WO2010090402A2 - Combined heat and power cogeneration system for a fuel cell, and control method thereof - Google Patents

Combined heat and power cogeneration system for a fuel cell, and control method thereof Download PDF

Info

Publication number
WO2010090402A2
WO2010090402A2 PCT/KR2010/000323 KR2010000323W WO2010090402A2 WO 2010090402 A2 WO2010090402 A2 WO 2010090402A2 KR 2010000323 W KR2010000323 W KR 2010000323W WO 2010090402 A2 WO2010090402 A2 WO 2010090402A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
production
price
commercial
Prior art date
Application number
PCT/KR2010/000323
Other languages
French (fr)
Korean (ko)
Other versions
WO2010090402A3 (en
Inventor
김호석
홍병선
신미남
Original Assignee
(주)퓨얼셀 파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)퓨얼셀 파워 filed Critical (주)퓨얼셀 파워
Priority to CN201080007116.8A priority Critical patent/CN102308420B/en
Publication of WO2010090402A2 publication Critical patent/WO2010090402A2/en
Publication of WO2010090402A3 publication Critical patent/WO2010090402A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a fuel cell cogeneration system, and more particularly, to a fuel cell cogeneration system having an economical efficiency by resolving a power imbalance difference between a production power of a fuel cell and a load power of a user, and a control method thereof.
  • a fuel cell uses a hydrocarbon-based power source (LNG, LPG, etc.) to replace a reformer gas rich in hydrogen in a fuel processing device, and supplies the reformed gas together with oxygen in the air to the fuel cell stack, thereby providing electrochemistry.
  • Reaction produces DC power, converts DC power into AC power using a power converter, and recovers heat generated in the power production process and stores the water in the heat storage tank.
  • LNG hydrocarbon-based power source
  • Korean Patent No. 0661920 discloses a fuel cell system that can operate in response to a load.
  • the fuel cell system includes a fuel supply unit for controlling the supply amount of power generation materials, an air supply unit for controlling the supply amount of air, an electrical output unit for converting power from the fuel cell stack to supply the load, and an electrical output unit for supplying the load.
  • a power meter for detecting the remaining power remaining and the supplementary power supplied through the commercial power supply, and a controller for calculating the difference between the residual power and the supplementary power detected by the power meter and controlling the power output of the fuel cell stack. do.
  • this fuel cell system does not judge the economic feasibility of comparing the price of electricity produced by the fuel cell stack to the price of power raw materials used. Therefore, the fuel cell system uses the power generated from the commercial power and renewable energy (e.g., wind, solar, etc.) of a system power source having a low power generation price when generating power using a fuel cell cogeneration system. Makes driving difficult. Therefore, in operation of the fuel cell system, economic efficiency may be limited.
  • the commercial power and renewable energy e.g., wind, solar, etc.
  • One aspect of the present invention is to use the commercial power of the system power source to which the progressive charge system is applied in the low-cost area, while eliminating the power imbalance between the fuel cell production power and the load power of the user fuel cell cogeneration It is to provide a system and a control method thereof.
  • a fuel cell for producing direct current power using fuel gas containing hydrogen and air containing oxygen, and the direct current power produced by the fuel cell as alternating current power A power converter for converting, a power divider for selecting commercial power of a system power source and production power of the fuel cell and distributing it to load power of a load, a waste heat recovery unit for recovering heat generated from the fuel cell, and the fuel cell and the power And a fuel cell controller for controlling the converter, the power distributor, and the waste heat recovery device, and controlling the amount of commercial power so that the commercial power price and the production power price coincide at the set values.
  • the fuel cell controller may further include an economic recognizer that recognizes economic efficiency by comparing the commercial power price and the production power price.
  • the fuel cell controller may further include a load follower that determines an increase or decrease in the direction of power generation according to an imbalance difference between the production power and the load power.
  • the fuel cell controller includes a data storage RAM for storing the commercial power amount and the commercial power price WP calculated in real time by the load follower, and a power generation step corresponding to the rated power generation in consideration of the variation of the load power. It may include an operation controller for controlling in multiple stages.
  • MMWP production power price
  • EW economic index
  • the production power price (MWP) from the consumption of the power raw material (F), the raw material price (FP, price / Nm 3 ) and the amount of power produced.
  • a range determination step of determining whether the deviation is out of the preset range, the production power (P1) is reduced if the imbalance difference falls within the preset value range, and increases the production power (P1) if out of the preset range
  • an integration step of integrating ( ⁇ P) the commercial power amount of the commercial power supplied by the unbalanced difference, and calculating the commercial power price by comparing the accumulated commercial power amount with the progressive charge system. have.
  • a commercial power amount coinciding with the commercial power price and the production power price is referred to as coincidence commercial power amount Pe, and when the used commercial power amount is within a range of Pe / 3, the power imbalance difference is rated.
  • the first power generation stage which produces less than the actual load power to produce 3/10 of the power generation, if the commercial power used is in the range of Pe / 3 or more and less than 2Pe / 3, the power imbalance difference is 2/10 of the rated power generation.
  • the second power production stage which produces less than the actual load power, if the commercial power used is in the range of 2Pe / 3 or more and less than Pe, the power unbalance difference is less than the actual load power so that it becomes 1/10 of the rated power generation.
  • the fuel cell controller is used to control the amount of commercial power used so that the commercial power price and the production power price coincide at the set values
  • the commercial power to which the progressive rate system is applied is preferentially used in the low cost area. This has the effect of improving economics.
  • the production power of the fuel cell is increased or decreased according to the range of the power imbalance between the production power of the fuel cell and the load power of the user, there is an effect of improving the economic efficiency even in the process of resolving the unbalance difference.
  • FIG. 1 is a configuration diagram schematically showing a fuel cell cogeneration system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a control method of the fuel cell cogeneration system of FIG. 1.
  • 3 is a graph comparing the amount of electricity and the price of power of the commercial power of the system power and the production power of the fuel cell.
  • a fuel cell cogeneration system 100 (hereinafter, simply referred to as a “system”) of an embodiment includes a fuel cell 10, a power converter 20, a power distributor 30, and a waste heat recovery 40. ) And a fuel cell controller 50.
  • the fuel cell 10 includes, for example, a fuel processor 11 for converting a hydrocarbon-based raw material into a reformed gas rich in hydrogen, a fuel cell stack 12 for producing direct current power using hydrogen and oxygen in the air; Balance of Plant (BOP) 13 necessary for producing electric power, and a heat exchanger 14 for recovering heat generated by the fuel processing device 11 and the fuel processing stack 12.
  • a fuel processor 11 for converting a hydrocarbon-based raw material into a reformed gas rich in hydrogen
  • a fuel cell stack 12 for producing direct current power using hydrogen and oxygen in the air
  • BOP Balance of Plant
  • heat exchanger 14 for recovering heat generated by the fuel processing device 11 and the fuel processing stack 12.
  • the power converter 20 converts the DC power produced by the fuel cell 10 into AC power.
  • the power converter 20 includes a DC-DC converter 21 for converting DC power into DC power, an inverter 22 for converting DC power into AC power, and a first power for measuring the converted AC power.
  • Meter 23 For example, the first power meter 23 includes a current sensor and a voltage sensor.
  • the second power meter 24 may be formed in the same structure as the first power meter 23, and supply the commercial power and the production power P1 from the grid power supply and the power converter 20 to the load 25 of the user. Is installed in the load line 241 to measure the load power (P2) used by the user. Therefore, the fuel cell controller 50 is configured between the production power P1 of the fuel cell 10 measured by the first power meter 23 and the load power P2 of the user measured by the second power meter 24.
  • the system 100 of one embodiment is linked to the fuel cell 10 and the system power source (eg, commercial power source), and is selectively operated by the production power P1 and the commercial power source. That is, the system 100 is operated at the commercial power of the system power source at the start of the fuel cell 10, and during the operation of the fuel cell 10 producing electric power, the production power P1 of the fuel cell 10. Is driven.
  • the system power source eg, commercial power source
  • the power divider 30 is disposed between the fuel cell 10 and the system power source to supply commercial power to the fuel cell 10. That is, the power divider 30 selectively supplies the commercial power and the production power P1 to other components of the system 100 according to the start-up or operation of the fuel cell 10.
  • the waste heat recovery 40 includes, for example, a heat storage tank 41, a water pump 42, an air-cooled heat exchanger 43, a three-way valve 44, an auxiliary burner 45, and a temperature sensor 46.
  • the heat storage tank 41 stores the waste heat recovered from the fuel cell 10 through the heat exchanger 14 connected to the fuel cell stack 12 and the fuel processor 11 of the fuel cell 10 in water.
  • the water pump 42 and the air-cooled heat exchanger 43 circulate the water in the heat storage tank 41 to remove the heat contained in the water in the heat storage tank 41.
  • the auxiliary burner 45 replenishes heat to the heat storage tank 41.
  • the temperature sensor 46 measures the temperature of the heat storage tank 41.
  • the heat storage tank 41 has a direct inlet 411 for supplying direct water, a hot water outlet 412 for discharging hot water, a heating water outlet 413 for discharging and supplying heating water, and a heating water recovery port 414 for recovering heating water. It is provided.
  • the fuel cell controller 50 is electrically connected to the fuel cell 10, the power converter 20, the second power meter 24, the power distributor 30, the waste heat recovery 40, and various components provided therein.
  • the system 100 is operated and controlled in an optimized state for various situations of the system 100.
  • the fuel cell controller 50 allows the commercial power of the system power to be used first in consideration of the fact that the progressive charge system is applied to the commercial power of the system power source.
  • the fuel cell controller 50 includes a load follower 51, an economic recognizer 52, an operation controller 53, and a data storage RAM 54.
  • the economic recognizer 52 recognizes economic feasibility by comparing the production power price MWP of the fuel cell 10 and the commercial power price WP of the system power source.
  • the operation controller 53 controls the power production step of the fuel cell 10 in multiple stages in response to the rated power generation in consideration of the change in the load power P2, and generates the raw materials according to the production power of the fuel cell 10. Linearly control the flow rate of air and coolant. More specific operational effects of the fuel cell controller 50 will be described together with the control method.
  • FIG. 2 is a flowchart illustrating a control method of the fuel cell cogeneration system of FIG. 1.
  • the control method of the fuel cell cogeneration system includes first and second calculation steps ST10 and ST20, an economic determination step ST30, and a power supply step. (ST40).
  • the first calculation step ST10 calculates the price of the production power P1 produced by the fuel cell 10, that is, the production power price MWP. That is, the first calculation step ST10 detects the amount of power used (F), the raw material price per unit (FP, price / Nm 3 ), and the amount of power produced (ST11), and calculates the production power price (MWP) from this data. (ST12).
  • the fuel cell 10 uses F (Nm 3 ) as the power source to generate P kWh of electricity for 1 hour, and the power source price per unit is FP (R / Nm 3 ), the fuel cell 10 ) MWP is F ⁇ FP / P (KRW / kWh).
  • a power production step ST23 that increases the surface production power P1 an integration step ST24 that integrates ( ⁇ P) the commercial power amount of the commercial power supplied by the power imbalance difference ( ⁇ P), and the accumulated commercial power amount.
  • the data storage RAM 54 stores the accumulated commercial power amount ⁇ P of the grid power used in real time and the commercial power price WP for each progressive section of the grid power as in the example of the progressive charge system. Therefore, the economic recognizer 52 calculates the commercial power price (WP) in real time from the accumulated commercial power amount ( ⁇ P) and compares it with the production power price (MWP) of the fuel cell 10, thereby determining the economic index (EW). ) Is transmitted to the operation controller 53.
  • the economic index (EW) is positive (+)
  • commercial power is supplied to the load 25 (ST41).
  • the economic index (EW) is negative
  • the production power (P1) is loaded. It supplies to 25 (ST42). That is, the amount of economic index (EW) means that the production power price (MWP) of the fuel cell 10 is more expensive than the commercial power price (WP) of the system power supply, thereby supplying the relatively low commercial power to the load 25.
  • the economic index (EW) negative (-) means that the production power price (MWP) of the fuel cell 10 is cheaper than the commercial power price (WP) of the system power supply, and thus, loads relatively low production power (P1). Supply to (25). This makes the system 100 economical.
  • the power generation step ST23 includes first to fourth power generation steps ST231, ST232, ST233, and ST234.
  • the commercial power amount in which the commercial power price (WP) and the production power price (MWP) coincide at the set value is referred to as the coincidence commercial power amount (Pe).
  • a predetermined time for determining occurrence of the power unbalance difference ⁇ P is set to 5 to 10 minutes.
  • the power unevenness difference ⁇ P is 3/10 of the rated power generation. do.
  • the second power generation step ST232 when the amount of commercial power used is in the range of Pe / 3 or more and less than 2Pe / 3, the production power less than the actual load power so that the power unbalance difference ⁇ P is 2/10 of the rated power generation ( To produce P1).
  • the production power (P1) less than the actual load power so that the power unbalance difference ( ⁇ P) is 1/10 of the rated power generation. To produce).
  • the production power P1 to which the power imbalance difference ⁇ P is eliminated is produced.
  • the control in the power generation step ST23, in controlling the usage of the commercial power, the control is moved to the optimal stage such that the commercial power price WP and the fuel cell production power price MWP are matched to each other. do.
  • the production power price (MWP) can be raised, so that the matched commercial power (Pe) of the grid power supply to the new matched commercial power (Phe) It moves (see FIG. 3).
  • the system 100 of the exemplary embodiment may have economic efficiency while eliminating the power imbalance difference between the production power P1 of the fuel cell 10 and the load power P2 of the user.
  • the power production stage ST23 may include nine stages of rated power generation (for example, 200W, 300W, 400W, 500W, 600W, 700W, in consideration of the load power variation of the user). Divided into 800W, 900W and 1,000W) it is possible to produce the production power (P1) in the fuel cell (10).
  • the power generation step ST23 when the power unbalance difference ⁇ P between the predetermined amount of production power and the load power amount is greater than 1/10 of the rated power generation for more than a predetermined time, the power generation step ST23 moves to the next step to produce the production power P1. . At this time, the flow rate of air and cooling water supplied to the power generating material and the fuel cell stack 12 is linearly changed according to the amount of power produced by the fuel cell 10.
  • control method of the embodiment can minimize energy costs by using the commercial power of the grid power supply until the monthly commercial power price (WP) and the fuel cell production power price (MWP) coincide with each other.
  • WP monthly commercial power price
  • MTP fuel cell production power price
  • it allows the use of commercial power within the range of 0.5 ⁇ Pe to 0.9Pe in the monthly usage of the grid power.
  • system 100 and the control method of one embodiment may be calculated from the production power price (MWP) calculated from the power generation raw material price, the commercial power price (WP) and renewable energy (for example, wind power, solar light, etc.) of the system power source Compared with the production power price of the, it is possible to use renewable energy, and the application of renewable energy can further improve the economics.
  • MFP production power price
  • WP commercial power price
  • renewable energy for example, wind power, solar light, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Fuzzy Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)

Abstract

A combined heat and power cogeneration system for a fuel cell according to the present invention comprises: a fuel cell that produces direct current power using fuel gas containing hydrogen and air containing oxygen; a power converter which converts the direct current power produced by the fuel cell into alternating current power; a power divider which selects commercial power from an electric power system and power produced by the fuel cell and divides the selected power into loads; a waste heat recovery unit for recovering heat generated by the fuel cell; and a fuel cell controller which controls the fuel cell, the power converter, the power divider, and the waste heat recovery unit, and controls the commercial power such that the price of the commercial power and the price of the produced power coincide with each other at a preset level.

Description

연료전지 열병합발전 시스템 및 그 제어방법 Fuel cell cogeneration system and control method
본 발명은 연료전지 열병합발전 시스템에 관한 것으로서, 보다 상세하게는 연료전지의 생산전력과 사용자의 부하전력 사이에서 전력 불균형차이를 해소하여 경제성을 가지는 연료전지 열병합발전 시스템 및 그 제어방법에 관한 것이다.The present invention relates to a fuel cell cogeneration system, and more particularly, to a fuel cell cogeneration system having an economical efficiency by resolving a power imbalance difference between a production power of a fuel cell and a load power of a user, and a control method thereof.
예를 들면, 연료전지는 탄화수소계열의 발전원료(LNG, LPG 등)를 사용하여 연료처리장치에서 수소가 풍부한 개질가스로 치환하고, 공기 중의 산소와 함께 개질가스를 연료전지스택에 공급하여 전기화학반응으로 직류전력을 생산하며, 전력변환기를 이용하여 직류전력을 교류전력으로 변환하고, 전력생산 과정에 발생하는 열을 회수하여 축열조의 물에 저장하도록 구성된다.For example, a fuel cell uses a hydrocarbon-based power source (LNG, LPG, etc.) to replace a reformer gas rich in hydrogen in a fuel processing device, and supplies the reformed gas together with oxygen in the air to the fuel cell stack, thereby providing electrochemistry. Reaction produces DC power, converts DC power into AC power using a power converter, and recovers heat generated in the power production process and stores the water in the heat storage tank.
대한민국특허 제0661920호는 부하에 대응하여 운전 가능한 연료전지 시스템을 개시한다. 이 연료전지 시스템은, 발전원료의 공급량을 조절하는 연료공급부, 공기의 공급량을 조절하는 공기공급부, 연료전지스택에서 생산되는 전력을 부하에 공급하도록 변환하는 전기출력부, 전기출력부에서 부하에 공급되고 남은 잔여전력량과 상용전원을 통해 공급되는 보충전력량을 함께 검출하는 전력계량부, 및 전력계량부에서 검출되는 잔여전력량과 보충전력량의 차이를 계산하여 연료전지스택의 전력생산량을 조절하는 제어부를 포함한다.Korean Patent No. 0661920 discloses a fuel cell system that can operate in response to a load. The fuel cell system includes a fuel supply unit for controlling the supply amount of power generation materials, an air supply unit for controlling the supply amount of air, an electrical output unit for converting power from the fuel cell stack to supply the load, and an electrical output unit for supplying the load. And a power meter for detecting the remaining power remaining and the supplementary power supplied through the commercial power supply, and a controller for calculating the difference between the residual power and the supplementary power detected by the power meter and controlling the power output of the fuel cell stack. do.
그러나 이 연료전지 시스템은 연료전지스택이 전력을 생산할 때, 사용하는 발전원료가격 대비 생산전력가격을 비교하는 경제성을 판단하지 않는다. 따라서 이 연료전지 시스템은, 연료전지 열병합 시스템으로 전력을 생산할 때, 전력생산가격이 저렴한 계통전원의 상용전력 및 신재생에너지(예를 들면, 풍력, 태양광 등)로 생산되는 생산전력을 사용하면서 운전하는 것을 어렵게 한다. 따라서 연료전지 시스템의 운전시, 경제성이 제한될 수 있다.However, this fuel cell system does not judge the economic feasibility of comparing the price of electricity produced by the fuel cell stack to the price of power raw materials used. Therefore, the fuel cell system uses the power generated from the commercial power and renewable energy (e.g., wind, solar, etc.) of a system power source having a low power generation price when generating power using a fuel cell cogeneration system. Makes driving difficult. Therefore, in operation of the fuel cell system, economic efficiency may be limited.
본 발명의 일 측면은 누진요금체계가 적용되는 계통전원의 상용전력을 저가영역에서 우선 사용하면서, 연료전지의 생산전력과 사용자의 부하전력 사이에서 전력 불균형차이를 해소하여 경제성을 가지는 연료전지 열병합발전 시스템 및 그 제어방법을 제공하는 것이다.One aspect of the present invention is to use the commercial power of the system power source to which the progressive charge system is applied in the low-cost area, while eliminating the power imbalance between the fuel cell production power and the load power of the user fuel cell cogeneration It is to provide a system and a control method thereof.
본 발명의 일 실시예에 따른 연료전지 열병합발전 시스템은, 수소를 포함하는 연료가스와 산소를 포함하는 공기를 이용하여 직류전력을 생산하는 연료전지, 상기 연료전지에서 생산하는 직류전력을 교류전력으로 변환하는 전력변환기, 계통전원의 상용전력과 상기 연료전지의 생산전력을 선택하여 부하의 부하전력으로 분배하는 전력분배기, 상기 연료전지에서 발생되는 열을 회수하는 폐열회수기, 및 상기 연료전지, 상기 전력변환기, 상기 전력분배기 및 상기 폐열회수기를 제어하며, 상용전력가격과 생산전력가격이 설정치에서 일치하도록 상용전력량을 제어하는 연료전지제어기를 포함한다.In a fuel cell cogeneration system according to an embodiment of the present invention, a fuel cell for producing direct current power using fuel gas containing hydrogen and air containing oxygen, and the direct current power produced by the fuel cell as alternating current power A power converter for converting, a power divider for selecting commercial power of a system power source and production power of the fuel cell and distributing it to load power of a load, a waste heat recovery unit for recovering heat generated from the fuel cell, and the fuel cell and the power And a fuel cell controller for controlling the converter, the power distributor, and the waste heat recovery device, and controlling the amount of commercial power so that the commercial power price and the production power price coincide at the set values.
상기 연료전지제어기는, 상기 상용전력가격과 상기 생산전력가격을 비교하여 경제성을 인식하는 경제성인식기를 더 포함할 수 있다.The fuel cell controller may further include an economic recognizer that recognizes economic efficiency by comparing the commercial power price and the production power price.
상기 연료전지제어기는, 상기 생산전력과 상기 부하전력과의 불균형차이에 따라 전력생산 방향을 증가 또는 감소로 판단하는 부하추종기를 더 포함할 수 있다.The fuel cell controller may further include a load follower that determines an increase or decrease in the direction of power generation according to an imbalance difference between the production power and the load power.
상기 연료전지제어기는, 상기 부하추종기에서 실시간으로 계산한 상기 상용전력량과 상기 상용전력가격(WP)을 저장하는 데이터저장램과, 전력생산단계를 상기 부하전력의 변동을 감안하여 정격발전에 대응하여 다단으로 제어하는 운전제어기를 포함할 수 있다.The fuel cell controller includes a data storage RAM for storing the commercial power amount and the commercial power price WP calculated in real time by the load follower, and a power generation step corresponding to the rated power generation in consideration of the variation of the load power. It may include an operation controller for controlling in multiple stages.
본 발명의 일 실시예에 따른 연료전지 열병합발전 시스템 제어방법은, 연료전지에서 생산하는 생산전력의 생산전력가격(MWP)을 계산하는 제1 계산단계, 계통전원의 상용전력을 사용한 상용전력가격(WP)을 계산하는 제2 계산단계, 상기 생산전력가격(MWP)과 상용전력가격(WP)을 비교하여, 생산전력의 경제성을 인식하는 경제성지수(EW)가 양 또는 음인지를 판단하는 경제성판단단계, 및 상기 경제성지수가 양(+)이면 상용전력을 공급하고, 상기 경제성지수가 음(-)이면 생산전력을 공급하는 전력공급단계를 포함한다.In the fuel cell cogeneration system control method according to an embodiment of the present invention, the first calculation step of calculating the production power price (MWP) of the production power produced by the fuel cell, commercial power price using the commercial power of the system power ( A second calculation step of calculating WP, and comparing the MWP and the commercial power price (WP) to determine whether the economic index (EW) that recognizes the economics of the production power is positive or negative And supplying commercial power when the economic index is positive, and supplying production power when the economic index is negative.
상기 제1 계산단계는, 발전원료(F)의 사용량, 원료가격(FP, 가격/Nm3) 및 생산전력량으로부터 생산전력가격(MWP)을 계산할 수 있다.In the first calculation step, it is possible to calculate the production power price (MWP) from the consumption of the power raw material (F), the raw material price (FP, price / Nm 3 ) and the amount of power produced.
상기 제2 계산단계는, 상기 생산전력(P1)과 상기 부하전력(P2)의 불균형차이(△P=P2-P1)를 계산하는 불균형차이 계산단계, 상기 불균형차이(△P=P2-P1)가 기설정치 범위를 벗어나는가를 판단하는 범위판단단계, 상기 불균형차이가 기설정치 범위에 속하면 상기 생산전력(P1)을 감소하고, 기설정치 범위를 벗어나면 상기 생산전력(P1)을 증가하는 전력생산단계, 상기 불균형차이만큼 공급된 상용전력의 상용전력량을 적산(∫△P)하는 적산단계, 및 적산된 상기 상용전력량과 누진요금체계를 비교하여 상기 상용전력가격을 계산하는 계산단계를 포함할 수 있다.The second calculating step includes an imbalance difference calculation step of calculating an imbalance difference (ΔP = P2-P1) between the production power P1 and the load power P2, and the imbalance difference (ΔP = P2-P1). A range determination step of determining whether the deviation is out of the preset range, the production power (P1) is reduced if the imbalance difference falls within the preset value range, and increases the production power (P1) if out of the preset range And an integration step of integrating (∫ΔP) the commercial power amount of the commercial power supplied by the unbalanced difference, and calculating the commercial power price by comparing the accumulated commercial power amount with the progressive charge system. have.
상기 전력생산단계는, 상기 상용전력가격과 상기 생산전력가격이 설정치에서 일치하는 상용전력량을 일치 상용전력량(Pe)이라 하고, 사용한 상용전력량이 Pe/3 미만의 범위에 있으면, 전력 불균형차이가 정격발전의 3/10만큼 나도록 실제 부하전력량보다 적은 생산전력을 생산하는 제1 전력생산단계, 사용한 상용전력량이 Pe/3 이상 2Pe/3 미만의 범위에 있으면, 전력 불균형차이가 정격발전의 2/10만큼 나도록 실제 부하전력량보다 적은 생산전력을 생산하는 제2 전력생산단계, 사용한 상용전력량이 2Pe/3 이상 Pe 미만의 범위에 있으면, 전력 불균형차이가 정격발전의 1/10만큼 나도록 실제 부하전력량보다 적은 생산전력을 생산하는 제3 전력생산단계, 및 사용한 상용전력량이 Pe 이상의 범위에 있으면, 전력 불균형차이가 해소되는 생산전력을 생산하는 제4 전력생산단계를 포함할 수 있다.In the power production step, a commercial power amount coinciding with the commercial power price and the production power price is referred to as coincidence commercial power amount Pe, and when the used commercial power amount is within a range of Pe / 3, the power imbalance difference is rated. The first power generation stage, which produces less than the actual load power to produce 3/10 of the power generation, if the commercial power used is in the range of Pe / 3 or more and less than 2Pe / 3, the power imbalance difference is 2/10 of the rated power generation. In the second power production stage, which produces less than the actual load power, if the commercial power used is in the range of 2Pe / 3 or more and less than Pe, the power unbalance difference is less than the actual load power so that it becomes 1/10 of the rated power generation. The third electric power producing step of producing the electric power, and the fourth electric power producing the electric power, in which the power imbalance difference is eliminated when the amount of commercial power used is in the range of Pe or more. It may include the production phase.
이와 같이 본 발명의 일 실시예에 따르면, 연료전지제어기를 구비하여 상용전력가격과 생산전력가격이 설정치에서 일치하도록 사용하는 상용전력량을 제어하므로 누진요금체계가 적용되는 상용전력을 저가영역에서 우선 사용하여 경제성을 향상시키는 효과가 있다. 또한 연료전지의 생산전력과 사용자의 부하전력의 전력 불균형차이의 범위에 따라 연료전지의 생산전력을 증감시키므로 불균형차이를 해소하는 과정에서도 경제성을 향상시키는 효과가 있다.As described above, according to an embodiment of the present invention, since the fuel cell controller is used to control the amount of commercial power used so that the commercial power price and the production power price coincide at the set values, the commercial power to which the progressive rate system is applied is preferentially used in the low cost area. This has the effect of improving economics. In addition, since the production power of the fuel cell is increased or decreased according to the range of the power imbalance between the production power of the fuel cell and the load power of the user, there is an effect of improving the economic efficiency even in the process of resolving the unbalance difference.
도 1은 본 발명의 일 실시예에 따른 연료전지 열병합발전 시스템을 개략적으로 나타내는 구성도이다.1 is a configuration diagram schematically showing a fuel cell cogeneration system according to an embodiment of the present invention.
도 2는 도 1의 연료전지 열병합발전 시스템의 제어방법을 나타내는 순서도이다.FIG. 2 is a flowchart illustrating a control method of the fuel cell cogeneration system of FIG. 1.
도 3은 계통전원의 상용전력과 연료전지의 생산전력 각각의 전력량과 전력가격을 비교하는 그래프이다.3 is a graph comparing the amount of electricity and the price of power of the commercial power of the system power and the production power of the fuel cell.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 연료전지 열병합발전 시스템을 개략적으로 나타내는 구성도이다. 도 1을 참조하면 일 실시예의 연료전지 열병합발전 시스템(100)(이하에서, 간단히 "시스템"이라 한다)은 연료전지(10), 전력변환기(20), 전력분배기(30), 폐열회수기(40) 및 연료전지제어기(50)를 포함한다.1 is a configuration diagram schematically showing a fuel cell cogeneration system according to an embodiment of the present invention. Referring to FIG. 1, a fuel cell cogeneration system 100 (hereinafter, simply referred to as a “system”) of an embodiment includes a fuel cell 10, a power converter 20, a power distributor 30, and a waste heat recovery 40. ) And a fuel cell controller 50.
연료전지(10)는 예를 들면, 탄화수소계 원료를 수소가 풍부한 개질가스로 변환하는 연료처리장치(11), 수소와 공기중의 산소를 이용하여 직류전력을 생산하는 연료전지스택(12), 전력을 생산하는데 필요한 각종 주변기기(BOP; Balance Of Plant)(13), 및 연료처리장치(11)와 연료처리스택(12)에서 생성되는 열을 회수하는 열교환기(14)를 포함한다.The fuel cell 10 includes, for example, a fuel processor 11 for converting a hydrocarbon-based raw material into a reformed gas rich in hydrogen, a fuel cell stack 12 for producing direct current power using hydrogen and oxygen in the air; Balance of Plant (BOP) 13 necessary for producing electric power, and a heat exchanger 14 for recovering heat generated by the fuel processing device 11 and the fuel processing stack 12.
전력변환기(20)는 연료전지(10)에서 생산한 직류전력을 교류전력으로 변환한다. 예를 들면, 전력변환기(20)는 직류전력을 직류전력으로 변환하는 DC-DC컨버터(21), 직류전력을 교류전력으로 변환하는 인버터(22), 및 변환된 교류전력을 측정하는 제1 전력미터(23)를 포함한다. 예를 들면, 제1 전력미터(23)는 전류센서와 전압센서를 포함하여 형성된다.The power converter 20 converts the DC power produced by the fuel cell 10 into AC power. For example, the power converter 20 includes a DC-DC converter 21 for converting DC power into DC power, an inverter 22 for converting DC power into AC power, and a first power for measuring the converted AC power. Meter 23. For example, the first power meter 23 includes a current sensor and a voltage sensor.
제2 전력미터(24)는 제1 전력미터(23)와 같은 구조로 형성될 수 있고, 계통전원 및 전력변환기(20)에서 사용자의 부하(25)로 상용전력 및 생산전력(P1)을 공급하는 부하라인(241)에 설치되어, 사용자가 사용하는 부하전력(P2)을 측정한다. 따라서 연료전지제어기(50)는 제1 전력미터(23)가 측정하는 연료전지(10)의 생산전력(P1) 및 제2 전력미터(24)가 측정하는 사용자의 부하전력(P2) 사이에서 기설정된 시간 이상 동안 전력 불균형차이(△P=P2-P1)를 비교할 수 있다.The second power meter 24 may be formed in the same structure as the first power meter 23, and supply the commercial power and the production power P1 from the grid power supply and the power converter 20 to the load 25 of the user. Is installed in the load line 241 to measure the load power (P2) used by the user. Therefore, the fuel cell controller 50 is configured between the production power P1 of the fuel cell 10 measured by the first power meter 23 and the load power P2 of the user measured by the second power meter 24. The power imbalance difference (ΔP = P2-P1) may be compared for a set time or more.
일 실시예의 시스템(100)은 연료전지(10) 및 계통전원(예를 들면, 상용전원)에 연계되어, 생산전력(P1)과 상용전력에 의하여 선택적으로 운전된다. 즉 시스템(100)은, 연료전지(10)의 시동시에, 계통전원의 상용전력으로 운전되고, 연료전지(10)가 전력을 생산하는 운전 중에, 연료전지(10)의 생산전력(P1)으로 운전된다.The system 100 of one embodiment is linked to the fuel cell 10 and the system power source (eg, commercial power source), and is selectively operated by the production power P1 and the commercial power source. That is, the system 100 is operated at the commercial power of the system power source at the start of the fuel cell 10, and during the operation of the fuel cell 10 producing electric power, the production power P1 of the fuel cell 10. Is driven.
이를 위하여, 전력분배기(30)는 상용전력을 연료전지(10)에 공급할 수 있도록 연료전지(10)와 계통전원 사이에 배치된다. 즉 전력분배기(30)는 연료전지(10)의 시동 또는 운전에 따라 상용전력과 생산전력(P1)을 선택적으로 시스템(100)의 다른 구성요소들에 공급한다.To this end, the power divider 30 is disposed between the fuel cell 10 and the system power source to supply commercial power to the fuel cell 10. That is, the power divider 30 selectively supplies the commercial power and the production power P1 to other components of the system 100 according to the start-up or operation of the fuel cell 10.
폐열회수기(40)는 예를 들면, 축열조(41), 물펌프(42), 공랭식 열교환기(43)와 삼방향밸브(44), 보조버너(45) 및 온도센서(46)를 포함한다. 축열조(41)는 연료전지(10)의 연료전지스택(12) 및 연료처리장치(11)에 연결된 열교환기(14)를 통하여 연료전지(10)에서 회수되는 폐열을 물에 저장한다. 축열조(41)가 열로 가득 채워진 경우, 물펌프(42)와 공랭식 열교환기(43)는 축열조(41)의 물을 순환시켜서 축열조(41)의 물에 포함되어 있는 열을 제거한다. 보조버너(45)는 축열조(41)에 열을 보충한다. 온도센서(46)는 축열조(41)의 온도를 측정한다. 축열조(41)는 직수를 공급하는 직수입구(411), 온수를 배출하는 온수배출구(412), 난방수를 배출 공급하는 난방수배출구(413) 및 난방수를 회수하는 난방수회수구(414)를 구비한다.The waste heat recovery 40 includes, for example, a heat storage tank 41, a water pump 42, an air-cooled heat exchanger 43, a three-way valve 44, an auxiliary burner 45, and a temperature sensor 46. The heat storage tank 41 stores the waste heat recovered from the fuel cell 10 through the heat exchanger 14 connected to the fuel cell stack 12 and the fuel processor 11 of the fuel cell 10 in water. When the heat storage tank 41 is filled with heat, the water pump 42 and the air-cooled heat exchanger 43 circulate the water in the heat storage tank 41 to remove the heat contained in the water in the heat storage tank 41. The auxiliary burner 45 replenishes heat to the heat storage tank 41. The temperature sensor 46 measures the temperature of the heat storage tank 41. The heat storage tank 41 has a direct inlet 411 for supplying direct water, a hot water outlet 412 for discharging hot water, a heating water outlet 413 for discharging and supplying heating water, and a heating water recovery port 414 for recovering heating water. It is provided.
연료전지제어기(50)는 연료전지(10), 전력변환기(20), 제2 전력미터(24), 전력분배기(30), 폐열회수기(40) 및 이들에 구비된 각종 구성요소에 전기적으로 연결되어, 시스템(100)의 각종 상황에 최적화 상태로 시스템(100)을 운전 및 제어한다.The fuel cell controller 50 is electrically connected to the fuel cell 10, the power converter 20, the second power meter 24, the power distributor 30, the waste heat recovery 40, and various components provided therein. Thus, the system 100 is operated and controlled in an optimized state for various situations of the system 100.
연료전지제어기(50)는 연료전지(10)의 생산전력(P1)과 사용자의 부하전력(P2) 사이에서 전력 불균형차이(△P=P2-P1)를 해소함으로써 시스템(100)의 경제성을 높인다. 또한 연료전지제어기(50)는 계통전원의 상용전력에 누진요금체계가 적용되는 것을 감안하여, 저가영역에서 상용전력을 우선 사용하게 한다.The fuel cell controller 50 improves the economics of the system 100 by eliminating the power imbalance difference ΔP = P2-P1 between the production power P1 of the fuel cell 10 and the load power P2 of the user. . In addition, the fuel cell controller 50 allows the commercial power of the system power to be used first in consideration of the fact that the progressive charge system is applied to the commercial power of the system power source.
이를 위하여, 연료전지제어기(50)는 부하추종기(51), 경제성인식기(52), 운전제어기(53) 및 데이터저장램(54)을 포함한다. 부하추종기(51)는 생산전력(P1)과 부하전력(P2)의 전력 불균형차이(△P=P2-P1)에 따라 전력생산의 방향을 판단한다. 경제성인식기(52)는 연료전지(10)의 생산전력가격(MWP)과 계통전원의 상용전력가격(WP)을 비교하여 경제성을 인식한다. 운전제어기(53)는 연료전지(10)의 전력생산단계를 부하전력(P2)의 변동을 감안하여, 정격발전에 대응하여 다단으로 제어하며, 연료전지(10)의 생산전력량에 따라 발전원료, 공기 및 냉각수의 유량을 선형적으로 제어한다. 연료전지제어기(50)의 보다 구체적인 작용 효과는 제어방법과 함께 설명한다.To this end, the fuel cell controller 50 includes a load follower 51, an economic recognizer 52, an operation controller 53, and a data storage RAM 54. The load follower 51 determines the direction of power production according to the power imbalance difference ΔP = P2-P1 between the production power P1 and the load power P2. The economic recognizer 52 recognizes economic feasibility by comparing the production power price MWP of the fuel cell 10 and the commercial power price WP of the system power source. The operation controller 53 controls the power production step of the fuel cell 10 in multiple stages in response to the rated power generation in consideration of the change in the load power P2, and generates the raw materials according to the production power of the fuel cell 10. Linearly control the flow rate of air and coolant. More specific operational effects of the fuel cell controller 50 will be described together with the control method.
도 2는 도 1의 연료전지 열병합발전 시스템의 제어방법을 나타내는 순서도이다. 도 2를 참조하면, 일 실시예의 연료전지 열병합발전 시스템의 제어방법(이하 "제어방법"이라 한다)은 제1, 제2 계산단계(ST10, ST20), 경제성판단단계(ST30) 및 전력공급단계(ST40)를 포함한다.FIG. 2 is a flowchart illustrating a control method of the fuel cell cogeneration system of FIG. 1. Referring to FIG. 2, the control method of the fuel cell cogeneration system according to an embodiment (hereinafter, referred to as a “control method”) includes first and second calculation steps ST10 and ST20, an economic determination step ST30, and a power supply step. (ST40).
제1 계산단계(ST10)는 연료전지(10)에서 생산하는 생산전력(P1)의 가격, 즉 생산전력가격(MWP)을 계산한다. 즉 제1 계산단계(ST10)는 발전원료(F)의 사용량, 단위당 원료가격(FP, 가격/Nm3) 및 생산전력량을 감지하여(ST11), 이 데이터로부터 생산전력가격(MWP)을 계산한다(ST12).The first calculation step ST10 calculates the price of the production power P1 produced by the fuel cell 10, that is, the production power price MWP. That is, the first calculation step ST10 detects the amount of power used (F), the raw material price per unit (FP, price / Nm 3 ), and the amount of power produced (ST11), and calculates the production power price (MWP) from this data. (ST12).
예를 들면, 연료전지(10)가 1시간 동안 P kWh의 전기를 생산하는데 발전원료를 F(Nm3)를 사용하고, 단위당 발전원료가격이 FP(원/Nm3)이면, 연료전지(10)의 생산전력가격(MWP)은 F×FP/P(원/kWh)이다.For example, if the fuel cell 10 uses F (Nm 3 ) as the power source to generate P kWh of electricity for 1 hour, and the power source price per unit is FP (R / Nm 3 ), the fuel cell 10 ) MWP is F × FP / P (KRW / kWh).
제2 계산단계(ST20)는 사용된 계통전원의 상용전력의 가격, 즉 상용전력가격(WP)을 계산한다. 즉 제2 계산단계(ST20)는 연료전지(10)의 생산전력(P1)과 부하전력(P2)의 전력 불균형차이(△P=P2-P1)를 계산하는 불균형차이 계산단계(ST21), 전력 불균형차이(△P)가 기설정치 범위를 벗어나는가를 판단하는 범위판단단계(ST22), 전력 불균형차이(△P)가 기설정치 범위에 속하면 생산전력(P1)을 감소하고, 기설정치 범위를 벗어나면 생산전력(P1)을 증가하는 전력생산단계(ST23), 전력 불균형차이(△P)만큼 공급된 상용전력의 상용전력량을 적산(∫△P)하는 적산단계(ST24), 및 적산된 상용전력량과 누진요금체계를 비교하여 상용전력가격(WP)을 계산하는 계산단계(ST25)를 포함한다.The second calculation step ST20 calculates the price of the commercial power of the used system power source, that is, the commercial power price WP. That is, in the second calculation step ST20, an unbalance difference calculation step ST21 for calculating the power unbalance difference (ΔP = P2-P1) between the production power P1 and the load power P2 of the fuel cell 10 is performed. A range judging step (ST22) for determining whether the unbalanced difference (△ P) is out of the preset range, and if the power unbalance difference (△ P) is in the preset range, the production power (P1) is reduced and out of the preset range. A power production step ST23 that increases the surface production power P1, an integration step ST24 that integrates (∫ΔP) the commercial power amount of the commercial power supplied by the power imbalance difference (ΔP), and the accumulated commercial power amount. And a calculation step (ST25) for comparing the progressive tariff system with the one to calculate the commercial power price (WP).
경제성판단단계(ST30)은 생산전력가격(MWP)과 상용전력가격(WP)을 비교하여(ST31), 생산전력의 경제성을 인식하는 경제성지수(EW=MWP-WP)가 양(+) 또는 음(-)인지를 판단한다(ST32).In the economic judgment stage (ST30), the production power price (MWP) is compared with the commercial power price (WP) (ST31), and the economic index (EW = MWP-WP) that recognizes the economics of production power is positive (+) or negative. It is determined whether or not it is negative (ST32).
데이터저장램(54)은 실시간으로 사용한 계통전원의 적산 상용전력량(∫△P)과 누진요금체계의 예와 같은 계통전력의 누진구간별 상용전력가격(WP)을 저장하고 있다. 따라서 경제성인식기(52)는 적산한 상용전력량(∫△P)으로부터 상용전력가격(WP)을 실시간으로 계산하여, 연료전지(10)의 생산전력가격(MWP)과 비교함으로써, 판단한 경제성지수(EW)를 운전제어기(53)에 전달한다.The data storage RAM 54 stores the accumulated commercial power amount ∫ΔP of the grid power used in real time and the commercial power price WP for each progressive section of the grid power as in the example of the progressive charge system. Therefore, the economic recognizer 52 calculates the commercial power price (WP) in real time from the accumulated commercial power amount (∫ΔP) and compares it with the production power price (MWP) of the fuel cell 10, thereby determining the economic index (EW). ) Is transmitted to the operation controller 53.
전력공급단계(ST40)는 경제성지수(EW)가 양(+)이면 상용전력을 부하(25)에 공급하고(ST41), 경제성지수(EW)가 음(-)이면 생산전력(P1)을 부하(25)에 공급한다(ST42). 즉 경제성지수(EW) 양은 연료전지(10)의 생산전력가격(MWP)이 계통전원의 상용전력가격(WP)보다 더 비싸다는 것을 의미하므로 상대적으로 저렴한 상용전력을 부하(25)에 공급한다. 또한 경제성지수(EW) 음(-)은 연료전지(10)의 생산전력가격(MWP)이 계통전원의 상용전력가격(WP)보다 더 싸다는 것을 의미하므로 상대적으로 저렴한 생산전력(P1)을 부하(25)에 공급한다. 이로써 시스템(100)은 경제성을 가진다.In the power supply stage (ST40), if the economic index (EW) is positive (+), commercial power is supplied to the load 25 (ST41). If the economic index (EW) is negative, the production power (P1) is loaded. It supplies to 25 (ST42). That is, the amount of economic index (EW) means that the production power price (MWP) of the fuel cell 10 is more expensive than the commercial power price (WP) of the system power supply, thereby supplying the relatively low commercial power to the load 25. In addition, the economic index (EW) negative (-) means that the production power price (MWP) of the fuel cell 10 is cheaper than the commercial power price (WP) of the system power supply, and thus, loads relatively low production power (P1). Supply to (25). This makes the system 100 economical.
도3은 계통전원의 상용전력과 연료전지의 생산전력 각각의 전력량과 전력가격을 비교하는 그래프이다. 도3을 참조하여 일례로서 설명하면, 제2 계산단계(ST20)에서, 전력생산단계(ST23)는 제1 내지 제4 전력생산단계들(ST231, ST232, ST233, ST234)을 포함한다.3 is a graph comparing the amount of electricity and the price of power of the commercial power of the system power and the production power of the fuel cell. Referring to FIG. 3 as an example, in the second calculation step ST20, the power generation step ST23 includes first to fourth power generation steps ST231, ST232, ST233, and ST234.
설명의 편의를 위하여, 상용전력가격(WP)과 생산전력가격(MWP)이 설정치에서 일치하는 상용전력량을 일치 상용전력량(Pe)이라 한다. 예를 들면, 전력 불균형차이(△P)의 발생 판단을 위한 기설정된 시간을 5 내지 10분으로 한다.For convenience of description, the commercial power amount in which the commercial power price (WP) and the production power price (MWP) coincide at the set value is referred to as the coincidence commercial power amount (Pe). For example, a predetermined time for determining occurrence of the power unbalance difference ΔP is set to 5 to 10 minutes.
제1 전력생산단계(ST231)은 사용한 상용전력량이 Pe/3 미만의 범위에 있으면, 전력 불균형차이(△P)가 정격발전의 3/10만큼 나도록 실제 부하전력량보다 적은 생산전력(P1)을 생산한다.In the first power production step ST231, when the amount of commercial power used is in the range of less than Pe / 3, the power unevenness difference ΔP is 3/10 of the rated power generation. do.
제2 전력생산단계(ST232)는 사용한 상용전력량이 Pe/3 이상 2Pe/3 미만의 범위에 있으면, 전력 불균형차이(△P)가 정격발전의 2/10만큼 나도록 실제 부하전력량보다 적은 생산전력(P1)을 생산한다.In the second power generation step ST232, when the amount of commercial power used is in the range of Pe / 3 or more and less than 2Pe / 3, the production power less than the actual load power so that the power unbalance difference ΔP is 2/10 of the rated power generation ( To produce P1).
제3 전력생산단계(ST 233)는 사용한 상용전력량이 2Pe/3 이상 Pe 미만의 범위에 있으면, 전력 불균형차이(△P)가 정격발전의 1/10만큼 나도록 실제 부하전력량보다 적은 생산전력(P1)을 생산한다.In the third power production step (ST 233), if the commercial power used is in the range of 2Pe / 3 or more and less than Pe, the production power (P1) less than the actual load power so that the power unbalance difference (ΔP) is 1/10 of the rated power generation. To produce).
제4 전력생산단계(ST234)는 사용한 상용전력량이 Pe 이상의 범위에 있으면, 전력 불균형차이(△P)가 해소되는 생산전력(P1)을 생산한다.In the fourth power production step ST234, when the amount of commercial power used is in the range of Pe or more, the production power P1 to which the power imbalance difference ΔP is eliminated is produced.
즉, 전력생산단계(ST23)는 상용전력의 사용량을 제어함에 있어서, 상용전력가격(WP)과 연료전지 생산전력가격(MWP)이 일치되는 일치 상용전력량(Pe)이 되도록 최적의 단계로 이동 제어한다. 연료전지(10)가 생산하는 열생산가격(HP)을 고려하면, 생산전력가격(MWP)이 상향 조정될 수 있으며, 이에 따라 계통전원의 일치 상용전력량(Pe)은 새로운 일치 상용전력량(Phe)으로 이동하게 된다(도 3 참조). 이로써, 일 실시예의 시스템(100)은 연료전지(10)의 생산전력(P1)과 사용자의 부하전력(P2) 사이에서 전력 불균형차이를 해소하면서 경제성을 가질 수 있다.That is, in the power generation step ST23, in controlling the usage of the commercial power, the control is moved to the optimal stage such that the commercial power price WP and the fuel cell production power price MWP are matched to each other. do. Considering the heat production price (HP) produced by the fuel cell (10), the production power price (MWP) can be raised, so that the matched commercial power (Pe) of the grid power supply to the new matched commercial power (Phe) It moves (see FIG. 3). As a result, the system 100 of the exemplary embodiment may have economic efficiency while eliminating the power imbalance difference between the production power P1 of the fuel cell 10 and the load power P2 of the user.
다른 예를 들면, 전력생산단계(ST23)는 사용자의 부하전력 변동을 감안하여 정격발전의 9단계(예를 들면, 정격발전이 1,000W인 경우, 200W, 300W, 400W, 500W, 600W, 700W, 800W, 900W 및 1,000W)로 나누어 연료전지(10)에서 생산전력(P1)을 생산할 수 있다. 전력생산단계(ST23)는 기설정된 시간 이상 동안 기설정된 생산전력량과 부하전력량의 전력 불균형차이(△P)가 정격발전의 1/10이상 발생하면 다음 단계로 이동하여 생산전력(P1)을 생산한다. 이때, 연료전지(10)가 생산하는 생산전력량에 따라 발전원료와 연료전지스택(12)에 공급되는 공기와 냉각수 유량은 선형적으로 변화된다.In another example, the power production stage ST23 may include nine stages of rated power generation (for example, 200W, 300W, 400W, 500W, 600W, 700W, in consideration of the load power variation of the user). Divided into 800W, 900W and 1,000W) it is possible to produce the production power (P1) in the fuel cell (10). In the power generation step ST23, when the power unbalance difference ΔP between the predetermined amount of production power and the load power amount is greater than 1/10 of the rated power generation for more than a predetermined time, the power generation step ST23 moves to the next step to produce the production power P1. . At this time, the flow rate of air and cooling water supplied to the power generating material and the fuel cell stack 12 is linearly changed according to the amount of power produced by the fuel cell 10.
이하에서 누진요금체제(예, 한국전력공사)가 적용되는 계통전원으로부터 사용한 상용전력량과 누진구간별 상용전력가격을 예로 들어 설명한다.In the following description, the amount of commercial power used from a grid power source to which a progressive tariff system (eg, Korea Electric Power Corporation) is applied and the commercial power price by progressive section are described as an example.
표 1
상용전력량과 상용전력가격(원/kWh)
0에서 100kWh 까지 55.1
100에서 200kWh 까지 113.8
200에서 300kWh 까지 168.3
300에서 400kWh 까지 248.6
400에서 500kWh 까지 366.4
500kWh 초과 643.9
Table 1
Commercial power and commercial power price (KRW / kWh)
0 to 100 kWh 55.1
100 to 200 kWh 113.8
From 200 to 300 kWh 168.3
From 300 to 400 kWh 248.6
400 to 500 kWh 366.4
Over 500 kWh 643.9
표1에서 보는 바와 같이, 발전원료(예를 들면, 도시가스) 1Nm3를 사용하여 4kWh의 생산전력(P1)를 생산하는 경우, 0kWh에서부터 200kWh까지는 도시가스 가격을 670원/Nm3로 가정하면(생산전력가격(MWP)=670×200/4=33500원), 계통전원의 상용전력가격(WP=55.1×100+113.8×100=16890원)이 훨씬 저렴함을 알 수 있다. 즉 도 3에서 전력량(kWh)이 0 내지 Pe 범위에 속한다.As shown in Table 1, when producing 4 kWh of production power (P1) using 1Nm 3 of generation raw materials (for example, city gas), assuming the city gas price of 670 won / Nm 3 from 0kWh to 200kWh (MWP = 670 × 200/4 = 33500Won), the commercial power price of the grid power supply (WP = 55.1 × 100 + 113.8 × 100 = 16890Won) is much cheaper. That is, in FIG. 3, the power amount kWh is in the range of 0 to Pe.
이와 같이 일 실시예의 제어방법은 매월 상용전력가격(WP)과 연료전지 생산전력가격(MWP)이 일치할 때까지 우선적으로 계통전원의 상용전력을 사용함으로써 에너지 비용을 최소화시킬 수 있으며, 예를 들면, 매월 계통전원의 상용전력의 사용량을 0.5×Pe 내지 0.9Pe 범위 내에서 상용전력을 사용 가능케 한다.As such, the control method of the embodiment can minimize energy costs by using the commercial power of the grid power supply until the monthly commercial power price (WP) and the fuel cell production power price (MWP) coincide with each other. In addition, it allows the use of commercial power within the range of 0.5 × Pe to 0.9Pe in the monthly usage of the grid power.
또한, 일 실시예의 시스템(100) 및 제어방법은 발전원료가격으로부터 계산된 생산전력가격(MWP)을 계통전원의 상용전력가격(WP) 및 신재생에너지(예를 들면, 풍력, 태양광 등)의 생산전력가격과 비교하여, 신재생에너지를 사용할 수 있게 하며, 신재생에너지를 적용하는 경우 경제성을 더욱 향상시킬 수 있다.In addition, the system 100 and the control method of one embodiment may be calculated from the production power price (MWP) calculated from the power generation raw material price, the commercial power price (WP) and renewable energy (for example, wind power, solar light, etc.) of the system power source Compared with the production power price of the, it is possible to use renewable energy, and the application of renewable energy can further improve the economics.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (8)

  1. 수소를 포함하는 연료가스와 산소를 포함하는 공기를 이용하여 직류전력을 생산하는 연료전지;A fuel cell for producing direct current power using a fuel gas including hydrogen and air containing oxygen;
    상기 연료전지에서 생산하는 직류전력을 교류전력으로 변환하는 전력변환기;A power converter converting the DC power produced by the fuel cell into AC power;
    계통전원의 상용전력과 상기 연료전지의 생산전력을 선택하여 부하의 부하전력으로 분배하는 전력분배기;A power divider for selecting a commercial power of a grid power supply and a production power of the fuel cell and distributing them to load power of a load;
    상기 연료전지에서 발생되는 열을 회수하는 폐열회수기; 및A waste heat recovery unit for recovering heat generated from the fuel cell; And
    상기 연료전지, 상기 전력변환기, 상기 전력분배기 및 상기 폐열회수기를 제어하며, 상용전력가격과 생산전력가격이 설정치에서 일치하도록 상용전력량을 제어하는 연료전지제어기를 포함하는 연료전지 열병합발전 시스템.A fuel cell cogeneration system comprising a fuel cell controller for controlling the fuel cell, the power converter, the power divider, and the waste heat recovery unit, and controlling the amount of commercial power so that the commercial power price and the production power price coincide at a set value.
  2. 제1 항에 있어서,According to claim 1,
    상기 연료전지제어기는,The fuel cell controller,
    상기 상용전력가격과 상기 생산전력가격을 비교하여 경제성을 인식하는 경제성인식기를 더 포함하는 연료전지 열병합발전 시스템.A fuel cell cogeneration system further comprising an economic recognizer that recognizes economic efficiency by comparing the commercial power price and the production power price.
  3. 제2 항에 있어서,The method of claim 2,
    상기 연료전지제어기는,The fuel cell controller,
    상기 생산전력과 상기 부하전력과의 불균형차이에 따라 전력생산 방향을 증가 또는 감소로 판단하는 부하추종기를 더 포함하는 연료전지 열병합발전 시스템.And a load follower for determining an increase or decrease in the direction of power generation according to an imbalance difference between the production power and the load power.
  4. 제3 항에 있어서,The method of claim 3, wherein
    상기 연료전지제어기는,The fuel cell controller,
    상기 부하추종기에서 실시간으로 계산한 상기 상용전력량과 상기 상용전력가격을 저장하는 데이터저장램과,A data storage RAM for storing the commercial power amount and the commercial power price calculated in real time by the load follower;
    전력생산단계를 상기 부하전력의 변동을 감안하여 정격발전에 대응하여 다단으로 제어하는 운전제어기를 포함하는 연료전지 열병합발전 시스템.A fuel cell cogeneration system comprising an operation controller for controlling a power generation step in multi-stage corresponding to the rated power generation in consideration of the variation of the load power.
  5. 연료전지에서 생산하는 생산전력의 생산전력가격을 계산하는 제1 계산단계;A first calculating step of calculating a production power price of the production power produced by the fuel cell;
    계통전원의 상용전력을 사용한 상용전력가격을 계산하는 제2 계산단계;A second calculating step of calculating a commercial power price using the commercial power of the grid power supply;
    상기 생산전력가격과 상용전력가격을 비교하여, 생산전력의 경제성을 인식하는 경제성지수가 양(+) 또는 음(-)인지를 판단하는 경제성판단단계; 및An economic determination step of comparing the production power price with the commercial power price to determine whether an economic index for recognizing economics of production power is positive (+) or negative (-); And
    상기 경제성지수가 양(+)이면 상용전력을 공급하고, 상기 경제성지수가 음(-)이면 생산전력을 공급하는 전력공급단계를 포함하는 연료전지 열병합발전 시스템 제어방법.And a power supply for supplying commercial power if the economic index is positive and supplying production power if the economic index is negative.
  6. 제5 항에 있어서,The method of claim 5,
    상기 제1 계산단계는,The first calculation step,
    발전원료의 사용량, 원료가격 및 생산전력량으로부터 생산전력가격을 계산하는 연료전지 열병합발전 시스템 제어방법.A method of controlling a fuel cell cogeneration system that calculates a production power price from power consumption, raw material price, and power generation.
  7. 제5 항에 있어서,The method of claim 5,
    상기 제2 계산단계는,The second calculation step,
    상기 생산전력과 상기 부하전력의 불균형차이를 계산하는 불균형차이 계산단계,An imbalance difference calculation step of calculating an imbalance difference between the production power and the load power,
    상기 불균형차이가 기설정치 범위를 벗어나는가를 판단하는 범위판단단계,A range determination step of determining whether the unbalance difference is out of a preset range,
    상기 불균형차이가 기설정치 범위에 속하면 상기 생산전력을 감소하고, 기설정치 범위를 벗어나면 상기 생산전력을 증가하는 전력생산단계;A power production step of reducing the production power when the imbalance difference falls within a preset value range and increasing the production power when outside the preset value range;
    상기 불균형차이만큼 공급된 상용전력의 상용전력량을 적산하는 적산단계, 및An integration step of integrating the amount of commercial power of the commercial power supplied by the disparity difference, and
    적산된 상기 상용전력량과 누진요금체계를 비교하여 상기 상용전력가격을 계산하는 계산단계를 포함하는 연료전지 열병합발전 시스템 제어방법.And a calculating step of calculating the commercial power price by comparing the accumulated commercial power amount with the progressive charge system.
  8. 제7 항에 있어서,The method of claim 7, wherein
    상기 전력생산단계는,The power production step,
    상기 상용전력가격과 상기 생산전력가격이 설정치에서 일치하는 상용전력량을 일치 상용전력량(Pe)이라 하고,The amount of commercial power in which the commercial power price and the production power price coincide at a set value is referred to as coincidence commercial power amount (Pe),
    사용한 상용전력량이 Pe/3 미만의 범위에 있으면, 전력 불균형차이가 정격발전의 3/10만큼 나도록 실제 부하전력량보다 적은 생산전력을 생산하는 제1 전력생산단계,The first power production step of producing less than the actual load power so that the power unbalance difference is 3/10 of the rated power generation when the amount of commercial power used is less than Pe / 3,
    사용한 상용전력량이 Pe/3 이상 2Pe/3 미만의 범위에 있으면, 전력 불균형차이가 정격발전의 2/10만큼 나도록 실제 부하전력량보다 적은 생산전력을 생산하는 제2 전력생산단계,A second power generation step of producing less than the actual load power so that the power unbalance difference is equal to 2/10 of the rated power generation when the used power amount is in the range of Pe / 3 or more and less than 2Pe / 3,
    사용한 상용전력량이 2Pe/3 이상 Pe 미만의 범위에 있으면, 전력 불균형차이가 정격발전의 1/10만큼 나도록 실제 부하전력량보다 적은 생산전력을 생산하는 제3 전력생산단계, 및A third power generation step of producing less than the actual load power so that the power unbalance difference is 1/10 of the rated power generation when the amount of commercial power used is in the range of 2Pe / 3 or more and less than Pe, and
    사용한 상용전력량이 Pe 이상의 범위에 있으면, 전력 불균형차이가 해소되는 생산전력을 생산하는 제4 전력생산단계를 포함하는 연료전지 열병합발전 시스템 제어방법.And a fourth power generation step of producing a production power in which a power disparity difference is eliminated when the amount of commercial power used is in the range of Pe or more.
PCT/KR2010/000323 2009-02-09 2010-01-18 Combined heat and power cogeneration system for a fuel cell, and control method thereof WO2010090402A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080007116.8A CN102308420B (en) 2009-02-09 2010-01-18 Combined heat and power cogeneration system for fuel cell, and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090010295A KR101022011B1 (en) 2009-02-09 2009-02-09 Fuel Cell Stream Supply and Power Generation System and Method Controlling Thereof
KR10-2009-0010295 2009-02-09

Publications (2)

Publication Number Publication Date
WO2010090402A2 true WO2010090402A2 (en) 2010-08-12
WO2010090402A3 WO2010090402A3 (en) 2010-10-21

Family

ID=42542476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000323 WO2010090402A2 (en) 2009-02-09 2010-01-18 Combined heat and power cogeneration system for a fuel cell, and control method thereof

Country Status (3)

Country Link
KR (1) KR101022011B1 (en)
CN (1) CN102308420B (en)
WO (1) WO2010090402A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610844B (en) * 2012-03-05 2014-07-02 清华大学 Method and device for power generation by utilizing low-temperature waste heat
CN105576269B (en) * 2016-03-18 2017-11-07 晋城市阿邦迪能源有限公司 A kind of thermal control system of fixed micro fuel cell cogeneration system
KR20230111944A (en) 2022-01-19 2023-07-26 현대자동차주식회사 Fuel cell control system and its method
KR20230129097A (en) * 2022-02-28 2023-09-06 한국에너지기술연구원 Operation control method of fuel cell tri-generation system
KR102466370B1 (en) 2022-09-16 2022-11-11 주식회사 코텍에너지 Fuel cell system for economic operation and the method using it
KR102582693B1 (en) 2023-02-07 2023-09-26 주식회사 시너지 Profit generation system and method using fuel cell cogeneration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757753A (en) * 1993-08-16 1995-03-03 Fuji Electric Co Ltd Fuel cell power generator and operation control thereof
KR20020064328A (en) * 2000-10-03 2002-08-07 마츠시타 덴끼 산교 가부시키가이샤 System and method for power generation control, program, and medium
KR20040087337A (en) * 2002-03-06 2004-10-13 마츠시타 덴끼 산교 가부시키가이샤 Setting device of distributed energy supply system
KR20090054664A (en) * 2007-11-27 2009-06-01 (주)퓨얼셀 파워 Combined heat and power co-generation system for fuel cell and operating method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103830A1 (en) * 2001-06-18 2002-12-27 Matsushita Electric Industrial Co., Ltd. Cogeneration apparatus, cogeneration method, program, and medium
KR100787245B1 (en) * 2006-11-28 2007-12-21 (주)퓨얼셀 파워 Fuel cell system including reliable power distributor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757753A (en) * 1993-08-16 1995-03-03 Fuji Electric Co Ltd Fuel cell power generator and operation control thereof
KR20020064328A (en) * 2000-10-03 2002-08-07 마츠시타 덴끼 산교 가부시키가이샤 System and method for power generation control, program, and medium
KR20040087337A (en) * 2002-03-06 2004-10-13 마츠시타 덴끼 산교 가부시키가이샤 Setting device of distributed energy supply system
KR20090054664A (en) * 2007-11-27 2009-06-01 (주)퓨얼셀 파워 Combined heat and power co-generation system for fuel cell and operating method thereof

Also Published As

Publication number Publication date
KR20100091023A (en) 2010-08-18
WO2010090402A3 (en) 2010-10-21
KR101022011B1 (en) 2011-03-16
CN102308420A (en) 2012-01-04
CN102308420B (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2010090402A2 (en) Combined heat and power cogeneration system for a fuel cell, and control method thereof
KR100968581B1 (en) Combined Heat and Power Co-generation System for Fuel Cell and Operating Method Thereof
CN102474104B (en) Power supply system, power supply method, program, recording medium, and power supply controller
JP6047490B2 (en) Power supply system, power distribution device, and power control method
CN211367754U (en) Photovoltaic off-grid hydrogen production system
CN114156502A (en) Fuel cell cogeneration system
WO2006057223A1 (en) Fuel cell system
CN102780016A (en) Fuel cell system
CN114976108B (en) Fuel cell cogeneration system and control method
KR101792761B1 (en) Method for operating of fuel cell system
CN109256571A (en) Motor vehicles with fuel cell
KR100661920B1 (en) Fuel cell possible load countermove working and working method thereof
CN113851670A (en) Combined cooling heating and power method based on proton exchange membrane fuel cell
KR100807875B1 (en) Combined heat and power co-generation system for fuel cell
JP2003229154A (en) Surplus power control system and control method, and power supply system
CN101369665A (en) Fuel cell system used for multi-apartment building
JP5216432B2 (en) Cogeneration system operation plan creation device, operation plan creation method, and program thereof
CN112583048B (en) Movable micro-grid system of fuel cell
JP4984344B2 (en) Fuel cell system and supply power switching method
KR20070024026A (en) Heating/hot-water control device for fuel cell and method thereof
JPH0461464B2 (en)
KR101461143B1 (en) Control method of fuel cell system according to external load
CN113013447A (en) Fuel cell system
KR101080311B1 (en) Fuel cell system having separate type auxiliary burner and driving method threrof
CN1268020C (en) 1 kilowatt uninterrupted domestic fuel cell device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007116.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738686

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738686

Country of ref document: EP

Kind code of ref document: A2