WO2010091795A1 - Methode zur herstellung von holografischen photopolymeren auf polymerfolien - Google Patents
Methode zur herstellung von holografischen photopolymeren auf polymerfolien Download PDFInfo
- Publication number
- WO2010091795A1 WO2010091795A1 PCT/EP2010/000565 EP2010000565W WO2010091795A1 WO 2010091795 A1 WO2010091795 A1 WO 2010091795A1 EP 2010000565 W EP2010000565 W EP 2010000565W WO 2010091795 A1 WO2010091795 A1 WO 2010091795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- coating
- film
- photopolymer
- roll
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 15
- 229920006254 polymer film Polymers 0.000 title description 3
- 239000000203 mixture Substances 0.000 claims abstract description 46
- 230000000007 visual effect Effects 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 53
- 239000011248 coating agent Substances 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 38
- -1 polyethylene terephthalate Polymers 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 18
- 239000012876 carrier material Substances 0.000 claims description 17
- 238000009472 formulation Methods 0.000 claims description 15
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 8
- 238000007872 degassing Methods 0.000 claims description 8
- 239000000975 dye Substances 0.000 claims description 8
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 7
- 239000004417 polycarbonate Substances 0.000 claims description 6
- 229920000515 polycarbonate Polymers 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 claims description 4
- 229920002284 Cellulose triacetate Polymers 0.000 claims description 4
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 claims description 4
- 238000010924 continuous production Methods 0.000 claims description 4
- MHCLJIVVJQQNKQ-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical class CCOC(N)=O.CC(=C)C(O)=O MHCLJIVVJQQNKQ-UHFFFAOYSA-N 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- 150000003673 urethanes Chemical class 0.000 claims description 4
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 3
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001228 polyisocyanate Polymers 0.000 claims description 3
- 239000005056 polyisocyanate Substances 0.000 claims description 3
- 229920005871 reactive polyether polyol Polymers 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 229920001153 Polydicyclopentadiene Polymers 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000013638 trimer Substances 0.000 claims description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 claims 1
- 150000003254 radicals Chemical class 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 abstract description 14
- 239000004814 polyurethane Substances 0.000 abstract description 14
- 239000010408 film Substances 0.000 description 48
- 239000010410 layer Substances 0.000 description 33
- 239000000758 substrate Substances 0.000 description 23
- 239000000047 product Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- 239000002131 composite material Substances 0.000 description 12
- 229920005862 polyol Polymers 0.000 description 12
- 150000003077 polyols Chemical class 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- ZOMLUNRKXJYKPD-UHFFFAOYSA-N 1,3,3-trimethyl-2-[2-(2-methylindol-3-ylidene)ethylidene]indole;hydrochloride Chemical compound [Cl-].C1=CC=C2C(C)(C)C(/C=C/C=3C4=CC=CC=C4NC=3C)=[N+](C)C2=C1 ZOMLUNRKXJYKPD-UHFFFAOYSA-N 0.000 description 8
- 239000003570 air Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- SQHOAFZGYFNDQX-UHFFFAOYSA-N ethyl-[7-(ethylamino)-2,8-dimethylphenothiazin-3-ylidene]azanium;chloride Chemical compound [Cl-].S1C2=CC(=[NH+]CC)C(C)=CC2=NC2=C1C=C(NCC)C(C)=C2 SQHOAFZGYFNDQX-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000007888 film coating Substances 0.000 description 4
- 238000009501 film coating Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 3
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- KYIMHWNKQXQBDG-UHFFFAOYSA-N N=C=O.N=C=O.CCCCCC Chemical compound N=C=O.N=C=O.CCCCCC KYIMHWNKQXQBDG-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 231100000987 absorbed dose Toxicity 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PLAHQMWSZPRDKI-UHFFFAOYSA-N hexoxyboronic acid Chemical compound CCCCCCOB(O)O PLAHQMWSZPRDKI-UHFFFAOYSA-N 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920006289 polycarbonate film Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 235000019592 roughness Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 2
- 235000019587 texture Nutrition 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- PPNCOQHHSGMKGI-UHFFFAOYSA-N 1-cyclononyldiazonane Chemical compound C1CCCCCCCC1N1NCCCCCCC1 PPNCOQHHSGMKGI-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- IKEHOXWJQXIQAG-UHFFFAOYSA-N 2-tert-butyl-4-methylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1 IKEHOXWJQXIQAG-UHFFFAOYSA-N 0.000 description 1
- FZQMJOOSLXFQSU-UHFFFAOYSA-N 3-[3,5-bis[3-(dimethylamino)propyl]-1,3,5-triazinan-1-yl]-n,n-dimethylpropan-1-amine Chemical compound CN(C)CCCN1CN(CCCN(C)C)CN(CCCN(C)C)C1 FZQMJOOSLXFQSU-UHFFFAOYSA-N 0.000 description 1
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- LINDOXZENKYESA-UHFFFAOYSA-N TMG Natural products CNC(N)=NC LINDOXZENKYESA-UHFFFAOYSA-N 0.000 description 1
- 101150072074 UL28 gene Proteins 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- FGPCETMNRYMFJR-UHFFFAOYSA-L [7,7-dimethyloctanoyloxy(dimethyl)stannyl] 7,7-dimethyloctanoate Chemical compound CC(C)(C)CCCCCC(=O)O[Sn](C)(C)OC(=O)CCCCCC(C)(C)C FGPCETMNRYMFJR-UHFFFAOYSA-L 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- PGWTYMLATMNCCZ-UHFFFAOYSA-M azure A Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 PGWTYMLATMNCCZ-UHFFFAOYSA-M 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 229960001506 brilliant green Drugs 0.000 description 1
- HXCILVUBKWANLN-UHFFFAOYSA-N brilliant green cation Chemical compound C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 HXCILVUBKWANLN-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- PWEVMPIIOJUPRI-UHFFFAOYSA-N dimethyltin Chemical compound C[Sn]C PWEVMPIIOJUPRI-UHFFFAOYSA-N 0.000 description 1
- YYHGCUPKOKEFBA-UHFFFAOYSA-N dioxido(6,6,6-triphenylhexoxy)borane;tetrabutylazanium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC.C=1C=CC=CC=1C(C=1C=CC=CC=1)(CCCCCOB([O-])[O-])C1=CC=CC=C1 YYHGCUPKOKEFBA-UHFFFAOYSA-N 0.000 description 1
- QILSFLSDHQAZET-UHFFFAOYSA-N diphenylmethanol Chemical compound C=1C=CC=CC=1C(O)C1=CC=CC=C1 QILSFLSDHQAZET-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- ADAUKUOAOMLVSN-UHFFFAOYSA-N gallocyanin Chemical compound [Cl-].OC(=O)C1=CC(O)=C(O)C2=[O+]C3=CC(N(C)C)=CC=C3N=C21 ADAUKUOAOMLVSN-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- KXCAEQNNTZANTK-UHFFFAOYSA-N stannane Chemical compound [SnH4] KXCAEQNNTZANTK-UHFFFAOYSA-N 0.000 description 1
- 229910000080 stannane Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- KGLSETWPYVUTQX-UHFFFAOYSA-N tris(4-isocyanatophenoxy)-sulfanylidene-$l^{5}-phosphane Chemical compound C1=CC(N=C=O)=CC=C1OP(=S)(OC=1C=CC(=CC=1)N=C=O)OC1=CC=C(N=C=O)C=C1 KGLSETWPYVUTQX-UHFFFAOYSA-N 0.000 description 1
- 101150046896 trm1 gene Proteins 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
- C08G18/4841—Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/775—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/776—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7837—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C08L75/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/001—Phase modulating patterns, e.g. refractive index patterns
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/035—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/245—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2471/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2475/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2475/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/08—Polyurethanes from polyethers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H2001/026—Recording materials or recording processes
- G03H2001/0264—Organic recording material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2260/00—Recording materials or recording processes
- G03H2260/12—Photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2260/00—Recording materials or recording processes
- G03H2260/30—Details of photosensitive recording material not otherwise provided for
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24044—Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2535—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2536—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polystyrene [PS]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2538—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycycloolefins [PCO]
Definitions
- the invention relates to a method for producing novel photopolymers based on pre-polymer-based polyurethane compositions, which are suitable for the production of holographic media, in particular for the visual display of images.
- Photopolymers are materials that can be exposed by the superposition of two coherent light sources, forming a three-dimensional structure in the photopolymers, which can generally be described by a regional change in the refractive index in the material. Such structures are called holograms. They can also be described as diffractive optical elements. It depends on the specific exposure, which optical functions such a hologram forms.
- EP 08017277.8 and EP 08017273.7 describe polyether-based and prepolymer-based polyurethane compositions which are generally suitable for producing holographic media.
- EP 08017275.2 describes polyurethane formulations with special acrylates which are suitable for recording holograms.
- EP 08017279.4 described for the first time a typical film structure and the application of various polyurethane formulations as a photopolymer in the film composite.
- Film coating is generally understood to mean the application of a liquid substance to a moving film material.
- the coating methods differ among others according to the properties of the layer to be applied (e.g., viscosity, surface tension, solid concentration, etc.), the target layer thickness to be applied, or the production speed.
- the film coating systems to be used for production typically consist of: • A roll handling, which ensures the feeding of the substrate (film substrate).
- Pretreatment of Coating Material For the pretreatment, accessory units and peripherals such as e.g. Dissolvers and kneaders, weighing systems, various pump systems, automatic solids feeders, metering systems, filter units, degassing and mixing systems.
- accessory units and peripherals such as e.g. Dissolvers and kneaders, weighing systems, various pump systems, automatic solids feeders, metering systems, filter units, degassing and mixing systems.
- the pretreatment units used in the coating industry are web cleaning systems for carrier material cleaning, ionization units known to those skilled in the art for homogenizing the electrical charges, plasma or corona treatments on the support material.
- web control systems are employed which are provided by means such as e.g. Web edge control and web storage systems are supported.
- Application system for the application of a coating material As application systems in the coating industry, there are various doctoring and coating systems, slot casters and roll application systems, as well as for multilayer application systems such as e.g.
- Applicable coating devices such as e.g. Curtain or cascade coater or slot dies are disclosed in previous publications e.g. (Swiss PM, "Predosed Coating Processes: Advantages and Applications", Coating, issue 12/1998, pages 462 - 465): This is how Swiss describes pre-dosing coating processes that were developed in the fifties, among others, in the photographic industry These processes are used for single-layer and multi-layer products (slot nozzle ⁇ 3, cascade and curtain method> 10) In the curtain process, the nozzle is located several centimeters from the substrate, so that the liquid distribution from the coating process is largely decoupled.
- the coating material to be applied can be stored either in a trough or in the gap between two horizontally arranged rollers for metering.
- the speed of the wetted rolls, the procurement (screening, smooth rolling) of the rolls, viscosity and surface tension influences the layer thickness to be applied in relation to the substrate speed. ness.
- further rollers are used, which cause a further stretching of the coating material due to differently adapted rotational speeds of the rollers and a defined gap spacing between two rollers.
- roller speed, gap distance, substrate speed and viscosity are critical factors in setting desired wet film thicknesses.
- a 5 or 6 roll application system is used e.g. by Maschinenfabrik Max Kroenert GmbH & Co. KG (M. Schmalz, N. Hansen, W. Neumann, "5- or 6-roller coating process", Coating, Issue 10/2006, pages 410-413).
- the authors compare the advantages and disadvantages of a 5- to a 6-roll application system using a solvent-free silicone coating with thermally and UV-curable silicones.
- Dryer units To dry the coating material on the carrier material, among other things, hot air dryers with pre-tempered air, IR emitters or UV devices are used. For the aftertreatment of the coated support materials come
- Chill rolls, spreader rolls, laminators, calender rolls, cutting equipment (such as edge trimmers) are used.
- the processes mentioned can also be used for solvent-containing systems and are thus equipped as an explosion-proof unit.
- Winding device for winding the coated product or carrier film.
- the product is intended to be a film composite of bast film, photopolymer and a cover film.
- the present invention is a continuous process for the production of photopolymer films, comprising a carrier film according to the roll-to-roll principle with a photopolymer formulation
- Photoinitiators based on combinations of borate salts and one or more dyes with absorption bands which at least partially cover the spectral range from 400 to 800 nm
- polymer films obtainable by the process according to the invention which are suitable for recording visual holograms and their further use as optical elements, images or for image presentation or projection.
- prepolymers are used which are known to the person skilled in the art in a manner which is well known per se by reaction of monomeric, oligomeric or polyisocyanates Al) with isocyanate-reactive compounds A2) in suitable stoichiometry with the optional use of catalysts. catalysts and solvents can be obtained.
- Preferred prepolymers are urethanes or allophanates from aliphatic isocyanate-functional compounds and oligomeric or polymeric isocyanate-reactive compounds, the prepolymers having number-average molar masses of 200 to 10,000 g / mol and NCO functionalities of 1.9 to 5.0.
- difunctional urethanes and allophanates having functionalities of from greater than 1.9 to 3.2 or from 3.9 to 4.2, with number-average molar masses of from 650 to 8,200 g / mol, prepared from aliphatic isocyanate-functional compounds and oligomeric or polymeric polyols or any mixtures thereof.
- urethanes having NCO functionalities of from 1.9 to 2.1 and number-average molar masses of from 1900 to 4100 g / mol prepared from aliphatic isocyanate-functional compounds and oligomeric or polymeric polyols and allophanates having functionalities greater than 2, 0 to 3.2 or from 3.9 to 4.2 with number average molecular weights of 1900 to 4100 g / mol, prepared from aliphatic isocyanate-functional compounds and oligomeric or polymeric polyols or any mixtures thereof.
- component B) isocyanate-reactive polyether polyols which preferably have on average at least 1.5 isocyanate-reactive groups per molecule.
- Preferred compounds of component B) are poly (propylene oxide) s, poly (ethylene oxides) and combinations thereof in the form of random or block copolymers and block copolymers of propylene oxide and / or ethylene oxide.
- the ethylene oxide fraction based on the weight percent of the entire product, is preferably less than 55%, particularly preferably either between 55% and 45% or less than 30% and very particularly preferably less than 10%.
- Very particularly preferred compounds of component B) are difunctional polyether polyols based on propylene oxide and ethylene oxide with an ethylene oxide content of less than 10 percent by weight, based on the total mass of the underlying polyether, and a number average molecular weight between 2000 and 4200 g / mol.
- the components A) and B) are used in the preparation of the photopolymer formulation in an OH / NCO ratio to each other of typically 0.9 to 1.2, preferably 0.95 to 1.05.
- urethane acrylates and / or urethane methacrylates having at least one aromatic structural unit and a refractive index of greater than 1.50 at 405 nm.
- Urethane (meth) acrylates are understood as meaning compounds having at least one acrylate or methacrylate group which additionally have at least one urethane bond.
- Particularly preferred compounds to be used as component C) are urethane acrylates and urethane methacrylates based on aromatic isocyanates and 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, polyethylene oxide mono (meth) acrylate, polypropylene oxide mono (meth) acrylate, polyalkylene oxide mono (meth) acrylate and poly (e-caprolactone) mono (meth) acrylates.
- component C) the Addition products of aromatic triisocyanates (very particularly preferably tris (4-phenyl isocyanato) thiophosphate or trimers of aromatic diisocyanates such as tolylene diisocyanate) with hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate used.
- aromatic triisocyanates very particularly preferably tris (4-phenyl isocyanato) thiophosphate or trimers of aromatic diisocyanates such as tolylene diisocyanate
- 3-thiomethylphenyl isocyanate with hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate are used as component C.
- Suitable compounds of component D) are inhibitors and antioxidants. Preference is given to 2,6-di- / tert-butyl-4-methylphenol, phenothiazine, p-methoxyphenol, 2-methoxy-p-hydroquinone and benzhydrol.
- photoinitiators E are mixtures of tetrabutylammonium tetrahexylborate, tetrabutylammonium triphenylhexylborate, tetrabutylammonium tris (3-fluorophenyl) hexylborate and tetrabutylammonium tris (3-chloro-4-methylphenyl) hexylborate (component E1)) with dyes such as Astrazon Orange G, for example , Methylene blue, new methylene blue, azure A, pyrillium I, safranine O, cyanine, gallocyanine, brilliant green, crystal violet, ethyl violet and thionine (component E2)). Particularly preferred is the combination of one blue-sensitive, one green-sensitive and one red-sensitive dye (for example Astrazon Orange G, Ethyl Violet and New Methylene Blue) and
- catalysts it is optionally possible to use one or more catalysts. Preference is given to dibutyltin dilaurate, dimethylbis [(1-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, 1,4-diazabicyclo [2.2.2] octane, diazabicyclononane, diazabicycloundex, 1,1,3,3-tetramethylguanidine, l, 3,4 , 6,7,8-hexahydro-l-methyl-2H-pyrimido (l, 2-a) pyrimidine.
- additives G can be used.
- these may be, for example, conventional additives in the field of coating technology, such as solvents, plasticizers, leveling agents, defoaming agents or adhesion promoters.
- the plasticizers used are preferably liquids having good release properties, low volatility and high boiling point.
- As a leveling agent surface-active compounds such as e.g. Polydimethylsiloxanes are used. It may also be advantageous to simultaneously use several additives of one type. Of course, it may also be beneficial to use several additives of several types.
- the described photopolymer formulations comprise:
- radical stabilizers D 0.02 to 0.1% by weight of radical stabilizers D
- the coating process of the carrier film comprises the following individual steps for the treatment of the aforementioned photopolymer compounds:
- component A conveying and metering, on the one hand, component A), if appropriate mixed with one or more of components E), F) and G) and, secondly, separately of component B), if appropriate mixed with one or more of components C), D), E), F) and G)
- Preferred metering amounts depend on the dimensioning of the carrier film to be coated, but are usually in the range from 2 ml / min to 2000 ml / min, more preferably in the range from 2 ml / min to 500 ml / min.
- degassing (II) of the individual components or of the entire mixture can also be carried out under a reduced pressure of, for example, 1 mbar. Degassing, in particular after addition of component A), is preferred in order to prevent bubble formation by residual gases or easily vaporizable components in the photopolymers produced.
- Degassing removes dissolved gases or easily volatilizable components such as volatile solvents (e.g., ambient air) from the fluids, and optionally, can additionally saturate the fluid being degassed.
- volatile solvents e.g., ambient air
- degassers vacuum degassers, membrane deaerators, centrifugal deaerators, ultrasonic deaerators and thin-film deaerators and combinations of the mentioned technologies can be used.
- the filtration (ITI) serves to separate solid particles from the liquid medium and is used especially as a cleaning step for the liquid components.
- Candle filters and plate filters are generally used in the coating industry.
- Preferred particle size distributions are between 0.1 .mu.m and 5 .mu.m, and particularly preferred particle size distributions are in the range of 0.2 .mu.m and 1 .mu.m.
- the temperatures are from 0 to 100 ° C., preferably from 10 to 80 ° C., particularly preferably from 20 to 60 ° C.
- the mixtures of components B) to G) can be stored as a storage-stable intermediate, if appropriate for several months.
- a clear, liquid formulation is obtained which, depending on the composition, cures at room temperature within a few seconds to a few hours.
- the ratio and the type and reactivity of the structural components of the polyurethane compositions is preferably adjusted so that the curing occurs after admixture of component A) at room temperature within minutes to one hour.
- the curing is accelerated by the formulation after admixing to temperatures between 30 and 180 0 C, preferably 40 to 120 0 C, particularly preferably 50 to 100 0 C is heated.
- the polyurethane compositions have immediately after complete mixing of all components viscosities at 25 ° C of typically 10 to 100,000 mPas, preferably 100 to 20,000 mPas, more preferably 200 to 10,000 mPas, particularly preferably 500 to 5000 mPas so that they are already in solvent-free form very good processing Own properties.
- viscosities at 25 ° C below 10000 mPas, preferably below 2000 mPas, more preferably below 500 mPas can be adjusted.
- Polyurethane compositions of the abovementioned type which cure with a catalyst content (component F) of 0.004% by weight to 0.1% by weight at 80 ° C. under 6 minutes have proven advantageous, concentrations between 0.01% by weight are preferred .-% and 0.08 wt .-%, more preferably concentrations between 0.04 wt .-% and 0.06 wt .-%.
- V The development (V) of the carrier material takes place in discontinuous processes with single-roll unwinders known to the person skilled in the art.
- a single uncoated roll is used in the unwinding device and fed to the coating process in full length.
- the coating process is interrupted and the finished coated and wound carrier material is removed from the process at the winding station and packaged product-specifically.
- a new uncoated roll is inserted and attached to the end of the pre-produced substrate with suitable adhesive sheets. After starting the machine preference of the carrier material can be continued with the coating process.
- Continuous coating of substrates involves the use of multi-roll unwinders arranged as indexable wipers or reversing crosses.
- the critical transition from a discontinuous process of using an uncoated substrate roll to a continuous coating process without this coating process is carried out either with the aid of a web memory or a flying Anklebreaes known in the art.
- a web memory serves as a buffer for the phase of standstill during roll change and sticking of the roll handling.
- the preferred speed is increased stepwise to a value above the actual optimum coating speed.
- the web store is filled with carrier material until it is complete. Subsequently, the preferred speed is adapted to the actual coating speed.
- the second material handling device in the multi-roll unwinder is equipped with another uncoated roll. At the end of the previous role, the preferred speed is immediately greatly reduced and stopped. In this case, the web store is continuously emptied by maintaining the coating speed.
- the beginning of the roll already loaded on the second material unwinder is fastened to the end of the preceding roll with correspondingly suitable adhesive materials.
- the preferred speed is restarted and incrementally raised above the coating speed to refill the web store.
- the multi-roll unwinder in turntable design or as a turning cross
- the coating speed is kept constant via the process control with the help of additional auxiliary drives.
- web control units To control the carrier material in the transverse direction to the preferred direction known in the art web control units are used.
- the position of the web edge is determined by means of optical sensors, e.g. Reflection sensors, transmission light sensors or ultrasonic sensors are determined and mechanically corrected by means of control roller systems, which are positioned on a driven rotating frame.
- contacting and non-contact surface cleaning When cleaning the substrate, a distinction is made between two different cleaning methods: contacting and non-contact surface cleaning.
- the contacting cleaning process involves cleaning brushes equipped with special soft brush materials. Disadvantage of this method is the occurrence of disturbances in the carrier material, which can be caused by the contact of the brush with the carrier material. In this regard, process parameters such as rotational speed, brush material, and the distance to the carrier material have to be adapted.
- Non-contact methods such as Ionticiansticianen, suction ducts or air blower are in this respect material protection methods. These ionization units generate positive and negative ions that neutralize the surface charges on the substrate. This will Static charges on the substrate that attract dust and particles from the environment are avoided.
- the cleaning systems are equipped with additional suction channels, which remove particles from the surface of the carrier material. This is supported by the use of a specially arranged flat jet nozzle, which with a fine compressed air jet dust and particles from the surface and blow away. These particles are also transported away via the installed suction ducts and filtered.
- the described methods for web cleaning can be arranged and combined in any order and positioning.
- corona and plasma pretreatment systems To improve the adhesion properties of the support materials, known in the art known corona and plasma pretreatment systems.
- the substrate is subjected to a high voltage electronic discharge that occurs between a grounded and polished steel or aluminum roller and a tight-fitting insulated electrode. Only the side facing the electrode is treated.
- Common electrodes are supplied with high-frequency generators with an alternating voltage of 10 to 2OkV and a frequency between 10 and 60 kHz.
- surface tensions of the polyurethane compositions described are adapted to the person skilled in the art with the aid of the additives described.
- Preferred surface tensions are between 10 raN / m and 50 mN / m, more preferably from 20 mN / m to 40 mN / m.
- Preferred coating widths are between 100 mm and 3000 mm, more preferred are widths in the range of 300 mm to 2000 mm.
- Substrate speeds are preferably in the range of 0.2 m / min to 300 m / min. Particularly preferred substrate speeds are found in the range of 1.0 m / min to 50 m / min.
- Applied dry film thicknesses for doctor blade and slot nozzles are preferably not more than 200 .mu.m, more preferably from 3 .mu.m to 100 .mu.m, very particularly preferably from 15 .mu.m to 60 .mu.m.
- the drying (VII) of the coated substrate is preferably carried out at a temperature of from 30 ° C. to 180 ° C., more preferably from 40 ° C. to 120 ° C., very particularly preferably from 50 ° C. to 100 ° C.
- the metering of the starting materials takes place either by gear pumps or eccentric screw pumps. Centrifugal deaerators are used for degassing the feedstock and plate filters for filtering.
- the mixture of the individual components takes place via a static mixer with correspondingly designed mixing geometries, such as length and diameter.
- the preferred coating unit used is a slot die.
- the coated material is dried over air dryers with the desired air temperature and moisture content over a defined period of time.
- FIG. 1 shows an overview of the described combination of the individual manufacturing stages of a coated substrate.
- Figure 1 Schematic structure of a typical coating system, including arrangement of the pretreatment of the Be Mrsungsmate ⁇ als (1-5), schematic course of Toomate ⁇ als (8 + 9), coating device for application to a Susun ⁇ al (6) and subsequent drying process (7).
- Another object of the present invention is the article obtained by coating a transparent substrate with the described prepolymer-based polyurethane formulation.
- the film composite may contain other films.
- Preferred materials or composite materials of the support layer are based on polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene, polypropylene, cellulose acetate, cellulose hydrate, cellulose nitrate, Cycloolefmpolymere, polystyrene, polyepoxides, polysulfone, cellulose triacetate (CTA), polyamide, polymethyl methacrylate, polyvinyl chloride , Polyvinyl butyral or polydicyclopentadiene or mixtures thereof.
- material composites such as film laminates or coextrudates can be used as carrier film.
- PC and PET are particularly preferably used as a carrier film.
- the Haze is measurable over the Haze value, which is less than 3.5%, preferably less than 1%, more preferably less than 0.3%.
- the Haze value describes the proportion of transmitted light that is scattered forward by the irradiated sample. Thus, it is a measure of the opacity or turbidity of transparent materials and quantifies material defects, particles, inhomogeneities, or crystalline phase boundaries in the material or its surface that interfere with clear viewing.
- the method of measuring turbidity is described in the standard ASTM D 1003.
- the support has a not too high birefringence, i. typically has a mean optical retardation of less than 1000 nm, preferably less than 700 nm, more preferably less than 300 nm.
- the retardation R is the mathematical product of the birefringence ⁇ n and the thickness of the carrier d.
- the automatic and objective measurement of the retardation is carried out with a polarimeter, e.g. from the company ilis GmbH, model StainMatic® M3 / M.
- the retardation is measured in vertical incidence.
- the values given for the wearer for the retardation are lateral averages.
- the support typically has a thickness of 5 to 2000 .mu.m, preferably 8 to 300 .mu.m, particularly preferably 30 to 200 .mu.m and in particular 125 to 175 .mu.m or 30 to 45 .mu.m.
- the film composite can have one or more cover layers on the photopolymer layer in order to protect it from dirt and environmental influences.
- cover layers plastic films or composite film systems, but also clearcoats can be used.
- the cover layers used are preferably film materials analogous to the materials used in the carrier layer, wherein these have a thickness of typically 5 to 200 .mu.m, preferably 8 to 125 .mu.m, particularly preferably 20 to 50 .mu.m.
- the roughness is determined as a measure in accordance with DIN EN ISO 4288 "Geometrical Product Specification (GPS) - Surface Texture " ("Geometrical Product Specifications (GPS) - Surface texture ", test condition R3z front and back Preferred roughnesses are in the range of less than or equal to 2 ⁇ m, preferably less than or equal to 0.5 ⁇ m.
- laminating PE or PET films of a thickness of 20 to 60 microns are preferably used, more preferably a polyethylene film of 40 microns thickness is used.
- Another object of the present invention is the use of the media according to the invention for recording visual holograms, for the production of optical elements, images, representations and a method for recording holograms using the polyurethane compositions according to the invention and the media or holograf ⁇ schen accessible therefrom.
- holograms for optical applications in the entire visible range and in the near UV range can be produced by appropriate exposure processes.
- Visual holograms include all holograms that can be recorded by methods known to those skilled in the art, including but not limited to in-line (gabor) holograms, off-axis holograms, full-aperture holograms, white-light transmission holograms ("rainbow holograms"), and denisyukho- lograms, off-axis reflection holograms, edge-lit holograms and holographic stereograms, preference is given to reflection holograms, denisy-holograms, transmission holograms.
- gabor in-line
- off-axis holograms full-aperture holograms
- white-light transmission holograms (“rainbow holograms")
- denisyukho- lograms off-axis reflection holograms
- edge-lit holograms and holographic stereograms preference is given to reflection
- holographic images or representations can also be produced by means of the photopolymer foils essential to the invention, for example for personal portraits, biometric representations in security documents, or generally for images or image structures for advertising, security labels, trademark protection, brand branding, labels, design elements, decorations, illustrations , Trading cards, pictures and the like, as well as pictures that can represent digital data, including in combination with the products shown above.
- Holographic images can have the impression of a three-dimensional image, but they can also represent image sequences, short films or a number of different objects, depending on which angle, with which (even moving) light source, etc., this is illuminated. Due to these diverse design possibilities, holograms, in particular volume holograms, represent an attractive technical solution for the above-mentioned application.
- Desmodur ® XP 2599 is an experimental product of Bayer MaterialScience AG, Leverkusen, DE, Vollallophanat of hexane diisocyanate on Acclaim 4200, NCO content: 5.6 to 6.4%
- Prepolymer 1 is an experimental product of Bayer MaterialScience AG, Leverkusen, DE, urethane of hexane diisocyanate and Acclaim 2200, NCO content: 3.2 - 3.75%
- Polyol 1 (Acclaim ® 4200) is a polypropylene oxide of number average molecular weight 4000 g / mol of Bayer MaterialScience AG, Leverkusen, DE.
- Polyol 2 (Acclaim ® 4220 N) is an ethylene oxide-capped polypropylene oxide of number average molecular weight 4000 g / mol of Bayer MaterialScience AG, Leverkusen, DE.
- Polyol 3 (Acclaim ® 2200) is a polypropylene oxide of number average molecular weight 2000 g / mol of Bayer MaterialScience AG, Leverkusen, DE.
- Urethane acrylate 1 is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, urethane acrylate based on HEA and Desmodur ® RFE.
- Fomrez ® UL28 Urethanization catalyst, dimethylbis [(l-oxoneodecl) oxy] stannane, commercial product from Momentive Performance Chemicals, Wilton, CT, USA (as 10% solution in N-ethylpyrrolidone).
- CGI 909 borate-based co-initiator from Ciba Inc., Basel, Switzerland.
- New Methylene blue (zinc-free) Dye of the company Sigma-Aldrich Chemie GmbH, Steinheim, Germany.
- Ethyl Violet Dye from Messrs. Biomedicals LLC, Solon, Ohio, USA.
- Astrazon Orange G dye from Sigma-Aldrich Chemie GmbH, Steinheim, Germany.
- Byk 310 silicone-based surface additive from BYK-Chemie GmbH, Wesel, Germany (solution about 25% strength in xylene). Measurement of diffraction efficiency DE and refractive index contrast ⁇ n:
- inventive and comparative media prepared in the experimental part were tested for their holographic properties by means of a measuring arrangement according to FIG. 7:
- the laminating film is peeled off from the film composite and the photopolymer material is then laminated to glass so that the substrate film faces outward.
- the beam of a He-Ne laser (emission wavelength 633 nm) was converted into a parallel homogeneous beam by means of the spatial filter (SF) and together with the collimation lens (CL).
- the final cross sections of the signal and reference beam are defined by the iris diaphragms (I).
- the diameter of the iris aperture is 4 mm.
- the polarization-dependent beam splitters (PBS) divide the laser beam into two coherent identically polarized beams.
- the power of the reference beam of 0.5 mW and the power of the signal beam were set to 0.65 mW via the ⁇ / 2 plates.
- the performances were determined with the semiconductor detectors (D) with the sample removed.
- the angle of incidence ( ⁇ ) of the reference beam is 21.8 °
- the angle of incidence ( ⁇ ) of the signal beam is 41.8 °.
- the interference field of the two overlapping beams produced a grid of bright and dark stripes perpendicular to the bisector of the two beams incident on the sample (reflection hologram).
- the stripe spacing in the medium is ⁇ 225 nm (refractive index of the medium assumed to be -1.49).
- Both shutters (S) are open for the exposure time t. Thereafter, with closed shutters (S), the medium was left for 5 minutes for the diffusion of the not yet polymerized writing monomer.
- the written holograms have now been read out in the following way.
- the shutter of the signal beam remained closed.
- the shutter of the reference beam was open.
- the iris diaphragm of the reference beam was closed to a diameter ⁇ 1 mm. It was thus achieved that for all rotation angles ( ⁇ ) of the medium, the beam was always located completely in the previously written hologram.
- the powers of the zero-order transmitted beam were measured by means of the corresponding detector D and the powers of the first-order deflected beam were measured by the detector D.
- the diffraction efficiency ⁇ was found at each approached angle ⁇ as the quotient of:
- P D is the power in the detector of the diffracted beam and P ⁇ is the power in the detector of the transmitted beam.
- the Bragg curve describes the diffraction efficiency ⁇ as a function of the rotation angle ⁇ of the written hologram measured and stored in a computer.
- the intensity transmitted in the zeroth order was also recorded against the rotation angle ⁇ and stored in a computer.
- the maximum diffraction efficiency (DE Tj max ) of the hologram, ie its peak value, was determined. It may be necessary to change the position of the detector of the diffracted beam in order to determine this maximum value.
- ⁇ is the lattice strength
- ⁇ is the detuning parameter
- ⁇ is the tilt angle of the refractive index lattice that was written
- ⁇ 'and ⁇ ' correspond to the angles a and ß when writing the hologram, but in the medium.
- ⁇ is the winching tuning measured in the medium, ie the deviation from the angle ⁇ '.
- ⁇ is the angle tuning measured outside the medium, ie the deviation from the angle a.
- n is the average refractive index of the photopolymer and was set to 1,504.
- the measurement data of the diffraction efficiency, the theoretical Bragg curve and the transmitted intensity are plotted against the centered rotation angle ⁇ - ⁇ -shift as shown in FIG. Since, because of geometric shrinkage and the change in the average refractive index in the photopolymerization, the angle in the DE is measured from a. deviates, the x-axis is centered around this shift. The shift is typically 0 ° to 2 °.
- the detector for the diffracted light can only detect a finite angular range, the Bragg curve of broad fathoms (small d) is not completely detected in an ⁇ scan but only the central area, with appropriate detector positioning. Therefore, the complementary to the Bragg curve shape of the transmitted intensity to adjust the layer thickness d is additionally used.
- Figure 8 Representation of the Bragg curve ⁇ Kogelnik (dashed line), the measured diffraction efficiency (filled circles) and the transmitted power (black solid line) against the Winveidetuning ⁇ . Since, because of geometric shrinkage and the change in the average refractive index in the photopolymerization, the angle measured at the DE differs from ⁇ , the x-axis is centered around this shift. The shift is typically 0 ° to 2 °.
- this procedure may be repeated several times for different exposure times t on different media to determine at which average absorbed dose of the incident laser beam is going to saturate upon writing the hologram DE.
- the mean absorbed dose E is as follows:
- the powers of the sub-beams have been adjusted so that the same power density is achieved in the medium at the angles ⁇ and ⁇ used.
- a test equivalent to that shown in Figure 7 was also performed with a green laser having the emission wavelength ⁇ in the vacuum of 532 nm.
- the physical layer thickness was determined with commercially available white light interferometers, e.g. the device FTM-Li te NIR Coating Thickness Gauge from Ingenieurs supra Fuchs.
- the determination of the layer thickness is based in principle on interference phenomena on thin layers.
- light waves are superimposed, which have been reflected at two interfaces of different optical density.
- the undisturbed superimposition of the reflected partial beams now leads to periodic brightening and extinction in the spectrum of a white continuum radiator (eg halogen lamp). This superposition is called the expert interference.
- These interference spectra are measured and mathematically evaluated.
- the component C, the component D (which may already be pre-dissolved in the component C) and optionally the component G and F in the component B are optionally dissolved at 60 0 C and mixed thoroughly. Thereafter, in the dark or under suitable illumination, the component E is weighed in pure form or in dilute solution in NEP and mixed again. If necessary, it is heated to 60 ° C. in the drying oven for a maximum of 10 minutes. The resulting mixture can be degassed with stirring at ⁇ 10 mbar.
- the component A can also be degassed with stirring at ⁇ 10 mbar. Subsequently, both formulations are continuously metered and mixed by means of forced metering pumps via one of the abovementioned mixing methods. Thereafter, the mixture is continuously and homogeneously applied to a carrier film via an application unit, such as a doctor blade or a slot die.
- the coated Sufohen be dried at about 80 0 C and then covered with one of the above cover layers and packaged in a light-tight packaging.
- the thickness d of the photopolymer layer results from the coating parameters known to those skilled in the art of the corresponding coating device.
- FIG. 2 shows a topographical layer thickness distribution with a conventional laboratory coating device, such as e.g. Hand-pull frame, spiral applicators or an automatically driven film applicator (Comparative Example 1).
- a conventional laboratory coating device such as e.g. Hand-pull frame, spiral applicators or an automatically driven film applicator (Comparative Example 1).
- a sufficient volume of coating material is placed in front of the applicator.
- the applicator is manually pulled over the substrate at a near-uniform speed to form a uniform film on the substrate.
- This can be supplemented with an automatically driven film applicator and thus optimized.
- the coating quality of the methods described is greatly influenced by the choice of a suitable substrate.
- glass and rubber materials are preferably used.
- FIG. 2 Layer thickness distribution during production with conventional laboratory scrubber devices
- Example 1 As shown in FIGS. 3-7, a higher layer thickness accuracy can be achieved by the continuous roll coating shown in FIG. A summary of the results obtained is shown in Table 1.
- the improvement in the layer thickness distribution of Example 1 can be clearly shown by the reduction of the standard deviation with the use of roll coating (Example 2-5).
- the comparisons of the minimum and the maximum measured layer thicknesses show a significant reduction of the bandwidth of the invention. aimed at layer thicknesses. This results in more uniform coatings.
- Achieving a uniform layer thickness distribution of the photopolymer is important in order to guarantee a uniform brightness of the holograms over a larger area. Since the brightness of the holograms depends directly on the diffraction efficiencies and the spectral angular bandwidths, there is thus also a direct influence of the layer thickness over these parameters.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Polyurethanes Or Polyureas (AREA)
- Holo Graphy (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/148,694 US8715888B2 (en) | 2009-02-12 | 2010-01-30 | Method for producing holographic photopolymers on polymer films |
SG2011049616A SG172900A1 (en) | 2009-02-12 | 2010-01-30 | Method for producing holographic photopolymers on polymer films |
PL10702439T PL2396358T3 (pl) | 2009-02-12 | 2010-01-30 | Sposób wytwarzania fotopolimerów holograficznych na foliach polimerowych |
CN201080007532.8A CN102317337B (zh) | 2009-02-12 | 2010-01-30 | 在聚合物膜上制备全息光聚合物的方法 |
JP2011549462A JP2012517512A (ja) | 2009-02-12 | 2010-01-30 | ポリマーフィルム上ホログラフィック感光性ポリマーの製造方法 |
ES10702439T ES2400346T3 (es) | 2009-02-12 | 2010-01-30 | Procedimiento para la fabricación de fotopolímeros holográficos sobre láminas de polímero |
EP10702439A EP2396358B1 (de) | 2009-02-12 | 2010-01-30 | Methode zur herstellung von holografischen photopolymeren auf polymerfolien |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09001952A EP2218744A1 (de) | 2009-02-12 | 2009-02-12 | Methode zur Herstellung von holografischen Photopolymeren auf Polymerfolien |
EP09001952.2 | 2009-02-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010091795A1 true WO2010091795A1 (de) | 2010-08-19 |
WO2010091795A8 WO2010091795A8 (de) | 2011-06-23 |
Family
ID=40908532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/000565 WO2010091795A1 (de) | 2009-02-12 | 2010-01-30 | Methode zur herstellung von holografischen photopolymeren auf polymerfolien |
Country Status (10)
Country | Link |
---|---|
US (1) | US8715888B2 (de) |
EP (2) | EP2218744A1 (de) |
JP (1) | JP2012517512A (de) |
KR (1) | KR20110118785A (de) |
CN (1) | CN102317337B (de) |
ES (1) | ES2400346T3 (de) |
PL (1) | PL2396358T3 (de) |
SG (1) | SG172900A1 (de) |
TW (1) | TWI494357B (de) |
WO (1) | WO2010091795A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014026923A1 (de) | 2012-08-13 | 2014-02-20 | Bayer Materialscience Ag | Lichtführungsplatte mit auskoppelelementen |
WO2014041121A1 (en) | 2012-09-17 | 2014-03-20 | Basf Se | Security elements and method for their manufacture |
DE102022103301A1 (de) | 2021-02-11 | 2022-08-11 | Xetos Ag | 2k-system |
EP4043962A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | Photopolymerisierbare zusammensetzung |
EP4043502A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | Photopolymerisierbare hoe-zusammensetzung |
EP4043963A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | Verbessertes ausbleichen |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010037515A1 (de) * | 2008-10-01 | 2010-04-08 | Bayer Materialscience Ag | Medien für volumenholographische aufzeichnung basierend auf sich selbstentwickelndem polymer |
JP5524218B2 (ja) * | 2008-10-01 | 2014-06-18 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | ホログラフィック媒体製造用のプレポリマー系ポリウレタン配合物 |
EP2218743A1 (de) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Prepolymerbasierte Polyurethanformulierungen zur Herstellung holographischer Filme |
EP2218742A1 (de) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Photopolymerzusammensetzungen als verdruckbare Formulierungen |
US8771904B2 (en) | 2009-11-03 | 2014-07-08 | Bayer Materialscience Ag | Method for producing holographic media |
US8889322B2 (en) * | 2009-11-03 | 2014-11-18 | Bayer Materialscience Ag | Photopolymer formulation having different writing comonomers |
PL2317511T3 (pl) * | 2009-11-03 | 2012-08-31 | Bayer Materialscience Ag | Formulacje fotopolimerowe z nastawialnym mechanicznym modułem Guv |
CN102741925B (zh) | 2009-11-03 | 2015-12-16 | 拜尔材料科学股份公司 | 生产全息膜的方法 |
EP2497085B1 (de) * | 2009-11-03 | 2014-02-12 | Bayer Intellectual Property GmbH | Verfahren zur herstellung eines holographischen films |
EP2450387A1 (de) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer-Formulierung für die Herstellung holographischer Medien |
US20140302425A1 (en) * | 2012-04-30 | 2014-10-09 | Bayer Intellectual Property Gmbh | Method for producing holographic media |
TWI684782B (zh) * | 2014-08-01 | 2020-02-11 | 德商拜耳材料科學股份有限公司 | 含光聚合物層與基材層之層狀結構 |
EP3540521B1 (de) * | 2016-11-30 | 2022-01-05 | LG Chem, Ltd. | Hologrammwiedergabeverfahren und -vorrichtung |
CN107610722B (zh) * | 2017-08-21 | 2019-06-25 | 沈阳航空航天大学 | 一种基于聚碳酸酯为基底的光致聚合全息材料及其制备方法 |
KR102033957B1 (ko) * | 2018-05-23 | 2019-10-18 | (주)케이피엘솔루션 | 해상도가 향상된 자외선 경화형 액상 수지 조성물 및 이의 제조방법 |
DE102022120865A1 (de) * | 2022-08-18 | 2024-02-29 | Carl Zeiss Jena Gmbh | Replikationsvorrichtung für das kopieren von hologrammen in flüssige fotopolymere |
DE102022120870A1 (de) * | 2022-08-18 | 2024-02-29 | Carl Zeiss Jena Gmbh | Replikationsverfahren für das kopieren von hologrammen in flüssige fotopolymere |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0801727A1 (de) | 1994-05-31 | 1997-10-22 | Recon | Vorrichtung und verfahren fuer die zeitaufgeloeste spektroskopie |
DE19754024A1 (de) * | 1997-12-05 | 1999-06-10 | Basf Ag | Vorrichtung und Verfahren zum kontinuierlichen Benetzen eines flächigen Gebildes mit einer Flüssigkeit |
JP2001187362A (ja) * | 1999-12-28 | 2001-07-10 | Mitsui Chemicals Inc | 熱硬化性ポリウレタンの連続塗工方法および熱硬化性ポリウレタンシートの製造方法 |
WO2008125199A1 (en) * | 2007-04-11 | 2008-10-23 | Bayer Materialscience Ag | Aromatic urethane acrylates having a high refractive index |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3667946A (en) * | 1970-09-23 | 1972-06-06 | Holotron Corp | Surface treatment of photopolymer film used for recording holograms |
DE3822093C2 (de) * | 1987-06-30 | 1997-11-06 | Fuji Photo Film Co Ltd | Verfahren zur Entgasung und Entschäumung einer lichtempfindlichen Überzugslösung und Vorrichtung zur Durchführung dieses Verfahrens |
US5083219A (en) * | 1989-12-26 | 1992-01-21 | Physical Optics Corporation | Method and apparatus for recording lippman holographic mirrors |
US6344495B1 (en) * | 1998-07-31 | 2002-02-05 | Dai Nippon Printing Co., Ltd. | Photo-curable resin composition and method for forming concave-convex pattern |
EP1022625B1 (de) * | 1999-01-19 | 2017-06-28 | Dai Nippon Printing Co., Ltd. | Übertragungsfolie für Hologramme |
US6414761B1 (en) * | 2000-03-06 | 2002-07-02 | Illinois Tool Works Inc. | Secure holographic images on paper |
US6743552B2 (en) * | 2001-08-07 | 2004-06-01 | Inphase Technologies, Inc. | Process and composition for rapid mass production of holographic recording article |
US7682531B2 (en) * | 2002-04-08 | 2010-03-23 | Hoya Corporation | Process for producing optical member |
JP4466140B2 (ja) * | 2003-11-27 | 2010-05-26 | コニカミノルタエムジー株式会社 | ホログラフィック記録メディア、ホログラフィック記録方法およびホログラフィック情報メディア |
DE102004015983A1 (de) * | 2004-04-01 | 2005-10-20 | Bayer Materialscience Ag | Verfahren zur Herstellung von Polyetherallophanaten unter Verwendung von Zink-Verbindungen als Katalysatoren |
WO2006120887A1 (ja) * | 2005-05-12 | 2006-11-16 | Nippon Kayaku Kabushiki Kaisha | 感光性樹脂組成物、その硬化物及びそれを含有するフィルム |
US7678507B2 (en) * | 2006-01-18 | 2010-03-16 | Inphase Technologies, Inc. | Latent holographic media and method |
CN101174090A (zh) * | 2006-11-02 | 2008-05-07 | 乐凯集团第二胶片厂 | 光聚合型平版印刷版 |
CN101606106B (zh) * | 2007-02-05 | 2012-10-17 | 新日铁化学株式会社 | 体积相位全息记录材料及光信息记录介质 |
IL200722A0 (en) | 2008-10-01 | 2010-06-30 | Bayer Materialscience Ag | Photopolymer compositions for optical elements and visual displays |
WO2010037515A1 (de) | 2008-10-01 | 2010-04-08 | Bayer Materialscience Ag | Medien für volumenholographische aufzeichnung basierend auf sich selbstentwickelndem polymer |
IL200995A0 (en) | 2008-10-01 | 2010-06-30 | Bayer Materialscience Ag | Polyether-based polyurethane formulations for the production of holographic media |
JP5524218B2 (ja) * | 2008-10-01 | 2014-06-18 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | ホログラフィック媒体製造用のプレポリマー系ポリウレタン配合物 |
IL200997A0 (en) * | 2008-10-01 | 2010-06-30 | Bayer Materialscience Ag | Special polyether-based polyurethane formulations for the production of holographic media |
EP2218742A1 (de) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Photopolymerzusammensetzungen als verdruckbare Formulierungen |
EP2218743A1 (de) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Prepolymerbasierte Polyurethanformulierungen zur Herstellung holographischer Filme |
-
2009
- 2009-02-12 EP EP09001952A patent/EP2218744A1/de not_active Withdrawn
-
2010
- 2010-01-30 US US13/148,694 patent/US8715888B2/en active Active
- 2010-01-30 ES ES10702439T patent/ES2400346T3/es active Active
- 2010-01-30 PL PL10702439T patent/PL2396358T3/pl unknown
- 2010-01-30 KR KR1020117018682A patent/KR20110118785A/ko not_active Application Discontinuation
- 2010-01-30 EP EP10702439A patent/EP2396358B1/de active Active
- 2010-01-30 JP JP2011549462A patent/JP2012517512A/ja active Pending
- 2010-01-30 SG SG2011049616A patent/SG172900A1/en unknown
- 2010-01-30 WO PCT/EP2010/000565 patent/WO2010091795A1/de active Application Filing
- 2010-01-30 CN CN201080007532.8A patent/CN102317337B/zh not_active Expired - Fee Related
- 2010-02-11 TW TW099104259A patent/TWI494357B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0801727A1 (de) | 1994-05-31 | 1997-10-22 | Recon | Vorrichtung und verfahren fuer die zeitaufgeloeste spektroskopie |
DE19754024A1 (de) * | 1997-12-05 | 1999-06-10 | Basf Ag | Vorrichtung und Verfahren zum kontinuierlichen Benetzen eines flächigen Gebildes mit einer Flüssigkeit |
JP2001187362A (ja) * | 1999-12-28 | 2001-07-10 | Mitsui Chemicals Inc | 熱硬化性ポリウレタンの連続塗工方法および熱硬化性ポリウレタンシートの製造方法 |
WO2008125199A1 (en) * | 2007-04-11 | 2008-10-23 | Bayer Materialscience Ag | Aromatic urethane acrylates having a high refractive index |
Non-Patent Citations (2)
Title |
---|
M. SCHMALZ; N. HANSEN; W. NEUMANN, 5- ODER 6-WALZEN BESCHICHTUNGSVERFAHREN, 20 June 1000 (1000-06-20), pages 410 - 413 |
P. M. SCHWEIZER: "Vordosierte Beschichtungsverfahren: Vorzüge und Anwendungen", COATING, AUSGABE, 19 February 1208 (1208-02-19), pages 462 - 465 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014026923A1 (de) | 2012-08-13 | 2014-02-20 | Bayer Materialscience Ag | Lichtführungsplatte mit auskoppelelementen |
WO2014041121A1 (en) | 2012-09-17 | 2014-03-20 | Basf Se | Security elements and method for their manufacture |
US9678475B2 (en) | 2012-09-17 | 2017-06-13 | Basf Se | Security elements and method for their manufacture |
DE102022103301A1 (de) | 2021-02-11 | 2022-08-11 | Xetos Ag | 2k-system |
EP4043962A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | Photopolymerisierbare zusammensetzung |
EP4043961A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | 2k-system |
EP4043502A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | Photopolymerisierbare hoe-zusammensetzung |
EP4043963A1 (de) | 2021-02-11 | 2022-08-17 | Xetos AG | Verbessertes ausbleichen |
WO2022171814A1 (de) | 2021-02-11 | 2022-08-18 | Xetos Ag | 2k-system |
WO2022171820A1 (de) | 2021-02-11 | 2022-08-18 | Xetos Ag | Verbessertes ausbleichen |
WO2022171823A1 (de) | 2021-02-11 | 2022-08-18 | Xetos Ag | Photopolymerisierbare zusammensetzung |
WO2022171821A1 (de) | 2021-02-11 | 2022-08-18 | Xetos Ag | Photopolymerisierbare hoe-zusammensetzung |
Also Published As
Publication number | Publication date |
---|---|
ES2400346T3 (es) | 2013-04-09 |
PL2396358T3 (pl) | 2013-05-31 |
TWI494357B (zh) | 2015-08-01 |
EP2396358B1 (de) | 2013-01-23 |
KR20110118785A (ko) | 2011-11-01 |
EP2218744A1 (de) | 2010-08-18 |
JP2012517512A (ja) | 2012-08-02 |
CN102317337A (zh) | 2012-01-11 |
EP2396358A1 (de) | 2011-12-21 |
CN102317337B (zh) | 2014-11-26 |
WO2010091795A8 (de) | 2011-06-23 |
US8715888B2 (en) | 2014-05-06 |
US20110311905A1 (en) | 2011-12-22 |
TW201035190A (en) | 2010-10-01 |
SG172900A1 (en) | 2011-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2396358B1 (de) | Methode zur herstellung von holografischen photopolymeren auf polymerfolien | |
EP2218745B1 (de) | Prepolymerbasierte Polyurethanformulierungen zur Herstellung holographischer Filme | |
EP2497085B1 (de) | Verfahren zur herstellung eines holographischen films | |
EP2497080B1 (de) | Verfahren zur herstellung eines holographischen films | |
EP2396359B1 (de) | Photopolymerzusammensetzungen als verdruckbare formulierungen | |
EP2497081B1 (de) | Verfahren zur herstellung von holographischen medien | |
EP2638089B1 (de) | Photopolymer-formulierung für die herstellung holographischer medien | |
EP2342254B1 (de) | Medien für volumenholographische aufzeichnung basierend auf sich selbstentwickelndem polymer | |
EP2372454A1 (de) | Photopolymer-Formulierung zur Herstellung sichtbarer Hologramme | |
EP2354845B1 (de) | Photopolymer-Formulierung zur Herstellung holographischer Medien | |
TW201708197A (zh) | 新穎之經取代三及其製造方法 | |
EP3175297B1 (de) | Schichtaufbau umfassend eine photopolymer- und eine substratschicht | |
WO2024052256A1 (de) | Spezielle benzopyryliumsalze als farbstoffe für photopolymerzusammensetzungen | |
WO2015063064A1 (de) | Verbund umfassend ein substrat und einen photopolymerfilm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080007532.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10702439 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010702439 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13148694 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117018682 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011549462 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |