WO2010087299A1 - Method and apparatus for laser-annealing semiconductor film - Google Patents

Method and apparatus for laser-annealing semiconductor film Download PDF

Info

Publication number
WO2010087299A1
WO2010087299A1 PCT/JP2010/050890 JP2010050890W WO2010087299A1 WO 2010087299 A1 WO2010087299 A1 WO 2010087299A1 JP 2010050890 W JP2010050890 W JP 2010050890W WO 2010087299 A1 WO2010087299 A1 WO 2010087299A1
Authority
WO
WIPO (PCT)
Prior art keywords
maximum peak
peak height
laser beam
laser
semiconductor film
Prior art date
Application number
PCT/JP2010/050890
Other languages
French (fr)
Japanese (ja)
Inventor
純一 次田
石煥 鄭
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201080001197.0A priority Critical patent/CN101965627B/en
Priority to KR1020107015996A priority patent/KR101347138B1/en
Publication of WO2010087299A1 publication Critical patent/WO2010087299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a polycrystalline or single crystal semiconductor film used for a thin film transistor used in a pixel switch or a driving circuit of a liquid crystal display or an organic EL display.
  • laser annealing using laser light is performed as part of a low-temperature process manufacturing method.
  • a non-single crystal semiconductor film formed on a substrate is irradiated with a laser beam and locally heated and melted, and then the semiconductor thin film is crystallized into a polycrystal or a single crystal in the cooling process.
  • the crystallized semiconductor thin film has high carrier mobility, the performance of the thin film transistor can be improved.
  • the laser beam output is controlled to be constant so that the irradiated laser beam has a stable irradiation energy. .
  • FIG. 3 shows the change of the laser pulse waveform when the laser pulse energy is changed, and it can be seen that the profile of the pulse waveform itself changes due to the fluctuation of the laser pulse energy.
  • a method is generally used in which laser light is detected using a power meter or a photodiode, and the laser light output is controlled so that the energy integrated value of the laser light waveform is constant.
  • the present invention has been made in order to solve the above-described problems of the prior art, and is a semiconductor film capable of stably obtaining laser light energy contributing to crystallization and obtaining a semiconductor thin film having a certain crystallinity. It is an object of the present invention to provide a laser annealing method and an annealing apparatus.
  • the first invention is a laser annealing method for performing an annealing process by irradiating a non-single crystal semiconductor film with a pulsed laser beam.
  • the energy control of the pulse laser beam is performed so that the maximum peak height of the waveform becomes a predetermined height.
  • the semiconductor film laser annealing method of the second aspect of the present invention is the method of the first aspect of the present invention, wherein the maximum peak height of the pulse waveform of the laser beam is measured, and the maximum peak height becomes a predetermined height.
  • the output energy of the pulse laser beam and / or the energy of the pulse laser beam after the output is adjusted.
  • the crystal characteristics of the semiconductor film irradiated with the laser light become constant.
  • the pulse width in the pulse waveform is usually 1000 nsec or less, and preferably 500 nsec or less.
  • the present invention is not limited to a specific pulse width.
  • the predetermined height of the pulse waveform can be selected as appropriate, but is set so that the crystal characteristics are constant and of good quality. Usually, a range is defined as a predetermined height, and control is performed so that the maximum peak height of the pulse waveform falls within this range.
  • FIG. 4 shows the maximum peak height optimum for crystallization at the laser irradiation position and the energy density optimum for crystallization (by laser power meter measurement) with respect to the laser pulse energy.
  • the optimum energy density varies depending on the laser pulse energy. Even if the pulse waveform integral value is controlled to be constant, if the laser pulse energy fluctuates, it is optimal for crystallization. It can be seen that it is not possible to maintain the conditions.
  • the maximum peak height the optimum maximum peak height is substantially constant even if the laser pulse energy is different. By making the maximum peak height of the waveform constant, even if the laser pulse energy varies. An optimum state for crystallization can be maintained. In addition, whether it is optimal for crystallization can be determined by, for example, observation of the crystal grain size with an electron microscope.
  • FIG. 5 shows the relationship between pulse energy (measured value by a power meter or energy meter), pulse area (pulse waveform integrated value), and maximum peak height.
  • pulse energy and the maximum peak height are not in a proportional relationship, and even if the pulse energy is constant, it cannot be maintained in an optimum state for crystallization.
  • the maximum peak height of the pulse waveform can be accurately maintained at a predetermined height by adjusting the output energy and the energy of the laser beam while measuring the maximum peak height.
  • adjustment can be performed by adjusting the amount of injection excitation gas in the laser oscillator, adjusting the discharge voltage value in the laser oscillator, or the like.
  • the energy adjustment of the pulsed laser beam after the output can also be performed using a variable attenuator that can adjust the attenuation rate of the pulsed laser beam output from the laser oscillator.
  • the variable attenuator is not limited to a specific one as long as the attenuation factor with respect to the laser beam can be appropriately changed.
  • the laser annealing method for a semiconductor film of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the non-single crystal semiconductor film is a silicon film.
  • a laser annealing method for a semiconductor film according to a fourth aspect of the present invention is characterized in that, in any of the first to third aspects of the present invention, the pulse laser beam is an excimer laser beam.
  • the laser annealing method for a semiconductor film according to any one of the first to fourth aspects of the present invention, wherein the maximum peak height of the pulse waveform is a laser beam applied to the non-single-crystal semiconductor film. It measures by the pulse waveform of.
  • a semiconductor film laser annealing apparatus is a laser oscillator that outputs a pulsed laser beam, an optical system that guides the pulsed laser beam to a non-single crystal semiconductor film, and a maximum peak height of the pulsed laser beam.
  • a control unit that controls the pulse laser beam energy in the laser oscillator so that the maximum peak height is a predetermined height in response to the measurement result of the maximum peak height measurement unit. It is characterized by providing.
  • a semiconductor film laser annealing apparatus is a laser oscillator that outputs pulsed laser light, a variable attenuator that adjusts the attenuation factor of the pulsed laser light, and guides the pulsed laser light to the non-single-crystal semiconductor film.
  • An optical system a maximum peak height measuring unit that measures the maximum peak height of the pulse laser beam, and a measurement result of the maximum peak height measuring unit so that the maximum peak height becomes a predetermined height
  • a control unit for controlling the attenuation rate of the variable attenuator.
  • control part may control both the pulse laser beam energy in the said laser oscillator, and the attenuation factor of the said variable attenuator.
  • the laser annealing apparatus for a semiconductor film according to the sixth or seventh aspect, wherein the maximum peak height measuring unit includes a beam splitter disposed in an optical path of the pulsed laser beam, and the beam.
  • a pulse waveform detector that detects a waveform of a part of the pulsed laser light extracted by the splitter, and a maximum peak height determiner that determines the maximum peak height from the pulse waveform detected by the pulse waveform detector It is characterized by.
  • the pulse waveform of the laser beam is changed. Since the energy control of the pulse laser beam is performed so that the maximum peak height becomes a predetermined height, the following effects are obtained. 1. Since the laser irradiation energy density is controlled by the maximum peak height of the pulse waveform having a high correlation with the crystal characteristics, constant crystallization characteristics can always be obtained. 2. Even if the pulse waveform changes due to changes in the oscillation conditions of the laser oscillator, a constant crystallization characteristic can always be obtained. 3.
  • the laser annealing treatment apparatus includes a laser oscillator 1 that outputs a gas laser beam.
  • the laser beam output can be adjusted by adjusting the amount of injected gas and the discharge voltage.
  • a Coherent excimer laser oscillator LSX315C (wavelength 308 nm, repetition frequency 300 Hz) can be used.
  • variable attenuator 2 is disposed in the optical path from which the laser beam 10 output from the laser oscillator 1 is emitted.
  • the variable attenuator 2 is composed of an attenuator optical element whose transmittance changes according to the incident angle of the laser beam, and the attenuation factor of the laser beam passing through the variable attenuator 2 can be adjusted.
  • the adjustment of the attenuation factor in the variable attenuator 2 can be performed by the variable attenuator control unit 3, and the variable attenuator control unit 3 can be configured by, for example, a CPU and a program for operating the CPU.
  • An optical system 4 in which an optical member such as a homogenizer is disposed is provided on the output side optical path of the variable attenuator 2, and the optical system 4 converts the laser beam 10 into a line beam having a length of 465 mm and a width of 0.4 mm, for example.
  • a part of the laser beam 10 guided by the optical system 4 is extracted by the beam splitter 5, and most of the laser beam is transmitted through the beam splitter 5 and irradiated onto the object 6.
  • the object 6 is, for example, an a-Si (amorphous Si) film having a thickness of 50 nm.
  • the laser beam 10 a extracted from the beam splitter 5 is input to the pulse waveform detection means 7.
  • the pulse waveform detector 7 detects the pulse waveform of the laser beam 10a and corresponds to a pulse waveform detector of the present invention.
  • a biplanar photoelectric tube (type Rl193U-52) manufactured by Hamamatsu Photonics is used as the pulse waveform detection means 7.
  • the result detected by the pulse waveform detection means 7 is output to the control unit 8.
  • the control unit 8 includes a CPU, a program for operating the CPU, a storage unit that stores data related to a predetermined maximum peak height of the pulse waveform in a nonvolatile manner, and the like.
  • the control unit 8 determines the maximum peak height of the waveform from the detection result in the pulse waveform detection means 7.
  • control unit 8 has a function as a maximum peak height determination unit, and constitutes the maximum peak height measurement unit of the present invention in cooperation with the pulse waveform detection means 7.
  • the control unit 8 can control the output of the laser oscillator 1 and can issue a control command to the variable attenuator control unit 3.
  • the laser beam 10 is output from the laser oscillator 1 according to the initially set output.
  • the oscillation energy of the laser oscillator 1 is controlled by a built-in energy meter.
  • the energy meter value is proportional to the integral value of the pulse waveform
  • the laser beam 10 reaches the variable attenuator 2.
  • the variable attenuator 2 is controlled so that the laser beam 10 passes through with the attenuation rate initially set by the variable attenuator controller 3.
  • An optimum irradiation energy density for crystallizing the workpiece 6 is set by the variable attenuator 2.
  • the laser light attenuated at a predetermined attenuation rate is shaped into a band shape by the optical system 4 and reaches the beam splitter 5.
  • Laser light that passes through the beam splitter 5 is irradiated onto the object 6 to be subjected to laser annealing.
  • the laser beam 10a extracted by the beam splitter 5 reaches the pulse waveform detection means 7, and information relating to the detected pulse waveform is output to the control unit 8.
  • step 1 the pulse waveform is detected as described above, and the detection result is output to the control unit 8 (step s1).
  • the controller 8 determines the maximum peak height in the waveform from the detected pulse waveform (step s2). Normally, as shown in FIG. 3, since the first peak in the waveform is the maximum peak, it can be regarded as the maximum peak height by determining the first peak height.
  • the control unit 8 reads the maximum peak height data in a predetermined range stored in the storage unit, and compares it with the maximum peak height determined (detected) as described above (step s3).
  • the maximum peak height in the predetermined range is stored in advance in the storage unit.
  • the maximum peak height in the predetermined range may be set with different data depending on the type of the object 6 to be processed.
  • the current laser beam 10 has the maximum peak height optimum for crystallization.
  • the laser light waveform is continuously detected (to step s1). The repeated detection of the laser waveform may be performed continuously or at a predetermined interval.
  • step s3, NO laser output adjustment is performed.
  • the output adjustment in the laser oscillator 1 is adjusted by the discharge voltage.
  • the control unit 8 adjusts the discharge voltage of the laser oscillator 1 so that the output is reduced and the maximum peak height is within the predetermined range, while detecting the maximum peak height.
  • the laser oscillator 1 is adjusted so that the output is increased and the maximum peak height is within the predetermined range.
  • the adjustment amount can be determined based on the amount by which the detected maximum peak height is out of the predetermined range.
  • the laser light waveform is continuously detected (to step s1) until the laser irradiation process ends (step s5, YES).
  • the laser annealing process is performed in an optimum state for crystallization regardless of the shape of the pulse waveform. Can always be performed and constant crystals are obtained.
  • the output is adjusted by the laser oscillator 1 in order to adjust the maximum peak height of the pulse waveform.
  • the pulse waveform is adjusted.
  • the maximum peak height of the pulse waveform may be adjusted by both adjusting the output of the laser oscillator 1 and adjusting the attenuation factor of the variable attenuator 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)

Abstract

Crystallization uniformity is ensured in laser annealing irrespective of fluctuation of laser output.  In a laser-annealing method for annealing an amorphous single crystal semiconductor film by irradiating the film with a pulse laser beam, energy of the pulse laser beam is controlled such that the maximum peak height of the pulse waveform of the laser beam is a predetermined height.  The control is performed by means of a laser-annealing apparatus provided with: a laser oscillator (1) which outputs the pulse laser beam; an optical system (4) which guides the pulse laser beam to the amorphous single crystal semiconductor film; a maximum peak height measuring section which measures the maximum peak height of the pulse laser beam; and a control section (8) which receives the measurement results from the maximum peak height measuring section and controls the output energy of the pulse laser beam to be outputted from the laser oscillator or controls a variable attenuator (2), which adjusts the attenuation rate of the pulse laser beam, such that the maximum peak height is the predetermined height.

Description

半導体膜のレーザアニール方法およびアニール装置Laser annealing method and annealing apparatus for semiconductor film
 本発明は、液晶ディスプレイや有機ELディスプレイの画素スイッチや駆動回路に用いられる薄膜トランジスタに用いられる多結晶あるいは単結晶半導体膜を製造する方法および装置に関するものである。 The present invention relates to a method and an apparatus for manufacturing a polycrystalline or single crystal semiconductor film used for a thin film transistor used in a pixel switch or a driving circuit of a liquid crystal display or an organic EL display.
 液晶ディスプレイや有機ELディスプレイの画素スイッチや駆動回路に用いられる薄膜トランジスタでは、低温プロセスの製造方法の一環として、レーザ光を用いたレーザアニールが行われている。この方法は、基板上に成膜された非単結晶半導体膜にレーザ光を照射して局部的に加熱溶融した後、その冷却過程で半導体薄膜を多結晶あるいは単結晶に結晶化するものである。結晶化した半導体薄膜はキャリアの移動度が高くなるため薄膜トランジスタを高性能化できる。ところで、レーザ光の照射においては、半導体薄膜で均質な処理が行われる必要があり、照射されるレーザ光が安定した照射エネルギーを有するように、一般にレーザ光出力を一定にする制御がなされている。 In thin film transistors used for pixel switches and drive circuits of liquid crystal displays and organic EL displays, laser annealing using laser light is performed as part of a low-temperature process manufacturing method. In this method, a non-single crystal semiconductor film formed on a substrate is irradiated with a laser beam and locally heated and melted, and then the semiconductor thin film is crystallized into a polycrystal or a single crystal in the cooling process. . Since the crystallized semiconductor thin film has high carrier mobility, the performance of the thin film transistor can be improved. By the way, in the laser beam irradiation, it is necessary to perform a uniform process on the semiconductor thin film. In general, the laser beam output is controlled to be constant so that the irradiated laser beam has a stable irradiation energy. .
 しかし、レーザ発振器の発振条件が変化したり、レーザガスの劣化によりレーザ光出力が一定であってもパルス波形が変化したりして、一定な結晶化特性が得られない場合がある。図3は、レーザパルスエネルギーを変えた場合の、レーザパルス波形の変化を示したものであり、レーザパルスエネルギーの変動によってパルス波形のプロフィル自体が変化していることが分かる。
 このため、従来、パワーメータやフォトダイオードを用いてレーザ光を検知し、レーザ光波形のエネルギー積分値が一定になるようにレーザ光出力などを制御する方法が一般に用いられている。
 また、この他に、レーザ光のパルス波形における複数の極大値同士の比を求め、この比が所定値を上回ったときに、レーザガス封入容器内に注入する励起ガスの量あるいは上記電源から充放電回路に供給される電圧値の少なくとも一方を制御するパルスガスレーザ発振装置が提案されている(特許文献1参照)。
However, there are cases where constant crystallization characteristics cannot be obtained because the oscillation conditions of the laser oscillator change or the pulse waveform changes even if the laser beam output is constant due to laser gas degradation. FIG. 3 shows the change of the laser pulse waveform when the laser pulse energy is changed, and it can be seen that the profile of the pulse waveform itself changes due to the fluctuation of the laser pulse energy.
For this reason, conventionally, a method is generally used in which laser light is detected using a power meter or a photodiode, and the laser light output is controlled so that the energy integrated value of the laser light waveform is constant.
In addition, a ratio between a plurality of maximum values in the pulse waveform of the laser beam is obtained, and when this ratio exceeds a predetermined value, the amount of excitation gas injected into the laser gas enclosure or charging / discharging from the above power source A pulse gas laser oscillation device that controls at least one of voltage values supplied to a circuit has been proposed (see Patent Document 1).
特開平10-12549号公報Japanese Patent Laid-Open No. 10-12549
 従来の方法、装置は以上のように構成されているので、以下の問題点が生じる。
1.レーザガスとしてハロゲンガスを注入する際はレーザガス組成比が安定するまで、レーザ発振が不安定になる。
2.ハロゲンガス組成比が上がるとパルスエネルギー安定性が低下する。
3.「極大値同士の比を所定の範囲に収める」には一定の時間を要する。
4.「極大値同士の比を所定の範囲に収める」こととレーザのエネルギー変動が少ない安定発振とは相反する。
5.ビームダイバージェンス等の影響により、レーザ発振器のオリジナルパルス波形と、被照射物に照射されるパルス波形は異なる。
Since the conventional method and apparatus are configured as described above, the following problems arise.
1. When a halogen gas is injected as a laser gas, the laser oscillation becomes unstable until the laser gas composition ratio is stabilized.
2. As the halogen gas composition ratio increases, the pulse energy stability decreases.
3. A certain amount of time is required for “the ratio between the maximum values falls within a predetermined range”.
4). There is a contradiction between “making the ratio between the maximum values fall within a predetermined range” and stable oscillation with less energy fluctuation of the laser.
5). Due to the influence of beam divergence and the like, the original pulse waveform of the laser oscillator is different from the pulse waveform irradiated to the irradiated object.
 この発明は上記のような従来のものの課題を解決するためになされたもので、結晶化に寄与するレーザ光エネルギーを安定に保ち、一定の結晶性を有する半導体薄膜を得ることができる半導体膜のレーザアニール方法およびアニール装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems of the prior art, and is a semiconductor film capable of stably obtaining laser light energy contributing to crystallization and obtaining a semiconductor thin film having a certain crystallinity. It is an object of the present invention to provide a laser annealing method and an annealing apparatus.
 すなわち、本発明の半導体膜のレーザアニール方法のうち、第1の本発明は、非単結晶半導体膜上にパルスレーザ光を照射してアニール処理を行うレーザアニール処理方法において、前記レーザ光のパルス波形の最大ピーク高さが所定の高さとなるように、前記パルスレーザ光のエネルギー制御を行うことを特徴とする。 That is, of the semiconductor film laser annealing methods of the present invention, the first invention is a laser annealing method for performing an annealing process by irradiating a non-single crystal semiconductor film with a pulsed laser beam. The energy control of the pulse laser beam is performed so that the maximum peak height of the waveform becomes a predetermined height.
 第2の本発明の半導体膜のレーザアニール方法は、前記第1の本発明において、前記レーザ光のパルス波形の最大ピーク高さを測定し、該最大ピーク高さが所定の高さとなるように、前記パルスレーザ光の出力エネルギーまたは/および出力後の前記パルスレーザ光のエネルギー調整を行うことを特徴とする。 The semiconductor film laser annealing method of the second aspect of the present invention is the method of the first aspect of the present invention, wherein the maximum peak height of the pulse waveform of the laser beam is measured, and the maximum peak height becomes a predetermined height. The output energy of the pulse laser beam and / or the energy of the pulse laser beam after the output is adjusted.
 本発明によれば、レーザ光波形の最大ピーク高さを所定の高さに維持することでレーザ光が照射される半導体膜の結晶特性が一定になる。なお、上記パルス波形におけるパルス幅は通常は1000n秒以下であり、好適には500n秒以下である。但し、本発明としてはパルス幅が特定のものに限定されるものではない。また、前記パルス波形における所定の高さとしては、適宜選定が可能であるが、結晶特性が一定かつ良質となるように設定する。通常は、所定の高さとして範囲を定め、この範囲内にパルス波形の最大ピーク高さが収まるように制御を行う。 According to the present invention, by maintaining the maximum peak height of the laser light waveform at a predetermined height, the crystal characteristics of the semiconductor film irradiated with the laser light become constant. The pulse width in the pulse waveform is usually 1000 nsec or less, and preferably 500 nsec or less. However, the present invention is not limited to a specific pulse width. The predetermined height of the pulse waveform can be selected as appropriate, but is set so that the crystal characteristics are constant and of good quality. Usually, a range is defined as a predetermined height, and control is performed so that the maximum peak height of the pulse waveform falls within this range.
 図4は、レーザパルスエネルギーに対する、レーザ照射位置における結晶化に最適な最大ピーク高さおよび結晶化に最適なエネルギー密度(レーザパワーメータ計測による)を示したものである。図から明らかなように、レーザパルスエネルギーが異なることによって、最適なエネルギー密度も異なっており、パルス波形積分値を一定にするように制御しても、レーザパルスエネルギーが変動すると、結晶化に最適な条件に維持できないことが分かる。一方、最大ピーク高さでは、レーザパルスエネルギーが異なっても最適な最大ピーク高さは略一定になっており、波形の最大ピーク高さを一定にすることによって、レーザパルスエネルギーが変動しても結晶化に最適な状態を維持することができる。なお、結晶化に最適であるかどうかは、例えば、結晶粒径の電子顕微鏡観察等によって判定することができる。 FIG. 4 shows the maximum peak height optimum for crystallization at the laser irradiation position and the energy density optimum for crystallization (by laser power meter measurement) with respect to the laser pulse energy. As is clear from the figure, the optimum energy density varies depending on the laser pulse energy. Even if the pulse waveform integral value is controlled to be constant, if the laser pulse energy fluctuates, it is optimal for crystallization. It can be seen that it is not possible to maintain the conditions. On the other hand, at the maximum peak height, the optimum maximum peak height is substantially constant even if the laser pulse energy is different. By making the maximum peak height of the waveform constant, even if the laser pulse energy varies. An optimum state for crystallization can be maintained. In addition, whether it is optimal for crystallization can be determined by, for example, observation of the crystal grain size with an electron microscope.
 また、図5は、パルスエネルギー(パワーメーターまたはエネルギーメーターによる計測値)と、パルスエリア(パルス波形積分値)、最大ピーク高さとの関係を示したものである。図から明らかなように、パルスエネルギーと最大ピーク高さとは比例関係にはなく、パルスエネルギーを一定にしても、結晶化に最適な状態に維持できないことが分かる。 FIG. 5 shows the relationship between pulse energy (measured value by a power meter or energy meter), pulse area (pulse waveform integrated value), and maximum peak height. As can be seen from the figure, the pulse energy and the maximum peak height are not in a proportional relationship, and even if the pulse energy is constant, it cannot be maintained in an optimum state for crystallization.
 第2の発明によれば、最大ピーク高さを測定しつつ、出力エネルギーやレーザ光のエネルギーを調整することで、パルス波形の最大ピーク高さを所定高さに的確に維持することができる。出力エネルギーの調整方法としては、レーザ発振器における注入励起ガスの量の調整、レーザ発振器での放電電圧値の調整などにより行うことができる。また、出力後のパルスレーザ光のエネルギー調整は、レーザ発振器から出力されたパルスレーザ光の減衰率を調整可能な可変減衰器などを用いて行うこともできる。可変減衰器は、レーザ光に対する減衰率を適宜変更できるものであればよく、本発明としては特定のものに限定されない。 According to the second invention, the maximum peak height of the pulse waveform can be accurately maintained at a predetermined height by adjusting the output energy and the energy of the laser beam while measuring the maximum peak height. As a method for adjusting the output energy, adjustment can be performed by adjusting the amount of injection excitation gas in the laser oscillator, adjusting the discharge voltage value in the laser oscillator, or the like. Further, the energy adjustment of the pulsed laser beam after the output can also be performed using a variable attenuator that can adjust the attenuation rate of the pulsed laser beam output from the laser oscillator. The variable attenuator is not limited to a specific one as long as the attenuation factor with respect to the laser beam can be appropriately changed.
 第3の本発明の半導体膜のレーザアニール方法は、前記第1または第2の本発明において、前記非単結晶半導体膜がシリコン膜であることを特徴とする。 The laser annealing method for a semiconductor film of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the non-single crystal semiconductor film is a silicon film.
 第4の本発明の半導体膜のレーザアニール方法は、前記第1~第3の本発明のいずれかにおいて、前記パルスレーザ光がエキシマレーザ光であることを特徴とする。 A laser annealing method for a semiconductor film according to a fourth aspect of the present invention is characterized in that, in any of the first to third aspects of the present invention, the pulse laser beam is an excimer laser beam.
 第5の本発明の半導体膜のレーザアニール方法は、前記第1~第4の本発明のいずれかにおいて、前記パルス波形の最大ピーク高さは、前記非単結晶半導体膜に照射されるレーザ光のパルス波形で計測することを特徴とする。 According to a fifth aspect of the present invention, there is provided the laser annealing method for a semiconductor film according to any one of the first to fourth aspects of the present invention, wherein the maximum peak height of the pulse waveform is a laser beam applied to the non-single-crystal semiconductor film. It measures by the pulse waveform of.
 第6の本発明の半導体膜のレーザアニール装置は、パルスレーザ光を出力するレーザ発振器と、パルスレーザ光を非単結晶半導体膜に導く光学系と、前記パルスレーザ光の最大ピーク高さを測定する最大ピーク高さ測定部と、該最大ピーク高さ測定部の測定結果を受けて、前記最大ピーク高さが所定の高さとなるように、前記レーザ発振器におけるパルスレーザ光エネルギーを制御する制御部とを備えることを特徴とする。 A semiconductor film laser annealing apparatus according to a sixth aspect of the present invention is a laser oscillator that outputs a pulsed laser beam, an optical system that guides the pulsed laser beam to a non-single crystal semiconductor film, and a maximum peak height of the pulsed laser beam. And a control unit that controls the pulse laser beam energy in the laser oscillator so that the maximum peak height is a predetermined height in response to the measurement result of the maximum peak height measurement unit. It is characterized by providing.
 第7の本発明の半導体膜のレーザアニール装置は、パルスレーザ光を出力するレーザ発振器と、前記パルスレーザ光の減衰率を調整する可変減衰器と、パルスレーザ光を非単結晶半導体膜に導く光学系と、前記パルスレーザ光の最大ピーク高さを測定する最大ピーク高さ測定部と、該最大ピーク高さ測定部の測定結果を受けて、前記最大ピーク高さが所定の高さとなるように、前記可変減衰器の減衰率を制御する制御部とを備えることを特徴とする。 A semiconductor film laser annealing apparatus according to a seventh aspect of the present invention is a laser oscillator that outputs pulsed laser light, a variable attenuator that adjusts the attenuation factor of the pulsed laser light, and guides the pulsed laser light to the non-single-crystal semiconductor film. An optical system, a maximum peak height measuring unit that measures the maximum peak height of the pulse laser beam, and a measurement result of the maximum peak height measuring unit so that the maximum peak height becomes a predetermined height And a control unit for controlling the attenuation rate of the variable attenuator.
 なお、上記制御部は、前記レーザ発振器におけるパルスレーザ光エネルギーと前記可変減衰器の減衰率の両方を制御するものであってもよい。 In addition, the said control part may control both the pulse laser beam energy in the said laser oscillator, and the attenuation factor of the said variable attenuator.
 第8の本発明の半導体膜のレーザアニール装置は、前記第6または第7の本発明において、前記最大ピーク高さ測定部は、前記パルスレーザ光の光路に配置されたビームスプリッタと、該ビームスプリッタによって取り出された一部のパルスレーザ光の波形を検出するパルス波形検出部と、該パルス波形検出部で検出されたパルス波形から最大ピーク高さを判定する最大ピーク高さ判定部を備えることを特徴とする。 According to an eighth aspect of the present invention, there is provided the laser annealing apparatus for a semiconductor film according to the sixth or seventh aspect, wherein the maximum peak height measuring unit includes a beam splitter disposed in an optical path of the pulsed laser beam, and the beam. A pulse waveform detector that detects a waveform of a part of the pulsed laser light extracted by the splitter, and a maximum peak height determiner that determines the maximum peak height from the pulse waveform detected by the pulse waveform detector It is characterized by.
 以上説明したように、本発明の半導体膜のレーザアニール方法によれば、非単結晶半導体膜上にパルスレーザ光を照射してアニール処理を行うレーザアニール処理方法において、前記レーザ光のパルス波形の最大ピーク高さが所定の高さとなるように、前記パルスレーザ光のエネルギー制御を行うので、以下の効果がある。
1.結晶特性と相関性が高いパルス波形の最大ピーク高さにより、レーザ照射エネルギー密度を制御するので、常に一定の結晶化特性が得られる。
2.レーザ発振器の発振条件の変化により、パルス波形が変化しても、常に一定の結晶化特性が得られる。
3.レーザガスの劣化により、出力(W)が一定であっても、パルス波形が変化する場合に、結晶特性と相関性が高いパルス波形の最大ピーク高さにより、レーザ照射エネルギー密度を制御するので、常に一定の結晶化特性が得られる。
As described above, according to the laser annealing method for a semiconductor film of the present invention, in the laser annealing method for performing an annealing process by irradiating a non-single crystal semiconductor film with a pulsed laser beam, the pulse waveform of the laser beam is changed. Since the energy control of the pulse laser beam is performed so that the maximum peak height becomes a predetermined height, the following effects are obtained.
1. Since the laser irradiation energy density is controlled by the maximum peak height of the pulse waveform having a high correlation with the crystal characteristics, constant crystallization characteristics can always be obtained.
2. Even if the pulse waveform changes due to changes in the oscillation conditions of the laser oscillator, a constant crystallization characteristic can always be obtained.
3. Even if the output (W) is constant due to deterioration of the laser gas, when the pulse waveform changes, the laser irradiation energy density is controlled by the maximum peak height of the pulse waveform that is highly correlated with the crystal characteristics. Certain crystallization characteristics are obtained.
本発明の一実施形態におけるレーザアニール装置の概略を示す図である。It is a figure showing the outline of the laser annealing device in one embodiment of the present invention. 同じく、結晶化に最適な状態を維持するための手順を示すフロー図である。Similarly, it is a flowchart showing a procedure for maintaining an optimum state for crystallization. レーザパルスエネルギーを変えた場合の、レーザパルス波形の変化を示すグラフである。It is a graph which shows the change of a laser pulse waveform at the time of changing laser pulse energy. レーザパルスエネルギーに対する、結晶化に最適なエネルギー密度と最大ピーク高さとを示すグラフである。It is a graph which shows the energy density and maximum peak height optimal for crystallization with respect to laser pulse energy. レーザパルスエネルギーに対するパルスエネルギー密度と最大ピーク高さとの関係を示す図である。It is a figure which shows the relationship between the pulse energy density with respect to laser pulse energy, and the maximum peak height.
 以下に、本発明の一実施形態を添付図面に基づいて説明する。
 レーザアニール処理装置は、ガスレーザ光を出力するレーザ発振器1を備えており、該レーザ発振器1では、注入ガス量や放電電圧を調整することでレーザ光出力を調整することが可能になっている。該レーザ発振器1としては、例えば、Coherent社のエキシマレーザ発振器LSX315C(波長308nm、繰り返し発振数300Hz)を用いることができる。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The laser annealing treatment apparatus includes a laser oscillator 1 that outputs a gas laser beam. In the laser oscillator 1, the laser beam output can be adjusted by adjusting the amount of injected gas and the discharge voltage. As the laser oscillator 1, for example, a Coherent excimer laser oscillator LSX315C (wavelength 308 nm, repetition frequency 300 Hz) can be used.
 レーザ発振器1から出力されたレーザ光10が出射される光路には、可変減衰器2が配置されている。該可変減衰器2は、レーザ光の入射角度に応じて透過率が変化するアテニュエータ光学素子により構成されており、可変減衰器2を通過するレーザ光の減衰率の調整が可能になっている。該可変減衰器2における減衰率の調整は可変減衰器制御部3によって行うことができ、該可変減衰器制御部3は、例えば、CPUとこれを動作させるプログラムなどによって構成することができる。 A variable attenuator 2 is disposed in the optical path from which the laser beam 10 output from the laser oscillator 1 is emitted. The variable attenuator 2 is composed of an attenuator optical element whose transmittance changes according to the incident angle of the laser beam, and the attenuation factor of the laser beam passing through the variable attenuator 2 can be adjusted. The adjustment of the attenuation factor in the variable attenuator 2 can be performed by the variable attenuator control unit 3, and the variable attenuator control unit 3 can be configured by, for example, a CPU and a program for operating the CPU.
 可変減衰器2の出射側光路には、ホモジナイザー等の光学部材を配した光学系4が設けられており、該光学系4によってレーザ光10を、例えば長さ465mm、幅0.4mmのラインビームに整形する。
 光学系4によって導かれるレーザ光10は、ビームスプリッタ5によってレーザ光の一部が取り出され、大部分はビームスプリッタ5を透過して被処理体6に照射される。被処理体6としては、例えば厚さ50nmのa-Si(アモルファスSi)膜が対象とされる。
An optical system 4 in which an optical member such as a homogenizer is disposed is provided on the output side optical path of the variable attenuator 2, and the optical system 4 converts the laser beam 10 into a line beam having a length of 465 mm and a width of 0.4 mm, for example. To shape.
A part of the laser beam 10 guided by the optical system 4 is extracted by the beam splitter 5, and most of the laser beam is transmitted through the beam splitter 5 and irradiated onto the object 6. The object 6 is, for example, an a-Si (amorphous Si) film having a thickness of 50 nm.
 ビームスプリッタ5から取り出されたレーザ光10aは、パルス波形検出手段7に入力される。パルス波形検出手段7は、レーザ光10aのパルス波形を検出するものであり、本発明のパルス波形検出部に相当する。例えば、パルス波形検出手段7としては浜松ホトニクス製バイプラナー光電管(タイプRl193U-52)を用いる。
 パルス波形検出手段7によって検出された結果は、制御部8に出力される。制御部8は、CPUとこれを動作させるプログラム、パルス波形の所定最大ピーク高さに関するデータを不揮発に記憶した記憶部などにより構成される。制御部8では、パルス波形検出手段7における検出結果から、波形の最大ピーク高さを判定する。したがって、制御部8は、最大ピーク高さ判定部としての機能を有しており、前記パルス波形検出手段7と協働して本発明の最大ピーク高さ測定部を構成する。該制御部8は、レーザ発振器1の出力制御が可能になっているとともに、可変減衰器制御部3に制御指令を発行することができる。
The laser beam 10 a extracted from the beam splitter 5 is input to the pulse waveform detection means 7. The pulse waveform detector 7 detects the pulse waveform of the laser beam 10a and corresponds to a pulse waveform detector of the present invention. For example, as the pulse waveform detection means 7, a biplanar photoelectric tube (type Rl193U-52) manufactured by Hamamatsu Photonics is used.
The result detected by the pulse waveform detection means 7 is output to the control unit 8. The control unit 8 includes a CPU, a program for operating the CPU, a storage unit that stores data related to a predetermined maximum peak height of the pulse waveform in a nonvolatile manner, and the like. The control unit 8 determines the maximum peak height of the waveform from the detection result in the pulse waveform detection means 7. Therefore, the control unit 8 has a function as a maximum peak height determination unit, and constitutes the maximum peak height measurement unit of the present invention in cooperation with the pulse waveform detection means 7. The control unit 8 can control the output of the laser oscillator 1 and can issue a control command to the variable attenuator control unit 3.
 次に、上記レーザアニール装置の動作について説明する。
 初期設定された出力によって、レーザ発振器1よりレーザ光10が出力される。レーザ発振器1は、内蔵のエネルギーメータにより、その発振エネルギーが制御されている。エネルギーメータの値は、パルス波形の積分値に比例している
Next, the operation of the laser annealing apparatus will be described.
The laser beam 10 is output from the laser oscillator 1 according to the initially set output. The oscillation energy of the laser oscillator 1 is controlled by a built-in energy meter. The energy meter value is proportional to the integral value of the pulse waveform
 該レーザ光10は、可変減衰器2に至る。該可変減衰器2では、可変減衰器制御部3で初期設定された減衰率でレーザ光10が通過するように制御されている。可変減衰器2により被処理体6を結晶化させるのに最適な照射エネルギー密度が設定される。
 所定の減衰率で減衰したレーザ光は、光学系4によって帯状に整形され、ビームスプリッタ5に至る。ビームスプリッタ5を通過するレーザ光は、被処理体6に照射されてレーザアニール処理がなされる。ビームスプリッタ5で取り出されるレーザ光10aは、パルス波形検出手段7に至り、検出されたパルス波形に関する情報が制御部8に出力される。 
The laser beam 10 reaches the variable attenuator 2. The variable attenuator 2 is controlled so that the laser beam 10 passes through with the attenuation rate initially set by the variable attenuator controller 3. An optimum irradiation energy density for crystallizing the workpiece 6 is set by the variable attenuator 2.
The laser light attenuated at a predetermined attenuation rate is shaped into a band shape by the optical system 4 and reaches the beam splitter 5. Laser light that passes through the beam splitter 5 is irradiated onto the object 6 to be subjected to laser annealing. The laser beam 10a extracted by the beam splitter 5 reaches the pulse waveform detection means 7, and information relating to the detected pulse waveform is output to the control unit 8.
以下に、制御部8における制御手順を図2に基づいて説明する。
 先ず、ステップ1では、上記のようにパルス波形が検出され、検出結果が制御部8に出力される(ステップs1)。
 制御部8では、検出パルス波形から、該波形における最大ピーク高さを判定する(ステップs2)。なお、通常は、図3に示すように、波形における第1ピークが最大ピークとなるため、この第1ピーク高さを判定することで最大ピーク高さとみなすことができる。
Below, the control procedure in the control part 8 is demonstrated based on FIG.
First, in step 1, the pulse waveform is detected as described above, and the detection result is output to the control unit 8 (step s1).
The controller 8 determines the maximum peak height in the waveform from the detected pulse waveform (step s2). Normally, as shown in FIG. 3, since the first peak in the waveform is the maximum peak, it can be regarded as the maximum peak height by determining the first peak height.
 引き続き制御部8では、記憶部に記憶させた所定範囲の最大ピーク高さデータを読み出し、前記で判定(検知した)した最大ピーク高さと比較する(ステップs3)。なお、所定範囲の最大ピーク高さは、予め記憶部に記憶させておく。この所定範囲の最大ピーク高さは、被処理体6の種類などによって異なるデータを設定したものであってもよい。
 上記比較で、検知した最大ピーク高さが、所定範囲の最大ピーク高さ以内にある場合(ステップs3、YES)、現在のレーザ光10は、結晶化に最適な最大ピーク高を有しているものとして、引き続きレザー光波形の検出を行う(ステップs1へ)。繰り返し行うレーザ波形の検出は、連続的に行っても良く、また、所定の間隔をおいて行うようにしてもよい。
Subsequently, the control unit 8 reads the maximum peak height data in a predetermined range stored in the storage unit, and compares it with the maximum peak height determined (detected) as described above (step s3). Note that the maximum peak height in the predetermined range is stored in advance in the storage unit. The maximum peak height in the predetermined range may be set with different data depending on the type of the object 6 to be processed.
In the above comparison, when the detected maximum peak height is within the maximum peak height within the predetermined range (step s3, YES), the current laser beam 10 has the maximum peak height optimum for crystallization. Then, the laser light waveform is continuously detected (to step s1). The repeated detection of the laser waveform may be performed continuously or at a predetermined interval.
 検出した最大ピーク高さが所定の範囲内にない場合(ステップs3、NO)レーザ出力調整を行う。
 レーザ発振器1での出力調整は、放電電圧によって調整する。該制御部8では、検出した最大ピーク高さが所定範囲よりも高い場合、出力を小さくして最大ピーク高さが所定範囲内となるようにレーザ発振器1の放電電圧を調整し、一方、検出した最大ピーク高さが所定範囲よりも低い場合、出力が大きくして最大ピーク高さが所定範囲内となるようにレーザ発振器1を調整する。調整量は、検出した最大ピーク高さが所定範囲から外れている量に基づいて決定することができる。
 上記調整後は、レーザ照射処理が終了する(ステップs5、YES)まで、引き続きレザー光波形の検出を行う(ステップs1へ)。
When the detected maximum peak height is not within the predetermined range (step s3, NO), laser output adjustment is performed.
The output adjustment in the laser oscillator 1 is adjusted by the discharge voltage. When the detected maximum peak height is higher than the predetermined range, the control unit 8 adjusts the discharge voltage of the laser oscillator 1 so that the output is reduced and the maximum peak height is within the predetermined range, while detecting the maximum peak height. When the maximum peak height is lower than the predetermined range, the laser oscillator 1 is adjusted so that the output is increased and the maximum peak height is within the predetermined range. The adjustment amount can be determined based on the amount by which the detected maximum peak height is out of the predetermined range.
After the adjustment, the laser light waveform is continuously detected (to step s1) until the laser irradiation process ends (step s5, YES).
 上記により、レーザ光の出力が変動した際にも、パルス波形の最大ピーク高さを所定値に維持することで、パルス波形の形にかかわらず、結晶化に最適な状態にしてレーザアニール処理を行うことができ、常に一定の結晶が得られる。
 なお、上記制御ステップでは、パルス波形の最大ピーク高さに調整するために、レーザ発振器1での出力調整により行うものとして説明したが、前記可変減衰器2における減衰率を調整することによってパルス波形の最大ピーク高さを調整しても良く、また、レーザ発振器1での出力調整と可変減衰器2における減衰率の調整の両方によってパルス波形の最大ピーク高さを調整するようにしてもよい。
 以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
As described above, even when the output of the laser beam fluctuates, by maintaining the maximum peak height of the pulse waveform at a predetermined value, the laser annealing process is performed in an optimum state for crystallization regardless of the shape of the pulse waveform. Can always be performed and constant crystals are obtained.
In the above control step, it has been described that the output is adjusted by the laser oscillator 1 in order to adjust the maximum peak height of the pulse waveform. However, by adjusting the attenuation factor in the variable attenuator 2, the pulse waveform is adjusted. The maximum peak height of the pulse waveform may be adjusted by both adjusting the output of the laser oscillator 1 and adjusting the attenuation factor of the variable attenuator 2.
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the content of the said description, As long as it does not deviate from the range of this invention, an appropriate change is possible.
1 レーザ発振器
2 可変減衰器
3 可変減衰器制御部
4 光学系
5 ビームスプリッター
6 照射対象
7 パルス波形検出手段
8 制御部
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Variable attenuator 3 Variable attenuator control part 4 Optical system 5 Beam splitter 6 Irradiation object 7 Pulse waveform detection means 8 Control part

Claims (8)

  1.  非単結晶半導体膜上にパルスレーザ光を照射してアニール処理を行うレーザアニール処理方法において、前記レーザ光のパルス波形の最大ピーク高さが所定の高さとなるように、前記パルスレーザ光のエネルギー制御を行うことを特徴とする半導体膜のレーザアニール方法。 In the laser annealing method for performing an annealing process by irradiating a non-single crystal semiconductor film with a pulsed laser beam, the energy of the pulsed laser beam is set so that the maximum peak height of the pulse waveform of the laser beam becomes a predetermined height. A laser annealing method for a semiconductor film, characterized by performing control.
  2.  前記レーザ光のパルス波形の最大ピーク高さを測定し、該最大ピーク高さが所定の高さとなるように、前記パルスレーザ光の出力エネルギーまたは/および出力後の前記パルスレーザ光のエネルギー調整を行うことを特徴とする請求項1記載の半導体膜のレーザアニール方法。 The maximum peak height of the pulse waveform of the laser beam is measured, and the output energy of the pulse laser beam and / or the energy of the pulse laser beam after output is adjusted so that the maximum peak height becomes a predetermined height. 2. The laser annealing method for a semiconductor film according to claim 1, which is performed.
  3.  前記非単結晶半導体膜がシリコン膜であることを特徴とする請求項1または2に記載の半導体膜のレーザアニール方法。 3. The laser annealing method for a semiconductor film according to claim 1, wherein the non-single crystal semiconductor film is a silicon film.
  4.  前記パルスレーザ光がエキシマレーザ光であることを特徴とする請求項1~3のいずれかに記載の半導体膜のレーザアニール方法。 4. The laser annealing method for a semiconductor film according to claim 1, wherein the pulse laser beam is an excimer laser beam.
  5.  前記パルス波形の最大ピーク高さは、前記非単結晶半導体膜に照射されるレーザ光のパルス波形で計測することを特徴とする請求項1~4のいずれかに記載の半導体膜のレーザアニール方法。 5. The laser annealing method for a semiconductor film according to claim 1, wherein the maximum peak height of the pulse waveform is measured by a pulse waveform of a laser beam irradiated on the non-single-crystal semiconductor film. .
  6.  パルスレーザ光を出力するレーザ発振器と、パルスレーザ光を非単結晶半導体膜に導く光学系と、前記パルスレーザ光の最大ピーク高さを測定する最大ピーク高さ測定部と、該最大ピーク高さ測定部の測定結果を受けて、前記最大ピーク高さが所定の高さとなるように、前記レーザ発振器におけるパルスレーザ光の出力エネルギーを制御する制御部とを備えることを特徴とする半導体膜のレーザアニール装置。 A laser oscillator that outputs pulsed laser light; an optical system that guides the pulsed laser light to a non-single-crystal semiconductor film; a maximum peak height measuring unit that measures the maximum peak height of the pulsed laser light; and the maximum peak height A semiconductor film laser, comprising: a control unit that controls the output energy of the pulsed laser light in the laser oscillator so that the maximum peak height becomes a predetermined height in response to the measurement result of the measurement unit Annealing equipment.
  7.  パルスレーザ光を出力するレーザ発振器と、前記パルスレーザ光の減衰率を調整する可変減衰器と、パルスレーザ光を非単結晶半導体膜に導く光学系と、前記パルスレーザ光の最大ピーク高さを測定する最大ピーク高さ測定部と、該最大ピーク高さ測定部の測定結果を受けて、前記最大ピーク高さが所定の高さとなるように、前記可変減衰器の減衰率を制御する制御部とを備えることを特徴とする半導体膜のレーザアニール装置。 A laser oscillator that outputs a pulsed laser beam; a variable attenuator that adjusts the attenuation rate of the pulsed laser beam; an optical system that guides the pulsed laser beam to a non-single-crystal semiconductor film; and a maximum peak height of the pulsed laser beam. A maximum peak height measuring unit to be measured, and a control unit that controls the attenuation rate of the variable attenuator so that the maximum peak height becomes a predetermined height in response to the measurement result of the maximum peak height measuring unit A laser annealing apparatus for a semiconductor film, comprising:
  8.  前記最大ピーク高さ測定部は、前記パルスレーザ光の光路に配置されたビームスプリッタと、該ビームスプリッタによって取り出された一部のパルスレーザ光の波形を検出するパルス波形検出部と、該パルス波形検出部で検出されたパルス波形から最大ピーク高さを判定する最大ピーク高さ判定部を備えることを特徴とする請求項6または7に記載の半導体膜のレーザアニール装置。 The maximum peak height measurement unit includes a beam splitter disposed in an optical path of the pulse laser beam, a pulse waveform detection unit that detects a waveform of a part of the pulse laser beam extracted by the beam splitter, and the pulse waveform 8. The laser annealing apparatus for a semiconductor film according to claim 6, further comprising a maximum peak height determination unit that determines a maximum peak height from a pulse waveform detected by the detection unit. 9.
PCT/JP2010/050890 2009-02-02 2010-01-25 Method and apparatus for laser-annealing semiconductor film WO2010087299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080001197.0A CN101965627B (en) 2009-02-02 2010-01-25 Method and apparatus for laser-annealing semiconductor film
KR1020107015996A KR101347138B1 (en) 2009-02-02 2010-01-25 Laser annealing method and annealing device for semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009021164A JP4863407B2 (en) 2009-02-02 2009-02-02 Laser annealing method for semiconductor film
JP2009-021164 2009-02-02

Publications (1)

Publication Number Publication Date
WO2010087299A1 true WO2010087299A1 (en) 2010-08-05

Family

ID=42395560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050890 WO2010087299A1 (en) 2009-02-02 2010-01-25 Method and apparatus for laser-annealing semiconductor film

Country Status (5)

Country Link
JP (1) JP4863407B2 (en)
KR (1) KR101347138B1 (en)
CN (1) CN101965627B (en)
TW (1) TWI512827B (en)
WO (1) WO2010087299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179826A1 (en) * 2012-05-28 2013-12-05 株式会社日本製鋼所 Laser annealing device having pulse waveform measuring function

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578943B (en) * 2012-07-25 2017-05-31 上海微电子装备有限公司 A kind of laser anneal device and laser anneal method
CN103219229B (en) * 2013-03-28 2016-04-27 昆山维信诺显示技术有限公司 The quantification determination methods of ELA inhomogeneities and reponse system thereof
KR101527096B1 (en) * 2013-12-24 2015-06-09 에이피시스템 주식회사 Method for compensating line beam energy and apparatus for operating the same
CN103779195B (en) * 2014-01-29 2017-11-07 上海集成电路研发中心有限公司 Laser anneal method and system
CN112038267B (en) * 2020-09-21 2024-02-20 京东方科技集团股份有限公司 Laser energy adjusting device
KR102392830B1 (en) * 2020-11-19 2022-04-29 광주과학기술원 Optical fiber laser device controlling beam shape and operating method there of

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (en) * 1996-06-25 1998-01-16 Toshiba Corp Pulse gas laser oscillator, laser annealing apparatus, method of manufacturing the semiconductor device and semiconductor device
JP2003163167A (en) * 2001-09-12 2003-06-06 Hitachi Ltd Polycrystal semiconductor film, method for manufacturing polycrystal semiconductor film and thin film semiconductor device which uses it
JP2006278746A (en) * 2005-03-29 2006-10-12 Japan Steel Works Ltd:The Crystallization method of thin film material and equipment using this method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903761B2 (en) * 2001-10-10 2007-04-11 株式会社日立製作所 Laser annealing method and laser annealing apparatus
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4698460B2 (en) * 2006-03-27 2011-06-08 オムロンレーザーフロント株式会社 Laser annealing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (en) * 1996-06-25 1998-01-16 Toshiba Corp Pulse gas laser oscillator, laser annealing apparatus, method of manufacturing the semiconductor device and semiconductor device
JP2003163167A (en) * 2001-09-12 2003-06-06 Hitachi Ltd Polycrystal semiconductor film, method for manufacturing polycrystal semiconductor film and thin film semiconductor device which uses it
JP2006278746A (en) * 2005-03-29 2006-10-12 Japan Steel Works Ltd:The Crystallization method of thin film material and equipment using this method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179826A1 (en) * 2012-05-28 2013-12-05 株式会社日本製鋼所 Laser annealing device having pulse waveform measuring function
KR101534454B1 (en) * 2012-05-28 2015-07-06 더 재팬 스틸 워크스 엘티디 Laser annealing device having pulse waveform measuring function

Also Published As

Publication number Publication date
TWI512827B (en) 2015-12-11
JP4863407B2 (en) 2012-01-25
KR20110122052A (en) 2011-11-09
TW201041044A (en) 2010-11-16
JP2010177609A (en) 2010-08-12
CN101965627B (en) 2014-02-05
CN101965627A (en) 2011-02-02
KR101347138B1 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
WO2010087299A1 (en) Method and apparatus for laser-annealing semiconductor film
KR100713750B1 (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
WO2011142154A1 (en) Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program
KR20060048219A (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
JP2012015445A (en) Laser anneal processing unit and laser anneal processing method
JP5214662B2 (en) Method for producing polycrystalline silicon thin film
KR102108025B1 (en) Method for manufacturing crystalline semiconductor and device for manufacturing crystalline semiconductor
TW201903855A (en) Energy controller for excimer-laser silicon crystallization
JP2005116729A (en) Laser processing apparatus and method therefor
US9099386B2 (en) Laser annealing method, laser annealing apparatus, and method for manufacturing thin film transistor
JP5614768B2 (en) Laser processing apparatus and laser processing method
JP5645220B2 (en) Laser annealing equipment for semiconductor films
WO2021049127A1 (en) Laser processing device and laser light monitoring method
TW202022363A (en) Monitoring system of laser polycrystallization apparatus
JP6020884B2 (en) Laser processing method
US20190157120A1 (en) Laser device and laser anneal device
KR20090105750A (en) Apparatus and method for laser irradiate
JP2007005412A (en) Method of forming polysilicon film
JP2010056433A (en) Method of manufacturing flat panel display device
JP2005072487A (en) Laser annealing method of semiconductor film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001197.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107015996

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735767

Country of ref document: EP

Kind code of ref document: A1