WO2010090215A1 - 無線通信システム及び基地局 - Google Patents

無線通信システム及び基地局 Download PDF

Info

Publication number
WO2010090215A1
WO2010090215A1 PCT/JP2010/051502 JP2010051502W WO2010090215A1 WO 2010090215 A1 WO2010090215 A1 WO 2010090215A1 JP 2010051502 W JP2010051502 W JP 2010051502W WO 2010090215 A1 WO2010090215 A1 WO 2010090215A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
length
base station
relay station
signal
Prior art date
Application number
PCT/JP2010/051502
Other languages
English (en)
French (fr)
Inventor
晋平 藤
稔 窪田
泰弘 浜口
理 中村
一成 横枕
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2010800143490A priority Critical patent/CN102369754A/zh
Priority to EP10738546A priority patent/EP2395788A1/en
Priority to JP2010549490A priority patent/JP5479373B2/ja
Priority to US13/147,861 priority patent/US20110286382A1/en
Publication of WO2010090215A1 publication Critical patent/WO2010090215A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to a wireless communication system using a transmission system in which a relay station that relays communication between a base station and a terminal is provided in a cell, and a signal obtained by copying a part of the symbol is added to the symbol as a cyclic prefix.
  • a relay station for relaying communication between a base station and a terminal is provided in a cell.
  • a conventional wireless communication system is shown in FIG.
  • a base station 90 and a terminal 94 communicate with each other, and a relay station 92 is provided to relay communication between the base station and the terminal.
  • the terminal B directly communicates with the base station 90, but the terminals A and C communicate with each other via the relay station 92.
  • Terminal A communicates with base station 90 through relay station A
  • terminal C communicates with relay stations B and C.
  • the relay station amplifies the received signal and transmits it in the same frame (repeater), or amplifies the received signal and transmits it in the following frame (Amplify-and-Forward: AF type), once demodulated , Decode-and-Forward (DF type) etc. if there is no error in decoding and re-modulating and transmitting to the base station via some relay stations and terminals far from the base station (near cell edge) (Terminals located in the network) communicate with each other without degrading the reception characteristics of those terminals, as in the conventional system.
  • AF type Analogencoding-and-Forward
  • DF type Decode-and-Forward
  • MBMS Multimedia Broadcast and ⁇ Multicast Service
  • MBS WiMAX
  • This MBMS is a signal transmitted to terminals located at various points in a cell, and a plurality of transmitters are provided so that a terminal located near a cell edge or a sector edge can receive services with good reception characteristics. Transmission is simultaneously performed from (base station or sector). By simultaneously transmitting from a plurality of transmitters in this way, signals are combined and received in space, so that even terminals located in the vicinity of the cell edge can receive signals without any significant deterioration.
  • FIG. 11 is a diagram illustrating the timing at which the base station 90 and the relay station 92 in the cell illustrated in FIG. 10 transmit MBMS.
  • transmission is performed from the base station 90 to the relay station A and the relay station B (frame 2000).
  • Relay station B transmits the received signal further to relay station C at the next transmission timing (frame 2001).
  • the base station 90 and the relay station 92 (A) do not perform MBMS transmission.
  • all relay stations 92 in the cell receive MBMS, and at the next transmission timing, simultaneously from the base station 90 and all the relay stations 92 toward a plurality of terminals 94 in the cell.
  • the MBMS is broadcast (frame 2002). By performing such control, all transmitting stations (base station 90 and relay station 92) in the cell can simultaneously transmit MBMS.
  • the number of relay stations 92 installed in each of cells 1 to 3 varies, and the maximum number of hops in each cell (the number of relay stations 92 that relay communication between the base station and the terminal).
  • the maximum hop count of cell 1 is 2 and the maximum hop count of cell 2 is 1).
  • a cell having a larger maximum hop number has a higher possibility of an MBMS signal having a larger delay time arriving at the terminal, and a delay time exceeding the CP (Cyclic Prefix) length.
  • CP Cyclic Prefix
  • the present invention aims at appropriately setting the length of the CP to be added to the MBMS signal according to the situation when performing MBMS transmission in a cellular system including a relay station. It is an object of the present invention to provide a communication system capable of preventing deterioration of characteristics and performing efficient transmission.
  • a relay station that relays communication between a base station and a terminal is provided in a cell, and a signal obtained by copying a part of a symbol is used as a symbol as a cyclic prefix.
  • the length of the cyclic prefix is set according to a maximum value of the number of relay stations through which communication between the base station and the terminal in the cell is relayed.
  • the length of the Cyclic Prefix is such that the maximum number of relay stations through which the communication between the base station and the terminal in the cell is relayed is determined from a predetermined threshold. When it is large, it is set to be long.
  • the wireless communication system of the present invention provides the cyclic prefix when transmitting the broadcast service signal from a base station to a relay station or between relay stations and when broadcasting to a plurality of terminals in a cell. It is characterized in that the length of is set to a different length.
  • the length of the cyclic prefix is long when the broadcast service signal is broadcast to a plurality of terminals in a cell, and is transmitted from a base station to a relay station or between relay stations. When transmitting, it is set shorter than when notifying to the plurality of terminals.
  • the base station of the present invention is provided in a radio communication system using a transmission system in which a relay station that relays communication between a base station and a terminal is provided in a cell and a signal obtained by copying a part of a symbol is added to a symbol as a cyclic prefix.
  • a base station that determines whether there is a relay station in the cell; and when the determination unit determines that there is a relay station in the cell, And a cyclic prefix length setting means for setting a length of the cyclic prefix to be added when transmitting a common broadcast service signal provided to the terminal of the terminal, as compared with the case where there is no relay station. .
  • the length of the CP added to the MBMS signal can be appropriately set according to the situation by using the present invention.
  • an MBMS signal with a long CP can be transmitted, and deterioration of reception characteristics due to the influence of the delayed wave can be prevented.
  • the CP length is set short, more symbols can be transmitted, or interference with other cells can be reduced by not performing transmission with resources of free time.
  • the present invention when MBMS transmission is performed in a cellular system including a relay station, the length of the CP added to the MBMS signal is set according to the situation. Specifically, the present invention relates to a method for setting a CP length according to the maximum number of hops in a cell or a cell group performing the same MBMS transmission. Further, the present invention relates to a method for setting different CP lengths when an MBMS signal is transmitted from a base station to a relay station and from a relay station to a relay station and when simultaneous broadcasting of an MBMS signal within a cell is performed.
  • the first embodiment First, the first embodiment will be described.
  • a method for setting the CP length according to the maximum number of hops in a cell or in a cell group performing the same MBMS transmission will be described.
  • a cell having a large number of hops is usually a cell having a large area (for example, the cell 1 in FIG. 12 described above), and an MBMS signal having a relatively long delay may be received by a terminal in a cell having a large area. Therefore, it is a control for effectively combining the MBMS signal in space by setting a longer CP length to eliminate interference due to the delayed wave.
  • the wireless communication system 1 includes a base station 10, a relay station 20, and a terminal 30. Also, in the terminal 30, the terminal A, the terminal B, and the terminal C communicate with the base station 10. Here, the terminal A communicates with the base station 10 via the relay station A, the terminal B does not pass through the relay station 20, and the terminal C communicates with the base station 10 via the relay stations B and C.
  • FIG. 2 shows the configuration of the base station 10 included in the wireless communication system 1.
  • the base station 10 in this embodiment includes an encoding unit 100, a modulation unit 101, an IFFT unit 102, a CP insertion unit 103, a CP length selection unit 104, a timing control unit 105, A buffer unit 106, a D / A conversion unit 107, a radio unit 108, and a transmission antenna unit 109 are provided.
  • MBMS transmission is performed in the base station 10
  • MBMS data and information on the maximum hop number of a cell are input to the encoding unit 100, and error correction encoding is performed.
  • the maximum hop count information is notified to the relay station 20 and the terminal 30 in the cell, and the CP length used in the base station 10 based on this information is also determined in each relay station 20 and the terminal 30. By selecting, a CP having the same length as that used in the base station 10 can be removed and added.
  • the CP added when transmitting the maximum hop number information is assumed to have a fixed length determined in advance. Information regarding the maximum number of hops is also input to the CP length selection unit 104 and the timing control unit 105.
  • the signal that has been subjected to error correction coding in the coding unit 100 is input to the modulation unit 101 and subjected to modulation processing. Then, the signal is input to IFFT section 102 and converted from a frequency domain signal to a time domain signal. The output of the IFFT unit 102 is input to the CP insertion unit 103, and a CP obtained by copying a part of the rear part of the symbol is added. At this time, the CP insertion unit 103 is also notified of the CP length selected by the CP length selection unit 104 based on the maximum hop count information, and the CP having the notified length is added to the output of the IFFT unit 102. .
  • the CP length selection method in the CP length selection unit 104 will be described later.
  • the signal to which the CP is added in the CP insertion unit 103 is output to the buffer unit 106 and the D / A conversion unit 107.
  • the CP insertion unit 103 outputs to the D / A conversion unit 107 when notifying the relay station or terminal in the cell of information on the maximum number of hops prior to MBMS transmission and the MBMS signal in the relay station in the cell. 20 (for example, the case of the frame 2000 shown in FIG. 11).
  • what is input to the D / A conversion unit 107 via the buffer unit 106 is a case of simultaneous transmission within the cell of the MBMS signal (for example, a case like the frame 2002 shown in FIG. 11). .
  • the buffer unit 106 is notified of the MBMS simultaneous transmission timing determined by the timing control unit 105 based on the maximum hop count information, and holds the transmission signal until that timing is reached.
  • the signal held in the buffer unit 106 is input to the D / A conversion unit 107 and converted from a digital signal to an analog signal.
  • the radio unit 108 converts the frequency into a transmittable frequency band, and then transmits from the transmission antenna unit 109.
  • the base station 10 By adopting such an apparatus configuration of the base station 10, it is possible to select a CP length corresponding to the maximum number of hops in the cell, and when a delayed wave exceeding the CP length arrives when transmitting an MBMS signal Deterioration of reception characteristics can be suppressed. In addition, when there is no relay station in the cell or the maximum number of hops is small, a short CP length is used, and more symbols can be transmitted, or transmission is performed using free time resources. It is possible to reduce interference with other cells.
  • the base station 10 in the present embodiment performs multicarrier transmission, it is not limited to multicarrier transmission but may be single carrier transmission as long as it is a transmission scheme that adds a CP.
  • the information regarding the maximum number of hops is configured to be notified to the relay station 20 and the terminal 30 in the cell.
  • the information regarding the CP length selected by the base station 10 may be directly notified. Good.
  • the CP length is selected based on the maximum number of hops in the cell.
  • the CP length is selected according to the maximum number of hops in the cell group.
  • the CP length may be selected.
  • a receiving unit is added to the base station 10 shown in FIG. 2, and the base stations constituting the cell group mutually notify the maximum number of hops of the own cell, or a control station that controls the cell group If there is, the maximum hop count of each cell is notified through the control station.
  • the timing of the MBMS broadcast depends on the maximum number of hops in the cell, but there is a system in which the MBMS broadcast timing is determined in advance. The maximum number of hops and the MBMS signal are notified in advance to relay stations and terminals in the cell so that simultaneous transmission can be performed at the same timing.
  • FIG. 10 a DF type relay station that once demodulates, decodes, remodulates and relays a received signal is shown. Note that blocks such as error detection are omitted.
  • the relay station 20 in this embodiment includes a receiving antenna unit 200, radio units 201 and 215, an A / D conversion unit 202, a CP removal unit 203, an FFT unit 204, and a demodulation unit.
  • 205 decoding section 206, CP length selection section 207, timing control section 208, buffer section 209, encoding section 210, modulation section 211, IFFT section 212, CP insertion section 213, D / A A conversion unit 214 and a transmission antenna unit 216 are provided.
  • the relay station 20 When performing MBMS transmission, which is a target in the present embodiment, the relay station 20 receives a signal transmitted from the base station 10 at the receiving antenna unit 200, and the frequency to a frequency at which the radio unit 201 can perform A / D conversion. After the conversion, the A / D conversion unit 202 performs AD conversion, and the CP removal unit 203 removes the CP added by the base station 10. However, when information on the maximum number of hops is notified prior to MBMS transmission, a predetermined fixed-length CP is removed, and when an MBMS signal is notified, information on the maximum number of hops is used. The CP having the length selected by the CP length selection unit 207 is removed. The signal from which the CP has been removed by the CP removing unit 203 is input to the FFT unit 204, and converted from a time domain signal to a frequency domain signal.
  • the demodulating unit 205 demodulates the received signal, and the decoding unit 206 performs decoding.
  • the maximum hop count information decoded by the decoding unit 206 is input to the CP length selection unit 207 and the timing control unit 208, and is used for each control.
  • the CP length selection unit 207 selects the CP length to be added to the MBMS signal based on the maximum hop number information, as in the CP length selection unit 104 provided in the base station 10.
  • the timing control unit 208 also performs timing control based on the maximum hop number information so that the MBMS signal is held in the buffer unit 209 until simultaneous transmission into the cell.
  • the maximum hop number information is also input to the encoding unit 210 to notify the terminal 30 or the next relay station 20.
  • the encoder 210 performs error correction encoding on the input information, and the modulator 211 performs modulation.
  • the signal modulated by the modulation unit 211 is input to the IFFT unit 212 and converted from a frequency domain signal to a time domain signal. Then, CP is added at CP insertion section 213.
  • the CP insertion unit 213 adds a predetermined fixed-length CP when notifying the terminal 30 or the next relay station 20 of the information about the maximum hop number. Then, the CP of the length notified from the CP length selection unit 207 is added to the MBMS signal. The signal added with the CP in the CP insertion unit 213 is output to the buffer unit 209 and the D / A conversion unit 214. The CP insertion unit 213 inputs the D / A conversion unit 214 when notifying the terminal and the next relay station of information on the maximum number of hops prior to MBMS transmission, and when the MBMS signal is transmitted to the next relay in the cell.
  • notifying the station For example, in the case of the frame 2001 shown in FIG. 11
  • it is input to the D / A conversion unit 214 via the buffer unit 209 for simultaneous transmission of MBMS signals within the cell.
  • the buffer unit 209 for simultaneous transmission of MBMS signals within the cell.
  • the buffer unit 209 is notified of the MBMS simultaneous transmission timing determined based on the maximum hop count information in the timing control unit 208, and holds the transmission signal until that timing is reached.
  • the signal held in the buffer unit 209 is input to the D / A conversion unit 214 and converted from a digital signal to an analog signal.
  • the radio unit 215 performs frequency conversion to a transmittable frequency band, and then transmits from the transmission antenna unit 216.
  • the relay station 20 By adopting such a configuration of the relay station 20, even when the CP length added to the MBMS signal changes according to the maximum number of hops in the cell or cell group, the CP having an appropriate length is removed and added. , Can relay the signal.
  • a DF type relay station has been described.
  • an AF type relay station that amplifies and relays a received signal may be used, or a relay station that relays within a same frame called a repeater. There may be.
  • the CP is not removed or added by the relay station, and the CP length selection unit 207 is not required. Further, in the case of an AF type relay station that relays a received signal in a subsequent frame, CP removal or addition may or may not be performed at the relay station, similarly to the DF type relay station. .
  • the terminal 30 includes a reception antenna unit 300, a radio unit 301, an A / D conversion unit 302, a CP removal unit 303, an FFT unit 304, a demodulation unit 305, and a decoding unit 306. And a CP length selection unit 307.
  • this terminal 30 is the same as the receiving system (receiving antenna unit 200 to CP length selecting unit 207) of the relay station 20 shown in FIG. 3, and based on the maximum hop count information notified prior to MBMS transmission.
  • the CP having the length selected by the length selection unit 307 is removed by the CP removal unit 303.
  • the terminal 30 By adopting such a configuration of the terminal 30, even when the CP length added to the MBMS signal changes according to the maximum number of hops in the cell or cell group, the CP having an appropriate length is removed, and the signal is transmitted. It can be demodulated.
  • the control flow of the base station 10 in this embodiment is shown in FIG.
  • the base station 10 in this embodiment first, information on the maximum number of hops in the cell is notified to the relay station 20 and the terminal 30 (step S100). Based on this information, the relay station 20 and the terminal 30 set the CP length added to the MBMS signal transmitted later.
  • the notification of the information regarding the maximum number of hops does not need to be performed so frequently, and may be notified together with other cell-specific control information.
  • the base station 10 determines whether or not there is a relay station 20 in the cell (step S101).
  • the CP length is set to A (step S101; No ⁇ step S102).
  • the CP length “A” is assumed to be the same as or longer than the CP length added when terminal-specific data is transmitted.
  • step S101 if there is a relay station 20 in the cell, it is determined whether or not the maximum hop count is “1” (step S101; Yes ⁇ step S103).
  • the maximum hop count is “1” (step S103; Yes)
  • the CP length “B” (A ⁇ B) is set slightly longer than when the relay station 20 is not installed (step S104). .
  • step S103 If the maximum number of hops is not “1”, that is, “2” or more (step S103; No), a signal with a long delay time is expected to arrive at the terminal 30, and therefore the longer CP length “C” (B ⁇ C) is set (step S105).
  • the MBMS signal to which the CP having the set length is added is transmitted to the relay station 20 (step S106), and MBMS transmission is waited until the MBMS signal reaches the relay station 20 having the maximum hop count (step S107).
  • signals other than MBMS may be transmitted during this standby.
  • the MBMS is transmitted all at once to the entire cell and the control is finished (step S108). It is assumed that the above-described values such as “A”, “B”, and “C” are determined in advance.
  • the CP length added to the MBMS signal can be set according to the maximum number of hops in the cell, and the deterioration of the reception characteristics due to the arrival of a delayed wave exceeding the CP length can be prevented. Can do.
  • CP length when the CP length is set short (CP length is set to A), more symbols can be transmitted (a signal different from the MBMS signal may be used), or a resource of free time By not performing transmission at, interference with other cells can be reduced.
  • the relay station 20 and the terminal 30 also perform the selection of the CP length as shown in FIG. 5 (steps S101 to S105) based on the maximum hop number information notified from the base station 10, so that the base station 10 CPs of the same length as that added can be removed or added.
  • the threshold value of the maximum hop count is set to “0”, “1”, “2” or more, but is not limited to this, and other values may be used.
  • the CP lengths to be set are three types “A”, “B”, and “C”, but are not limited thereto.
  • the maximum hop count information is notified to the relay station 20 and the terminal 30, but the CP length selected in the base station 10 may be notified as it is. Good.
  • control may be performed to select the CP length based on the maximum number of hops in the cell group.
  • the second embodiment will be described.
  • the mode of selecting the CP length to be added to the MBMS signal based on the maximum number of hops in the cell or in the cell group has been described.
  • the base station 10 to the relay station 20 and the relay station 20 CPs of the same length are used when notifying MBMS signals from one transmitter to another relay station 20 and when transmitting MBMS signals simultaneously from each transmitting station (base station 10 and relay station 20) in a cell or a group of cells. I used it.
  • a mode in which different CP lengths are used for MBMS signal notification prior to simultaneous transmission and for simultaneous transmission within a cell or in a cell group will be described.
  • FIG. 6 shows a frame structure of an MBMS signal transmitted in the cell environment shown in FIG.
  • a frame 400 indicating transmission from the base station 10 to the relay stations A and B and a frame 401 indicating transmission from the relay station B to the relay station C are added to each symbol.
  • the CP length to be performed is “D”, which is longer than “D”. E "will be used as the CP length.
  • the CP length “D” is assumed to be the same as or longer than the CP length added when transmitting terminal-specific data.
  • a short CP length is used to effectively use radio resources, and in frames 402 to 405 where a signal with a large delay is likely to arrive.
  • a long CP length is used to prevent deterioration of reception characteristics due to the influence of delay waves.
  • FIG. 7 shows the configuration of the base station 12 that performs such control. However, the same number is attached
  • the base station 12 in the present embodiment inputs the output of the IFFT unit 102 to the CP insertion unit 502 and the buffer unit 106, unlike FIG. 2.
  • information regarding the timing of simultaneous transmission is input to the CP length selection unit 501 and the timing control unit 500, and the CP length added to the MBMS signal and the timing to add are controlled.
  • This simultaneous transmission timing information is also input to the encoding unit 100 in order to notify the relay station 20 and the terminal 30 as well.
  • the timing control unit 500 manages the timing of simultaneous transmission in the entire cell and notifies the buffer unit 106 of the timing.
  • the buffer unit 106 holds the output of the IFFT unit 102 until the simultaneous transmission, and outputs it to the CP insertion unit 502 at the timing.
  • the CP length selection unit 501 selects a short CP length when notifying the relay station 20 of the MBMS signal, and selects a long CP length when performing simultaneous transmission in the entire cell. Select and notify the CP insertion unit 502.
  • CP insertion section 502 can add different CP lengths depending on the transmission timing of the MBMS signal (whether it is the transmission timing addressed to relay station 20 or the simultaneous transmission timing addressed to terminals in the cell).
  • the resources can be used effectively according to the situation.
  • FIG. 8 shows the device configuration of the relay station 22 in this embodiment. However, the same number is attached
  • the relay station 22 in this embodiment inputs the simultaneous transmission timing information notified in advance from the base station 10 to the CP length selection unit 602 and the timing control unit 601, and adds them based on the information.
  • the CP length to be added and the timing to add are controlled.
  • a short CP is selected by the CP length selection unit 602 and notified to the CP insertion unit 603. Further, in the case of simultaneous transmission toward the entire cell, a long CP is selected and notified to the CP insertion unit 603.
  • the CP insertion unit 603 adds the notified length of CP and transmits it.
  • information regarding the CP length is not input to the CP removal unit 203, this is because the MBMS signal received by the relay station 22 in this embodiment is always a signal to which a short CP is added (the frame 400 in FIG. 6). This is because the CP removing unit 203 does not need to perform control to remove CPs having different lengths.
  • the CP insertion unit 603 By adopting such a configuration of the relay station 22, the CP insertion unit 603, like the base station 12 shown in FIG. 7, transmits the MBMS signal transmission timing (the transmission timing addressed to the relay station 22 or the terminal 30 in the cell). It is possible to add a different CP length depending on whether the address is a simultaneous transmission timing.
  • the control flow of the base station 12 in this embodiment is shown in FIG.
  • the relay station 22 and the terminal 30 are notified of information related to the timing of simultaneous transmission of MBMS within a cell (step S200).
  • step S201 the presence / absence of the relay station 22 is determined. If the relay station 22 is not in the cell (step S201; No), the process proceeds to step S206. If the relay station is in the cell (step S201; Yes), the step is performed. The process proceeds to S202.
  • step S202 it is determined whether or not it is a simultaneous transmission timing within the MBMS cell. If it is a simultaneous transmission timing (step S202; Yes), the process proceeds to step S206, but is not yet a simultaneous transmission timing (step S202; No) Move to step S203.
  • step S203 If it is not the timing of simultaneous transmission (step S202; No), since it is necessary to notify the MBMS signal to the relay station 22 in the cell, a short CP (D) is set (step S203), and the short set CP is set.
  • the added MBMS signal is transmitted to the relay station 22 (step S204). Then, it waits until the MBMS signal reaches the relay station having the maximum number of hops in the cell (step S205).
  • step S203 A CP (E) longer than the set one is set (step S206), and the MBMS signal to which the longer set CP is added is broadcast to the entire cell (step S207).
  • CP lengths can be added depending on the transmission timing of the MBMS signal (whether it is the transmission timing addressed to the relay station 22 or the simultaneous transmission timing addressed to the terminal 30 in the cell). it can.
  • a short CP length is used to effectively use radio resources, and a control signal or the like can be transmitted using a free resource by using a short CP length.
  • resources can be used effectively depending on the situation, such as using a long CP length in order to prevent deterioration of reception characteristics due to the influence of a delayed wave.
  • the relay station 22 may be controlled to change the setting of the CP length to be added based on the information regarding the timing of simultaneous transmission notified from the base station 12.
  • the MBMS broadcast transmission timing information is notified from the base station 12 to the relay station 22 and the terminal 30 in the cell.
  • the MBMS transmission timing is determined in advance. In such a system, there is no need to notify the information regarding the timing of simultaneous transmission, and the maximum hop count and MBMS signal notification to the relay station 22 and the terminal 30 in the cell in advance so that simultaneous transmission can be performed at a predetermined timing. I will go there.
  • this embodiment can be used in combination with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

 基地局10と端末30との通信を中継するリレー局20がセル内に備えられ、シンボルの一部をコピーした信号をCyclic Prefixとしてシンボルに付加する伝送方式を用いる無線通信システムであって、前記セル内で複数の端末30に対して提供する共通の報知サービス信号の伝送時に、信号に付加するCyclic Prefixの長さを適応的に設定する。これにより、リレー局を備えた無線通信システムにおいて、MBMS伝送を行う場合に、状況に応じてMBMS信号に付加するCPの長さを適宜設定することにより、特性の劣化を防ぎ、効率の良い伝送を行うことができる無線通信システム等を提供することができる。

Description

無線通信システム及び基地局
 本発明は、基地局と端末との通信を中継するリレー局がセル内に備えられ、シンボルの一部をコピーした信号をCyclic Prefixとしてシンボルに付加する伝送方式を用いる無線通信システム等に関する。
 近年のデータ通信量の増加に伴う周波数資源の逼迫を解決するために、高速・大容量伝送を実現する新たな移動体通信システムの構築(例えば、WiMAXシステムやIMT‐Advancedシステム)が進められている。このような新たな移動体通信システム用としては、比較的高い周波数帯が用いられることとなるが、より高い周波数の信号はより大きく減衰することから、これまでの移動体通信システムに比べてカバレッジが狭くなってしまう。
 このような問題を解決する手段として、基地局-端末間の通信を中継するリレー局をセル内に設ける方法がある。ここで、従来の無線通信システムを図10に示す。図10に示すように、基地局90と端末94が通信を行うシステムであり、基地局と端末との通信を中継するためにリレー局92が設けられている。ここで、端末94のうち、端末Bは基地局90と直接通信を行うが、端末A、Cはリレー局92を介して通信を行っている。端末Aはリレー局Aを、端末Cはリレー局B、Cを介して基地局90と通信を行っている。
 リレー局には、受信した信号を増幅し同一フレーム内で送信するもの(リピータ)や、受信した信号を増幅して後続のフレームで送信するもの(Amplify‐and‐Forward:AFタイプ)、一旦復調、復号し誤りがなければ再変調して送信するもの(Decode‐and‐Forward:DFタイプ)等があり、幾つかのリレー局を介して基地局と、基地局から遠く離れた端末(セルエッジ近傍に位置する端末)とが通信を行うことにより、それらの端末の受信特性を劣化させることなく、セルのカバレッジをこれまでのシステムと同様に維持することが可能となる。
 また、このような移動体通信システムでは、複数の端末宛にマルチメディア放送および同報サービスを提供するMBMS(Multimedia Broadcast and Multicast Service)が仕様に取り入れられる見込みである(WiMAXではMBSと呼ばれている)。このMBMSは、セル内の様々な地点に位置する端末へ向けて伝送される信号であり、セルエッジやセクタエッジ付近に位置する端末においても良好な受信特性でサービスを受けられるよう、複数の送信機(基地局やセクタ)から同時に送信が行われる。このように複数の送信機から同時に送信されることにより、信号が空間上で合成されて受信されるため、セルエッジ付近に位置する端末においても特性が大きく劣化することなく受信される。
 WiMAXのようにリレー局を備えたシステムでは、セル内の端末向けに基地局とリレー局が同時に信号を送信できるように図11に示すようなMBMS伝送が行われる(例えば、非特許文献1参照)。図11は、図10に示すセル内の基地局90及びリレー局92がMBMSを送信するタイミングを表した図である。MBMS伝送を行う際には、図11に示すように、まず基地局90からリレー局Aとリレー局Bへ向けて伝送が行われる(フレーム2000)。
 リレー局Bは、受け取った信号をさらにリレー局Cへ向けて次の送信タイミングで送信する(フレーム2001)。この時、基地局90とリレー局92(A)はMBMSに関する伝送は行わない。このような伝送により、セル内の総てのリレー局92においてMBMSを受信し、次の送信タイミングで基地局90及び総てのリレー局92から一斉に、セル内の複数の端末94へ向けて、そのMBMSを報知する(フレーム2002)。このような制御を行うことにより、セル内の総ての送信局(基地局90及びリレー局92)が同時にMBMSを送信することができる。
 セルラシステムのセルは理想的には総て同じ大きさ、形状であることが望ましいが、実際のシステムにおいては、地形や建物の配置の関係上、その大きさ、形状は様々である。したがって、図12に示すように、セル1~3の各セルに設置されるリレー局92の数も様々となり、各セルの最大ホップ数(基地局と端末の通信を中継するリレー局92の数を示し、セル1の最大ホップ数は2、セル2の最大ホップ数は1となる)も様々となる。このような様々なセル環境においてMBMS伝送を行う際には、最大ホップ数が大きいセルほど遅延時間が大きいMBMS信号が端末へ到来する可能性が高くなり、CP(Cyclic Prefix)長を超える遅延時間を有する信号が到来する場合には、その信号が干渉となるため受信品質が著しく劣化するという問題があった。
 したがって、そのような大きな遅延時間を有するMBMS信号が干渉とならないよう効果的に合成するためには、状況に応じたCP長を設定する必要があるが、これまでのリレー局92を設けたシステムにおいてそのような適応的なCP長の設定は行われていなかった。
 また、基地局90からリレー局92、リレー局92から他のリレー局92へMBMS信号を伝送する場合と、セル内でのMBMS信号の一斉報知を行う場合とでは、宛先に到来する信号の遅延時間が異なることが多い。このような場合においても、効率の良い伝送を行うためには伝送の状況に応じたCP長の設定が必要となるが、これまでのシステムでは考慮されていなかった。
 上述した課題に鑑み、本発明が目的とするところは、リレー局を備えたセルラシステムにおいてMBMS伝送を行う場合に、状況に応じてMBMS信号に付加するCPの長さを適宜設定することにより、特性の劣化を防ぎ、効率の良い伝送を行うことができる通信システムを提供することである。
 上述した課題を解決するために、本発明の無線通信システムは、基地局と端末との通信を中継するリレー局がセル内に備えられ、シンボルの一部をコピーした信号をCyclic Prefixとしてシンボルに付加する伝送方式を用いる無線通信システムであって、前記セル内で複数の端末に対して提供する共通の報知サービス信号の伝送時に、該報知サービス信号に付加するCyclic Prefixの長さを適応的に設定することを特徴とする。
 また、本発明の無線通信システムにおいて、前記Cyclic Prefixの長さは、前記セル内における基地局と端末との通信を中継する際に経由するリレー局数の最大値に応じて設定することを特徴とする。
 また、本発明の無線通信システムにおいて、前記Cyclic Prefixの長さは、前記セル内における基地局と端末との通信を中継する際に経由するリレー局数の最大値が、予め決められた閾値より大きい場合に長く設定することを特徴とする。
 また、本発明の無線通信システムは、前記報知サービス信号を基地局からリレー局に伝送する際又はリレー局間で伝送する際と、セル内の複数端末宛に報知する際とで、前記Cyclic Prefixの長さを異なる長さに設定することを特徴とする。
 また、本発明の無線通信システムにおいて、前記Cyclic Prefixの長さは、前記報知サービス信号をセル内の複数端末宛に報知する際に長く、基地局からリレー局に伝送する際又はリレー局間で伝送する際には前記複数端末宛に報知する際よりも短く設定することを特徴とする。
 本発明の基地局は、基地局と端末との通信を中継するリレー局がセル内に備えられ、シンボルの一部をコピーした信号をCyclic Prefixとしてシンボルに付加する伝送方式を用いる無線通信システムにおける基地局であって、前記セル内にリレー局があるか否かを判定する判定手段と、前記判定手段により、前記セル内にリレー局があると判定された場合には、前記セル内で複数の端末に対して提供する共通の報知サービス信号の伝送時に付加するCyclic Prefixの長さを、リレー局が無い場合と比較して長く設定するCyclic Prefix長設定手段と、を備えることを特徴とする。
 リレー局を備えたセルラシステムにおいてMBMS伝送を行う場合に、本発明を用いることにより、状況に応じてMBMS信号に付加するCPの長さを適宜設定することができる。これにより、遅延時間の長い遅延波が到来するような状況においては長いCPを付加したMBMS信号を伝送することができ、遅延波の影響による受信特性の劣化を防ぐことができる。また、CP長を短く設定した場合には、より多くのシンボルを伝送することができるか、または、空いた時間のリソースで伝送を行わないことにより他セルへの干渉を軽減することができる。
本発明を適用した無線通信システムの概略を示す図である。 第1実施形態における基地局の構成を説明するための図である。 第1実施形態におけるリレー局の構成を説明するための図である。 第1実施形態における端末の構成を説明するための図である。 第1実施形態における基地局の処理を説明するための動作フローである。 第2実施形態におけるフレームを説明するための図である。 第2実施形態における基地局の構成を説明するための図である。 第2実施形態におけるリレー局の構成を説明するための図である。 第2実施形態における基地局の処理を説明するための動作フローである。 従来の無線通信システムの概略を示す図である。 従来のフレームを説明するための図である。 従来の基地局とリレー局を含むセルについて説明するための図である。
 本発明では、リレー局を備えたセルラシステムにおいてMBMS伝送を行う際に、状況に応じてMBMS信号に付加するCPの長さを設定する。具体的には、セル内または同じMBMS伝送を行うセル群における最大ホップ数に応じてCP長を設定する手法に関する。また、基地局からリレー局、リレー局からリレー局へMBMS信号を伝送する場合と、セル内でのMBMS信号の一斉報知を行う場合とで異なるCP長を設定する手法に関する。
 〔第1実施形態〕
 まず、第1実施形態について説明する。本実施形態では、セル内または同じMBMS伝送を行うセル群における最大ホップ数に応じてCP長を設定する手法について示す。これは、ホップ数が多いセルは通常、面積が広いセル(例えば、上述した図12のセル1)であり、面積の広いセルでは比較的長い遅延を有するMBMS信号が端末で受信されることが多いため、CP長を長めに設定して遅延波による干渉を除去し、MBMS信号を空間上で効果的に合成するための制御である。
 まず、本実施形態における無線通信システム1の概要について図1を用いて説明する。無線通信システム1は、基地局10と、リレー局20と、端末30とが含まれて構成されている。また、端末30は、端末A、端末B及び端末Cが基地局10と通信を行う。ここで、端末Aは、リレー局Aを介して、端末Bはリレー局20を介さず、端末Cは、リレー局B及びCを介して基地局10と通信を行うこととする。
 この無線通信システム1に含まれる基地局10の構成を図2に示す。図2に示すように、本実施形態における基地局10は、符号部100と、変調部101と、IFFT部102と、CP挿入部103と、CP長選択部104と、タイミング制御部105と、バッファ部106と、D/A変換部107と、無線部108と、送信アンテナ部109とを備えて構成されている。
 この基地局10でMBMS伝送が行われる場合には、まず、符号部100にMBMSデータ及びセルの最大ホップ数に関する情報(最大ホップ数情報)が入力され、誤り訂正符号化される。ここで、最大ホップ数情報は、セル内のリレー局20や端末30に通知されるものであり、この情報を基に基地局10で用いられたCP長を各リレー局20や端末30においても選択することにより、基地局10で用いられたものと同じ長さのCPを除去及び付加することができる。
 したがって、この最大ホップ数に関する情報は、MBMSデータの伝送に先立って行われることとなる。ただし、最大ホップ数情報を伝送する際に付加するCPは予め決められた固定の長さのものであるものとする。また、最大ホップ数に関する情報は、CP長選択部104及びタイミング制御部105にも入力される。
 符号部100において誤り訂正符号化された信号は、変調部101に入力され、変調処理を施される。そして、IFFT部102に入力され、周波数領域の信号から時間領域の信号に変換される。IFFT部102の出力はCP挿入部103に入力され、シンボル後部の一部をコピーしたCPが付加されることとなる。この時、CP挿入部103には、最大ホップ数情報を基にCP長選択部104において選択されたCP長も通知され、この通知された長さのCPがIFFT部102の出力に付加される。CP長選択部104におけるCP長の選択方法については後述するものとする。
 CP挿入部103においてCPを付加された信号は、バッファ部106及びD/A変換部107に出力される。CP挿入部103からD/A変換部107に出力されるのは、MBMS伝送に先立って最大ホップ数に関する情報をセル内のリレー局や端末に通知する場合と、MBMS信号をセル内のリレー局20に通知する場合(例えば、図11で示したフレーム2000のような場合)である。
 また、バッファ部106を経由してD/A変換部107に入力されるのは、MBMS信号のセル内での一斉送信の場合(例えば、図11に示したフレーム2002のような場合)である。
 バッファ部106には、タイミング制御部105において最大ホップ数情報を基に決められたMBMS一斉送信のタイミングが通知され、そのタイミングになるまで送信信号が保持される。MBMS一斉送信のタイミングとなると、バッファ部106に保持されていた信号はD/A変換部107に入力され、デジタル信号からアナログ信号へ変換される。そして、無線部108において送信可能な周波数帯へ周波数変換された後、送信アンテナ部109より送信される。
 このような基地局10の装置構成とすることにより、セル内の最大ホップ数に応じたCP長を選択することができ、MBMS信号の伝送の際にCP長を超える遅延波が到来することによる受信特性の劣化を抑えることができる。また、セル内にリレー局がない、または最大ホップ数が小さい場合には、短いCP長が用いられ、より多くのシンボルを伝送することができるか、または、空いた時間リソースでの伝送を行わないことにより他セルへの干渉を軽減することができる。
 なお、本実施形態における基地局10では、マルチキャリア伝送を行うものとしているが、CPを付加する伝送方式であればマルチキャリア伝送に限らず、シングルキャリア伝送であってもよい。また、図2の基地局10では、最大ホップ数に関する情報をセル内のリレー局20や端末30に通知する構成としていたが、基地局10で選択したCP長に関する情報を直接通知する構成としてもよい。
 また、本実施形態では、セル内の最大ホップ数に基づいてCP長の選択を行う構成としていたが、複数のセルで共通のMBMS伝送を行う場合には、そのセル群における最大ホップ数に応じてCP長の選択を行う構成としてもよい。この場合には、図2に示す基地局10に受信部を追加し、セル群を構成する各基地局が自セルの最大ホップ数を互いに通知し合うか、または、セル群を制御する制御局がある場合にはその制御局を通じて各セルの最大ホップ数が通知されることとなる。
 また、本実施形態では、MBMSの一斉送信のタイミングがセルの最大ホップ数に依存するものとしていたが、MBMSの一斉送信のタイミングは予め決められているシステムもあり、そのようなシステムでは、決められているタイミングで一斉送信できるように、セル内のリレー局や端末へ最大ホップ数やMBMS信号の通知を予め行っておくこととなる。
 次に、本実施形態におけるリレー局20の構成を図3に示す。本実施形態では、受信信号を一旦復調、復号し再度変調して中継するDFタイプのリレー局について示すものとする。なお、誤り検出等のブロックは省略する。
 図3に示すように、本実施形態におけるリレー局20は、受信アンテナ部200と、無線部201及び215と、A/D変換部202と、CP除去部203と、FFT部204と、復調部205と、復号部206と、CP長選択部207と、タイミング制御部208と、バッファ部209と、符号部210と、変調部211と、IFFT部212と、CP挿入部213と、D/A変換部214と、送信アンテナ部216とを備えて構成される。
 本実施形態で対象としているMBMS伝送を行う場合に、このリレー局20では、受信アンテナ部200において基地局10から送信された信号が受信され、無線部201においてA/D変換可能な周波数へ周波数変換が行われた後、A/D変換部202においてAD変換され、CP除去部203において基地局10で付加されたCPの除去が行われる。ただし、MBMS伝送に先立って最大ホップ数に関する情報が通知された場合には、予め決められた固定長のCPが除去され、MBMS信号が通知された場合には、最大ホップ数に関する情報を基にCP長選択部207で選択された長さのCPが除去される。CP除去部203でCPを除去された信号はFFT部204に入力され、時間領域の信号から周波数領域の信号へ変換される。
 そして、復調部205において受信信号の復調が行われ、復号部206において復号が行われる。復号部206において復号された最大ホップ数情報は、CP長選択部207、タイミング制御部208へ入力され、それぞれの制御に用いられる。CP長選択部207では、基地局10に備えられたCP長選択部104と同様に、最大ホップ数情報を基にMBMS信号に付加するCP長が選択される。
 また、タイミング制御部208においても最大ホップ数情報を基にして、セル内への一斉送信までMBMS信号をバッファ部209に保持しておくようタイミングの制御が行われる。最大ホップ数情報は、端末30や次のリレー局20へ通知するために符号部210へも入力される。
 符号部210では入力された情報の誤り訂正符号化が行われ、変調部211において変調が施される。変調部211において変調された信号はIFFT部212へ入力され、周波数領域の信号から時間領域の信号へ変換される。そしてCP挿入部213において、CPが付加される。
 ただし、基地局10におけるCP挿入部103と同様に、CP挿入部213では、端末30や次のリレー局20に最大ホップ数に関する情報を通知する際には予め決められた固定長のCPを付加し、MBMS信号にはCP長選択部207から通知された長さのCPを付加する。CP挿入部213においてCPを付加された信号は、バッファ部209、D/A変換部214に出力される。CP挿入部213からD/A変換部214に入力されるのは、MBMS伝送に先立って最大ホップ数に関する情報を端末や次のリレー局に通知する際と、MBMS信号をセル内の次のリレー局に通知する際(例えば、図11に示すフレーム2001のような場合)で、バッファ部209を経由してD/A変換部214に入力されるのは、MBMS信号のセル内での一斉送信の際(例えば、図11に示すフレーム2002のような場合)である。
 バッファ部209には、タイミング制御部208において最大ホップ数情報を基に決められたMBMS一斉送信のタイミングが通知され、そのタイミングになるまで送信信号が保持される。
 MBMS一斉送信のタイミングとなると、バッファ部209に保持されていた信号はD/A変換部214に入力され、デジタル信号からアナログ信号へ変換される。そして、無線部215において送信可能な周波数帯へ周波数変換された後、送信アンテナ部216より送信される。
 このようなリレー局20の構成とすることにより、MBMS信号に付加されるCP長がセル内またはセル群の最大ホップ数に応じて変わる場合にも、適切な長さのCPを除去及び付加し、信号を中継することができる。
 なお、本実施形態では、DFタイプのリレー局について示したが、受信した信号を増幅して中継するAFタイプのリレー局であってもよいし、リピータと呼ばれる同一フレーム内で中継するリレー局であってもよい。
 ただし、リピータータイプのリレー局の場合には、CPの除去や付加をリレー局では行わず、CP長選択部207も不要となる。また、受信信号を後続のフレームで中継するAFタイプのリレー局の場合には、DFタイプのリレー局と同様に、CPの除去や付加をリレー局で行ってもよいし、行わなくてもよい。
 次に、本実施形態における端末30の構成を図4に示す。図4に示すように、端末30は、受信アンテナ部300と、無線部301と、A/D変換部302と、CP除去部303と、FFT部304と、復調部305と、復号部306と、CP長選択部307とを備えて構成される。
 この端末30の構成は、図3に示すリレー局20の受信系統(受信アンテナ部200~CP長選択部207)と同じであり、MBMS伝送に先立って通知された最大ホップ数情報を基にCP長選択部307で選択された長さのCPを、CP除去部303で除去する構成となっている。
 このような端末30の構成とすることにより、MBMS信号に付加されるCP長がセル内またはセル群の最大ホップ数に応じて変わる場合にも、適切な長さのCPを除去し、信号を復調することができる。
 また、本実施形態における基地局10の制御フローを図5に示す。図5に示すように、本実施形態における基地局10では、まず、セル内の最大ホップ数に関する情報をリレー局20や端末30に通知する(ステップS100)。この情報に基づいて、リレー局20や端末30は、後に伝送されるMBMS信号に付加されるCP長を設定することとなる。ただし、この最大ホップ数に関する情報の通知は、それほど頻繁に行う必要はなく、セル固有の別の制御情報と一緒に通知されるものとしてもよい。
 次に、基地局10では、セル内にリレー局20があるか否かの判定を行う(ステップS101)。ここで、セル内にリレー局20がない場合には、CP長をAに設定する(ステップS101;No→ステップS102)。ただし、ここでのCP長「A」は、端末固有のデータを送信する際に付加されるCP長と同じ長さか、またはそれよりも長いものとする。
 他方、セル内にリレー局20がある場合には、最大ホップ数が「1」であるか否かの判定を行う(ステップS101;Yes→ステップS103)。最大ホップ数が「1」である場合には(ステップS103;Yes)、リレー局20が設置されていない場合に比べ少し長めのCP長「B」(A<B)に設定する(ステップS104)。
 また、最大ホップ数が「1」でない、つまり「2」以上である場合には(ステップS103;No)、遅延時間の大きい信号が端末30へ到来することが予想されるため、長めのCP長「C」(B<C)を設定する(ステップS105)。
 そして、設定した長さのCPを付加したMBMS信号をリレー局20宛に伝送し(ステップS106)、最大ホップ数番目のリレー局20にMBMS信号が行き渡るまでMBMSの伝送を待機する(ステップS107)。ただし、この待機時にMBMS以外の信号の伝送は行ってもよい。
 最後に、セル全体へ向けてMBMSを一斉送信し制御を終える(ステップS108)。なお、上述した、「A」、「B」、「C」といった値は予め決められているものとする。
 このような制御を行うことにより、セル内の最大ホップ数に応じてMBMS信号に付加するCP長を設定することができ、CP長を超える遅延波が到来することによる受信特性の劣化を防ぐことができる。
 また、CP長を短く設定(CP長をAに設定)した場合には、より多くのシンボルを伝送することができる(MBMS信号とは別の信号でもよい)か、または、空いた時間のリソースで伝送を行わないことにより、他セルへの干渉を軽減することができる。
 また、リレー局20や端末30においても、基地局10から通知された最大ホップ数情報を基に図5に示すようなCP長の選択(ステップS101~S105)を行うことにより、基地局10で付加されたものと同じ長さのCPを除去または付加することができる。
 なお、本実施形態では、最大ホップ数の閾値を「0」、「1」、「2」以上としたが、これに限らず、その他の値でもよい。また、設定するCP長についても「A」、「B」、「C」の3種類としたが、これに限らない。さらに、先に述べたように、本実施形態では、最大ホップ数情報をリレー局20や端末30に通知する構成となっているが、基地局10において選択したCP長をそのまま通知する構成としてもよい。また、複数のセルで共通のMBMS伝送が行われる場合は、セル群における最大ホップ数に基づいてCP長を選択する制御を行えばよい。
 〔第2実施形態〕
 つづいて、第2実施形態について説明する。第1実施形態では、セル内またはセル群の最大ホップ数に基づいてMBMS信号に付加するCP長を選択する形態について示したが、一斉送信の前に基地局10からリレー局20、リレー局20から他のリレー局20へMBMS信号を通知する場合と、セル内またはセル群の各送信局(基地局10及びリレー局20)からMBMS信号を一斉に送信する場合とで同じ長さのCPを用いていた。これに対し、第2実施形態では、一斉送信以前のMBMS信号の通知時と、セル内またはセル群での一斉送信時とで異なるCP長を用いる形態について示す。
 第2実施形態の概要を図6を用いて説明する。ただし、図6は図1に示すセル環境において伝送されるMBMS信号のフレーム構成を示している。図6に示すように、本実施形態では、基地局10からリレー局A及びBへの伝送を示すフレーム400や、リレー局Bからリレー局Cへの伝送を示すフレーム401では、各シンボルに付加するCP長を「D」とするのに対し、基地局10とセル内の総てのリレー局20がセル全体へ向けてMBMS信号を報知するフレーム402~405では、「D」よりも長い「E」をCP長として用いることとする。ただし、ここでのCP長「D」は、端末固有のデータを送信する際に付加されるCP長と同じ長さか、それよりも長いものとする。
 これは、フレーム401や402は端末30向けの伝送ではなく、大きい遅延時間を有する遅延波が受信側(リレー局20)に到来する可能性は低いのに対し、一斉送信を行うフレームはセル内に点在する端末30向けの伝送であり、ある端末と幾つかの送信局(基地局10やリレー局20)との距離が様々であるため、遅延時間の大きい遅延波が端末30に到来することが考えられるためである。
 つまり、同じMBMS信号を送信する場合でも、遅延の小さいフレーム401や402では、無線リソースを有効利用するために短いCP長を用い、遅延の大きい信号が到来する可能性の高いフレーム402~405では、遅延波の影響による受信特性の劣化を防ぐために長いCP長を用いる。
 このような制御を行う基地局12の構成を図7に示す。ただし、図2に示す基地局10と同じブロックには同一番号を付し、その説明を省略する。図7に示すように、本実施形態における基地局12は、図2とは異なり、IFFT部102の出力をCP挿入部502及びバッファ部106に入力する。
 また、一斉送信のタイミングに関する情報(一斉送信タイミング情報)をCP長選択部501やタイミング制御部500に入力し、MBMS信号に付加するCP長や付加するタイミングを制御する。この一斉送信タイミング情報は、リレー局20や端末30にも通知するために符号部100へも入力される。
 タイミング制御部500では、セル全体での一斉送信を行うタイミングを管理し、バッファ部106に通知する。バッファ部106ではIFFT部102の出力を一斉送信時まで保持しておき、そのタイミングとなったらCP挿入部502へ出力する。CP長選択部501では、先に述べたように、リレー局20へのMBMS信号の通知を行う際には短いCP長を選択し、セル全体での一斉送信を行う際には長いCP長を選択してCP挿入部502に通知する。
 これにより、CP挿入部502では、MBMS信号の伝送タイミング(リレー局20宛の伝送タイミングであるかセル内の端末宛の一斉送信タイミングであるか)に応じて異なるCP長を付加することができ、状況に応じてリソースを有効に利用することができる。
 また、本実施形態におけるリレー局22の装置構成を図8に示す。ただし、図3に示すリレー局20と同じブロックには同一番号を付し、その説明を省略する。
 図8に示すように、本実施形態におけるリレー局22は、基地局10から事前に通知された一斉送信タイミング情報をCP長選択部602、タイミング制御部601に入力し、その情報を基に付加するCP長と付加するタイミングを制御する。
 例えば、一斉送信とは異なるMBMS信号を自身よりホップ数の大きいリレー局22宛に送信(中継)する場合にはCP長選択部602において短いCPを選択し、CP挿入部603に通知する。また、セル全体へ向けての一斉送信の際には、長いCPを選択しCP挿入部603に通知する。
 CP挿入部603では、通知された長さのCPを付加して送信する。ここで、CP除去部203にはCP長に関する情報が入力されていないが、これは、本実施形態でリレー局22が受信するMBMS信号は常に短いCPが付加された信号(図6のフレーム400や401)であり、CP除去部203では異なる長さのCPを除去する制御を行う必要がないためである。
 このようなリレー局22の構成とすることにより、図7に示す基地局12と同様、CP挿入部603では、MBMS信号の伝送タイミング(リレー局22宛の伝送タイミングであるかセル内の端末30宛の一斉送信タイミングであるか)に応じて異なるCP長を付加することができる。
 ここで、本実施形態における基地局12の制御フローを図9に示す。本実施形態における基地局12では、まず、MBMS伝送に先立って、MBMSをセル内で一斉送信するタイミングに関する情報をリレー局22や端末30に通知する(ステップS200)。
 次に、リレー局22の有無を判断し、リレー局22がセル内にない場合(ステップS201;No)にはステップS206へ、リレー局がセル内にある場合(ステップS201;Yes)にはステップS202へ移る。
 ステップS202では、MBMSのセル内での一斉送信のタイミングか否かを判定し、一斉送信のタイミングであれば(ステップS202;Yes)ステップS206へ、まだ一斉送信のタイミングでなければ(ステップS202;No)ステップS203へ移る。
 一斉送信のタイミングでない場合(ステップS202;No)、セル内のリレー局22へMBMS信号を通知する必要があるため、短いCP(D)を設定して(ステップS203)、その短く設定したCPを付加したMBMS信号をリレー局22宛に送信する(ステップS204)。そして、セル内の最大ホップ数番目となるリレー局へMBMS信号が行き渡るまで待機し(ステップS205)、最大ホップ数番目のリレー局までMBMS信号が行き渡って一斉送信のタイミングとなったら、ステップS203で設定したものよりも長いCP(E)を設定し(ステップS206)、その長く設定したCPを付加したMBMS信号をセル全体へ向けて一斉送信する(ステップS207)。
 このような制御を行うことにより、MBMS信号の伝送タイミング(リレー局22宛の伝送タイミングであるかセル内の端末30宛の一斉送信タイミングであるか)に応じて異なるCP長を付加することができる。
 そして、遅延の小さいフレームでは無線リソースを有効利用するために短いCP長を用い、短いCP長を用いることにより空いたリソースを利用して制御信号等を伝送することができる。また、遅延の大きい信号が到来する可能性の高いフレームでは、遅延波の影響による受信特性の劣化を防ぐために長いCP長を用いるというように、状況に応じてリソースを有効に利用することができる。リレー局22についても、基地局12から通知された一斉送信のタイミングに関する情報を基に、基地局12と同様に、付加するCP長の設定を変更する制御を行えばよい。
 なお、本実施形態では、MBMSの一斉送信タイミング情報を基地局12からセル内のリレー局22や端末30へ通知する構成としていたが、MBMSの伝送タイミングは予め決められているシステムもあり、そのようなシステムでは、一斉送信のタイミングに関する情報を通知する必要はなく、決められているタイミングで一斉送信できるように、セル内のリレー局22や端末30へ最大ホップ数やMBMS信号の通知を予め行っておくこととなる。また、本実施形態は第1実施形態と併用することも可能である。
 〔変形例〕
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
1 無線通信システム
 10、12 基地局
  100 符号部
  101 変調部
  102 IFFT部
  103、502 CP挿入部
  104、501 CP長選択部
  105、500 タイミング制御部
  106 バッファ部
  107 D/A変換部
  108 無線部
  109 送信アンテナ部
 20、22 リレー局
  200 受信アンテナ部
  201、215 無線部
  202 A/D変換部
  203 CP除去部
  204 FFT部
  205 復調部
  206 復号部
  207、602 CP長選択部
  208、601 タイミング制御部
  209 バッファ部
  210 符号部
  211 変調部
  212 IFFT部
  213、603 CP挿入部
  214 D/A変換部
  215 無線部
  216 送信アンテナ部
 30 端末
  300 受信アンテナ部
  301 無線部
  302 A/D変換部
  303 CP除去部
  304 FFT部
  305 復調部
  306 復号部
  307 CP長選択部

Claims (6)

  1.  基地局と端末との通信を中継するリレー局がセル内に備えられ、シンボルの一部をコピーした信号をCyclic Prefixとしてシンボルに付加する伝送方式を用いる無線通信システムであって、
     前記セル内で複数の端末に対して提供する共通の報知サービス信号の伝送時に、該報知サービス信号に付加するCyclic Prefixの長さを適応的に設定することを特徴とする無線通信システム。
  2.  前記Cyclic Prefixの長さは、前記セル内における基地局と端末との通信を中継する際に経由するリレー局数の最大値に応じて設定することを特徴とする請求項1に記載の無線通信システム。
  3.  前記Cyclic Prefixの長さは、前記セル内における基地局と端末との通信を中継する際に経由するリレー局数の最大値が、予め決められた閾値より大きい場合に長く設定することを特徴とする請求項2に記載の無線通信システム。
  4.  前記報知サービス信号を基地局からリレー局に伝送する際又はリレー局間で伝送する際と、セル内の複数端末宛に報知する際とで、前記Cyclic Prefixの長さを異なる長さに設定することを特徴とする請求項1又は2に記載の無線通信システム。
  5.  前記Cyclic Prefixの長さは、前記報知サービス信号をセル内の複数端末宛に報知する際に長く、基地局からリレー局に伝送する際又はリレー局間で伝送する際には前記複数端末宛に報知する際よりも短く設定することを特徴とする請求項4に記載の無線通信システム。
  6.  基地局と端末との通信を中継するリレー局がセル内に備えられ、シンボルの一部をコピーした信号をCyclic Prefixとしてシンボルに付加する伝送方式を用いる無線通信システムにおける基地局であって、
     前記セル内にリレー局があるか否かを判定する判定手段と、
     前記判定手段により、前記セル内にリレー局があると判定された場合には、前記セル内で複数の端末に対して提供する共通の報知サービス信号の伝送時に付加するCyclic Prefixの長さを、リレー局が無い場合と比較して長く設定するCyclic Prefix長設定手段と、
     を備えることを特徴とする基地局。
PCT/JP2010/051502 2009-02-05 2010-02-03 無線通信システム及び基地局 WO2010090215A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800143490A CN102369754A (zh) 2009-02-05 2010-02-03 无线通信系统和基站
EP10738546A EP2395788A1 (en) 2009-02-05 2010-02-03 Wireless communication system and base station
JP2010549490A JP5479373B2 (ja) 2009-02-05 2010-02-03 無線通信システム及び基地局装置
US13/147,861 US20110286382A1 (en) 2009-02-05 2010-02-03 Radio communication system and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009025341 2009-02-05
JP2009-025341 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010090215A1 true WO2010090215A1 (ja) 2010-08-12

Family

ID=42542108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051502 WO2010090215A1 (ja) 2009-02-05 2010-02-03 無線通信システム及び基地局

Country Status (6)

Country Link
US (1) US20110286382A1 (ja)
EP (1) EP2395788A1 (ja)
JP (1) JP5479373B2 (ja)
KR (1) KR20110114700A (ja)
CN (1) CN102369754A (ja)
WO (1) WO2010090215A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095013A1 (zh) * 2011-01-14 2012-07-19 大唐移动通信设备有限公司 网络部署中继节点的场景下的mbms业务实现方法和设备
JP2012147182A (ja) * 2011-01-11 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信システムおよび中継局装置
WO2015114930A1 (ja) * 2014-02-03 2015-08-06 ソニー株式会社 装置
JP2017518686A (ja) * 2014-04-28 2017-07-06 華為技術有限公司Huawei Technologies Co.,Ltd. Mbsfn構成方法および装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126454A1 (en) * 2012-11-05 2014-05-08 Qualcomm Incorporated Embms support in heterogeneous network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080112497A1 (en) * 2006-11-13 2008-05-15 Samsung Electronics Co., Ltd. Apparatus and method for providing relay service in an OFDM mobile communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964287A4 (en) * 2005-11-29 2012-03-21 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT FOR IMPROVED RELAY TECHNOLOGY
CN101150564B (zh) * 2006-09-19 2011-11-02 华为技术有限公司 划分帧结构的方法及其实现的系统和一种域调度的方法
CN101043503B (zh) * 2007-04-17 2010-05-26 华为技术有限公司 正交频分复用符号精同步的方法及其装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080112497A1 (en) * 2006-11-13 2008-05-15 Samsung Electronics Co., Ltd. Apparatus and method for providing relay service in an OFDM mobile communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOONG IL YEH ET AL.: "Frame Structure for Relay and Femto Cell Support in TGM", IEEE 802.16 BROADBAND WIRELESS ACCESS WORKING GROUP, 16 January 2008 (2008-01-16), Retrieved from the Internet <URL:http://www.ieee802.org/16/tgm/contrib/C80216m-08_007.pdf> [retrieved on 20100223] *
MORIMOTO ET AL.: "Evolved UTRA OFDM Musen Access ni Okeru Multicast-yo Saiteki Cyclic Prefix-cho no Kento", IEICE TECHNICAL REPORT, vol. 105, no. 240, 18 August 2005 (2005-08-18), pages 43 - 48 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147182A (ja) * 2011-01-11 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信システムおよび中継局装置
WO2012095013A1 (zh) * 2011-01-14 2012-07-19 大唐移动通信设备有限公司 网络部署中继节点的场景下的mbms业务实现方法和设备
US9225536B2 (en) 2011-01-14 2015-12-29 Datang Mobile Communications Equipment Co., Ltd. Method and device for implementing MBMS service when relay node is deployed in network
WO2015114930A1 (ja) * 2014-02-03 2015-08-06 ソニー株式会社 装置
US10020972B2 (en) 2014-02-03 2018-07-10 Sony Corporation Apparatus for multicast broadcast multimedia services over a single frequency network
JP2017518686A (ja) * 2014-04-28 2017-07-06 華為技術有限公司Huawei Technologies Co.,Ltd. Mbsfn構成方法および装置
US10536926B2 (en) 2014-04-28 2020-01-14 Huawei Technologies Co., Ltd. MBSFN configuration method and device

Also Published As

Publication number Publication date
CN102369754A (zh) 2012-03-07
EP2395788A1 (en) 2011-12-14
US20110286382A1 (en) 2011-11-24
JP5479373B2 (ja) 2014-04-23
JPWO2010090215A1 (ja) 2012-08-09
KR20110114700A (ko) 2011-10-19

Similar Documents

Publication Publication Date Title
US8750786B2 (en) Forwarding node in a wireless communication system
US7912116B2 (en) Apparatus and method for transmitting data using relay station in a broadband wireless communication system
JP4875504B2 (ja) Ofdma無線システム及び中継局
US9544045B2 (en) Relaying unicast and multicast data in a wireless network
US20090016259A1 (en) Quality of service control in multiple hop wireless communication environments
US8811257B2 (en) Mobile communication system, relay station apparatus, base station apparatus, radio relay method, and computer readable medium
US20080186900A1 (en) Enhancing wimax performance with subcriber stations acting as ad hoc repeaters
JP5479373B2 (ja) 無線通信システム及び基地局装置
US20130010673A1 (en) Relay method for increasing frequency selective characteristic of wireless channel and relay device using same
US20090122744A1 (en) Selective relaying for wireless networks
KR101108055B1 (ko) 데이터 전송 중계 방법
JP5233573B2 (ja) 無線通信システム、送信装置、および中継装置
JP4897653B2 (ja) 無線通信システム、無線中継方法、基地局装置および中継局装置
KR20070087654A (ko) 중계기를 사용하여 무선으로 메시지를 전송하기 위한 방법
US8285282B2 (en) Radio communication system, radio communication terminal, radio base station and radio communication method
US20140269310A1 (en) Wireless communication device using multiple modems
JP2008066827A (ja) Ieee802.16を適用した中継局の接続先選択方法、中継局及びプログラム
JP2012175470A (ja) 中継機,中継方法,送信機,受信機及び無線通信システム
JP5036681B2 (ja) 無線中継システム、無線中継方法、中継局、及び送受信局
JP2009147609A (ja) 無線通信方法、無線通信システム、および中継局
JP2009081513A (ja) 無線通信装置および無線通信方法
KR101412180B1 (ko) Mbs 통신망에서 중계전송을 수행하는 단말장치 및 그 장치를 통한 중계전송방법
CN102577276A (zh) 中继传输方法及其设备
WO2007086123A1 (ja) 中継局装置及び中継方法
WO2011086925A1 (ja) 中継装置及び中継方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014349.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147861

Country of ref document: US

Ref document number: 2010549490

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010738546

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117020550

Country of ref document: KR

Kind code of ref document: A