TW201041044A - Laser annealing method of semiconductor film and annealing apparatus - Google Patents

Laser annealing method of semiconductor film and annealing apparatus Download PDF

Info

Publication number
TW201041044A
TW201041044A TW099102826A TW99102826A TW201041044A TW 201041044 A TW201041044 A TW 201041044A TW 099102826 A TW099102826 A TW 099102826A TW 99102826 A TW99102826 A TW 99102826A TW 201041044 A TW201041044 A TW 201041044A
Authority
TW
Taiwan
Prior art keywords
laser light
maximum peak
laser
height
pulsed laser
Prior art date
Application number
TW099102826A
Other languages
Chinese (zh)
Other versions
TWI512827B (en
Inventor
Junichi Shida
Sugh-Wan Chung
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Publication of TW201041044A publication Critical patent/TW201041044A/en
Application granted granted Critical
Publication of TWI512827B publication Critical patent/TWI512827B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam

Abstract

The present invention can ensure uniformity of crystallization irrelevant to fluctuation in laser output during laser annealing. In a laser annealing treatment method implemented by proceeding an annealing treatment using a pulsed laser to irradiate a non-monocrystalline semiconductor film, energy control of the pulsed laser is carried out by maintaining a maximum peak height of an impulse shape of the said laser at a specified height. The control can be implemented by a laser annealing apparatus, including a laser oscillator that outputs the pulsed laser, an optical system that guides the pulsed laser to the non-monocrystalline semiconductor film, a maximum peak height determination part that determines the maximum peak height of the pulsed laser, and a control part. The control part receives determination results from the maximum peak height determination part, and controls output energy of the pulsed laser or a variable attenuator regulating attenuation index of the pulsed laser in the laser oscillator by maintaining the foregoing maximum peak height at the specified height.

Description

201041044 33605pif 六、發明說明: 【發明所屬之技術領域】 用於薄膜電晶 (PO一Stal)半導體膜或單晶(m〇n〇crystai)半導體= 方法以及裝置,該_電晶_於液晶或有機= 或驅動電路中。心)顯不㈣晝素開關(_她) 【先前技術】 對於液晶顯示器或有機EL顯示器的畫素 電路中所使㈣_電晶體而言,進行使时雷射光 beam)的雷射回火來作為低溫處理(pr〇cess)的譽造 的-個環節。該方法是對賴於基板上的非單晶半導體膜 照射雷射光並進行局部加熱熔融後,在其冷卻過程中將 導體薄膜結晶化為多晶或者單晶。因結晶化的半導體薄膜 中,子(carrier)的移動率變高,故能夠使薄膜電晶體高 性旎化。然而,於雷射光的照射中,必需於半導體薄膜中 進行均質的處理,而為了具有照射的雷射光穩定的照射能 1,一般而言是將雷射光輸出(0UtpUt)控制為固定。 然而,有時雷射振盪器(laser〇sciilat〇r)的振盪條件 會發生變化,或者因雷射氣體(laser gas)的劣化而導致 即便*射光輸出為固定但脈衝波形亦會發生變化,從而無 法獲得固疋的結晶化特性。圖3是表示改變雷射脈衝能量 (laserpulse energy)的情況下的雷射脈衝波形的變化,可 知因雷射脈衝能量的變動而導致脈衝波形的輪廓(pr〇file) 201041044 自身發生變化。 為此,先前,一般而言使用如下方法:使用功率計 (power meter)或光電二極體(ph〇t〇di〇de)對雷射光進 行檢測,且以雷射光波形的能量積分值為固定的方式對雷 射光輸出等進行控制。 〜而且’此外’還提出有一種脈衝氣體雷射(gas!·) 振盡裝i ’其求出雷射光的脈衝波形中的多個最大值 O (niaximal value)之間的比值,當該比值高於規定值時, 對,入至f射氣體封人容器内的激發氣體(exe—娜) 的量或者由上述電驗給至纽電電財的電壓值中的至 少一個進行控制(參照專利文獻1}。 [先行技術文獻] [專利文獻] [專利文獻1]日本專利特開平1〇—12549號公報 因先前的方法、裝置是以上述方式而構成,故而會發 生以下的問題。 0 木、 .¾注入鹵素氣體(halogen gas)作為雷射氣體時, 直至雷射氣體組成比穩定為止,雷射振盪不穩定。 2·若鹵素氣體組成比上升則脈衝能量穩定性降低。 3·「將最大值之間的比值限制於規定的範圍内」需要 一定的時間。 4.「將最大值之間的比值限制於規定的範圍内」與雷 射的能量變動少的穩定振盪相反。 5·藉由光束發散(divergence)的影響,雷射振盪器的 201041044 33605pif 原【=:與照射至被照射物的脈衝波形不同。 的在料均朗絲成,並目 而可獲得具有固定射光能量保持穩i從 射回火方法以相料導助膜料導體膜的雷 發明體:的雷射回火方法中,第1本 回火處理的雷射回火方法::牛:體5上而進行 測定’且以該最大波峰高度達到規定的高度= ==光的輸繼或⑽後的上述脈衝= 根據本發明,藉由將雷射光波形 高度而被照射雷射光的半導體膜的結=== 二t上述脈衝波形中的脈衝寬度(邮通 :等於1_ n秒(ns),較佳為小於等於漏η秒。 發明並未將脈衝寬度限定為特定的寬度。而且, :定 是 捉圍’並《將脈衝波形的最大波峰高纽制於;^圍^ 201041044 33605pif 方式進行控制。 適合==雷量的雷射照射位置的最 u 口、、、n Ba化的最大波峰南度以及最適合、纟士曰 Λ曰― (藉由雷射功率計所計測)的圖。根日日化的此里後度 射脈衝能量不同,最佳的能量密度也有所可知’由於雷 以將脈衝波形積分值設為固定的方式 ^從而即便201041044 33605pif VI. Description of the Invention: [Technical Field] The invention relates to a thin film electro-optic (PO-Stal) semiconductor film or a single crystal (m〇n〇crystai) semiconductor=method and device, which is used for liquid crystal or Organic = or drive circuit. (4) 昼 开关 ( 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 As a reputation for low temperature processing (pr〇cess). In this method, after the non-single crystal semiconductor film on the substrate is irradiated with laser light and locally heated and melted, the conductor film is crystallized into a polycrystal or a single crystal during the cooling process. In the semiconductor film which is crystallized, the mobility of the carrier becomes high, so that the thin film transistor can be made highly high. However, in the irradiation of the laser light, it is necessary to perform a homogeneous treatment in the semiconductor thin film, and in order to have the stable irradiation energy 1 of the irradiated laser light, the laser light output (0 UtpUt) is generally controlled to be fixed. However, sometimes the oscillation condition of the laser oscillator (laser〇sciilat〇r) may change, or the pulse waveform may change even if the *light output is fixed due to deterioration of the laser gas. The crystallization characteristics of the solid state cannot be obtained. Fig. 3 is a view showing changes in the laser pulse waveform in the case where the laser pulse energy is changed. It is understood that the contour of the pulse waveform (pr〇file) 201041044 itself changes due to the fluctuation of the laser pulse energy. For this reason, in the past, generally, the following method is used: the laser light is detected using a power meter or a photodiode, and the energy integral value of the laser light waveform is fixed. The way to control the output of the laser light, etc. ~ and 'further' also proposes a pulse gas laser (gas!·) to complete the ratio of the maximum value O (niaximal value) in the pulse waveform of the laser light, when the ratio When the value is higher than the predetermined value, at least one of the amount of the excitation gas (exe-na) in the gas-filled container or the voltage value from the above-mentioned electric detector to the new energy source is controlled (refer to the patent literature). [Patent Document] [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. 12549. The prior art method and apparatus are configured as described above, and the following problems occur. .3⁄4 When a halogen gas is injected as a laser gas, the laser oscillation is unstable until the laser gas composition ratio is stabilized. 2. If the halogen gas composition ratio is increased, the pulse energy stability is lowered. The ratio between the values is limited to the predetermined range. It takes a certain amount of time. 4. "The ratio between the maximum values is limited to the predetermined range" is opposite to the stable oscillation with less energy variation of the laser. Beam hair The effect of divergence, the laser oscillator 201041044 33605pif original [=: is different from the pulse waveform that is irradiated to the object to be irradiated. The material is uniformly formed, and the target can be obtained with fixed light energy to maintain stability. In the laser tempering method of the first embodiment of the tempering treatment, the first tempering laser tempering method: the cow: the body 5 is measured and The maximum height of the peak reaches a predetermined height === the transmission of light or the pulse after (10) = according to the present invention, the junction of the semiconductor film irradiated with the laser light by the height of the laser light beam === two t The pulse width in the pulse waveform (postal: equal to 1_n seconds (ns), preferably less than or equal to the leak n seconds. The invention does not limit the pulse width to a specific width. Moreover, it is intended to capture the 'and The maximum peak height of the pulse waveform is controlled by ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^曰Λ曰― (measured by a laser power meter) After the day of this root of days of emitted pulses of different energy, energy density best be understood 'due to lightning pulse waveform integrated value set in a fixed manner so that even if ^

Ο 件n面’於最大波峰高度中,即 【皮^波備也大致為固定,藉由將= 大波峰南度設為固定,從而即便雷射脈衝能量發生變 可,持最適合結晶化的狀態。另外,是否最適合結晶化, 可藉由例如結晶粒徑的電子顯微鏡觀察等而加以判定。 又,圖5是表示脈衝能量(功率計錢量計的計測值) 與脈衝區域(脈衝波形積分值)及最大波峰高度的關係的 圖。根據圖5可知,脈衝能量與最大波峰高度不成比例關 係,從而即便將脈衝能量設為固定,亦無法維持為最適合 結晶化的狀態。 …n n-plane 'in the maximum peak height, that is, [the skin wave is also generally fixed, by setting the = large peak south to be fixed, so that even if the laser pulse energy is changed, it is most suitable for crystallization. status. Further, whether or not it is most suitable for crystallization can be determined by, for example, electron microscope observation of a crystal grain size. Fig. 5 is a graph showing the relationship between the pulse energy (measured value of the power meter) and the pulse region (integrated pulse waveform value) and the maximum peak height. As can be seen from Fig. 5, the pulse energy is not proportional to the maximum peak height, and even if the pulse energy is fixed, it is impossible to maintain the state which is most suitable for crystallization. ...

根據第2發明,藉由對最大波峰高度進行測定的同時 而對輸出能量或雷射光的能量加以調整,從而可將脈衝波 形的最大波峰高度確實維持為規定高度。關於輸出能量的 調整方法,可藉由雷射振盪器的注入激發氣體的量的調 整、雷射振盪器的放電電壓值的調整等而進行。又,關於 輸出後的脈衝雷射光的能量調整,亦可使用可對從雷射振 盪器輸出的脈衝雷射光的衰減率進行調整的可變衰減器 X 201041044 33605pif (Variable attenuates)等來進行。可變衰減器只要是 適當變更相對於雷射光的衰減率的衰減器即可,本發 並未限定為特定者。 第3本發明的半導體膜的雷射回火方法如上述第 發明或第2本發明,其中上述非單晶半導體膜為 (silicon film )。 、 第4本發明的半導體膜的雷射回火方法如上述第 發明至第3本發明中的任一發明,装巾 準分子雷射光一耐laser^其中上述脈衝雷射光為 發二= ==照射至上述非單料導體膜== 包括半:射回火裝置’其特徵在於 雷射光導引至非單晶半導體膜^光;光學系統’將脈衝 上述脈衡雷射光的最大波峰、破大波蜂高度測定部,對 接收該最大波峰高度㈣彳頂定1及控制部, 峰高度達到規定的高度的方式=定結果,且以上述最大波 雷射光能量進行控制。 對上述雷射振盪器的脈衝 第7本發明的半導體棋 衔出脈 八^惯似, 述脈衝雷射光的衰減率進行敕射光;可變衰減器,對上 光導引至非單晶半導體犋;备i,光學系統,將脈衝雷射 :雷射振盪器,輸出脈回火裝置,其特徵在於 . 光學系統,將脈衝雷射 ,最大波峰高度測定部,對上述 201041044 該最定;以及控制部食 度達到規定的高卢的太4·十、、σ果,且以上述最大波峰高 行控制。 又、式來對上述可變衰減器的衰減率進 射光能量與上述雷射振堡器中的脈衝雷 第8本發=率此兩者來進行控制。 ❹ Ο 發明或第7太胸^膜的雷射回火裝置如上述第6本 乂= 7本發明,其中上述最 =【=rsplltter)’配置於上述脈衝雷= ,對#由該光束分光⑽出射的一 部Hi 波形進行檢測;以及最大波峰高度判定 大波峰高度形檢測部所檢測到的脈衝波形來對最 [發明之效果] 如以上所說明’根據本發明的半導體膜的雷射回火方 t,於將脈衝雷射光照射至非單晶半導體膜上而進行回火 t的雷射回火處理方法中,以上述雷射光的脈衝波形的 取大波峰高度達到規定的高度的方式來進行上述脈衝雷射 光的能量控制,因此具有以下的效果。 1. 藉由與結晶特性密切相關的脈衝波形的最大波 度來對雷射照射能量密度進行控制,因而能夠獲得一 固定的結晶化特性。 2. 即便因雷射振盪器的振盪條件的變化而使脈衝波形 發生變化,亦可獲得一直為固定的結晶化特性。 201041044 33605pif 3.在因雷射氣體的劣化而導致即便 但脈衝波㈣會發錢化的情況下,藉 =定 相關的脈衝波形的最大波峰高度來對雷射昭::?'= 行控制:因而可獲得-直為固定的結晶&密度進 兴眚力為:本Γ明之上述特徵和優點能更明顯易惶,下文特 舉貫把例,並配合所附圖式作詳細說明如下。下特 【實施方式】 ::二附圖對本發明的一實施形態進行說明。 Μ射回火處理裝置包括輸出氣體雷 1,該啻身+桩、、县-1山 田m疋的雷射振盈 電壓來對 如I使用C〇herent公司的準分子雷射(excimer laser)振 盪窃LSX315C (波長3〇8nm,重複振盪頻率3〇〇Hz)。 於自雷射振盪器1輸出的雷射光1〇所射出的光路上 配置著可變衰減器2。該可變衰減器2由透射率根據雷射 光的入射角度而發生變化的衰減器(attenuat〇r)光學元件 而構成,且可對通過可變衰減器2的雷射光的衰減率進行 調整。該可變衰減器2中的衰減率的調整可藉由可變衰減 器控制部3而進行’該可變衰減器控制部3例如可由中央 處理單元(central processing unit,CPU)及使該 CPU 動 作的程式(program)等而構成。 於可變衰減器2的射出側光路上設置著配置有均質機 (homogenizer)等的光學構件的光學系統4,藉由該光學 系統4而將雷射光1〇例如整形為長度465 mm、寬度0.4 201041044 mm 的線光束(line beam )。 由光學系統4而導引的雷射光1〇中,其中一部分藉 由光束分光器5而出射,大部分則穿透光束分光器5而^、 射至被處理體6。關於被處理體6,例如以厚度為5〇 的非晶石夕(a—Si)膜作為對象。 ^光束分光器5出射的雷射光10a被輸入至脈衝波形 檢測單元7中。脈衝波形檢測單元7對雷射光伽的脈衝According to the second aspect of the invention, by adjusting the maximum peak height and adjusting the energy of the output energy or the laser light, the maximum peak height of the pulse waveform can be surely maintained at a predetermined height. The method of adjusting the output energy can be performed by adjusting the amount of the excitation gas injected by the laser oscillator, adjusting the discharge voltage value of the laser oscillator, and the like. Further, the energy adjustment of the pulsed laser light after the output may be performed using a variable attenuator X 201041044 33605pif (Variable attenuates) or the like which can adjust the attenuation rate of the pulsed laser light output from the laser oscillator. The variable attenuator is not limited to a specific one as long as it is an attenuator that appropriately changes the attenuation rate of the laser light. A laser tempering method for a semiconductor film according to a third aspect of the present invention, wherein the non-single-crystal semiconductor film is a (silicon film). The laser tempering method of the semiconductor film according to the fourth aspect of the invention is the invention of any one of the above-mentioned first to third inventions, wherein the excimer laser light is resistant to lasers, wherein the pulsed laser light is two === Irradiation to the above-mentioned non-single-conductor film == includes half: the shot tempering device' is characterized in that the laser light is guided to the non-single-crystal semiconductor film; the optical system 'pulses the maximum peak of the above-mentioned pulse-balanced laser light, breaking the large wave The bee height measuring unit controls the maximum peak height (4) and the control unit, and the peak height reaches a predetermined height. The result is determined by the maximum wave laser light energy. The pulse of the above-mentioned laser oscillator is the same as the attenuation of the pulsed laser light, and the variable attenuator is used to guide the glazing to the non-single-crystal semiconductor. ; i, optical system, pulse laser: laser oscillator, output pulse tempering device, characterized by: optical system, pulse laser, maximum peak height measurement department, the above-mentioned 201041044; and control The degree of food intake reached the prescribed level of 4, 10, and σ, and was controlled by the above-mentioned maximum peak. Further, the attenuation energy of the variable attenuator is controlled by the light energy of the variable attenuator and the pulse rate of the laser. ❹ Ο Invented or the seventh tempering device of the seventh thoracic film, as in the sixth invention described above, wherein the above-mentioned most = [= rsplltter] is disposed in the above-mentioned pulse Ray =, and # is split by the beam (10) One of the emitted Hi waveforms is detected; and the maximum peak height is determined by the pulse waveform detected by the large peak height detecting portion, and the most [effect of the invention] as described above, the laser tempering of the semiconductor film according to the present invention In the laser tempering treatment method in which the pulsed laser light is irradiated onto the non-single crystal semiconductor film and tempered t, the peak height of the pulse waveform of the laser light reaches a predetermined height. The energy control of the above-described pulsed laser light has the following effects. 1. The laser irradiation energy density is controlled by the maximum wavelength of the pulse waveform closely related to the crystallization characteristics, so that a fixed crystallization characteristic can be obtained. 2. Even if the pulse waveform changes due to changes in the oscillation conditions of the laser oscillator, it is possible to obtain a constant crystallization characteristic. 201041044 33605pif 3. In the case of the deterioration of the laser gas, even if the pulse wave (4) is to be used, the maximum peak height of the pulse waveform is determined by the correlation of the laser beam::? '= Line control: thus available - straight to fixed crystal & density into the force: the above characteristics and advantages of this paragraph can be more obvious and easy to follow, the following specific examples, and with the drawings The details are as follows. [Embodiment] [Embodiment] An embodiment of the present invention will be described with reference to the accompanying drawings. The 回 回 回 处理 包括 包括 包括 包括 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出 输出Stealing LSX315C (wavelength 3〇8nm, repeated oscillation frequency 3〇〇Hz). The variable attenuator 2 is disposed on the optical path emitted from the laser light 1 output from the laser oscillator 1. The variable attenuator 2 is constituted by an attenuator optical element whose transmittance changes according to the incident angle of the laser light, and the attenuation rate of the laser light passing through the variable attenuator 2 can be adjusted. The adjustment of the attenuation rate in the variable attenuator 2 can be performed by the variable attenuator control unit 3. The variable attenuator control unit 3 can be operated by, for example, a central processing unit (CPU). The program (program) and so on. An optical system 4 on which an optical member such as a homogenizer or the like is disposed is disposed on the light-emitting side of the variable attenuator 2, and the laser light 4 is shaped into, for example, a length of 465 mm and a width of 0.4 by the optical system 4. Line beam of 201041044 mm. Of the laser light 1 导引 guided by the optical system 4, a part of it is emitted by the beam splitter 5, and most of it passes through the beam splitter 5 and is incident on the object 6 to be processed. The object to be processed 6 is, for example, an amorphous a-Si film having a thickness of 5 Å. The laser light 10a emitted from the beam splitter 5 is input to the pulse waveform detecting unit 7. Pulse waveform detecting unit 7 pulses the laser light gamma

波形進行檢測,且相當於本發明的脈衝波形檢卿。例如, 使用Hamamatsu Photonics製造的雙平面光電管(峋1&⑽The waveform is detected and corresponds to the pulse waveform check of the present invention. For example, a two-plane photocell made with Hamamatsu Photonics (峋1&(10)

Phototube)(型f虎則3u—52)來作為脈衝波形檢測單元 7 ° 藉由脈衝波形檢測單元7而檢測出的結果被輸出 制部8。控制部8由CPU、使該cpu動作的程式、軸: 與脈衝波_規定最錢峰高度侧的資料自 2料所構成。於控制部8中根據脈衝波形檢測單元 來判定波形的最大波峰高度。因此,控制部 波峰高度判定部的魏,且與上述脈衝波开 7協動而構成本發明的最大波峰高度測定部。^ 行雷射振盪器1的輸出控制,並且可對可; 衣減益控制部3發出控制指令。 繼而,對上述雷射回火裝置的動作進行說明。 輸出而自^振盪器1輸出雷㈣ 結昜! ΐ 稭由内置的能量計(咖奶m·)來柴 八振^讀行控制。能量計的值與脈衝波形 = 11 201041044 33605pif 比例。 遠雷射光10到達可變衰減器2。該可變衰減器2中受 到如下控制以由可變衰減器控制部3初始設定的衰 減率使雷射光1G通過。藉由可變衰減器2來設定最適合使 被處理體6結晶化㈣射能量密度。 〇 .以規定的衰減率而衰減後的雷射光藉由光學系統4而 被整形為帶狀’並到達光束分絲5。通過光束分光器5 射光被^、射至被處理體6而進行雷射回火處理。由光 7, = = 5而出射的雷射光1〇a到達脈衝波形檢測單元 8。 : ”所私'則出的脈衝波形相關的資訊輸出至控制部 並將檢測結果輸r控二述(=衝波形進行檢測, 最大==步中二據檢:r, 中的第1波峰為最 :::如圖3所示’波形 進行判定而將其視作i:皮藉由對該第1波峰高度 的最=峰儲“儲存部中的規定範圍 峰高度進行比較(步〜述判疋(檢測)出的最大波 高度預先儲存錢。此外’規定範_最大波峰 度’也可以是根據被處理體範圍的最大波峰高 的最大波峰高度。 的種類相狀不同的資料 12 201041044 範圍的最測到的最大波峰高度處於規定 行雷射光波形的檢測(進;^匕t大^峰^度’然後進 舍所於、目丨丨亦可空開規定的間隔而進行。 時大波導高度並不處於規定的範圍内 時(步驟S3,N0),則進行雷射輸出調整。 Ο Ο 的輸出調整,是藉由放電電壓而進 圍二Γ檢測到的最大波峰高度高 範圍内的方式來= 峰高度處於規定 一古而丁田射振盪器1的放電電壓進行調整,另 以增大輸的最ΐ波峰高度低於規定範圍時,則 1、#取麵焉度處於蚊範_的方式來對 i高度;==量=可根據所檢測到的最大波 述纏^並相雷射騎處理結束(步驟S5, )—為/ ’、輯進行雷射級形的制(進人步驟sl)。 错由上述方法’即便當雷射光的輸出發生變動時,藉 波形的最大波峰高度維持為規輕3二: =波形的形狀而以最適合結晶化的狀態來進行雷射= W從而祕獲得-直為固定的結晶。 或了 ^卜於以控制步财,已卿了如下情況,即, i料高度,妓由雷射振虽器 輪出來進行的,但亦可藉由調整上述可變衰減器2 13 201041044 33605pif 的衰減率㈣脈衝波_最大 調整的雜此兩種調整來對脈衝波形的最大波峰ΐ度進ί 本二ί,已?據上述實施職對本發日㈣行了說明,但 ' 、不限定為上述說明的内容,只要不脫離太旅拍的 範圍則可進行輕_更。 錢離本發明的 雖然本發明已以實施例揭露如上, ,,任何所屬技術領域中具有通常知識者非=: 3=,_内’當可作些許之更動與潤飾,故本 i圖式簡ί=Γ後附之申請專利範圍所界定者為準。 略的Ξ。1是表示本發明的—實施形g的雷射回火裝置的概 的狀=====施雜的用於維持最適合結晶化 形的:ίΐϊ改變雷射脈衝能量的情況下的雷射脈衝波 旦—圖4是表示相對於雷射脈衝能量的最適合結晶化的能 量密度與最大波峰高度的圖解。 b 圖5是表示相對於雷射脈衝能量的脈衝能量盘 峰高度的關係的圖。 、取大波 【主要元件符號說明】 14 1 ·雷射振盪器 201041044 2:可變衰減器 3:可變衰減器控制部 4:光學系統 5:光束分光器 6 :照射對象 7:脈衝波形檢測單元 8 :控制部 10、10a :雷射光 si〜s5 :步驟The result of the detection by the pulse waveform detecting unit 7 as the pulse waveform detecting unit 7 is output to the output unit 8 as a pulse tube detecting unit 7°. The control unit 8 is composed of a CPU, a program for operating the cpu, an axis: and a pulse wave _ which defines the data on the height of the peak height. The maximum peak height of the waveform is determined by the control unit 8 based on the pulse waveform detecting unit. Therefore, the control unit peak height determining unit cooperates with the pulse wave opening 7 to constitute the maximum peak height measuring unit of the present invention. The output control of the laser oscillator 1 is performed, and a control command can be issued to the clothing debuff control unit 3. Next, the operation of the above-described laser tempering device will be described. Output and output from the oscillator 1 (Ray) 昜! ΐ Straw is controlled by the built-in energy meter (coffee milk m·). The value of the energy meter is proportional to the pulse waveform = 11 201041044 33605pif. The far laser light 10 reaches the variable attenuator 2. The variable attenuator 2 is controlled to pass the laser light 1G by the attenuation rate initially set by the variable attenuator control unit 3. The variable attenuator 2 is used to set the optimum energy density for crystallizing (4) the object to be processed 6.雷 The laser light attenuated at a predetermined attenuation rate is shaped into a strip shape by the optical system 4 and reaches the beam splitting wire 5. The beam splitter 5 emits light and is incident on the object to be processed 6 to perform laser tempering treatment. The laser light 1 〇a emitted by the light 7, == 5 reaches the pulse waveform detecting unit 8. : The information related to the pulse waveform outputted by "Private" is output to the control unit and the detection result is outputted by the control. (= The waveform is detected. The maximum == 2 in the step: r, the first peak in the Most::: As shown in Fig. 3, the waveform is judged and is regarded as i: the skin is compared with the peak height of the predetermined range in the storage unit by the most = peak storage of the height of the first peak (step ~ judgment) The maximum wave height of the 疋(detection) is pre-stored. In addition, the 'predetermined _maximum kurtosis' may be the maximum peak height according to the maximum peak height of the range of the object to be processed. The type of the data is different from each other 12 201041044 The most measured maximum peak height is in the detection of the specified line of laser light (in; ^ 匕 t large ^ peak ^ degree ' and then enter the room, the target can also be opened at a specified interval. When it is not within the predetermined range (step S3, N0), the laser output adjustment is performed. The output adjustment of Ο Ο is the range of the maximum peak height detected by the discharge voltage. = peak height is in the regulation of an ancient Ding Tian shot The discharge voltage of the singer 1 is adjusted, and when the height of the last peak of the increase is lower than the predetermined range, the height of the surface of the singer 1 is in the range of the mosquito _ to the height of i; The detected maximum waveform wrap is completed (step S5, ) - is / ', and the laser level is formed (in step sl). The above method is used even when the laser light When the output changes, the maximum peak height of the waveform is maintained as the lightness of the two: = the shape of the waveform, and the laser is most suitable for crystallization, and the laser is obtained, and the crystal is obtained. In order to control the step, the situation has been as follows, that is, the height of the material is measured by the laser oscillator, but the attenuation rate of the variable attenuator 2 13 201041044 33605pif can also be adjusted (4) The pulse wave _ maximum adjustment of the two adjustments to the maximum peak amplitude of the pulse waveform into the second, has been explained according to the above-mentioned implementation of the post (4), but ', is not limited to the above description As long as it does not deviate from the scope of the travel, it can be lighter. Although the present invention has been disclosed in the above embodiments by way of example, any person having ordinary knowledge in the technical field is not =: 3=, _内', when a little change and retouching can be made, the present figure is simple Γ=Γ The scope of the patent application is defined as follows. A slight Ξ. 1 is a schematic representation of the laser tempering device of the present invention - ===== mixed for maintaining the most suitable crystallization The shape of the laser pulse in the case of changing the laser pulse energy - Figure 4 is a graph showing the energy density and maximum peak height of the most suitable crystallization relative to the energy of the laser pulse. b Figure 5 is a representation A diagram of the relationship between the peak height of the pulse energy of the laser pulse energy. The large wave [Description of the main components] 14 1 · Laser oscillator 201041044 2: Variable attenuator 3: Variable attenuator control section 4: Optical system 5: Beam splitter 6: Irradiation object 7: Pulse waveform detecting unit 8: Control section 10, 10a: Laser light si~s5: Step

1515

Claims (1)

201041044 33605pif 七、申請專利範圍: 至非單晶半將脈衝雷射光照射 射回火方法的進行回火處理’上述半導體膜的雷 的高彳波形的最大波峰_到規定 术進仃上述脈衝雷射光的能量控制。 火方概圍第1項箱之铸咖的雷射回 定,曰雷Λ光的脈衝波形的最大波峰高度進行測 t + 取大波峰高度達到規定的高度的方式,來進杆 光的輪出能量或娜後的上述脈衝雷: 雷射第1項或第2項所迷之半導體膜的 上述非單晶半導體膜為矽膜。 趙膜項以3#~韻述之半導 上述脈衡雷射光為準分子雷射光。 體膜中1㈣4性^述之半導 上述脈衝波形的最大波峰高度根據照射至上 晶半導體膜的雷射光的脈衝波形而計測。 ^早 種半導體膜的雷射回火裝置,其特徵在於包括. 运射振盪器,輸出脈衝雷射光; 201041044 JJOUDpu ,學系統丄將脈衝雷射光導引至非單晶半導體膜; 高度Si:高定部,對上述脈衝雷射光的最大波峰 以上,魏該最域峰高度測定部_定結果,且 射振波峰高度達職定的高度的方式,來對上述雷 、益的脈衝雷射光的輸出能量進行控制。 Ο ο 7雷#射回域置,其紐在於包括: 丁搌盈裔,輸出脈衝雷射光; ==器,對上述脈衝雷射光的衰減率進行調整; =系統’將_雷射光導引至料晶半導體膜; 高度進行部’對上舰衝雷射光的最大波峰 控制部,接收該最大波峰高度測定 以上述最大波峰高度達到蚊的高度的方且 衰減器的衰減率進行控制。4方式㈣上返可變 雷第6蝴7销敎半導體膜的 亡述最大波峰高度測定部包括: ,束刀光态,配置於上述脈衝雷射光的光 脈衝波形檢測部,對藉由該光束分光的 分脈,雷縣的波形進行檢測;以及 ㈣的-部 最大波峰尚度判定部,根據由該脈 測到的脈衝波形來對最大波峰高度進行判ί檢測部所檢201041044 33605pif VII. Patent application scope: tempering to the non-single crystal half of the pulsed laser light to ignite the fire method. 'The maximum peak of the sorghum waveform of the above-mentioned semiconductor film _ to the prescribed operation 仃 the above-mentioned pulsed laser light Energy control. In the fire side, the laser of the first box of the caster is set back, and the maximum peak height of the pulse waveform of the thunderbolt is measured by t + taking the height of the peak to a predetermined height to enter the rod light. The above-mentioned pulsed mine of energy or after: the above-mentioned non-single-crystal semiconductor film of the semiconductor film of the first or second aspect of the laser is a ruthenium film. Zhao film is based on the semi-conductance of 3#~ rhyme. The above-mentioned pulse-balanced laser light is excimer laser light. The semi-conductance of 1 (four) 4 in the body film The maximum peak height of the pulse waveform is measured based on the pulse waveform of the laser light irradiated onto the epitaxial semiconductor film. A laser tempering device for an early semiconductor film, characterized by comprising: an oscillating oscillator, outputting pulsed laser light; 201041044 JJOUDpu, learning system 导引 directing pulsed laser light to a non-single crystal semiconductor film; height Si: high The fixed part, the output of the pulsed laser light of the above-mentioned thunder and benefit is obtained by the method of determining the result of the maximum peak height of the pulsed laser light above the maximum peak of the pulsed laser light, and the height of the radiation peak height reaches the predetermined height. Energy is controlled. ο ο 7雷# Shooting back to the domain, the key points are: Ding Yuying, output pulsed laser light; ==, adjust the attenuation rate of the above-mentioned pulsed laser light; = system 'guides _ laser light to The material crystal semiconductor film; the maximum peak control unit for the elevation portion of the upper ship laser beam is received, and the maximum peak height is measured, and the maximum peak height reaches the height of the mosquito and the attenuation rate of the attenuator is controlled. (4) The maximum peak height measuring unit of the upper-return-type variable-thrombth semiconductor film includes: a beam-light state, an optical pulse waveform detecting portion disposed in the pulsed laser light, and the light beam is detected by the beam The branching of the light splitting, the waveform of Leixian is detected; and (4) the maximum peak degree determining unit of the - part, the maximum peak height is judged according to the pulse waveform measured by the pulse
TW099102826A 2009-02-02 2010-02-01 Laser annealing method of semiconductor film and annealing apparatus TWI512827B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021164A JP4863407B2 (en) 2009-02-02 2009-02-02 Laser annealing method for semiconductor film

Publications (2)

Publication Number Publication Date
TW201041044A true TW201041044A (en) 2010-11-16
TWI512827B TWI512827B (en) 2015-12-11

Family

ID=42395560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099102826A TWI512827B (en) 2009-02-02 2010-02-01 Laser annealing method of semiconductor film and annealing apparatus

Country Status (5)

Country Link
JP (1) JP4863407B2 (en)
KR (1) KR101347138B1 (en)
CN (1) CN101965627B (en)
TW (1) TWI512827B (en)
WO (1) WO2010087299A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829575B2 (en) * 2012-05-28 2015-12-09 株式会社日本製鋼所 Laser annealing equipment with pulse waveform measurement function
CN103578943B (en) * 2012-07-25 2017-05-31 上海微电子装备有限公司 A kind of laser anneal device and laser anneal method
CN103219229B (en) * 2013-03-28 2016-04-27 昆山维信诺显示技术有限公司 The quantification determination methods of ELA inhomogeneities and reponse system thereof
KR101527096B1 (en) * 2013-12-24 2015-06-09 에이피시스템 주식회사 Method for compensating line beam energy and apparatus for operating the same
CN103779195B (en) * 2014-01-29 2017-11-07 上海集成电路研发中心有限公司 Laser anneal method and system
CN112038267B (en) * 2020-09-21 2024-02-20 京东方科技集团股份有限公司 Laser energy adjusting device
KR102392830B1 (en) * 2020-11-19 2022-04-29 광주과학기술원 Optical fiber laser device controlling beam shape and operating method there of

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (en) * 1996-06-25 1998-01-16 Toshiba Corp Pulse gas laser oscillator, laser annealing apparatus, method of manufacturing the semiconductor device and semiconductor device
JP2003163167A (en) * 2001-09-12 2003-06-06 Hitachi Ltd Polycrystal semiconductor film, method for manufacturing polycrystal semiconductor film and thin film semiconductor device which uses it
JP3903761B2 (en) * 2001-10-10 2007-04-11 株式会社日立製作所 Laser annealing method and laser annealing apparatus
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP3977379B2 (en) * 2005-03-29 2007-09-19 株式会社日本製鋼所 Method and apparatus for crystallizing thin film material
JP4698460B2 (en) * 2006-03-27 2011-06-08 オムロンレーザーフロント株式会社 Laser annealing equipment

Also Published As

Publication number Publication date
KR20110122052A (en) 2011-11-09
CN101965627A (en) 2011-02-02
WO2010087299A1 (en) 2010-08-05
JP4863407B2 (en) 2012-01-25
KR101347138B1 (en) 2014-01-07
JP2010177609A (en) 2010-08-12
CN101965627B (en) 2014-02-05
TWI512827B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
TW201041044A (en) Laser annealing method of semiconductor film and annealing apparatus
KR100713750B1 (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
JP5105903B2 (en) Laser annealing apparatus and annealing method
CN102307696B (en) Method and apparatus for irradiating a semiconductor material surface by laser energy
US20050272185A1 (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
CN106935491A (en) A kind of laser anneal device and its method for annealing
KR930020203A (en) Method for Forming Polycrystalline Silicon Film in LCD Manufacturing Processor
JP5430488B2 (en) Laser annealing processing apparatus, laser annealing processing body manufacturing method, and laser annealing processing program
TW201203325A (en) Apparatus and method for laser anneal treatment
EP3451365B1 (en) Laser annealing method
JP2004158472A (en) Laser, laser irradiation method, semiconductor device or its producing process
KR101527096B1 (en) Method for compensating line beam energy and apparatus for operating the same
CN104704610B (en) The manufacture device of crystalline method for making semiconductor and crystalline semiconductor
TW201208798A (en) Laser annealing apparatus and laser annealing method
Ivlev et al. Optical-pyrometric diagnostics of the state of silicon during nanopulsed laser irradiation
TW202302256A (en) Laser Irradiation Apparatus, Laser Irradiation Method, and Recording Medium Recording Program to be Readable
JP4024657B2 (en) Method and apparatus for forming periodic structure of crystal
KR101491043B1 (en) Crystallization method and apparatus
WO2006075569A1 (en) Semiconductor thin film manufacturing method and semiconductor thin film manufacturing apparatus
JP5645220B2 (en) Laser annealing equipment for semiconductor films
CN104741777B (en) Laser irradiating method and laser irradiation device
KR101591490B1 (en) Method for compensating laser and apparatus for operating the same
JP2004356513A (en) Method and apparatus for laser annealing
JP2007208044A (en) Method for manufacturing semiconductor thin film, and manufacturing apparatus of semiconductor thin film
KR20090045057A (en) Laser anneal method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees