WO2010087135A1 - 中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器 - Google Patents

中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器 Download PDF

Info

Publication number
WO2010087135A1
WO2010087135A1 PCT/JP2010/000340 JP2010000340W WO2010087135A1 WO 2010087135 A1 WO2010087135 A1 WO 2010087135A1 JP 2010000340 W JP2010000340 W JP 2010000340W WO 2010087135 A1 WO2010087135 A1 WO 2010087135A1
Authority
WO
WIPO (PCT)
Prior art keywords
middle distillate
cloud point
hydrotreating reactor
reactor
gas
Prior art date
Application number
PCT/JP2010/000340
Other languages
English (en)
French (fr)
Inventor
那須野一八
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国際石油開発帝石株式会社
新日本石油株式会社
石油資源開発株式会社
コスモ石油株式会社
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国際石油開発帝石株式会社, 新日本石油株式会社, 石油資源開発株式会社, コスモ石油株式会社, 新日鉄エンジニアリング株式会社 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to CN201080005827.1A priority Critical patent/CN102300961B/zh
Priority to BRPI1007530A priority patent/BRPI1007530A2/pt
Priority to AU2010209217A priority patent/AU2010209217B2/en
Priority to EP10735607A priority patent/EP2392635A4/en
Priority to EA201170972A priority patent/EA020717B1/ru
Priority to JP2010548403A priority patent/JP5367727B2/ja
Priority to US13/138,236 priority patent/US20120006721A1/en
Priority to CA2750088A priority patent/CA2750088C/en
Publication of WO2010087135A1 publication Critical patent/WO2010087135A1/ja
Priority to ZA2011/05353A priority patent/ZA201105353B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/72Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the present invention relates to a middle distillate hydrotreating reactor that hydrotreats and hydroisomerizes a middle distillate containing components in a boiling range corresponding to light oil among hydrocarbon compounds synthesized by a Fischer-Tropsch synthesis reaction. And a middle distillate hydrotreating reactor.
  • FT synthetic hydrocarbon A hydrocarbon compound (hereinafter referred to as “FT synthetic hydrocarbon”) is synthesized by the Fischer-Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”) using this synthesis gas as a raw material gas.
  • GTL Gas To Liquids
  • the liquid fuel product using the above-mentioned FT synthetic hydrocarbon as a raw material has a high paraffin content and hardly contains a sulfur content, for example, as shown in Patent Document 1, attention is paid to an environmentally friendly fuel.
  • this FT synthetic hydrocarbon is fractionated in a rectifying column, an intermediate fraction containing components in the boiling range corresponding to light oil is taken out from the center of the rectifying column. This middle distillate is used as a raw material for light oil. Further, a wax fraction having a large number of carbon atoms is taken out from the bottom of the rectifying column. This wax fraction can be used as a raw material for light oil by being lightened by hydrocracking.
  • the middle fraction of the above-mentioned FT synthetic hydrocarbon contains a large amount of normal paraffins, so the freezing point (solidification temperature) tends to increase.
  • the low-temperature characteristics of light oil made from this middle fraction are the products. May not meet the required level.
  • the middle distillate distilled from the rectification column is used together with the conversion of oxygen-containing compounds such as olefins and alcohols by-produced in the FT synthesis reaction step to saturated hydrocarbons by hydrorefining. It is necessary to perform hydroisomerization to convert at least a part of normal paraffin to isoparaffin having a low freezing point.
  • the middle distillate hydrorefining step in which the middle distillate is hydrorefined and hydroisomerized, if the progress of hydroisomerization is insufficient, the resulting hydrofinished middle distillate will have a freezing point. A large amount of normal paraffin having a high content remains, and the low-temperature characteristics of light oil made from this middle distillate are not sufficiently improved.
  • the middle distillate hydrorefining process when the hydroisomerization conditions are excessive, the hydrocarbons produced by the decomposition reaction are lightened and become unsuitable as a raw material for light oil, The yield of light oil as a product may be reduced. For this reason, in order to obtain light oil (diesel fuel oil) from FT synthetic hydrocarbons, it is necessary to appropriately proceed with hydroisomerization in the middle distillate hydrotreating process.
  • the present invention has been made in view of the above-described circumstances, and has advanced hydroisomerization in the hydrorefining step of the middle distillate of the FT synthesized hydrocarbon obtained by the FT synthesis reaction appropriately and has been stabilized.
  • An object of the present invention is to provide a method for operating a middle distillate hydrotreating reactor and a middle distillate hydrotreating reactor capable of producing a hydrodistilled middle distillate having properties and obtaining high-quality gas oil. It is said.
  • the method for operating the middle distillate hydrotreating reactor of the present invention comprises hydrotreating middle distillate containing components in the boiling range corresponding to light oil among FT synthesized hydrocarbons synthesized by Fischer-Tropsch synthesis reaction.
  • a method for operating a middle distillate hydrorefining reactor to be hydroisomerized wherein the middle distillate is brought into contact with a catalyst to hydrotreat and hydroisomerize to obtain a hydrofinished middle distillate Measuring the cloud point of the hydrorefined middle distillate flowing out of the middle distillate hydrotreating reactor, and the middle distillate hydrogen so that the cloud point becomes a predetermined target value.
  • a step of controlling the operating conditions of the chemical purification reactor comprises hydrotreating middle distillate containing components in the boiling range corresponding to light oil among FT synthesized hydrocarbons synthesized by Fischer-Tropsch synthesis reaction.
  • the cloud point of the hydrofinished middle distillate flowing out from the middle distillate hydrotreating reactor is measured, and this cloud point is a predetermined target. Since the operating conditions of the middle distillate hydrotreating reactor are controlled so as to have a value, the cloud point of the hydrofinished middle distillate produced is stabilized.
  • a cloud point is temperature at the time of clouding generate
  • the cloud point can be measured by cooling the sample liquid at a constant rate and measuring the liquid temperature when the sample liquid is clouded.
  • the cloud point of the hydrofinished middle distillate becomes high.
  • the cloud point of the hydrofinished middle distillate becomes low. That is, by measuring the cloud point of the hydrolysed middle distillate, it is possible to grasp the degree of progress of hydroisomerization in the middle distillate hydrotreating reactor.
  • the hydroisomerization in the reactor is properly controlled.
  • light oil as diesel fuel oil normal paraffin precipitates as a wax component when used under cold conditions, and the filter installed in the fuel oil supply system to the diesel engine may become clogged. There is. Therefore, for the purpose of preventing such problems, it is common to manage light oil products so as to have a cloud point of a certain value or less.
  • the use of the cloud point as an index for operation management has not been performed in a reactor for producing a middle distillate serving as a raw material for light oil.
  • the sample of the hydrofinished middle distillate collected is cooled at a cooling rate of 5.0 ° C./min.
  • the cloud point may be measured by cooling under the condition of 15.0 ° C./min or less.
  • the cloud point can be measured in a short time by cooling at a cooling rate of 5.0 ° C./min or more and measuring the cloud point.
  • the cloud point measurement result can be reflected in the control of the middle distillate hydrotreating reactor without a significant time delay after collection of the hydrofinished middle distillate sample.
  • by measuring the cloud point by cooling at a cooling rate of 15.0 ° C./min or less it becomes possible to measure the cloud point with high accuracy and appropriately control the middle distillate hydrotreating reactor. Can do.
  • the collected sample is controlled while the cooling rate is controlled by an electronic cooling unit using a Peltier element.
  • the cloud point may be measured after cooling.
  • the cloud point can be accurately measured.
  • the middle distillate per unit time, the hydrogen partial pressure, the reaction temperature, At least one of the minute processing amounts may be controlled.
  • the degree of progress of hydroisomerization is controlled by controlling at least one of the hydrogen partial pressure, the reaction temperature, and the middle distillate throughput per unit time, which are the operating conditions of the middle distillate hydrotreating reactor.
  • the middle distillate throughput per unit time can be represented by liquid hourly space velocity (L -1 ) as the amount of oil passing through the middle distillate hydrotreating reactor.
  • the middle distillate hydrotreating reactor of the present invention is a hydrotreating and hydroisomerization process comprising a middle distillate containing components in the boiling range corresponding to light oil among FT synthesized hydrocarbons synthesized by Fischer-Tropsch synthesis reaction.
  • the cloud point of the hydrofinished middle distillate flowing out from the middle distillate hydrotreating reactor can be measured quickly. Then, by controlling the operating conditions based on the results, the degree of progress of hydroisomerization can be adjusted appropriately, and the properties of the hydrorefined middle distillate produced can be stabilized. Thereby, the quality improvement of the light oil manufactured from this middle distillate can be aimed at.
  • the sampling unit is connected to the cloud point measuring unit by a pipe, and the sample is automatically collected and transferred to the cloud point measuring unit.
  • the cloud point measuring unit may automatically measure the cloud point of the transferred sample.
  • the cloud point measurement unit cools the collected sample at a cooling rate of 5.0 ° C./min to 15.0 ° C./min. May be provided with a cooling unit capable of. In this case, since the sample can be cooled at the cooling rate, the cloud point can be measured quickly and accurately.
  • the sample provided in the cloud point measuring unit can be cooled at a cooling rate of 5.0 ° C./min to 15.0 ° C./min.
  • the cooling unit may be an electronic cooling unit using a Peltier element. In this case, the temperature control of the sample can be performed accurately and easily, and the cloud point can be measured with higher accuracy.
  • the progress of hydroisomerization is properly controlled, and the hydrofinished intermediate having a stable property is obtained.
  • a method for operating a middle distillate hydrotreating reactor and a middle distillate hydrotreating reactor capable of producing a distillate and capable of obtaining a high quality light oil (diesel fuel oil) can be provided.
  • FIG. 1 is a schematic view showing an overall configuration of a liquid fuel synthesis system including a middle distillate hydrotreating reactor according to an embodiment of the present invention.
  • FIG. 2 is a detailed explanatory view around the middle distillate hydrotreating reactor according to the embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of the cloud point measuring unit shown in FIG.
  • FIG. 4 is a flowchart showing an operation method of the middle distillate hydrotreating reactor according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the result of the confirmation experiment.
  • a liquid fuel synthesis system (hydrocarbon synthesis reaction system) 1 is a plant facility that executes a GTL process for converting a hydrocarbon raw material such as natural gas into liquid fuel.
  • the liquid fuel synthesis system 1 includes a synthesis gas generation unit 3, an FT synthesis unit 5, and an upgrading unit 7.
  • the synthesis gas generation unit 3 reforms natural gas that is a hydrocarbon raw material to produce synthesis gas containing carbon monoxide gas and hydrogen gas.
  • the FT synthesis unit 5 produces liquid hydrocarbons from the synthesis gas produced in the synthesis gas generation unit 3 by an FT synthesis reaction.
  • the upgrading unit 7 produces liquid fuel (naphtha, kerosene, light oil, wax, etc.) by hydrotreating and fractionating the liquid hydrocarbon produced in the FT synthesis reaction.
  • components of each unit will be described.
  • the synthesis gas generation unit 3 mainly includes a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26.
  • the desulfurization reactor 10 is composed of a hydrodesulfurization device or the like, and removes sulfur components from natural gas as a raw material.
  • the reformer 12 reforms the natural gas supplied from the desulfurization reactor 10 to generate a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2 ) as main components.
  • the exhaust heat boiler 14 recovers the exhaust heat of the synthesis gas generated in the reformer 12 and generates high-pressure steam.
  • the gas-liquid separator 16 separates water heated by heat exchange with the synthesis gas in the exhaust heat boiler 14 into a gas (high-pressure steam) and a liquid.
  • the gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarboxylation device 20.
  • the decarbonation device 20 has an absorption tower 22 that removes carbon dioxide gas from the synthesis gas supplied from the gas-liquid separator 18 by using the absorbent, and carbon dioxide is diffused from the absorbent containing the carbon dioxide to absorb the absorbent. And a regeneration tower 24 for regeneration.
  • the hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20.
  • the decarboxylation device 20 may not be provided depending on circumstances.
  • the FT synthesis unit 5 includes, for example, a bubble column reactor (bubble column hydrocarbon synthesis reactor) 30, a gas / liquid separator 34, a separator 36, a gas / liquid separator 38, and a first rectifying column. 40 is mainly provided.
  • the bubble column reactor 30 is an example of a reactor that synthesizes liquid hydrocarbons from synthesis gas, and functions as a reactor for FT synthesis that synthesizes liquid hydrocarbons from synthesis gas by an FT synthesis reaction.
  • the bubble column reactor 30 includes, for example, a bubble column type slurry bed in which a slurry in which solid catalyst particles are suspended in liquid hydrocarbon (product of FT synthesis reaction) is accommodated inside a column type container. Consists of a type reactor.
  • the bubble column reactor 30 synthesizes liquid hydrocarbons by reacting carbon monoxide gas and hydrogen gas in the synthesis gas produced in the synthesis gas generation unit.
  • the gas-liquid separator 34 separates water heated through circulation in the heat transfer tube 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid.
  • the separator 36 separates catalyst particles and liquid hydrocarbons in the slurry accommodated in the bubble column reactor 30.
  • the gas-liquid separator 38 is connected to the top of the bubble column reactor 30, the unreacted synthesis gas discharged from the bubble column reactor 30, and the product that is gaseous under the conditions of the bubble column reactor 30.
  • the liquid product to be condensed is separated from the gas component.
  • the first rectifying column 40 fractionates the FT synthesis reaction product mainly composed of liquid hydrocarbons supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 into each fraction. To do.
  • the upgrading unit 7 includes, for example, a wax fraction hydrocracking reactor 50, a middle fraction hydrotreating reactor 52 according to this embodiment, a naphtha fraction hydrotreating reactor 54, and a gas-liquid separator. 56, 58, 60, a second rectifying tower 70, and a naphtha stabilizer 72.
  • the wax fraction hydrocracking reactor 50 is connected to the bottom of the first fractionator 40, and a gas-liquid separator 56 is provided downstream thereof.
  • the middle distillate hydrotreating reactor 52 is connected to the central portion of the first rectifying column 40, and a gas-liquid separator 58 is provided downstream thereof.
  • the naphtha fraction hydrotreating reactor 54 is connected to the top of the first rectifying column 40, and a gas-liquid separator 60 is provided downstream thereof.
  • the second rectification column 70 fractionates the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58.
  • the naphtha stabilizer 72 rectifies the liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second rectifying column 70, and discharges butane and lighter components than butane as flare gas, and has a carbon number. Five or more hydrocarbon components are separated and recovered as product naphtha.
  • the liquid fuel synthesis system 1 is supplied with natural gas (main component is CH 4 ) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
  • the synthesis gas generation unit 3 reforms the natural gas to produce a synthesis gas (a mixed gas containing carbon monoxide gas and hydrogen gas as main components).
  • the natural gas is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26.
  • the sulfur content contained in the natural gas is converted into hydrogen sulfide by the action of the hydrodesulfurization catalyst in the presence of hydrogen gas, and is adsorbed and removed by, for example, ZnO.
  • the desulfurized natural gas is mixed with carbon dioxide (CO 2 ) gas supplied from a carbon dioxide supply source (not shown) and water vapor generated in the exhaust heat boiler 14, and then the reformer 12.
  • CO 2 carbon dioxide
  • the reformer 12 reforms natural gas using carbon dioxide and steam by the steam / carbon dioxide reforming method to generate high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas. To do.
  • the high-temperature synthesis gas (for example, 900 ° C. and 2.0 MPaG) generated in the reformer 12 in this way is supplied to the exhaust heat boiler 14 and cooled by heat exchange with water flowing through the exhaust heat boiler 14. (For example, 400 ° C.).
  • the water heated by the heat exchange becomes high-pressure steam, and the exhaust heat is recovered.
  • the synthesis gas cooled in the exhaust heat boiler 14 is supplied to the absorption tower 22 of the decarbonation apparatus 20 or the bubble column reactor 30 after the condensed liquid component is separated and removed in the gas-liquid separator 18.
  • the absorption tower 22 separates carbon dioxide from the synthesis gas by absorbing the carbon dioxide contained in the synthesis gas in the stored absorption liquid.
  • the absorption liquid containing carbon dioxide gas in the absorption tower 22 is introduced into the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is heated and stripped by, for example, steam, and the released carbon dioxide gas is removed from the regeneration tower 24.
  • the reformer 12 and reused in the reforming reaction are introduced into the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is heated and stripped by, for example, steam, and the released carbon dioxide gas is removed from the regeneration tower 24.
  • the synthesis gas produced in the synthesis gas generation unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5.
  • the hydrogen separator 26 separates hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using a pressure difference.
  • the separated hydrogen gas is a variety of hydrogen that undergoes a predetermined reaction using hydrogen gas in the liquid fuel synthesis system 1 from a gas holder (not shown) or the like through a compressor (not shown). Continuously supplied to the reaction equipment (for example, desulfurization reactor 10, wax fraction hydrocracking reactor 50, middle fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.) .
  • the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced in the synthesis gas generation unit 3 by an FT synthesis reaction.
  • the synthesis gas produced in the synthesis gas generation unit 3 flows from the bottom of the bubble column reactor 30 and rises in the slurry accommodated in the bubble column reactor 30. At this time, in the bubble column reactor 30, the carbon monoxide and hydrogen gas contained in the synthesis gas react with each other by the above-described FT synthesis reaction to synthesize hydrocarbons.
  • the liquid hydrocarbon synthesized in the bubble column reactor 30 is introduced into the separator 36 together with the catalyst particles as a slurry.
  • the separator 36 separates the slurry into a solid content such as catalyst particles and a liquid content containing liquid hydrocarbons. Part of the solid content such as the separated catalyst particles is returned to the bubble column reactor 30, and the liquid content is supplied to the first fractionator 40. Further, from the top of the bubble column reactor 30, an unreacted synthesis gas and a gaseous hydrocarbon produced by the FT synthesis reaction under the conditions in the bubble column reactor 30 are separated into a gas-liquid separator. 38. The gas-liquid separator 38 cools these gases, separates the condensed liquid hydrocarbons, and introduces them into the first fractionator 40.
  • a gas mixture separated by the gas-liquid separator 38 that is, a mixed gas mainly composed of unreacted synthesis gas (CO and H 2 ) and a hydrocarbon gas having a small number of carbon atoms (C 4 or less) is used as a bubble column
  • the unreacted synthesis gas recycled to the mold reactor 30 and included in the mixed gas is again used for the FT synthesis reaction.
  • a part of the mixed gas is a bubble column reactor. Without being recycled to 30, it is introduced into an external combustion facility (flare stack, not shown), burned, and then released into the atmosphere.
  • the first rectifying column 40 is an FT synthesis reaction product mainly composed of liquid hydrocarbons supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above.
  • Naphtha fraction (boiling point is lower than about 150 ° C.)
  • middle distillate corresponding to kerosene / light oil (boiling point is about 150 to 350 ° C.)
  • wax fraction (boiling point exceeds about 350 ° C.).
  • the wax fraction (mainly C 21 or more) extracted from the bottom of the first rectifying column 40 is transferred to the wax fraction hydrocracking reactor 50 and extracted from the center of the first rectifying column 40.
  • the middle distillate (mainly C 11 to C 20 ) is transferred to the middle distillate hydrotreating reactor 52 and extracted from the upper part of the first fractionator 40 (mainly C 5 to C 10 ). Is transferred to the naphtha fraction hydrotreating reactor 54.
  • the wax fraction hydrocracking reactor 50 uses the hydrogen fraction supplied from the hydrogen separator 26 as a wax fraction (approximately C 21 or more) extracted from the bottom of the first fractionator 40. by hydrocracking Te is converted to C 20 or less hydrocarbons. In this hydrocracking reaction, using a catalyst and heat, the C—C bond of a hydrocarbon having a large number of carbon atoms is cleaved and converted to a hydrocarbon having a small number of carbon atoms. The product containing liquid hydrocarbons hydrocracked in the wax fraction hydrocracking reactor 50 is separated into gas and liquid in the gas-liquid separator 56, and the liquid hydrocarbons are separated from the second fractionator. The gas component including the hydrogen gas transferred to 70 is transferred to the middle distillate hydrotreating reactor 52 and the naphtha distillate hydrotreating reactor 54, and the hydrogen gas is reused.
  • the middle distillate hydrotreating reactor 52 removes the middle distillate liquid hydrocarbons (generally C 11 to C 20 ) extracted from the center of the first rectifying column 40 from the hydrogen separator 26 and the wax distillate. Hydrorefining and hydroisomerization are performed using the hydrogen gas supplied via the hydrocracking reactor 50. The hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbon is transferred to the second rectifying column 70, where a gas component (including hydrogen gas) is contained. .) Is reused in the hydrogenation reaction.
  • a gas component including hydrogen gas
  • the naphtha fraction hydrotreating reactor 54 removes liquid hydrocarbons (generally C 10 or less) of the naphtha fraction extracted from the upper part of the first rectifying column 40 from the hydrogen separation device 26 with a wax fraction. Hydrogen purification is performed using the hydrogen gas supplied through the fraction hydrocracking reactor 50.
  • the hydrorefined liquid hydrocarbon-containing product (hydrorefined naphtha) is separated into a gas and a liquid by the gas-liquid separator 60, and the liquid hydrocarbon is transferred to the naphtha stabilizer 72, and the gas component (hydrogen Gas is reused) in the hydrogenation reaction.
  • the second fractionator 70 converts the liquid hydrocarbons supplied from the wax fraction hydrocracking reactor 50 and the middle fraction hydrotreating reactor 52 as described above into hydrocarbons of C 10 or less ( In the kerosene fraction (boiling point about 150-250 ° C.), light oil fraction (boiling point about 250-350 ° C.) and wax fraction hydrocracking reactor 50. It fractionates into a so-called uncracked wax fraction (boiling point above about 350 ° C.) where hydrocracking has not progressed sufficiently. An undecomposed wax fraction is withdrawn from the bottom of the second fractionator 70 and is recycled upstream of the wax fraction hydrocracking reactor 50 and re-supplied to the wax fraction hydrocracking reactor 50. Is done. A kerosene fraction and a light oil fraction are extracted from the center of the second rectifying tower 70. On the other hand, hydrocarbons of C 10 or less are extracted from the top of the second rectifying column 70 and supplied to the naphtha stabilizer 72.
  • the naphtha stabilizer 72 rectifies C 10 or less hydrocarbons supplied from the tops of the naphtha fraction hydrotreating reactor 54 and the second rectifying column 70 to obtain a high-purity naphtha ( C 5 -C 10 ) is obtained from the bottom.
  • a gas mainly composed of hydrocarbons of C 4 or less which is not a product is discharged. This gas is introduced into an external combustion facility (not shown), burned, and then released into the atmosphere.
  • the process of the liquid fuel synthesis system 1 (GTL process) has been described above.
  • the GTL process converts natural gas into liquid fuels such as high-purity naphtha (C 5 to C 10 ), kerosene (C 11 to C 15 ), and light oil (C 16 to C 20 ).
  • the middle distillate hydrotreating reactor 52 discharges the supply path 101 connected to the center of the first rectifying column 40 and the middle distillate hydrofinished in the middle distillate hydrotreating reactor 52.
  • a control unit 104 that controls the operating conditions (hydrogen partial pressure / reaction temperature / middle distillate throughput per unit time (for example, LHSV)) of the middle distillate hydrotreating reactor 52. Yes.
  • the middle distillate hydrorefining step to which the operation method of the middle distillate hydrotreating reactor of this embodiment is applied is a step of hydrotreating and hydroisomerizing the middle distillate obtained by the FT synthesis reaction. is there.
  • the FT synthesis reaction in addition to saturated hydrocarbons as main products, oxygen-containing compounds such as olefins and alcohols containing carbon monoxide-derived oxygen atoms are by-produced, and FT synthetic oil is fractionated. These by-products are also contained in the middle distillate obtained.
  • Hydrorefining in the middle distillate hydrorefining step includes hydrogenation of the olefins to convert them to saturated hydrocarbons (paraffin hydrocarbons), and hydrodeoxygenation of oxygen-containing compounds to obtain saturated hydrocarbons and water. Mainly includes the reaction to convert to As a catalyst effective for this hydrorefining, a catalyst having a metal component having hydrogenation ability as an active site is used.
  • the hydroisomerization in the middle distillate hydrotreating process is a reaction for converting normal paraffin contained in the middle distillate into isoparaffin.
  • a catalyst effective for this hydroisomerization a catalyst comprising a metal component having hydrogenation-dehydrogenation ability and a solid acid component is used.
  • the normal paraffin is first dehydrogenated by the action of the metal component to become an olefin, and this olefin is skeletal isomerized by the action of the solid acid component, and further hydrogenated by the action of the metal component to be converted to isoparaffin.
  • a catalyst effective for hydrorefining and a catalyst effective for hydroisomerization may be used.
  • a catalyst effective for hydroisomerization is hydrogen. Therefore, it is efficient and preferable to use a catalyst effective for hydroisomerization.
  • the form of the middle distillate hydrotreating reactor according to the present invention is not limited, but is preferably a fixed bed continuous flow reactor.
  • the reactor may be a single reactor or a plurality of reactors arranged in series or in parallel.
  • the catalyst bed provided in a reactor may be single, and may be divided into plurality.
  • the catalyst charged in the middle distillate hydrotreating reactor is a catalyst generally used for hydrorefining and / or hydroisomerization in petroleum refining or the like, that is, hydrogenation (-dehydrogenation to an inorganic carrier).
  • a catalyst on which an active metal having an ability is supported can be used.
  • the active metal constituting the catalyst one or more metals selected from the group consisting of metals of Group 6, Group 8, Group 9 and Group 10 of the periodic table of elements are used.
  • these metals include noble metals such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or cobalt, nickel, molybdenum, tungsten, iron, etc., preferably platinum, palladium, nickel, Cobalt, molybdenum and tungsten are preferable, and platinum and palladium are more preferable.
  • noble metals such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or cobalt, nickel, molybdenum, tungsten, iron, etc.
  • platinum, palladium, nickel, Cobalt, molybdenum and tungsten are preferable, and platinum and palladium are more preferable.
  • the catalyst When a combination of cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, nickel-tungsten or the like is used as the active metal, the catalyst may be sulfided with a sulfur compound before being subjected to hydrorefining.
  • the periodic table of elements means a periodic table of long-period elements based on the provisions of IUPAC (International Pure Applied Chemistry Association).
  • the inorganic carrier constituting the catalyst examples include metal oxides such as alumina, silica, titania, zirconia, and boria. These metal oxides may be one kind or a mixture of two or more kinds or composite metal oxides such as silica / alumina, silica / zirconia, alumina / zirconia, alumina / boria and the like.
  • the inorganic carrier is a composite having solid acidity such as silica / alumina, silica / zirconia, alumina / zirconia, alumina / boria, etc., from the viewpoint of efficiently proceeding hydroisomerization of normal paraffin simultaneously with hydrorefining. A metal oxide is preferred.
  • the inorganic carrier may contain a small amount of zeolite. Furthermore, the inorganic carrier may contain a binder for the purpose of improving the moldability and mechanical strength of the carrier. Preferred binders include alumina, silica, magnesia and the like.
  • the content of the active metal in the catalyst is preferably about 0.1 to 3% by mass as a metal atom based on the mass of the support when the active metal is the above-mentioned noble metal. Further, when the active metal is a metal other than the above-mentioned noble metals, the metal oxide is preferably about 2 to 50% by mass based on the mass of the support. When the content of the active metal is less than the lower limit, hydrorefining and hydroisomerization tend not to proceed sufficiently. On the other hand, when the content of the active metal exceeds the upper limit value, the dispersion of the active metal tends to decrease, and the activity of the catalyst tends to decrease, and the catalyst cost increases.
  • the reaction temperature in the middle distillate hydrotreating reactor 52 is 180 to 400 ° C., preferably 280 to 350 ° C., more preferably 300 to 340 ° C.
  • the reaction temperature is the average temperature of the catalyst layer in the middle distillate hydrotreating reactor 52. If the reaction temperature is equal to or higher than the lower limit temperature, the middle distillate is sufficiently hydrorefined and hydroisomerized, and if it is equal to or lower than the upper limit temperature, it is possible to suppress the simultaneous decomposition reaction of the middle distillate, Moreover, the lifetime reduction of a catalyst is suppressed.
  • the pressure (hydrogen partial pressure) in the middle distillate hydrotreating reactor 52 is preferably 0.5 to 12 MPa, and more preferably 1 to 5 MPa. If the pressure of the hydrorefining reactor is 0.5 MPa or more, the crude middle distillate is sufficiently hydrorefined, and if it is 12 MPa or less, the equipment cost for increasing the pressure resistance of the equipment can be suppressed.
  • Liquid hourly space velocity in the middle distillate hydrotreating reactor 52 is preferably from 0.1 ⁇ 10h -1, more to be 0.3 ⁇ 3.5 h -1 preferable. If LHSV is 0.1 h ⁇ 1 or more, the reactor volume does not need to be excessive, and if it is 10 h ⁇ 1 or less, the middle distillate is efficiently hydrorefined and hydroisomerized.
  • the hydrogen gas / oil ratio in the middle distillate hydrotreating reactor 52 is preferably 50 to 1000 NL / L, and more preferably 70 to 800 NL / L.
  • “NL” means the hydrogen capacity (L) in the standard state (0 ° C., 101325 Pa). If the hydrogen gas / oil ratio is 50 NL / L or more, the middle distillate is sufficiently hydrorefined and hydroisomerized. If it is 1000 NL / L or less, no equipment for supplying a large amount of hydrogen gas is required. In addition, an increase in operating costs can be suppressed.
  • the above reaction conditions in the middle distillate hydrotreating reactor 52 are determined based on the measured cloud point of the hydrofinished middle distillate flowing out from the reactor.
  • the sample of the middle distillate hydrorefined in the sampling unit 103 may be manually collected in a container, and the collected sample may be transported to an independent cloud point measuring unit, and the cloud point may be measured manually.
  • the sampling part 103 can be comprised, for example by installing a manual valve in the piping branched from the discharge path 102 double.
  • the sampling unit 103 and the cloud point measuring unit 110 may be configured to automatically collect the sample and measure the cloud point without depending on the hand.
  • the sampling unit 103 for example, a small-diameter pipe that branches off from the discharge path 102 and returns to the discharge path 102, and a plurality of pipes that are installed in the middle of the pipe and that are switched according to time are controlled. And a control mechanism for controlling opening and closing of the valve according to time.
  • a small amount of a newly-produced hydrolysed middle distillate always circulates, and the sample is periodically collected by switching the valve. .
  • the sampling unit 103 and the cloud point measuring unit 110 are connected by a pipe, and the sample collected by the sampling unit 103 is automatically transferred to the cloud point measuring unit 110.
  • the cloud point measuring unit 110 automatically measures the cloud point of the transferred sample by interlocking the control of the valve of the sampling unit 103 with the control of the cloud point measuring unit 110.
  • the result is displayed on a display device provided on the control panel of the control unit 104 that controls the operation of the middle distillate hydrotreating reactor 52, for example.
  • the hydrofinished middle distillate sample that has been measured is automatically discharged, and preparation for the next measurement is performed.
  • the cloud point measuring unit 110 includes an aluminum container body 111 having a bottomed cylindrical shape, a lid part 112 that closes the opening of the container body 111, and a cooling unit that cools the container body 111. 113, a container temperature sensor 114 for measuring the temperature of the container body 111, a liquid temperature sensor 115 for measuring the temperature of the sample filled in the container body 111, and cloudiness of the sample filled in the container body 111 And a clouding detection unit 116 for detecting the above.
  • the cooling unit 113 is an electronic cooling unit using a Peltier element (not shown), and has a configuration capable of controlling the cooling rate.
  • the cloudiness detection part 116 is comprised with the optical sensor provided with the light projector and the light receiver.
  • a cloud point measuring method in the cloud point measuring unit 110 will be described.
  • a sample of the middle fraction obtained by hydrorefining is introduced into the container body 111. While the temperature is measured by the container temperature sensor 114 and the liquid temperature sensor 115, the middle distillate hydrorefined by the cooling unit 113 at a predetermined cooling rate is cooled, and the clouding detection unit 116 detects the occurrence of fogging. Let the liquid temperature at that time be the cloud point.
  • the sample of the hydrotreated middle fraction collected is cooled by the cooling unit 113 under a cooling rate of 5.0 ° C./min to 15.0 ° C./min and the cloud point is measured. Is preferred. In the present embodiment, the cooling rate is 9.5 ° C./min.
  • the crude middle distillate distilled from the central portion of the first rectifying column 40 is supplied to the middle distillate hydrotreating reactor 52 through the supply path 101, and hydrorefined and hydroisomerized (S1). .
  • the initial operating conditions of the reactor are set. Further, during normal operation, when the cloud point measurement value of the hydrorefined middle distillate in the subsequent step is outside the target range, the operating condition of the reactor is changed (S2).
  • the hydrolysed middle distillate flowing out from the middle distillate hydrotreating reactor 52 through the discharge path 102 is sampled (S3).
  • the cloud point of the sampled hydrofinished middle distillate is measured by the cloud point measuring unit 110 described above (S4).
  • the measured value of the cloud point is compared with the operation management target value, and it is determined whether or not the measurement value is within the operation management target range (S5). If the cloud point is within the operation management target range, the operation condition of the middle distillate hydrotreating reactor 52 is maintained without being changed (S6). Even when the cloud point is within the operation management target range, the operation condition may be slightly changed for the purpose of bringing the cloud point closer to the operation management target center value, for example.
  • the control unit 104 determines the operation conditions of the middle distillate hydrotreating reactor 52 (hydrogen partial pressure / reaction temperature / middle distillate throughput per unit time (for example, , LHSV)) (return to S2). Then, the middle fraction that has been hydrorefined again after a predetermined time is sampled (S3), and the subsequent steps are repeated. Thereby, it becomes possible to confirm the effect of changing the operating conditions of the middle distillate hydrotreating reactor 52 in S2.
  • the hydrogen partial pressure is increased and / or the reaction temperature. And / or reducing the middle distillate throughput per unit time (LHSV) to promote hydroisomerization and lower the cloud point of the hydrofinished middle distillate.
  • LHSV middle distillate throughput per unit time
  • the cloud point is below the lower limit of the operation management target range, the hydrogen partial pressure is reduced and / or the reaction temperature is lowered and / or the middle distillate throughput (LHSV) is increased.
  • the control unit for controlling the operating conditions such as the hydrogen partial pressure of the middle distillate hydrotreating reactor 52, the reaction temperature, the middle distillate throughput per unit time, and the like controls general reactor operation control. It may be.
  • the reactor is adjusted so that the cloud point is within the operation control target range. Change the operating conditions, but treat the hydrorefined middle distillate that flows out until it is confirmed that the cloud point of the hydrofinished middle distillate that is flowing out is within the operation control target range Is not particularly limited.
  • the middle distillate can be obtained by the increase of the light component due to the simultaneous decomposition reaction.
  • the middle distillate product obtained through the fractionation in the second rectification column 70 may satisfy the product specification even if there is a problem in efficiency such as a reduction in the rate.
  • the portion may be transferred to the second rectification column 70 and taken out as a product.
  • the hydrofinished middle distillate is It may be transferred to the slop tank without being transferred to the two rectification tower 70.
  • this was separately returned to the middle distillate hydrotreating reactor 52 and reprocessed to confirm that the cloud point was within the operation management target range.
  • the second fractionator 70 includes not only the middle fraction hydrotreated from the middle fraction hydrotreating reactor 52 but also the hydrocracked product from the wax fraction hydrocracking reactor 50. Is also supplied. Therefore, even if the cloud point of the hydrorefined middle distillate flowing out from the middle distillate hydrotreating reactor 52 exceeds the upper limit of the operation management target range, it is obtained from the second rectification column 70. In some cases, the cloud point of a middle distillate product that meets the product specifications.
  • the hydrolysed middle distillate is transferred to the second rectification column 70 and fractionated, and it is estimated that the obtained middle distillate satisfies the product specifications, this is taken out as a product. Also good.
  • the product may be returned to the middle distillate hydrotreating reactor 52 and reprocessed.
  • the middle distillate hydrotreating reactor 52 and the operation method of the middle distillate hydrotreating reactor 52 of the present embodiment configured as described above from the middle distillate hydrotreating reactor 52, The cloud point of the produced hydrorefined middle distillate is measured, and the operation conditions of the middle distillate hydrotreating reactor 52 are controlled based on this cloud point.
  • the degree of hydroisomerization in the hydrotreating reactor 52 is kept constant. Therefore, the properties of the hydrorefined middle distillate produced will be stabilized, and the quality of light oil (diesel fuel oil) produced using this hydrofinished middle distillate as a raw material will be greatly improved. be able to.
  • the cloud point was measured by cooling the middle distillate hydrorefined by the cooling unit 113 composed of an electronic cooling unit using a Peltier element, so that it was hydrorefined. It becomes possible to control the cooling rate of the middle distillate accurately and easily.
  • the cooling rate is 5.0 ° C./min or more and 15.0 ° C./min or less, more specifically, 9.5 ° C./min. And it becomes possible to carry out quickly. Thereby, control of the operating conditions by the control unit 104 can be performed at an appropriate timing, and the operation of the middle distillate hydrotreating reactor 52 can be stabilized.
  • the cloud point measurement unit has been described as including a cooling unit composed of an electronic cooling unit using a Peltier device, but the present invention is not limited to this.
  • a cooling unit composed of an electronic cooling unit using a Peltier device
  • hydrorefining The resulting middle distillate may be cooled stepwise using a cooling bath to determine the cloud point.
  • the operating conditions such as an upgrade unit, it is not limited to the range described in embodiment, You may change suitably according to a condition.
  • the configurations of the synthesis gas generation unit 3, the FT synthesis unit 5, and the upgrading unit 7 are not limited to those described in the present embodiment, and the middle distillate of the FT synthetic hydrocarbon is the middle distillate. Any structure may be used as long as it is supplied to the hydrotreating reactor 52.
  • the degree of hydroisomerization in the middle distillate hydrotreating reactor can be determined by measuring the cloud point of the hydrofinished middle distillate.
  • Example 1 to 3 were measured by a measuring method based on JIS K 2269.
  • the above sample was cooled at a cooling rate of 5.0 ° C. by the cloud point measuring unit (specifically, an automatic pour point / cloud point tester model MPC-102 manufactured by Tanaka Scientific Instruments Co., Ltd.). / Min, 7.0 ° C./min, and 9.5 ° C./min. In Examples 1 to 12, the same cloud point measurement was repeated four times. The results are shown in Table 1.
  • the cloud point measured according to JIS K 2269 As shown in Table 1, the cloud point measured according to JIS K 2269, and the cloud point measured under the cooling rates of 5.0 ° C./min, 7.0 ° C./min, and 9.5 ° C./min, Then, in the same sample, it agree
  • the error in JIS K 2269 is set to be within 2 ° C. in the same test apparatus and within 4 ° C. in different test apparatuses. Then, the error within 2 ° C. between Examples 1 to 3 and Examples 4 to 12 is within the allowable range in JIS K 2269, and the cooling rate is 5.0 ° C./min, 7.0 ° C. It was confirmed that even in Examples 4 to 12 measured under the respective conditions of / min and 9.5 ° C./min, the cloud point could be measured with the same accuracy as JIS K 2269.
  • Example 1 to 3 in accordance with JIS K 2269 the measurement time was 60 to 90 minutes, whereas the cooling rates were 5.0 ° C./min, 7.0 ° C./min, 9.5.
  • Example 4 to 12 measured under the respective conditions of ° C./min measurement was possible in a short time of 6 to 21 minutes. Therefore, it was confirmed that by controlling the cloud point as in Examples 4 to 12, the middle distillate hydrotreating reactor can be controlled reliably and more quickly.
  • the hydrogenation in the hydrotreating step of the middle distillate of the FT synthesized hydrocarbon obtained by the FT synthesis reaction can be appropriately advanced to produce a hydrorefined middle distillate having a stable property, and a high quality light oil can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 フィッシャー・トロプシュ合成反応により合成されたFT合成炭化水素のうち軽油に相当する沸点範囲の成分を含む中間留分を、水素化精製及び水素化異性化する中間留分水素化精製反応器の操業方法であって、前記中間留分を触媒に接触させて水素化精製及び水素化異性化し、水素化精製された中間留分を得る工程と、前記中間留分水素化精製反応器から流出する前記水素化精製された中間留分の曇り点を測定する工程と、前記曇り点が所定の目標値となるように、前記中間留分水素化精製反応器の運転条件を制御する工程とを備えている中間留分水素化精製反応器の操業方法。

Description

中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器
 本発明は、フィッシャー・トロプシュ合成反応により合成された炭化水素化合物のうち軽油に相当する沸点範囲の成分を含む中間留分を、水素化精製及び水素化異性化する中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器に関するものである。
 本願は、2009年1月30日に日本出願された特願2009-020855に基づいて優先権を主張し、その内容をここに援用する。
 近年、天然ガスから液体燃料を合成するための方法の一つとして、天然ガスを改質し一酸化炭素ガス(CO)と水素ガス(H)とを主成分とする合成ガスを生成し、この合成ガスを原料ガスとしてフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という。)により炭化水素化合物(以下、「FT合成炭化水素」という。)を合成し、さらにこのFT合成炭化水素を水素化処理及び分留することで、ナフサ(粗ガソリン)、灯油、軽油(ディーゼル燃料油)、ワックス等の液体燃料製品を製造するGTL(Gas To Liquids:液体燃料合成)技術が開発されている。
 ここで、前述のFT合成炭化水素を原料とした液体燃料製品は、パラフィン含有量が多く、硫黄分をほとんど含まないため、例えば特許文献1に示すように、環境対応燃料として注目されている。
 このFT合成炭化水素を精留塔で分留すると、精留塔の中央部から軽油に相当する沸点範囲の成分を含む中間留分が取り出される。この中間留分は、軽油の原料として使用される。また、精留塔の塔底からは炭素数の多いワックス留分が取り出される。このワックス留分は、水素化分解によって軽質化することにより、軽油の原料として使用することが可能となる。
 ここで、前述のFT合成炭化水素の中間留分には、ノルマルパラフィンが多く含まれることから凝固点(凝固温度)が高くなる傾向にあり、この中間留分を原料とした軽油の低温特性が製品としての要求水準を満たさないおそれがある。このため、精留塔から留出した中間留分については、FT合成反応工程において副生するオレフィン類及びアルコール類等の含酸素化合物を水素化精製により飽和炭化水素に転換する際に、併せて水素化異性化を行って、ノルマルパラフィンの少なくとも一部を凝固点の低いイソパラフィンに転換する必要がある。
特開2004-323626号公報
 中間留分を水素化精製及び水素化異性化する中間留分水素化精製工程においては、水素化異性化の進行が不十分であると、得られる水素化精製された中間留分中には凝固点の高いノルマルパラフィンが多く残存し、この中間留分を原料とした軽油の低温特性が十分に改善されないことになる。一方、中間留分水素化精製工程において水素化異性化が過剰に進行する条件とした場合には、分解反応が併発して生成する炭化水素が軽質化してしまい、軽油の原料として適さなくなったり、製品としての軽油の得率が低下したりするおそれがある。
 このため、FT合成炭化水素から軽油(ディーゼル燃料油)を得るためには、中間留分の水素化精製工程において、水素化異性化を適正に進行させることが必要となる。
 この発明は、前述した事情に鑑みてなされたものであって、FT合成反応によって得られたFT合成炭化水素の中間留分の水素化精製工程における水素化異性化を適正に進行させ、安定した性状の水素化精製された中間留分を製造でき、高品質の軽油を得ることが可能な中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器を提供することを目的としている。
 上記課題を解決して、このような目的を達成するために、この発明は以下の手段を提案している。
 本発明の中間留分水素化精製反応器の操業方法は、フィッシャー・トロプシュ合成反応により合成されたFT合成炭化水素のうち軽油に相当する沸点範囲の成分を含む中間留分を、水素化精製及び水素化異性化する中間留分水素化精製反応器の操業方法であって、前記中間留分を触媒に接触させて水素化精製及び水素化異性化し、水素化精製された中間留分を得る工程と、前記中間留分水素化精製反応器から流出する前記水素化精製された中間留分の曇り点を測定する工程と、前記曇り点が所定の目標値となるように、前記中間留分水素化精製反応器の運転条件を制御する工程とを備えている。
 上記構成の中間留分水素化精製反応器の操業方法においては、中間留分水素化精製反応器から流出する水素化精製された中間留分の曇り点を測定し、この曇り点が所定の目標値となるように前記中間留分水素化精製反応器の運転条件を制御することから、製造される水素化精製された中間留分の曇り点が安定することになる。なお、曇り点とは、液体炭化水素(中間留分)中に、凝固点の高い成分(ワックス)が固体として析出して曇りが発生する時点の温度のことである。曇り点は、例えばJIS K 2269に示すように、試料液を一定の速度で冷却し、試料液に曇りが発生した時点の液温を計測することで、測定することができる。
 ここで、製造される水素化精製された中間留分の中に含まれるノルマルパラフィン量が多い場合には水素化精製された中間留分の曇り点が高くなる。一方、水素化精製された中間留分の中に含まれるノルマルパラフィン量が少ない場合には水素化精製された中間留分の曇り点が低くなる。つまり、水素化精製された中間留分の曇り点を測定することによって、中間留分水素化精製反応器における水素化異性化の進行度合を把握することが可能となるのである。
 したがって、水素化精製された中間留分の曇り点を測定し、この測定値に基づいて中間留分水素化精製反応器の運転条件を制御することにより、前記反応器における水素化異性化を適正に進行させ、安定した性状の水素化精製された中間留分を製造でき、高品質の軽油を得ることが可能となるのである。
 なお、ディーゼル燃料油としての軽油においては、寒冷な条件において使用される場合にノルマルパラフィンがワックス分として析出し、ディーゼルエンジンへの燃料油供給系に設置されるフィルターに目詰まりが生じる等の懸念がある。そこで、このような問題を防止する目的で、軽油製品は一定値以下の曇り点を有するように管理されることが一般的である。しかし、軽油の原料となる中間留分の製造工程の反応器において、曇り点を運転管理の指標として用いることは従来行われていなかった。
 本発明の中間留分水素化精製反応器の操業方法においては、前記曇り点を測定する工程において、採取された前記水素化精製された中間留分の試料を、冷却速度5.0℃/min以上15.0℃/min以下の条件で冷却して、曇り点を測定してもよい。
 この場合、冷却速度5.0℃/min以上で冷却して曇り点を測定することにより、曇り点の測定を短時間で行うことが可能となる。その結果、水素化精製された中間留分の試料の採取後に大幅な時間の遅れを伴うことなく、曇り点の測定結果を中間留分水素化精製反応器の制御に反映させることができる。また、冷却速度15.0℃/min以下で冷却して曇り点を測定することにより、曇り点を精度よく測定することが可能となり、中間留分水素化精製反応器の制御を適切に行うことができる。
 また、本発明の中間留分水素化精製反応器の操業方法においては、前記曇り点を測定する工程において、採取された前記試料を、ペルチェ素子を用いた電子冷却ユニットによって冷却速度を制御しながら冷却して、前記曇り点を測定してもよい。
 この場合、ペルチェ素子を用いた電子冷却ユニットで水素化精製された中間留分を冷却することにより、水素化精製された中間留分の温度制御を、精度良く、かつ、容易に行うことが可能となり、曇り点を精度よく測定することができる。
 さらに、本発明の中間留分水素化精製反応器の操業方法においては、前記中間留分水素化精製反応器の運転条件を制御する工程において、水素分圧、反応温度、単位時間当たりの中間留分処理量のうちの少なくとも一つを制御してもよい。
 この場合、中間留分水素化精製反応器の運転条件である水素分圧、反応温度、単位時間当たりの中間留分処理量のうち少なくとも一つを制御することで、水素化異性化の進行度合を調整することが可能となる。なお、単位時間当たりの中間留分処理量は、中間留分水素化精製反応器への通油量として液空間速度(LHSV:Liquid hourly space velocity(h-1))によって表すことができる。
 例えば、曇り点が運転管理目標範囲の上限を超える場合には、水素分圧を高める、及び/又は反応温度を高める、及び/又は単位時間当たりの中間留分処理量(LHSV)を低減する条件とすることで、水素化異性化の進行を促進し、水素化精製された中間留分の曇り点を低下させることができる。また、曇り点が運転管理目標範囲の下限を下回る場合には、水素分圧を低減する、及び/又は反応温度を低下させる、及び/又は単位時間当たりの中間留分処理量(LHSV)を増加する条件とすることで、水素化異性化の進行を抑制し、水素化精製された中間留分の曇り点を高めることができる。
 本発明の中間留分水素化精製反応器は、フィッシャー・トロプシュ合成反応により合成されたFT合成炭化水素のうち軽油に相当する沸点範囲の成分を含む中間留分を、水素化精製及び水素化異性化する中間留分水素化精製反応器であって、製造される水素化精製された中間留分の試料を採取するサンプリング部と、採取された前記試料の曇り点を測定する曇り点測定部とを備えている。
 この構成の中間留分水素化精製反応器によれば、中間留分水素化精製反応器から流出する水素化精製された中間留分の曇り点が迅速に測定される。そして、その結果に基づいて運転条件を制御することにより、水素化異性化の進行度合を適切に調整し、製造される水素化精製された中間留分の性状を安定化させることができる。これにより、この中間留分から製造される軽油の品質向上を図ることができる。
 本発明の中間留分水素化精製反応器においては、前記サンプリング部は、前記曇り点測定部と配管により接続されており、前記試料を自動的に採取および曇り点測定部に移送するものであり、前記曇り点測定部は移送された前記試料の曇り点を自動的に測定するものであってもよい。
 また、本発明の中間留分水素化精製反応器においては、前記曇り点測定部は、採取された前記試料を5.0℃/min以上15.0℃/min以下の冷却速度で冷却することが可能な冷却部を備えていてもよい。
 この場合、前記の冷却速度で前記試料を冷却することが可能であるので、曇り点の測定を迅速に且つ精度良く行うことが可能となる。
 さらに、本発明の中間留分水素化精製反応器においては、前記曇り点測定部に備えられる前記試料を5.0℃/min以上15.0℃/min以下の冷却速度で冷却することが可能な冷却部は、ペルチェ素子を用いた電子冷却ユニットであってもよい。
 この場合、前記試料の温度制御を、精度良く、かつ、容易に行うことが可能となり、曇り点をさらに精度良く測定することができる。
 この発明によれば、FT合成反応によって得られたFT合成炭化水素の中間留分の水素化精製工程において、水素化異性化の進行を適正に制御し、安定した性状の水素化精製された中間留分を製造でき、高品質の軽油(ディーゼル燃料油)を得ることが可能な中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器を提供することができる。
図1は、本発明の実施形態に係る中間留分水素化精製反応器を備えた液体燃料合成システムの全体構成を示す概略図である。 図2は、本発明の実施形態に係る中間留分水素化精製反応器周辺の詳細説明図である。 図3は、図2に示す曇り点測定部の概略構成図である。 図4は、本発明の実施形態に係る中間留分水素化精製反応器の操業方法を示すフロー図である。 図5は、確認実験結果を示すグラフである。
 以下、添付した図面を参照して本発明の好適な実施形態(以下、「本実施形態」ということがある。)について説明する。
 まず、図1を参照して、本実施形態である中間留分水素化精製反応器の操業方法が用いられる液体燃料合成システム(炭化水素合成反応システム)の全体構成及び工程について説明する。
 図1に示すように、本実施形態に係る液体燃料合成システム(炭化水素合成反応システム)1は、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行するプラント設備である。この液体燃料合成システム1は、合成ガス生成ユニット3と、FT合成ユニット5と、アップグレーディングユニット7とから構成される。
 合成ガス生成ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガスを製造する。
 FT合成ユニット5は、合成ガス生成ユニット3において製造された合成ガスからFT合成反応により液体炭化水素を製造する。
 アップグレーディングユニット7は、FT合成反応において製造された液体炭化水素を水素化処理及び分留して液体燃料(ナフサ、灯油、軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する。
 合成ガス生成ユニット3は、脱硫反応器10と、改質器12と、排熱ボイラー14と、気液分離器16,18と、脱炭酸装置20と、水素分離装置26とを主に備える。
 脱硫反応器10は、水素化脱硫装置等で構成され、原料である天然ガスから硫黄成分を除去する。
 改質器12は、脱硫反応器10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス(H)とを主成分として含む合成ガスを生成する。
 排熱ボイラー14は、改質器12にて生成した合成ガスの排熱を回収して高圧スチームを発生する。
 気液分離器16は、排熱ボイラー14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム)と液体とに分離する。
 気液分離器18は、排熱ボイラー14にて冷却された合成ガスから凝縮分を除去し気体分を脱炭酸装置20に供給する。
 脱炭酸装置20は、気液分離器18から供給された合成ガスから吸収液を用いて炭酸ガスを除去する吸収塔22と、当該炭酸ガスを含む吸収液から炭酸ガスを放散させて吸収液を再生する再生塔24とを有する。
 水素分離装置26は、脱炭酸装置20により炭酸ガスが分離された合成ガスから、当該合成ガスに含まれる水素ガスの一部を分離する。
 ただし、上記脱炭酸装置20は場合によっては設ける必要がないこともある。
 FT合成ユニット5は、例えば、気泡塔型反応器(気泡塔型炭化水素合成反応器)30と、気液分離器34と、分離器36と、気液分離器38と、第1精留塔40とを主に備える。
 気泡塔型反応器30は、合成ガスから液体炭化水素を合成する反応器の一例であり、FT合成反応により合成ガスから液体炭化水素を合成するFT合成用反応器として機能する。この気泡塔型反応器30は、例えば、塔型の容器内部に、液体炭化水素(FT合成反応の生成物)中に固体の触媒粒子を懸濁させたスラリーが収容された気泡塔型スラリー床式反応器で構成される。この気泡塔型反応器30は、上記合成ガス生成ユニットにおいて製造された合成ガス中の一酸化炭素ガスと水素ガスとを反応させて液体炭化水素を合成する。
 気液分離器34は、気泡塔型反応器30内に配設された伝熱管32内を流通して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。
 分離器36は、気泡塔型反応器30の内部に収容されたスラリー中の触媒粒子と液体炭化水素とを分離する。
 気液分離器38は、気泡塔型反応器30の塔頂に接続され、気泡塔型反応器30から排出される未反応合成ガス及び気泡塔型反応器30の条件においてガス状である生成物を冷却し、凝縮する液体生成物をガス成分と分離する。
 第1精留塔40は、気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素を主成分とするFT合成反応生成物を各留分に分留する。
 アップグレーディングユニット7は、例えば、ワックス留分水素化分解反応器50と、本実施形態に係る中間留分水素化精製反応器52と、ナフサ留分水素化精製反応器54と、気液分離器56,58,60と、第2精留塔70と、ナフサスタビライザー72とを備える。
 ワックス留分水素化分解反応器50は、第1精留塔40の塔底に接続されており、その下流に気液分離器56が設けられている。
 中間留分水素化精製反応器52は、第1精留塔40の中央部に接続されており、その下流に気液分離器58が設けられている。
 ナフサ留分水素化精製反応器54は、第1精留塔40の塔頂に接続されており、その下流に気液分離器60が設けられている。
 第2精留塔70は、気液分離器56,58から供給された液体炭化水素を分留する。
 ナフサスタビライザー72は、気液分離器60及び第2精留塔70から供給されたナフサ留分の液体炭化水素を精留して、ブタン及びブタンより軽質の成分はフレアガスとして排出し、炭素数が5以上の炭化水素成分は製品のナフサとして分離・回収する。
 次に、以上のような構成の液体燃料合成システム1により、天然ガスから液体燃料を合成する工程(GTLプロセス)について説明する。
 液体燃料合成システム1には、天然ガス田又は天然ガスプラントなどの外部の天然ガス供給源(図示せず。)から、炭化水素原料としての天然ガス(主成分がCH)が供給される。上記合成ガス生成ユニット3は、この天然ガスを改質して合成ガス(一酸化炭素ガスと水素ガスを主成分とする混合ガス)を製造する。
 まず、上記天然ガスは、水素分離装置26によって分離された水素ガスとともに脱硫反応器10に供給される。脱硫反応器10においては、天然ガスに含まれる硫黄分は、水素ガスの存在下に水素化脱硫触媒の作用により硫化水素に転換され、例えばZnOにより吸着・除去される。
 脱硫された天然ガスは、二酸化炭素供給源(図示せず。)から供給される二酸化炭素(CO)ガスと、排熱ボイラー14で発生した水蒸気とが混合された後で、改質器12に供給される。改質器12は、水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。
 このようにして改質器12において生成した高温の合成ガス(例えば、900℃、2.0MPaG)は、排熱ボイラー14に供給され、排熱ボイラー14内を流通する水との熱交換により冷却(例えば400℃)される。そして熱交換により加熱された水は高圧スチームとなり、排熱が回収される。
 排熱ボイラー14において冷却された合成ガスは、凝縮液分が気液分離器18において分離・除去された後、脱炭酸装置20の吸収塔22、又は気泡塔型反応器30に供給される。吸収塔22は、貯留している吸収液内に、合成ガスに含まれる炭酸ガスを吸収することで、当該合成ガスから炭酸ガスを分離する。この吸収塔22内の炭酸ガスを含む吸収液は、再生塔24に導入され、当該炭酸ガスを含む吸収液は例えばスチームで加熱されてストリッピング処理され、放散された炭酸ガスは、再生塔24から改質器12に送られて、上記改質反応に再利用される。
 このようにして、合成ガス生成ユニット3において製造された合成ガスは、上記FT合成ユニット5の気泡塔型反応器30に供給される。このとき、気泡塔型反応器30に供給される合成ガスの組成比は、FT合成反応に適した組成比(例えば、H:CO=2:1(モル比))に調整されている。
 また、水素分離装置26は、圧力差を利用した吸着、脱着(水素PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された水素ガスは、ガスホルダー(図示せず。)等から圧縮機(図示せず。)を介して、液体燃料合成システム1内において水素ガスを利用して所定反応を行う各種の水素利用反応装置(例えば、脱硫反応器10、ワックス留分水素化分解反応器50、中間留分水素化精製反応器52、ナフサ留分水素化精製反応器54など)に、連続して供給される。
 次いで、上記FT合成ユニット5は、上記合成ガス生成ユニット3において製造された合成ガスから、FT合成反応により、液体炭化水素を合成する。
 上記合成ガス生成ユニット3において製造された合成ガスは、気泡塔型反応器30の底部から流入して、気泡塔型反応器30内に収容されたスラリー内を上昇する。この際、気泡塔型反応器30内では、上述したFT合成反応により、当該合成ガスに含まれる一酸化炭素と水素ガスとが反応して、炭化水素が合成される。気泡塔型反応器30において合成された液体炭化水素は、スラリーとして触媒粒子とともに分離器36に導入される。
 分離器36は、スラリーを触媒粒子等の固形分と液体炭化水素を含んだ液体分とに分離する。分離された触媒粒子等の固形分は、その一部が気泡塔型反応器30に戻され、液体分は第1精留塔40に供給される。また、気泡塔型反応器30の塔頂からは、未反応の合成ガスと、FT合成反応により生成する、気泡塔型反応器30内の条件にてガス状の炭化水素とが気液分離器38に導入される。気液分離器38は、これらのガスを冷却して、凝縮した液体炭化水素を分離して第1精留塔40に導入する。一方、気液分離器38で分離されたガス分、すなわち未反応の合成ガス(COとH)と炭素数が少ない(C以下)炭化水素ガスを主成分とする混合ガスは、気泡塔型反応器30にリサイクルされ、混合ガスに含まれる未反応の合成ガスは再度FT合成反応に供される。なお、前記混合ガスのリサイクルにより、主としてC以下のガス状炭化水素がFT合成反応系内に高濃度に蓄積することを防止する目的で、前記混合ガスの一部は、気泡塔型反応器30にリサイクルされずに、外部の燃焼設備(フレアスタック、図示せず。)に導入されて、燃焼された後に大気放出される。
 次いで、第1精留塔40は、上記のようにして気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素を主成分とするFT合成反応生成物を、ナフサ留分(沸点が約150℃より低い。)と、灯油・軽油に相当する中間留分(沸点が約150~350℃。)と、ワックス留分(沸点が約350℃を超える。)とに分留する。
 この第1精留塔40の塔底から抜き出されるワックス留分(主としてC21以上)は、ワックス留分水素化分解反応器50に移送され、第1精留塔40の中央部から抜き出される中間留分(主としてC11~C20)は、中間留分水素化精製反応器52に移送され、第1精留塔40の上部から抜き出されるナフサ留分(主としてC~C10)は、ナフサ留分水素化精製反応器54に移送される。
 ワックス留分水素化分解反応器50は、第1精留塔40の塔底から抜き出されたワックス留分(概ねC21以上)を、上記水素分離装置26から供給された水素ガスを利用して水素化分解して、C20以下の炭化水素に転換する。この水素化分解反応では、触媒と熱を利用して、炭素数の多い炭化水素のC-C結合を切断して、炭素数の少ない炭化水素に転換する。このワックス留分水素化分解反応器50において水素化分解された液体炭化水素を含む生成物は、気液分離器56においてガスと液体とに分離され、そのうち液体炭化水素は、第2精留塔70に移送され、水素ガスを含むガス分は、中間留分水素化精製反応器52及びナフサ留分水素化精製反応器54に移送されて、水素ガスが再利用される。
 中間留分水素化精製反応器52は、第1精留塔40の中央部から抜き出された中間留分の液体炭化水素(概ねC11~C20)を、水素分離装置26からワックス留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製および水素化異性化する。水素化精製された液体炭化水素を含む生成物は、気液分離器58で気体と液体に分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
 ナフサ留分水素化処理反応器54は、第1精留塔40の上部から抜き出された炭素数が少ないナフサ留分の液体炭化水素(概ねC10以下)を、水素分離装置26からワックス留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。水素化精製された液体炭化水素を含む生成物(水素化精製ナフサ)は、気液分離器60で気体と液体に分離され、そのうち液体炭化水素は、ナフサスタビライザー72に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
 次いで、第2精留塔70は、上記のようにしてワックス留分水素化分解反応器50及び中間留分水素化精製反応器52から供給された液体炭化水素を、C10以下の炭化水素(沸点が約150℃より低い。)と、灯油留分(沸点が約150~250℃。)と、軽油留分(沸点が約250~350℃。)及びワックス留分水素化分解反応器50において水素化分解が充分に進行していない、所謂未分解ワックス留分(沸点が約350℃を超える。)とに分留する。第2精留塔70の塔底からは未分解ワックス留分が抜き出され、これはワックス留分水素化分解反応器50の上流にリサイクルされてワックス留分水素化分解反応器50に再供給される。第2精留塔70の中央部からは灯油留分及び軽油留分が抜き出される。一方、第2精留塔70の塔頂からは、C10以下の炭化水素が抜き出されて、ナフサスタビライザー72に供給される。
 さらに、ナフサスタビライザー72では、上記ナフサ留分水素化精製反応器54及び第2精留塔70の塔頂から供給されたC10以下の炭化水素を精留して、製品としての高純度ナフサ(C~C10)を塔底から得る。一方、ナフサスタビライザー72の塔頂からは、製品対象外であるC以下の炭化水素を主成分とするガスが排出される。このガスは、外部の燃焼設備(図示せず。)に導入されて、燃焼された後に大気放出される。
 以上、液体燃料合成システム1の工程(GTLプロセス)について説明した。係るGTLプロセスにより、天然ガスが、高純度のナフサ(C~C10)、灯油(C11~C15)及び軽油(C16~C20)等の液体燃料に転換されることになる。
 次に、図2を参照して、中間留分水素化精製反応器52周辺の構成・動作について詳細に説明する。
 この中間留分水素化精製反応器52は、第1精留塔40の中央部に接続された供給路101と、中間留分水素化精製反応器52において水素化精製された中間留分を排出する排出路102と、排出路102から水素化精製された中間留分の試料を採取するサンプリング部103と、採取された水素化精製された中間留分の試料の曇り点を測定する曇り点測定部110と、中間留分水素化精製反応器52の運転条件(水素分圧/反応温度/単位時間当たりの中間留分処理量(例えば、LHSV))を制御する制御部104と、を備えている。
 本実施形態の中間留分水素化精製反応器の操業方法が適用される中間留分水素化精製工程は、FT合成反応により得られた中間留分を水素化精製及び水素化異性化する工程である。FT合成反応においては、主生成物である飽和炭化水素の他に、オレフィン類及び一酸化炭素由来の酸素原子を含むアルコール類等の含酸素化合物が副生し、FT合成油を分留して得られる中間留分にもこれらの副生成物が含まれる。中間留分水素化精製工程における水素化精製は、前記オレフィン類を水素化して飽和炭化水素(パラフィン炭化水素)へ転換する反応、及び含酸素化合物を水素化脱酸素して飽和炭化水素と水とに転換する反応を主として含む。そしてこの水素化精製に有効な触媒としては、水素化能を有する金属成分を活性点とする触媒が用いられる。
 一方、中間留分水素化精製工程における水素化異性化は、中間留分に含まれるノルマルパラフィンをイソパラフィンに転換する反応である。そしてこの水素化異性化に有効な触媒としては、水素化-脱水素能を有する金属成分と、固体酸成分とからなる触媒が用いられる。ノルマルパラフィンはまず金属成分の作用により脱水素されてオレフィンとなり、このオレフィンは固体酸成分の作用により骨格異性化され、更に金属成分の作用により水素化されてイソパラフィンに転換される。
 中間留分水素化精製工程においては、前記水素化精製に有効な触媒と、水素化異性化に有効な触媒との両方を使用してもよいが、一般に水素化異性化に有効な触媒は水素化精製にも有効であることから、水素化異性化に有効な触媒を使用することが効率的であり、好ましい。
 本発明に係る中間留分水素化精製反応器の形式は限定されないが、固定床連続流通式反応器であることが好ましい。反応器は単一であってもよいし、直列又は並列に配置された複数で構成されてもよい。また反応器内に設けられる触媒床は単一であってもよいし、複数に区分されていてもよい。
 前記中間留分水素化精製反応器に充填される触媒としては、石油精製等において水素化精製及び/又は水素化異性化に一般的に使用される触媒、すなわち無機担体に水素化(-脱水素)能を有する活性金属が担持された触媒を用いることができる。
 前記触媒を構成する活性金属としては、元素の周期表第6族、第8族、第9族及び第10族の金属からなる群より選ばれる1種以上の金属が用いられる。これらの金属の具体的な例としては、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等の貴金属、あるいはコバルト、ニッケル、モリブデン、タングステン、鉄などが挙げられ、好ましくは、白金、パラジウム、ニッケル、コバルト、モリブデン、タングステンであり、更に好ましくは白金、パラジウムである。また、これらの金属は複数種を組み合わせて用いることも好ましく、その場合の好ましい組み合わせとしては、白金-パラジウム、コバルト-モリブデン、ニッケル-モリブデン、ニッケル-コバルト-モリブデン、ニッケル-タングステン等が挙げられる。また、活性金属としてコバルト-モリブデン、ニッケル-モリブデン、ニッケル-コバルト-モリブデン、ニッケル-タングステン等の組み合わせを用いる場合には、触媒は水素化精製に供される前に、硫黄化合物により硫化されてもよい。なおここで元素の周期表とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表をいう。
 前記触媒を構成する無機担体としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、ボリア等の金属酸化物が挙げられる。これら金属酸化物は1種であってもよいし、2種以上の混合物あるいはシリカ・アルミナ、シリカ・ジルコニア、アルミナ・ジルコニア、アルミナ・ボリア等の複合金属酸化物であってもよい。前記無機担体は、水素化精製と同時にノルマルパラフィンの水素化異性化を効率的に進行させるとの観点から、シリカ・アルミナ、シリカ・ジルコニア、アルミナ・ジルコニア、アルミナ・ボリア等の固体酸性を有する複合金属酸化物であることが好ましい。また、無機担体には少量のゼオライトを含んでもよい。さらに前記無機担体は、担体の成型性及び機械的強度の向上を目的として、バインダーが配合されていてもよい。好ましいバインダーとしては、アルミナ、シリカ、マグネシア等が挙げられる。
 前記触媒における活性金属の含有量としては、活性金属が上記の貴金属である場合には、金属原子として担体の質量基準で0.1~3質量%程度であることが好ましい。また、活性金属が上記の貴金属以外の金属である場合には、金属酸化物として担体の質量基準で2~50質量%程度であることが好ましい。活性金属の含有量が前記下限値未満の場合には、水素化精製及び水素化異性化が充分に進行しない傾向にある。一方、活性金属の含有量が前記上限値を超える場合には、活性金属の分散が低下して触媒の活性が低下する傾向となり、また触媒コストが上昇する。
 本実施形態例における中間留分水素化精製反応器52における反応温度は、180~400℃、好ましくは280~350℃、更に好ましくは300~340℃である。ここで、反応温度とは、中間留分水素化精製反応器52内の触媒層の平均温度のことである。反応温度が前記下限温度以上であれば、中間留分が充分に水素化精製および水素化異性化され、前記上限温度以下であれば、中間留分の分解反応の併発を抑制することができ、また触媒の寿命低下が抑制される。
 中間留分水素化精製反応器52における圧力(水素分圧)は0.5~12MPaであることが好ましく、1~5MPaであることがより好ましい。水素化精製反応器の圧力が0.5MPa以上であれば、粗中間留分が充分に水素化精製され、12MPa以下であれば、設備の耐圧性を高めるための設備費を抑制できる。
 中間留分水素化精製反応器52における液空間速度(LHSV[liquid hourly space velocity])は0.1~10h-1であることが好ましく、0.3~3.5h-1であることがより好ましい。LHSVが0.1h-1以上であれば、反応器の容積を過大にしなくてもよく、10h-1以下であれば、中間留分が効率的に水素化精製および水素化異性化される。
 中間留分水素化精製反応器52における水素ガス/油比は50~1000NL/Lであることが好ましく、70~800NL/Lであることがより好ましい。ここで、「NL」とは、標準状態(0℃、101325Pa)における水素容量(L)のことを意味する。水素ガス/油比が50NL/L以上であれば、中間留分が充分に水素化精製および水素化異性化され、1000NL/L以下であれば、多量の水素ガスを供給するための設備が不要となり、また運転コストの上昇を抑制できる。
 なお、中間留分水素化精製反応器52における上記の反応条件は、該反応器から流出する水素化精製された中間留分の曇り点の測定値を基に、決定される。
 サンプリング部103において水素化精製された中間留分の試料は人手により容器に採取され、採取された該試料は独立した曇り点測定部まで運ばれ、人手により曇り点の測定が行われてもよい。その場合、サンプリング部103は、例えば排出路102から枝分かれした配管に手動のバルブを二重に設置することにより構成することができる。
 一方、サンプリング部103及び曇り点測定部110は、それぞれ前記試料の採取および曇り点の測定を、人手によらず自動的に行う構成となっていてもよい。その場合のサンプリング部103としては、例えば、排出路102から枝分かれし、再び排出路102に戻る小径の配管および該配管の途中に設置され、開閉が時間により制御された流路を切り替えるための複数のバルブ、および該バルブの開閉を時間により制御する制御機構から構成される。サンプリング部103内には、新しく製造された少量の水素化精製された中間留分が常に流通していて、前記バルブの切り替えにより、定期的に一定量の前記試料を採取する構成となっている。サンプリング部103と曇り点測定部110とは配管により連結されており、サンプリング部103により採取された前記試料は、自動的に曇り点測定部110に移送される。そして、前記サンプリング部103のバルブの制御と、曇り点測定部110の制御を連動させることにより、曇り点測定部110は移送された試料の曇り点の測定を自動的に行う。曇り点の測定が終了すると、その結果は例えば中間留分水素化精製反応器52の運転を制御する制御部104の制御盤に設けられた表示装置に表示される。また、曇り点測定部110においては、測定が終了した水素化精製された中間留分の試料は自動的に排出され、また、次回の測定の準備が行なわれる。
 曇り点測定部110は、図3に示すように、有底筒状をなすアルミニウム製の容器本体111と、この容器本体111の開口部を塞ぐ蓋部112と、容器本体111を冷却する冷却部113と、容器本体111の温度を測定する容器温度センサ114と、容器本体111内に充填された前記試料の温度を測定する液温センサ115と、容器本体111内に充填された前記試料の曇りを検知する曇り検知部116とを備えている。
 冷却部113は、ペルチェ素子(図示なし)を用いた電子冷却ユニットであって、冷却速度を制御することが可能な構成とされている。また、曇り検知部116は、投光器と受光器とを備えた光センサで構成されている。
 この曇り点測定部110における曇り点測定方法について説明する。
 まず、採取された水素化精製された中間留分の試料を容器本体111内に導入する。そして、容器温度センサ114と液温センサ115とで温度を測定しながら、冷却部113によって所定の冷却速度で水素化精製された中間留分を冷却し、曇り検知部116で曇りの発生を検知した際の液温を曇り点とする。
 ここで、採取された水素化精製された中間留分の試料を、冷却部113によって冷却速度5.0℃/min以上15.0℃/min以下の条件で冷却して曇り点を測定することが好ましい。本実施形態においては、冷却速度を9.5℃/minとしている。
 次に、中間留分水素化精製反応器52の操業方法について図4のフロー図を用いて説明する。
 第1精留塔40の中央部から留出した粗中間留分は、供給路101を通じて中間留分水素化精製反応器52へと供給され、水素化精製および水素化異性化される(S1)。
 中間留分水素化精製反応器52のスタート・アップ時においては、前記反応器の初期の運転条件の設定を行う。また、通常運転時においては、後のステップにおける水素化精製された中間留分の曇り点測定値が目標範囲外である等の場合に、前記反応器の運転条件の変更を行なう(S2)。
 中間留分水素化精製反応器52から排出路102を通じて流出する水素化精製された中間留分をサンプリングする(S3)。
 サンプリングされた水素化精製された中間留分の曇り点を、上述した曇り点測定部110によって測定する(S4)。
 そして、曇り点の測定値と運転管理目標値とを比較し、測定値が運転管理目標範囲内であるか否かを判定する(S5)。
 曇り点が運転管理目標範囲内であれば、中間留分水素化精製反応器52の運転条件を変更することなく維持する(S6)。なお、曇り点が運転管理目標範囲内である場合であっても、例えば曇り点を運転管理目標中心値により近付ける等を目的に、微小な前記運転条件の変更を行ってもよい。
 そして、所定時間後に再度水素化精製された中間留分のサンプリングを行い(S3へ戻る。)、以後のステップを繰り返すことにより、安定状態の確認・維持が可能となる。
 一方、曇り点が運転管理目標範囲外であれば、制御部104において、中間留分水素化精製反応器52の運転条件(水素分圧/反応温度/単位時間当たりの中間留分処理量(例えば、LHSV))を変更する(S2へ戻る)。
 そして、所定時間後に再度水素化精製された中間留分のサンプリングを行い(S3)、以後のステップを繰り返す。これにより、S2における中間留分水素化精製反応器52の運転条件変更の効果を確認することが可能となる。
 S2における中間留分水素化精製反応器52の運転条件の変更については、具体的には、曇り点が運転管理目標範囲の上限を超える場合には、水素分圧を高める、及び/又は反応温度を高める、及び/又は単位時間当たりの中間留分処理量(LHSV)を低減する条件とすることで、水素化異性化を促進し、水素化精製された中間留分の曇り点を低下させる。また、曇り点が運転管理目標範囲の下限を下回る場合には、水素分圧を低減する、及び/又は反応温度を低下させる、及び/又は単位時間当たりの中間留分処理量(LHSV)を増加する条件とすることで、水素化異性化を抑制し、水素化精製された中間留分の曇り点を上昇させる。特に反応温度を変更することにより、効果的に水素化精製された中間留分の曇り点を変化させることができる。
 なお、中間留分水素化精製反応器52の水素分圧、反応温度、単位時間当たりの中間留分処理量等の運転条件を制御する制御部は、一般的な反応器の運転制御を行うものであってよい。
 中間留分水素化精製反応器52から流出する水素化精製された中間留分の曇り点が運転管理目標範囲外であった場合、曇り点が運転管理目標範囲内となるように前記反応器の運転条件を変更するが、流出する水素化精製された中間留分の曇り点が運転管理目標範囲内となったことが確認されるまでの間に流出する水素化精製された中間留分の扱いは特に限定されない。
 中間留分水素化精製反応器52から流出する水素化精製された中間留分の曇り点が運転管理目標範囲の下限を下回った場合は、併発する分解反応による軽質分の増加による中間留分得率の低下という効率上の問題はあっても、第2精留塔70における分留を経て得られる中間留分製品は、製品規格を満たす可能性があるので、当該水素化精製された中間留分を第2精留塔70に移送して、製品として取り出してもよい。
 一方、中間留分水素化精製反応器52から流出する水素化精製された中間留分の曇り点が運転管理目標範囲の上限を超えた場合には、当該水素化精製された中間留分を第2精留塔70に移送せず、スロップタンクへ移送してもよい。あるいは、別な貯留設備に一時的に貯留した後、これを別途中間留分水素化精製反応器52に返送して再処理し、その曇り点が運転管理目標範囲内となったことを確認した上で第2精留塔70に移送し、製品として取り出してもよい。
 また、第2精留塔70には、中間留分水素化精製反応器52からの水素化精製された中間留分だけでなく、ワックス留分水素化分解反応器50からの水素化分解生成物も供給される。よって、中間留分水素化精製反応器52から流出する水素化精製された中間留分の曇り点が運転管理目標範囲の上限を超えている場合であっても、第2精留塔70から得られる中間留分製品の曇り点が製品規格を満たす場合もある。したがって、当該水素化精製された中間留分を第2精留塔70に移送して分留し、得られる中間留分が製品規格を満足すると推定される場合には、これを製品として取り出してもよい。そして、当該製品の曇り点が製品規格の上限を超えた場合には、当該製品を中間留分水素化精製反応器52に返送して再処理してもよい。
 以上のような構成とされた本実施形態である中間留分水素化精製反応器52及びこの中間留分水素化精製反応器52の操業方法によれば、中間留分水素化精製反応器52から製造された水素化精製された中間留分の曇り点を測定し、この曇り点に基づいて中間留分水素化精製反応器52の運転条件を制御する構成とされているので、中間留分水素化精製反応器52における水素化異性化の度合が一定に保持されることになる。よって、製造される水素化精製された中間留分の性状が安定することになり、この水素化精製された中間留分を原料として製造される軽油(ディーゼル燃料油)の品質を大幅に向上させることができる。
 また、曇り点を測定する際に、ペルチェ素子を用いた電子冷却ユニットからなる冷却部113によって水素化精製された中間留分を冷却して曇り点を測定しているので、水素化精製された中間留分の冷却速度を精度良くかつ容易に制御することが可能となる。そして、本実施形態では、冷却速度を5.0℃/min以上15.0℃/min以下とし、より具体的には、9.5℃/minとしているので、曇り点の測定を精度良く、かつ、迅速に行うことが可能となる。これにより、制御部104による運転条件の制御を適切なタイミングで行うことができ、中間留分水素化精製反応器52の操業を安定させることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 例えば、曇り点測定部が、ペルチェ素子を用いた電子冷却ユニットからなる冷却部を備えたものとして説明したが、これに限定されることはなく、例えばJIS K 2269に示すように、水素化精製された中間留分を、冷却浴を用いて段階的に冷却して曇り点を測定してもよい。
 また、アップグレーディングユニット等の運転条件については、実施形態に記載された範囲に限定されることはなく、状況に応じて適宜変更してもよい。
 さらに、合成ガス生成ユニット3、FT合成ユニット5、アップグレーディングユニット7の構成は、本実施形態に記載されたものに限定されることはなく、FT合成炭化水素の中間留分が、中間留分水素化精製反応器52に供給される構成であればよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
(曇り点と水素化異性化の度合との関係)
 中間留分水素化精製反応器における水素化異性化の度合と製造される水素化精製された中間留分の曇り点(CP)との関係について確認実験を行った。中間留分水素化精製反応器の運転条件を変更し、曇り点が異なる複数の水素化精製された中間留分を製造し、各水素化精製された中間留分の試料を採取した。各水素化精製された中間留分の曇り点は、前述した実施形態における曇り点測定部によって冷却速度9.5℃/minの条件で測定した。また、各水素化精製された中間留分の試料を得た際の、中間留分水素化精製反応器における水素化異性化の度合については、組成分析によって求めた各試料中の炭素数19以上のノルマルパラフィンの含有量(n-C19+量)を指標とした。n-C19+量とCPをプロットした結果を図5に示す。
 図5に示すように、水素化精製された中間留分の曇り点とn-C19+量との間には強い相関関係が認められる。ここで、n-C19+量は水素化異性化の度合を表す指標となる。このことから、水素化精製された中間留分の曇り点を測定することにより、中間留分水素化精製反応器における水素化異性化の度合を把握できることが確認された。
(曇り点の測定方法)
 次に、JIS K 2269に準拠した方法を用いた場合及び本実施形態で示したペルチェ素子を用いた電子冷却ユニットにより試料を高い冷却速度にて冷却する方法を用いた場合について、水素化精製された中間留分の曇り点の測定精度及び測定に要する時間について確認を行った。
 軽油相当の沸点範囲を有する液体炭化水素の試料を3種類(サンプル1~3)準備し、これらの試料を、株式会社離合製 自動流動点・曇り点・目詰まり点試験器RPCF-03CML(商品名)を用いて、JIS K 2269に準拠した測定方法で測定し、実施例1~3とした。
 また、前述のサンプルを、前記実施形態である曇り点測定部(具体的には、田中科学機器製作株式会社製 自動流動点・曇り点試験器 MPC-102形)によって、冷却速度5.0℃/min、7.0℃/min、9.5℃/minのそれぞれの条件で測定し、実施例4~12とした。なお、実施例1~12においては、同一の曇り点の測定を4回繰り返して実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、JIS K 2269で測定された曇り点と、冷却速度5.0℃/min、7.0℃/min、9.5℃/minのそれぞれの条件で測定した曇り点とでは、同一試料において2℃以内の誤差で一致している。ここで、JIS K 2269における誤差は、同一試験装置において2℃以内、異なる試験装置において4℃以内とされている。すると、実施例1~3と実施例4~12の間の2℃以内の誤差は、JIS K 2269においても許容される範囲のものであり、冷却速度5.0℃/min、7.0℃/min、9.5℃/minのそれぞれの条件で測定した実施例4~12であっても、JIS K 2269と同等の精度で曇り点を測定可能であることが確認された。
 また、測定時間は、JIS K 2269に準拠した実施例1~3では、60~90分であったのに対して、冷却速度5.0℃/min、7.0℃/min、9.5℃/minのそれぞれの条件で測定した実施例4~12では、6~21分と短時間で測定可能であった。
 したがって、実施例4~12のように曇り点を測定することによって、中間留分水素化精製反応器の制御を確実、且つ、更に迅速に行うことができることが確認された。
 本発明の中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器によれば、FT合成反応によって得られたFT合成炭化水素の中間留分の水素化精製工程における水素化異性化を適正に進行させ、安定した性状の水素化精製された中間留分を製造でき、高品質の軽油を得ることができる。
1 液体燃料合成システム
7 アップグレーディングユニット
40 第1精留塔
52 中間留分水素化精製反応器
103 サンプリング部
104 制御部
110 曇り点測定部
113 冷却部
116 曇り検知部

Claims (8)

  1.  フィッシャー・トロプシュ合成反応により合成されたFT合成炭化水素のうち軽油に相当する沸点範囲の成分を含む中間留分を、水素化精製及び水素化異性化する中間留分水素化精製反応器の操業方法であって、
     前記中間留分を触媒に接触させて水素化精製及び水素化異性化し、水素化精製された中間留分を得る工程と、
     前記中間留分水素化精製反応器から流出する前記水素化精製された中間留分の曇り点を測定する工程と、
     前記曇り点が所定の目標値となるように、前記中間留分水素化精製反応器の運転条件を制御する工程と、
     を備えている中間留分水素化精製反応器の操業方法。
  2.  前記曇り点を測定する工程において、採取された前記水素化精製された中間留分の試料を、冷却速度5.0℃/min以上15.0℃/min以下の条件で冷却して、曇り点を測定する請求項1に記載の中間留分水素化精製反応器の操業方法。
  3.  前記曇り点を測定する工程において、採取された前記試料を、ペルチェ素子を用いた電子冷却ユニットによって冷却速度を制御しながら冷却して、前記曇り点を測定する請求項1または請求項2に記載の中間留分水素化精製反応器の操業方法。
  4.  前記中間留分水素化精製反応器の運転条件を制御する工程において、水素分圧、反応温度、単位時間当たりの中間留分処理量のうちの少なくとも一つを制御する請求項1から請求項3のいずれか一項に記載の中間留分水素化精製反応器の操業方法。
  5.  フィッシャー・トロプシュ合成反応により合成されたFT合成炭化水素のうち軽油に相当する沸点範囲の成分を含む中間留分を、水素化精製及び水素化異性化する中間留分水素化精製反応器であって、
     製造される水素化精製された中間留分の試料を採取するサンプリング部と、
     採取された前記試料の曇り点を測定する曇り点測定部と、
     を備えている中間留分水素化精製反応器。
  6.  前記サンプリング部は、前記曇り点測定部と配管により接続されており、前記試料を自動的に採取および曇り点測定部に移送するものであり、
     前記曇り点測定部は移送された前記試料の曇り点を自動的に測定する請求項5に記載の中間留分水素化精製反応器。
  7.  前記曇り点測定部は、採取された前記試料を5.0℃/min以上15.0℃/min以下の冷却速度で冷却することが可能な冷却部を備えている請求項5または6に記載の中間留分水素化精製反応器。
  8.  前記冷却部は、ペルチェ素子を用いた電子冷却ユニットである請求項7に記載の中間留分水素化精製反応器。
PCT/JP2010/000340 2009-01-30 2010-01-21 中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器 WO2010087135A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201080005827.1A CN102300961B (zh) 2009-01-30 2010-01-21 中间馏分加氢精制反应器的操作方法及中间馏分加氢精制反应器
BRPI1007530A BRPI1007530A2 (pt) 2009-01-30 2010-01-21 método de operacao de reator de hidrotratamento de destilação média, e reator de hidrotratamento de destilação média
AU2010209217A AU2010209217B2 (en) 2009-01-30 2010-01-21 Operation method of middle distillate hydrotreating reactor, and middle distillate hydrotreating reactor
EP10735607A EP2392635A4 (en) 2009-01-30 2010-01-21 OPERATING METHOD FOR A REACTOR FOR HYDRO-REFINING OF INTERMEDIATE PRODUCTION FRACTIONS AND REACTOR FOR HYDRO-REFINING OF INTERMEDIATE PRODUCTION FRACTIONS
EA201170972A EA020717B1 (ru) 2009-01-30 2010-01-21 Способ управления реактором гидрирования среднего дистиллята и реактор гидрирования среднего дистиллята
JP2010548403A JP5367727B2 (ja) 2009-01-30 2010-01-21 中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器
US13/138,236 US20120006721A1 (en) 2009-01-30 2010-01-21 Operation method of middle distillate hydrotreating reactor, and middle distillate hydrotreating reactor
CA2750088A CA2750088C (en) 2009-01-30 2010-01-21 Operation method of middle distillate hydrotreating reactor, and middle distillate hydrotreating reactor
ZA2011/05353A ZA201105353B (en) 2009-01-30 2011-07-20 Operation method of middle distillate hydrotreating reactor, and middle distillate hydrotreating reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009020855 2009-01-30
JP2009-020855 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087135A1 true WO2010087135A1 (ja) 2010-08-05

Family

ID=42395400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000340 WO2010087135A1 (ja) 2009-01-30 2010-01-21 中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器

Country Status (10)

Country Link
US (1) US20120006721A1 (ja)
EP (1) EP2392635A4 (ja)
JP (1) JP5367727B2 (ja)
CN (1) CN102300961B (ja)
BR (1) BRPI1007530A2 (ja)
CA (1) CA2750088C (ja)
EA (1) EA020717B1 (ja)
MY (1) MY162602A (ja)
WO (1) WO2010087135A1 (ja)
ZA (1) ZA201105353B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476000B2 (en) * 2013-07-10 2016-10-25 Uop Llc Hydrotreating process and apparatus
US11123681B2 (en) 2017-05-17 2021-09-21 Entegris, Inc. Fluidized granular absorbent bed filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614948A (ja) * 1984-06-12 1986-01-10 エルフ・フランス 油の曇り点測定装置
JP2004323626A (ja) 2003-04-23 2004-11-18 Japan Energy Corp 環境対応燃料油とその製造方法
WO2007094199A1 (ja) * 2006-02-13 2007-08-23 Nippon Oil Corporation 合成油の水素化処理方法及び燃料基材の製造方法
JP2009020855A (ja) 2007-06-12 2009-01-29 Canon Inc ジョブログ管理システム、ジョブログ管理方法、及びコンピュータプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1417250A (fr) * 1964-09-28 1965-11-12 Cie De Raffinage Shell Berre Procédé et appareil pour la mesure du point de trouble de liquides
US4347577A (en) * 1980-12-15 1982-08-31 Texaco Inc. Feedstock temperature control system
US4855530A (en) * 1982-05-18 1989-08-08 Mobil Oil Corporation Isomerization process
US4519717A (en) * 1982-06-07 1985-05-28 Gca Corporation On-stream cloud point analyzer
US4428819A (en) * 1982-07-22 1984-01-31 Mobil Oil Corporation Hydroisomerization of catalytically dewaxed lubricating oils
IT1223151B (it) * 1987-11-18 1990-09-12 Agip Petroli Procedimento perfezionato per la produzione di flessibile di gasolio di elevata qualita'
WO1994024544A1 (en) * 1993-04-15 1994-10-27 Japan Energy Corporation Method and instrument for measuring cloud point
JP2000235420A (ja) * 1998-12-18 2000-08-29 Idemitsu Kosan Co Ltd 石油製品製造プロセスの制御装置及び方法
EA002794B1 (ru) * 1999-04-06 2002-10-31 Сэсол Текнолоджи (Пти) Лтд. Способ получения синтетического бензинового топлива и бензиновое топливо, полученное таким способом
CN100513527C (zh) * 2001-08-08 2009-07-15 国际壳牌研究有限公司 制备硫含量低于0.05wt%的烃产品的方法
US6702937B2 (en) * 2002-02-08 2004-03-09 Chevron U.S.A. Inc. Process for upgrading Fischer-Tropsch products using dewaxing and hydrofinishing
BR0314940A (pt) * 2002-10-08 2005-08-02 Exxonmobil Res & Eng Co Processo de desparafinação catalìtica, e, uso do mesmo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614948A (ja) * 1984-06-12 1986-01-10 エルフ・フランス 油の曇り点測定装置
JP2004323626A (ja) 2003-04-23 2004-11-18 Japan Energy Corp 環境対応燃料油とその製造方法
WO2007094199A1 (ja) * 2006-02-13 2007-08-23 Nippon Oil Corporation 合成油の水素化処理方法及び燃料基材の製造方法
JP2009020855A (ja) 2007-06-12 2009-01-29 Canon Inc ジョブログ管理システム、ジョブログ管理方法、及びコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2392635A4 *

Also Published As

Publication number Publication date
JP5367727B2 (ja) 2013-12-11
EA201170972A1 (ru) 2012-02-28
EP2392635A1 (en) 2011-12-07
BRPI1007530A2 (pt) 2016-02-16
EP2392635A4 (en) 2012-06-27
MY162602A (en) 2017-06-30
CN102300961B (zh) 2014-10-15
US20120006721A1 (en) 2012-01-12
CN102300961A (zh) 2011-12-28
AU2010209217A1 (en) 2011-09-08
EA020717B1 (ru) 2015-01-30
ZA201105353B (en) 2012-09-26
CA2750088A1 (en) 2010-08-05
JPWO2010087135A1 (ja) 2012-08-02
CA2750088C (en) 2014-03-11

Similar Documents

Publication Publication Date Title
JP5757704B2 (ja) 炭化水素油の製造方法及び炭化水素油の製造システム
AU2010316361B2 (en) Hydrocracking process and process for producing hyrocarbon oil
EP2497816B1 (en) Process for hydrotreating naphtha fraction and process for producing hydrocarbon oil
JP5367727B2 (ja) 中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器
EP2554633B1 (en) Hydrocarbon preparation method
JP5502093B2 (ja) 水素化分解方法、および炭化水素油の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005827.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548403

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2750088

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010735607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010735607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010209217

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 201170972

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2010209217

Country of ref document: AU

Date of ref document: 20100121

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13138236

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007530

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007530

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110728