Masse wurde dann mit einem automatisch angetriebenen Filmziehrakel mit einer Ziehgeschwindigkeit von 3 mm/Sekunde und einem Rakelspalt von 50 μm auf eine 175 μm dicke Polycarbonatfolie appliziert und 4,5 Minuten bei 800C getrocknet. Trockenschichtdicke: 30μm, maximaler Δn: 0,012 (633 nm)
Zur erfindungsgemäßen kontinuierlichen Herstellung der holografischen Folienmaterialien werden die Komponente C, die Komponente D (die bereits in der Komponente C vorgelöst sein kann) sowie gegebenenfalls die Komponente G und F in der Komponente B gegebenenfalls bei 60 0C gelöst und gründlich gemischt. Danach wird im Dunklen oder unter geeigneter Beleuchtung die Komponente E in reiner Form oder in verdünnter Lösung in NEP zugewogen und erneut gemischt. Gegebenenfalls wird maximal 10 Minuten im Trockenschrank auf 60 0C erhitzt. Die erhaltene Mischung kann unter Rühren bei < 10 mbar entgast werden.
Die Komponente A kann ebenfalls unter Rühren bei < 10 mbar entgast werden. Anschließend werden beide Formulierungen mittels Zwangsdosierpumpen über einen der oben genannten Mischver- fahren kontinuierlich dosiert und vermischt. Danach wird die Mischung über eine Applikationseinheit, wie z.B. ein Rakel oder eine Schlitzdüse kontinuierlich und homogen auf eine Trägerfolie appliziert. Die beschichteten Trägerfohen werden bei ca. 80 0C getrocknet und anschließend mit einer der oben genannten Abdeckschichten abgedeckt und in einer lichtdichten Verpackung verpackt.
Die Dicke d der Photopolymerschicht ergibt sich aus den dem Fachmann bekannten Beschich- tungsparametern der entsprechenden Beschichtungseinπchtung.
Die folgenden Beispiele sind zur Erläuterung der erfindungsgemäßen Methode genannt, sollen aber nicht als begrenzend verstanden sein. Sofern nicht abweichend vermerkt beziehen sich alle Prozentangaben der Photopolymere auf Gewichtsprozent.
Beispiel 1 (Photopolvmer, intern KOHC 178-07);
27,83 g Polyol 1 (Komponente B) wurden schrittweise mit 13,75 g Urethanacrylat 1 (Komponente C), dann 0.275 g Fomrez® UL 28 (Komponente F) und 0,165 g Byk 310 (Komponente G), und zuletzt einer Lösung von 0,825 g CGI 909, 0.028 g Neu Methylenblau, 0,028 g Ethylviolett und
0,028 g Astrazon Orange G (zusammen Komponente E) in 1,678 g N-Ethylpyrolidon (Komponente
G) im Dunkeln versetzt und gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurden bei 30 0C 10,395 g Desmodur®XP 2599 (Komponente A) zugegeben und erneut gemischt. Die erhaltene, flüssige Masse wurde dann auf eine 175 μm dicke Polycarbonatfohe appliziert und
4,5 Minuten bei 800C getrocknet. Trockenschichtdicke: 45μm, maximaler Δn: 0,016 (633 nm);
0,017 (532 nm).
Beispiel 2 (Photopolvmer, intern KOHC 246-05):
10,245 g Polyol 2 (Komponente B) wurden schrittweise mit 5,00 g Urethanacrylat 1 (Komponente C), dann 0,100 g Fomrez® UL 28 (Komponente F) und 0,060 g Byk 310 (Komponente G), und zuletzt einer Lösung von 0,300 g CGI 909, 0.010 g Neu Methylenblau, 0,010 g Ethylviolett und
0,010 g Astrazon Orange G (zusammen Komponente E) in 0,610 g N-Ethylpyrolidon (Komponente
G) im Dunkeln versetzt und gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurden bei 30 0C 3,655 g Desmodur® XP 2599 (Komponente A) zugegeben und erneut gemischt. Die erhaltene, flüssige Masse wurde dann auf eine 175 μm dicke Polycarbonatfohe appliziert und
4,5 Minuten bei 800C getrocknet. Trockenschichtdicke: 25 μm, maximaler Δn: 0,012 (633 nm);
0,010 (532 nm).
Beispiel 3 (Photopolvmer, intern KOHC 173-02):
19,946 g Polyol 3 (Komponente B) wurden schrittweise mit 13,75 g Urethanacrylat 1 (Komponen- te C), dann 0.275 g Fomrez® UL 28 (Komponente F) und 0,165 g Byk 310 (Komponente G), und zuletzt einer Lösung von 0,825 g CGI 909, 0.028 g Neu Methylenblau, 0,028 g Ethylviolett und 0,028 g Astrazon Orange G (zusammen Komponente E) in 1,678 g N-Ethylpyrolidon (Komponente G) im Dunkeln versetzt und gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurde bei 30 0C eine Mischung aus 6,467 g Desmodur® XP 2599 und 11,812 g Präpolymer 1 (zusammen Komponente A) zugegeben und erneut gemischt. Die erhaltene, flüssige Masse wurde dann auf eine 175 μm dicke Polycarbonatfolie appliziert und 4,5 Minuten bei 80°C getrocknet. Trockenschichtdicke: 32μm, maximaler Δn: 0,016 (633 nm); 0,017 (532 nm).
Beispiel 4 (Photopolvmer, intern KOHC 227-07):
8,432 g Polyol 3 (Komponente B) wurden schrittweise mit 5,00 g Urethanacrylat 1 (Komponente C), dann 0,100 g Fomrez® UL 28 (Komponente F) und 0,060 g Byk 310 (Komponente G), und zuletzt einer Lösung von 0,300 g CGI 909, 0.010 g Neu Methylenblau, 0,010 g Ethylviolett und 0,010 g Astrazon Orange G (zusammen Komponente E) in 0,610 g N-Ethylpyrolidon (Komponente G) im Dunkeln versetzt und gemischt, so dass eine klare Lösung erhalten wurde. Anschließend wurden bei 30 0C 5,468 g Desmodur® XP 2599 (Komponente A) zugegeben und erneut gemischt. Die erhaltene, flüssige Masse wurde dann auf eine 36 μm dicke Polyethylenterephthalatfolie appli- ziert und 4,5 Minuten bei 800C getrocknet. Trockenschichtdicke: 30μm, maximaler Δn: 0,013 (633 nm); 0,014 (532 nm).
Figur 2 zeigt eine topografische Schichtdickenverteilung mit einer herkömmlichen Laborbeschich- tungseinrichtung, wie z.B. Handziehrahmen, Spiralapplikatoren oder einem automatisch angetriebenen Filmapplikator (Vergleichsbeispiel 1). Bei diesen Verfahren wird ein ausreichendes VoIu- men an Beschichtungsmaterial vor den Applikator gegeben. Anschließend wird der Applikator manuell mit einer nahezu gleichmäßigen Geschwindigkeit über das Trägermaterial gezogen, sodass ein gleichmäßiger Film auf dem Trägermaterial entsteht. Dieses kann mit einem automatisch angetriebenen Filmziehgerät ergänzt und somit optimiert werden. Des Weiteren wird die Beschich- tungsqualität von den beschriebenen Verfahren stark durch die Wahl eines geeigneten Untergrunds beeinflusst. Hierbei werden bevorzugt Glas- und Gummimaterialien eingesetzt.
Figur 2: Schichtdickenverteilung bei der Herstellung mit herkömmlichen Laborbeschichrungsein- richtungen
Wie in Figur 3-7 gezeigt, lässt sich durch die in Figur 1 dargestellte kontinuierliche Rollenbe- schichtung eine höhere Schichtdickengenauigkeit erzielen. Eine Zusammenstellung der erzielten Resultate zeigt Tabelle 1. Die Verbesserung der Schichtdickenverteilung von Beispiel 1 können eindeutig an der Reduzierung der Standardabweichung mit dem Einsatz der Rollenbeschichtung (Beispiel 2-5) gezeigt werden. Des weiteren zeigen die Vergleiche der minimal und der maximal gemessenen Schichtdicken (siehe Differenz) eine deutliche Verringerung der Bandbreite der er- zielten Schichtdicken. Damit werden gleichmäßigere Beschichtungen erreicht. Das Erzielen einer gleichmäßigen Schichtdickenverteilung des Photopolymers ist wichtig, um eine gleichmäßige Helligkeit der Hologramme über eine größere Fläche garantieren zu können. Da die Helligkeit der Hologramme direkt von den Beugungseffizienzen und den spektralen Winkelbandbreiten abhängt, ist somit auch ein direkter Einfluss der Schichtdicke über diese Parameter gegeben.
Tabelle 1 : Vergleich der Schichtdickenauswertung
Figure imgf000025_0001
Figur 3-7: Optimierte Schichtdickenverteilung bei der Herstellung mit einer kontinuierlichen RoI- lenbeschichtung

Claims

Patentansprüche:
1. Kontinuierliches Verfahren zur Herstellung von Photopolymerfolien, bei dem eine Trägerfolie nach dem Rolle-zu-Rolle-Prinzip mit einer Photopolymerformulierung umfassend
A) eine Polyisocyanatkomponente, wenigstens enthaltend ein NCO-terminiertes PoIy- urethanprepolymer dessen NCO-Gruppen primär aliphatisch gebunden sind und welches auf hydroxyfunktionellen Verbindungen mit einer OH-Funktionalität von 1,6 bis 2,05 basiert,
B) Isocyanat-reaktive Polyetherpolyole
C) Urethanacrylate und/oder Urethanmethacrylate mit mindestens einer aromatischen Struktureinheit und einem Brechungsindex von größer 1,50 bei 405 nm, die selbst frei von NCO-Gruppen und OH-Gruppen sind
D) Radikalstabilisatoren
E) Photoinitiatoren auf Basis von Kombinationen aus Boratsalzen und einem oder mehreren Farbstoffen mit Absorptionsbanden, die zumindest teilweise den Spekt- ralbereich von 400 bis 800 nm abdecken.
F) Gegebenenfalls Katalysatoren
G) Gegebenenfalls Hilfs- und Zusatzstoffe,
beschichtet wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass in A) als Prepolymere Urethane oder Allophanate aus aliphatischen Isocyanat-funktionellen Verbindungen und oligomeren o- der polymeren Isocyanat-reaktiven Verbindungen eingesetzt werden, wobei die Prepolymere zahlenmittlere Molmassen von 200 bis 10000 g/Mol und NCO-Funktionalitäten von 1,9 bis 5,0 aufweisen.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass in B) difunktionelle Polye- therpolyole, basierend auf Propylenoxid und Ethylenoxid mit einem Ethylenoxidanteil von kleiner 10 Gewichtsprozent bezogen auf die Gesamtmasse des zugrundeliegenden Polyethers, und einer zahlenmittleren Molmasse zwischen 2000 und 4200 g/mol eingesetzt werden.
4. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass in C) als Urethanacrylate Additionsprodukte aromatischer Triisocyanate oder Trimere aromatischer Diisocyanate mit Hydroxyethylacrylat, Hydroxypropylacrylat, 4-Hydroxybutylacrylat eingesetzt werden.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dabei die nach- folgenden Prozesschritte durchlaufen werden:
I. Fördern und Dosieren zum einen der Komponente A) gegebenenfalls gemischt mit einer oder mehrerer der Komponenten E), F) und G) sowie zum anderen separat dazu der Komponente B) gegebenenfalls gemischt mit einer oder mehrerer der Komponenten C), D), E), F) und G)
π. Entgasen der gemäß I) geförderten, dosierten und gegebenenfalls vorvermischten Ströme
in. Filtrieren der nach II) erhaltenen Mischung
IV. Homogenisieren der nach DI) erhaltenen Mischung
V. Abwicklung und Vorbehandlung des Trägermaterials
VI. Beschichten des Trägermaterials mit der nach Schritt IV) erhaltenen Mischung
VE. Trocknung des nach VI) beschichteten Films
VIII. Kaschieren des nach VII) erhaltenen beschichteten Films
DC. Aufwicklung des nach VIII) erhaltenen kaschierten Films
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass Dosierung der Einsatzstoffe in Schritt I) entweder durch Zahnrad- oder Excenterschneckenpumpen, die Entgasung der Einsatzstoffe in U) Zentrifugalentgaser, zur Filterung in IQ) Plattenfϊlter, die Mischung der
Einzelkomponenten in IV) über statische Mischer, als Beschichtungseinheit in VI) eine Schlitzdüse und das beschichtete Material in VII) über Lufttrockner getrocknet wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Trägerfolie Polycarbonat (PC), Polyethylenterephthalat (PET), Polybutylenterephthalat, Polyethylen, Po- lypropylen, Celluloseacetat, Cellulosehydrat, Cellulosenitrat, Cycloolefϊnpolymere, Polystyrol,
Polyepoxide, Polysulfon, Cellulosetriacetat (CTA), Polyamid, Polymethylmethacrylat, Polyvinylchlorid, Polyvinylbutyral oder Polydicyclopentadien oder deren Mischungen verwendet wird.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Trägerfohe optisch klar ist und eine Trübung gemessen als Haze-Wert von kleiner als 3,5% aufweist.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Trägerfohe eine mittlere optische Retardation von weniger als 1000 nm aufweist.
10. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Trägerfohe eine Dicke von 5 bis 2000 μm aufweist.
11. Verfahren gemäß einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass zur Kaschierung PE- oder PET-Fohen einer Dicke von 20 bis 60 μm verwendet werden.
12. Photopolymerfohen geeignet zur Aufzeichnung visueller Hologramme erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 11.
13. Verwendung von Photopolymerfohen gemäß Anspruch 7 als optische Elemente, Bilder oder zur Bilddarstellung oder -projektion.
PCT/EP2010/000565 2009-02-12 2010-01-30 Methode zur herstellung von holografischen photopolymeren auf polymerfolien WO2010091795A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080007532.8A CN102317337B (zh) 2009-02-12 2010-01-30 在聚合物膜上制备全息光聚合物的方法
SG2011049616A SG172900A1 (en) 2009-02-12 2010-01-30 Method for producing holographic photopolymers on polymer films
PL10702439T PL2396358T3 (pl) 2009-02-12 2010-01-30 Sposób wytwarzania fotopolimerów holograficznych na foliach polimerowych
ES10702439T ES2400346T3 (es) 2009-02-12 2010-01-30 Procedimiento para la fabricación de fotopolímeros holográficos sobre láminas de polímero
US13/148,694 US8715888B2 (en) 2009-02-12 2010-01-30 Method for producing holographic photopolymers on polymer films
EP10702439A EP2396358B1 (de) 2009-02-12 2010-01-30 Methode zur herstellung von holografischen photopolymeren auf polymerfolien
JP2011549462A JP2012517512A (ja) 2009-02-12 2010-01-30 ポリマーフィルム上ホログラフィック感光性ポリマーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09001952.2 2009-02-12
EP09001952A EP2218744A1 (de) 2009-02-12 2009-02-12 Methode zur Herstellung von holografischen Photopolymeren auf Polymerfolien

Publications (2)

Publication Number Publication Date
WO2010091795A1 true WO2010091795A1 (de) 2010-08-19
WO2010091795A8 WO2010091795A8 (de) 2011-06-23

Family

ID=40908532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000565 WO2010091795A1 (de) 2009-02-12 2010-01-30 Methode zur herstellung von holografischen photopolymeren auf polymerfolien

Country Status (10)

Country Link
US (1) US8715888B2 (de)
EP (2) EP2218744A1 (de)
JP (1) JP2012517512A (de)
KR (1) KR20110118785A (de)
CN (1) CN102317337B (de)
ES (1) ES2400346T3 (de)
PL (1) PL2396358T3 (de)
SG (1) SG172900A1 (de)
TW (1) TWI494357B (de)
WO (1) WO2010091795A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026923A1 (de) 2012-08-13 2014-02-20 Bayer Materialscience Ag Lichtführungsplatte mit auskoppelelementen
WO2014041121A1 (en) 2012-09-17 2014-03-20 Basf Se Security elements and method for their manufacture
DE102022103301A1 (de) 2021-02-11 2022-08-11 Xetos Ag 2k-system
EP4043963A1 (de) 2021-02-11 2022-08-17 Xetos AG Verbessertes ausbleichen
EP4043962A1 (de) 2021-02-11 2022-08-17 Xetos AG Photopolymerisierbare zusammensetzung
EP4043502A1 (de) 2021-02-11 2022-08-17 Xetos AG Photopolymerisierbare hoe-zusammensetzung

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720807B1 (ko) * 2008-10-01 2017-03-28 코베스트로 도이칠란드 아게 홀로그래피 매체의 제조를 위한 예비중합체-기재 폴리우레탄 제제
US20110207029A1 (en) * 2008-10-01 2011-08-25 Bayer Materialscience Ag Media for volume-holographic recording based on self-developing polymer
EP2218743A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Prepolymerbasierte Polyurethanformulierungen zur Herstellung holographischer Filme
EP2218742A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Photopolymerzusammensetzungen als verdruckbare Formulierungen
KR101727769B1 (ko) * 2009-11-03 2017-04-17 코베스트로 도이칠란드 아게 홀로그래피 필름의 제조 방법
JP5638085B2 (ja) * 2009-11-03 2014-12-10 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 異なった書込コモノマーを含有する感光性ポリマー組成物
PL2317511T3 (pl) * 2009-11-03 2012-08-31 Bayer Materialscience Ag Formulacje fotopolimerowe z nastawialnym mechanicznym modułem Guv
CN102667936B (zh) 2009-11-03 2016-03-30 拜尔材料科学股份公司 生产全息介质的方法
JP5925686B2 (ja) 2009-11-03 2016-05-25 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG ホログラフィックフィルムの製造方法
EP2450387A1 (de) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer-Formulierung für die Herstellung holographischer Medien
US20140302425A1 (en) * 2012-04-30 2014-10-09 Bayer Intellectual Property Gmbh Method for producing holographic media
TWI684782B (zh) * 2014-08-01 2020-02-11 德商拜耳材料科學股份有限公司 含光聚合物層與基材層之層狀結構
US11199813B2 (en) * 2016-11-30 2021-12-14 Lg Chem, Ltd. Hologram replicating method and hologram replicating device
CN107610722B (zh) * 2017-08-21 2019-06-25 沈阳航空航天大学 一种基于聚碳酸酯为基底的光致聚合全息材料及其制备方法
KR102033957B1 (ko) * 2018-05-23 2019-10-18 (주)케이피엘솔루션 해상도가 향상된 자외선 경화형 액상 수지 조성물 및 이의 제조방법
DE102022120865A1 (de) * 2022-08-18 2024-02-29 Carl Zeiss Jena Gmbh Replikationsvorrichtung für das kopieren von hologrammen in flüssige fotopolymere
DE102022120870A1 (de) * 2022-08-18 2024-02-29 Carl Zeiss Jena Gmbh Replikationsverfahren für das kopieren von hologrammen in flüssige fotopolymere

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801727A1 (de) 1994-05-31 1997-10-22 Recon Vorrichtung und verfahren fuer die zeitaufgeloeste spektroskopie
DE19754024A1 (de) * 1997-12-05 1999-06-10 Basf Ag Vorrichtung und Verfahren zum kontinuierlichen Benetzen eines flächigen Gebildes mit einer Flüssigkeit
JP2001187362A (ja) * 1999-12-28 2001-07-10 Mitsui Chemicals Inc 熱硬化性ポリウレタンの連続塗工方法および熱硬化性ポリウレタンシートの製造方法
WO2008125199A1 (en) * 2007-04-11 2008-10-23 Bayer Materialscience Ag Aromatic urethane acrylates having a high refractive index

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667946A (en) * 1970-09-23 1972-06-06 Holotron Corp Surface treatment of photopolymer film used for recording holograms
DE3822093C2 (de) * 1987-06-30 1997-11-06 Fuji Photo Film Co Ltd Verfahren zur Entgasung und Entschäumung einer lichtempfindlichen Überzugslösung und Vorrichtung zur Durchführung dieses Verfahrens
US5083219A (en) * 1989-12-26 1992-01-21 Physical Optics Corporation Method and apparatus for recording lippman holographic mirrors
US6344495B1 (en) * 1998-07-31 2002-02-05 Dai Nippon Printing Co., Ltd. Photo-curable resin composition and method for forming concave-convex pattern
EP2309339B1 (de) * 1999-01-19 2016-11-30 Dai Nippon Printing Co., Ltd. Blatt mit Oberflächenstruktur-Hologramm oder Beugungsgitter und damit ausgestattetes fälschungsicheres Blatt
US6414761B1 (en) * 2000-03-06 2002-07-02 Illinois Tool Works Inc. Secure holographic images on paper
US6743552B2 (en) * 2001-08-07 2004-06-01 Inphase Technologies, Inc. Process and composition for rapid mass production of holographic recording article
WO2003084728A1 (en) * 2002-04-08 2003-10-16 Hoya Corporation Process for producing optical member, process for producing plastic lens, gasket for plastic lens molding, and jig for monomer injection
JP4466140B2 (ja) * 2003-11-27 2010-05-26 コニカミノルタエムジー株式会社 ホログラフィック記録メディア、ホログラフィック記録方法およびホログラフィック情報メディア
DE102004015983A1 (de) * 2004-04-01 2005-10-20 Bayer Materialscience Ag Verfahren zur Herstellung von Polyetherallophanaten unter Verwendung von Zink-Verbindungen als Katalysatoren
JP5209310B2 (ja) * 2005-05-12 2013-06-12 日本化薬株式会社 感光性樹脂組成物、その硬化物及びそれを含有するフィルム
US7678507B2 (en) * 2006-01-18 2010-03-16 Inphase Technologies, Inc. Latent holographic media and method
CN101174090A (zh) * 2006-11-02 2008-05-07 乐凯集团第二胶片厂 光聚合型平版印刷版
JP5130230B2 (ja) * 2007-02-05 2013-01-30 新日鉄住金化学株式会社 体積位相型ホログラム記録材料及び光情報記録媒体
IL200997A0 (en) * 2008-10-01 2010-06-30 Bayer Materialscience Ag Special polyether-based polyurethane formulations for the production of holographic media
US20110207029A1 (en) * 2008-10-01 2011-08-25 Bayer Materialscience Ag Media for volume-holographic recording based on self-developing polymer
IL200995A0 (en) 2008-10-01 2010-06-30 Bayer Materialscience Ag Polyether-based polyurethane formulations for the production of holographic media
KR101720807B1 (ko) * 2008-10-01 2017-03-28 코베스트로 도이칠란드 아게 홀로그래피 매체의 제조를 위한 예비중합체-기재 폴리우레탄 제제
IL200722A0 (en) 2008-10-01 2010-06-30 Bayer Materialscience Ag Photopolymer compositions for optical elements and visual displays
EP2218742A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Photopolymerzusammensetzungen als verdruckbare Formulierungen
EP2218743A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Prepolymerbasierte Polyurethanformulierungen zur Herstellung holographischer Filme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801727A1 (de) 1994-05-31 1997-10-22 Recon Vorrichtung und verfahren fuer die zeitaufgeloeste spektroskopie
DE19754024A1 (de) * 1997-12-05 1999-06-10 Basf Ag Vorrichtung und Verfahren zum kontinuierlichen Benetzen eines flächigen Gebildes mit einer Flüssigkeit
JP2001187362A (ja) * 1999-12-28 2001-07-10 Mitsui Chemicals Inc 熱硬化性ポリウレタンの連続塗工方法および熱硬化性ポリウレタンシートの製造方法
WO2008125199A1 (en) * 2007-04-11 2008-10-23 Bayer Materialscience Ag Aromatic urethane acrylates having a high refractive index

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. SCHMALZ; N. HANSEN; W. NEUMANN, 5- ODER 6-WALZEN BESCHICHTUNGSVERFAHREN, 20 June 1000 (1000-06-20), pages 410 - 413
P. M. SCHWEIZER: "Vordosierte Beschichtungsverfahren: Vorzüge und Anwendungen", COATING, AUSGABE, 19 February 1208 (1208-02-19), pages 462 - 465

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026923A1 (de) 2012-08-13 2014-02-20 Bayer Materialscience Ag Lichtführungsplatte mit auskoppelelementen
WO2014041121A1 (en) 2012-09-17 2014-03-20 Basf Se Security elements and method for their manufacture
US9678475B2 (en) 2012-09-17 2017-06-13 Basf Se Security elements and method for their manufacture
DE102022103301A1 (de) 2021-02-11 2022-08-11 Xetos Ag 2k-system
EP4043963A1 (de) 2021-02-11 2022-08-17 Xetos AG Verbessertes ausbleichen
EP4043962A1 (de) 2021-02-11 2022-08-17 Xetos AG Photopolymerisierbare zusammensetzung
EP4043502A1 (de) 2021-02-11 2022-08-17 Xetos AG Photopolymerisierbare hoe-zusammensetzung
EP4043961A1 (de) 2021-02-11 2022-08-17 Xetos AG 2k-system
WO2022171820A1 (de) 2021-02-11 2022-08-18 Xetos Ag Verbessertes ausbleichen
WO2022171814A1 (de) 2021-02-11 2022-08-18 Xetos Ag 2k-system
WO2022171821A1 (de) 2021-02-11 2022-08-18 Xetos Ag Photopolymerisierbare hoe-zusammensetzung
WO2022171823A1 (de) 2021-02-11 2022-08-18 Xetos Ag Photopolymerisierbare zusammensetzung

Also Published As

Publication number Publication date
EP2218744A1 (de) 2010-08-18
US8715888B2 (en) 2014-05-06
TWI494357B (zh) 2015-08-01
TW201035190A (en) 2010-10-01
US20110311905A1 (en) 2011-12-22
PL2396358T3 (pl) 2013-05-31
EP2396358B1 (de) 2013-01-23
CN102317337B (zh) 2014-11-26
EP2396358A1 (de) 2011-12-21
WO2010091795A8 (de) 2011-06-23
SG172900A1 (en) 2011-08-29
CN102317337A (zh) 2012-01-11
ES2400346T3 (es) 2013-04-09
KR20110118785A (ko) 2011-11-01
JP2012517512A (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
EP2396358B1 (de) Methode zur herstellung von holografischen photopolymeren auf polymerfolien
EP2218745B1 (de) Prepolymerbasierte Polyurethanformulierungen zur Herstellung holographischer Filme
EP2497085B1 (de) Verfahren zur herstellung eines holographischen films
EP2497080B1 (de) Verfahren zur herstellung eines holographischen films
EP2396359B1 (de) Photopolymerzusammensetzungen als verdruckbare formulierungen
EP2497081B1 (de) Verfahren zur herstellung von holographischen medien
EP2638089B1 (de) Photopolymer-formulierung für die herstellung holographischer medien
EP3058423B1 (de) Photopolymer-formulierung zur herstellung holographischer medien mit boraten mit niedriger tg
EP2342254B1 (de) Medien für volumenholographische aufzeichnung basierend auf sich selbstentwickelndem polymer
EP2372454A1 (de) Photopolymer-Formulierung zur Herstellung sichtbarer Hologramme
EP2354845B1 (de) Photopolymer-Formulierung zur Herstellung holographischer Medien
TW201708197A (zh) 新穎之經取代三及其製造方法
WO2016016426A1 (de) Schichtaufbau umfassend eine photopolymer- und eine substratschicht
WO2024052256A1 (de) Spezielle benzopyryliumsalze als farbstoffe für photopolymerzusammensetzungen
WO2015063064A1 (de) Verbund umfassend ein substrat und einen photopolymerfilm

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007532.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010702439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148694

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117018682

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011549462

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE