WO2010087050A1 - 水中に溶解しているリンの除去方法および除去装置 - Google Patents

水中に溶解しているリンの除去方法および除去装置 Download PDF

Info

Publication number
WO2010087050A1
WO2010087050A1 PCT/JP2009/065109 JP2009065109W WO2010087050A1 WO 2010087050 A1 WO2010087050 A1 WO 2010087050A1 JP 2009065109 W JP2009065109 W JP 2009065109W WO 2010087050 A1 WO2010087050 A1 WO 2010087050A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
water
anode member
electrode potential
standard electrode
Prior art date
Application number
PCT/JP2009/065109
Other languages
English (en)
French (fr)
Inventor
昭 小島
昌生 藤重
Original Assignee
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立高等専門学校機構 filed Critical 独立行政法人国立高等専門学校機構
Priority to JP2010548366A priority Critical patent/JP5540434B2/ja
Priority to CN200980155752.2A priority patent/CN102300817A/zh
Publication of WO2010087050A1 publication Critical patent/WO2010087050A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • the present invention relates to a method for efficiently removing phosphorus dissolved in water and an apparatus used therefor.
  • phosphorus is a valuable resource that is concerned about being depleted, and is also a causative agent of eutrophication of environmental water (water present in lakes, rivers, reservoirs, bays, sea areas, etc.).
  • the method of removing a phosphorus compound as a water-insoluble component is known as a method of removing the phosphorus in feces and urine by adding fine iron powder in feces and urine (for example, refer patent document 2).
  • the phosphorus removal apparatus of this invention is the phosphorus which is arrange
  • An anode member made of one or more metals selected from the group consisting of magnesium, aluminum, zinc and iron, and a high standard electrode whose standard electrode potential is higher than the metal.
  • the cathode member is made of a potential material or a carbon member having a carbon material having electrical conductivity, and at least a part of the anode member is in contact with a part of the cathode member.
  • the anode member and the cathode member are brought into contact with each other, a local cell is formed by the anode member and the cathode member, and metal ions are rapidly eluted from the anode member made of metal having a low standard electrode potential. It reacts with phosphorus dissolved in water to form an insoluble phosphorus compound. Therefore, phosphorus in the water to be treated can be removed quickly and efficiently with low environmental load without adding unnecessary ions or components into the water.
  • the phosphorus removal apparatus of this invention can be equipped with a deposit removal means as needed. Therefore, the precipitate can be prevented from covering the surface of the anode member or the like to inhibit the elution of metal ions.
  • the anode member and the cathode member need to be in contact with each other.
  • the standard electrode potential can be measured using cyclic voltammetry or the like as a potential difference with the reference electrode.
  • having electrical conductivity means that the electrical conductivity is 10 -3 S / m or more.
  • the cathode member is made of a high standard electrode potential material, and the difference between the standard electrode potential of the high standard electrode potential material and the standard electrode potential of the metal is 0. It is preferably 3 V or more. The reason is that if the difference in standard electrode potential is 0.3 V or more, the metal ion elution rate becomes sufficiently high, and the phosphorus removal rate can be improved.
  • the upper limit of the difference in standard electrode potential is not particularly limited, but about 1.93 V is a practical upper limit.
  • the cathode member is preferably made of carbon fiber having electrical conductivity.
  • carbon fiber is a material having a very large specific surface area, and can maintain a large contact area with the anode member.
  • carbon fiber is a substance having the same function as the high standard electrode potential material.
  • the phosphorus removal apparatus of this invention is an aeration apparatus which sprays gas on the said anode member and the said cathode member.
  • blowing a gas not only means that the gas reaches the anode member and the cathode member, but also that the water flow generated by aeration reaches the anode member and the cathode member. means. The reason is that if the water flow generated by aeration from the aeration device is used, the precipitate deposited on the surfaces of the anode member and the cathode member can be easily removed.
  • the shape of the anode member is linear, plate-like, massive, film-like, rod-like, cylindrical, powder-like, granular, mesh-like or fibrous.
  • the shape of the cathode member is preferably filamentous, plate-like, massive, film-like, rod-like, cylindrical, powdery, granular, mesh-like, or fabric-like. If the anode member and the cathode member are shaped as described above, the contact area of both members can be increased to increase the metal ion elution rate, and the phosphorus removal rate can be improved.
  • the method of removing phosphorus according to the present invention is a method of removing phosphorus from water to be treated containing phosphorus, which is a part of an anode member made of a metal selected from the group consisting of magnesium, aluminum, zinc and iron. And a part of a cathode member made of a high standard electrode potential material having a standard electrode potential higher than that of the metal or a carbon material having electrical conductivity in contact with the water to be treated to make metal ions from the anode member. It is characterized in that the metal ions which are eluted and eluted are reacted with phosphorus in the water to be treated to precipitate as a phosphorus compound.
  • having electrical conductivity means that the electrical conductivity is 10 -3 S / m or more.
  • a gas blown at a linear velocity of 0.1 to 60 m / min toward the surfaces of the anode member and the cathode member is used using an aeration apparatus that blows a gas.
  • a gas blown at a linear velocity of 0.1 to 60 m / min toward the surfaces of the anode member and the cathode member is used using an aeration apparatus that blows a gas.
  • the reason is that the precipitate deposited on the surfaces of the anode member and the cathode member can be easily removed by using not only the blowing force of the gas but also the water flow or the like generated with aeration.
  • spraying the gas at a linear velocity of 0.1 to 60 m / min the precipitate deposited on the surfaces of the anode member and the cathode member can be reliably removed.
  • metallic iron and a carbon material are preferably used.
  • iron ions are generated and react with phosphate ions present in water to form iron phosphate.
  • This reaction removes phosphorus dissolved in water. That is, the removal of phosphorus in the present invention is two types of chemical reactions, and the likelihood of these chemical reactions is the rate-limiting condition of the removal rate of phosphorus.
  • chemical reactions are affected by temperature. The reaction rate is said to be tripled when the temperature of the water to be treated is raised by 10 ° C. That is, it is desirable that the temperature of the reaction environment be as high as possible.
  • the dissolution rate of metallic iron is influenced by pH.
  • the pH can also be controlled, but in a natural environment, the water to be treated is near neutral except in special cases (for example, drainage of a hot spring).
  • the phosphorus removal reaction can be made faster if the reaction environment can be acidified without imposing a burden on the environment.
  • the reaction between metallic iron and the carbon material is a solid-solid reaction, and occurs only at the point of contact between the two, and the more the contact points, the faster the reaction. Therefore, it is important how to keep both contacts in order to proceed efficiently.
  • the reaction of iron ions with phosphate ions is a homogeneous reaction in solution reaction. In order to increase this reaction rate, it is related to the contact frequency and mobility of the two. Specifically, it depends on temperature and agitation. In particular, mixing by stirring is effective.
  • iron ions generated during the reaction of metallic iron and the carbon material change to iron hydroxide over time if there is no reaction with phosphate ions.
  • this iron hydroxide is present between the metallic iron and the carbon material, the reaction is stopped. It is because iron hydroxide is an insulator.
  • iron phosphate, iron hydroxide and iron oxide be recovered and reused as phosphorus and iron resources.
  • any of conventionally known separation and recovery methods such as filtration, centrifugation, and filter press can be applied.
  • a fiber bag is placed on the outer side of the composite of metallic iron and carbon material. By installing a composite of metallic iron and carbon material in this bag, iron phosphate, iron hydroxide, iron oxide, etc. generated by the reaction are collected in the bag and re-used as resources. It becomes possible to use.
  • iron phosphate and the like can be separated and recovered using a filter press.
  • phosphorus in water can be removed quickly and efficiently without adding unnecessary ions or components into the water.
  • the phosphorus removal apparatus of this invention is demonstrated concretely.
  • the phosphorus removal apparatus of the present invention is used to remove phosphorus contained in water to be treated such as environmental water, industrial drainage, livestock drainage, sewage, manure, and well water.
  • the apparatus for removing phosphorus comprises an anode member made of a metal selected from the group consisting of magnesium, aluminum, zinc and iron, a high standard electrode potential material having a higher standard electrode potential than the metal used for the anode member, A cathode member made of a carbon material having electrical conductivity, and a deposit removing means for removing deposits deposited on the surfaces of the anode member and the cathode member, and a part of the anode member and a part of the cathode member And are in contact with each other.
  • the anode member forms the cathode member and the local battery in the water to be treated.
  • the metal used as the material of the anode member becomes cations (metal ions) and elutes into the water to be treated by formation of the local battery of the anode member and the cathode member.
  • the eluted metal ions react with phosphorus in the water to be treated to form a water-insoluble phosphorus compound.
  • the anode member As a material of the anode member, it is necessary to use a metal capable of eluting metal ions which react with phosphorus (for example, phosphoric acid and the like) in the water to be treated to form a water-insoluble phosphorus compound.
  • phosphorus for example, phosphoric acid and the like
  • magnesium, aluminum, zinc or iron can be used as the material of the anode member. These metals can be used alone or in combination of two or more.
  • anode member As a material of the above-mentioned anode member, it is preferable to use zinc, iron or aluminum from the viewpoint of handleability and availability, and it is more preferable to use iron. Iron is cheap and easy to obtain, and has a variety of shapes.
  • the anode member for example, iron nails, iron wire mesh, steel slag can be used.
  • a part of the cathode member can be coated (plated) with the above-mentioned metal, for example, zinc, and this zinc coated portion can be used as an anode member.
  • the shape of the anode member is not particularly limited, and may be linear, plate-like, massive, film-like, rod-like, cylindrical, powder-like, granular, mesh-like, or fibrous.
  • the linear shape is a shape that has an aspect ratio of more than 1 and less than 5 and does not break in the length direction unless an external force is applied, and the fibrous shape is a shape that can be freely deformed at an aspect ratio of 5 or more. It is.
  • granular means that the diameter is longer than 0.1 mm
  • powder means that the diameter is less than 0.1 mm.
  • the length of the diameter refers to the diameter in the case of spherical particles and the length of the diagonal in the case of rectangular particles, for example, using a digital CCD microscope (MS-804, manufactured by Moritex Co., Ltd.) Can be measured.
  • the cathode member is made of a high standard electrode potential material whose standard electrode potential is higher than that of the metal used for the anode member, or a carbon material having electrical conductivity.
  • a material of the high standard electrode potential material when magnesium is used for the anode member, a material whose standard electrode potential is higher than -2.37 V, and when aluminum is used, the standard electrode potential is ⁇ 1.66 V It is necessary to use a higher substance, a substance whose standard electrode potential is higher than -0.76 V when zinc is used, and a substance whose standard electrode potential is higher than -0.44 V when iron is used.
  • anode member-high standard electrode potential material Zn-Fe, Al-Fe, Mg-Fe, Al-Zn, Mg-Zn And Mg-Al, Fe-Cu, Zn-Cu, Al-Cu, Mg-Cu, Al-Pt, Mg-Pt, Zn-Pt, Fe-Pt and the like.
  • the difference (A ⁇ B) between the standard electrode potential (A) of the substance used as the material of the high standard electrode potential material and the standard electrode potential (B) of the metal used as the material of the anode member is 0. It is preferably 3 V or more. This is because if the standard electrode potential difference (A ⁇ B) is large, the metal ion elution rate at the anode member is increased, and the phosphorus removal rate is improved.
  • the upper limit of the difference in standard electrode potential is not particularly limited, but about 1.93 V is a practical upper limit.
  • a carbon material having electrical conductivity such as carbon fiber, charcoal, bamboo charcoal, graphite, carbon black, a carbon material for an electrode, or a mixture thereof can be suitably used.
  • the carbon fiber a known carbon fiber can be used.
  • a carbon fiber formed by aggregating 12000, 24000, or 48000 filaments having a diameter of 7 ⁇ m can be used.
  • the shape of the cathode member is not particularly limited, and may be filamentary, plate-like, massive, film-like, rod-like, cylindrical, powdery, granular, mesh-like or woven.
  • the above-mentioned anode member and cathode member can be brought into contact with each other, for example, as follows.
  • the type of contact between the anode member and the cathode member is not limited to the following, and any contact type in which the anode member and the cathode member can form a local battery in the water to be treated can be used.
  • the anode member and the cathode member are mixed in a container in which the water to be treated can flow.
  • the shape of a container can be made into arbitrary shapes, such as a cylinder type and a box type.
  • the cathode member is carbon fiber
  • the following contact types can also be taken.
  • (12) A metal iron plate (net) and a carbon fiber fabric are stacked and wound in a cylindrical shape.
  • Precipitate removal means As the deposit removing means, known means can be used as long as the deposit deposited on the surfaces of the anode member and the cathode member can be removed. Specifically, an aerator, a stirrer, a swirl flow generator, an ultrasonic wave irradiator, etc. can be mentioned as a precipitate removing means for removing water by causing a water flow in the water to be treated. As a deposit removal means for removing an object, a vibration device for vibrating the anode member and the cathode member, a rotation device for rotating the anode member and the cathode member, and the like can be mentioned. Specifically, for example, a stirring device for stirring the anode member and the cathode member placed in the container can be used as the deposit removing means.
  • the aeration speed at that time is preferably set to a linear speed of 0.1 to 60 m / min.
  • the gas to aerate can be made into arbitrary gas, it is preferable to use air. Because air is a gas that can be used at low cost.
  • the amount of dissolved oxygen in the water can be increased to promote the purification of the water quality by the aerobic microorganism.
  • the anode member and the cathode member are immersed in the water to be treated while being in partial contact with each other to form a local battery, and metal ions are eluted from the anode member,
  • a water-insoluble phosphorus compound such as magnesium phosphate, aluminum phosphate, zinc phosphate, ferric phosphate, etc. precipitates. That is, phosphorus is removed from the water to be treated.
  • the deposits deposited on the surfaces of the anode member and the cathode member are removed by the deposit removing means, so the deposition rate of phosphorus may be reduced due to deposition of the deposits. Absent.
  • the deposited phosphorus compound is disposed, for example, a receptacle below the anode member and the cathode member, or a container for wrapping the anode member and the cathode member, a bag made of woven fabric or non-woven fabric, etc.
  • the water can be recovered using means such as filtration and dissolved in an acid to be reused as a phosphorus resource.
  • iron when used as the material of the anode member, it can be reused as iron phosphate, for example, as battery material, and reutilized precipitated ferric phosphate as iron resource You can also.
  • the pH of the water to be treated is preferably 5.0 to 8.0. This is because if the pH is less than 5.0, dissolution of the metal used for the anode member or the like may occur, and the solubility of the phosphorus compound is increased to make it impossible to efficiently remove phosphorus. In addition, when the pH exceeds 8.0, the dissolved metal ion reacts with the hydroxide ion to form a hydroxide, so that the formation of the phosphate compound is suppressed.
  • the particularly preferred pH is 7.0.
  • the phosphorus concentration of the water to be treated is not particularly limited, but is preferably 500 mg / L or less.
  • the phosphorus concentration of process target water is too high, it is preferable to process after diluting arbitrarily.
  • the phosphorus concentration of the above-described water to be treated was measured as follows. Metal iron and carbon fibers were brought into contact and applied to an aqueous solution containing phosphoric acid to form a precipitate, and analysis of this main component was performed. First, elemental analysis was performed with an X-ray microanalyzer to confirm the presence of phosphorus. Then, the substance was identified using an X-ray diffractometer. However, since the substance was amorphous, the diffraction line became broad and no remarkable diffraction line was obtained. Therefore, measurement was performed with a Fourier transform infrared spectrometer, and a spectrum unique to iron phosphate was shown.
  • the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
  • the phosphorus concentration and COD were determined using a portable simple total nitrogen, total phosphorus meter (TOA-DKK Co., Ltd., TNP-10).
  • the mass of an iron nail (one) is an average mass calculated from the mass of three iron nails arbitrarily selected
  • the zinc concentration is a pack test for zinc (manufactured by Kyoritsu Chemical Research Institute, WAK-Zn, It is the value measured using a trademark.
  • Example 1 Sample water A having a phosphorus concentration of 5 mg / L was prepared by adding disodium monohydrogenphosphate to pond water (collected from Shokanji pond, Nakao-cho, Takasaki City). Then, using the sample water A, a phosphorus removal experiment was performed in the water tank under the conditions shown in Table 1. An outline of the experimental apparatus is shown in FIGS. 1 (a) and (b). In the figure, 1 is a phosphorus-containing aqueous solution, 2 is a woven carbon fiber, 3 is an iron nail, 4 is a balloon, and 5 is a centipede-type cleaning material.
  • the centipede-type purification material 5 is obtained by forming a woven carbon fiber into a centipede shape.
  • the inside of the water tank was aerated using the aeration balloon 4 installed at the lower part of the water tank.
  • the change with time of the phosphorus concentration, COD, and the mass of iron nail 3 (one) is shown in Table 2.
  • Sample water B was prepared in which the concentration of phosphorus was 5 mg / L by adding disodium monohydrogenphosphate to seawater (collected from the Ogasawara Islands). Then, using the sample water B, a phosphorus removal experiment was performed in the water tank under the conditions shown in Table 3. Incidentally, during the experiment, the inside of the water tank was aerated using an aeration apparatus installed at the lower part of the water tank. The change over time of the phosphorus concentration is shown in Table 4.
  • Example 4 when the change (decrease) of the total weight of the iron nail before and behind an experiment was measured about Example 4-5 and comparative example 3, in Example 4, it is 8.56g in Example 5, 17.08g, and a comparative example. It was 1.16 g in 3.
  • the phosphorus concentration is less than ND (lower limit of detection) in any one day.
  • Example 6 to 7 Sample water C having a phosphorus concentration of 20 mg / L was prepared by adding disodium monohydrogenphosphate to seawater (collected from the Ogasawara Islands). Then, using the sample water C, a phosphorus removal experiment was performed in the water tank under the conditions shown in Table 5. Incidentally, during the experiment, the inside of the water tank was aerated using an aeration apparatus installed at the lower part of the water tank. The change over time of the phosphorus concentration is shown in Table 6.
  • Example 6 when the change (decrease) of the total weight of the iron nail before and behind an experiment was measured about Example 6-7 and Comparative Example 7, in Example 6, 4.74 g in Example 6, 22.99 g in Example 7, and a comparative example 7 was 0.24 g.
  • Example 8 to 11 Sample water D having a phosphorus concentration of 6.6 mg / L was prepared by adding disodium monohydrogenphosphate to reservoir water (collected from Shokanji pond, Nakao-cho, Takasaki City). Then, using the sample water D, a phosphorus removal experiment was performed in the water tank under the conditions shown in Table 7.
  • the outline of the experimental apparatus is shown in FIGS. 2 (a) and (b). In the figure, 1 is a phosphorus-containing aqueous solution, 2 is a woven carbon fiber, 4 is a balloon, 5 is a centipede-type cleaning material, and 6 is a wire mesh.
  • Example 8 the inside of the water tank was aerated using an aeration balloon 4 installed at the lower part of the water tank.
  • the changes over time in phosphorus concentration and zinc concentration are shown in Table 8.
  • the weight change (decrease) of the wire mesh 6 before and after the experiment was measured in Examples 8 to 11.
  • the weight was 2.4 g in Example 8, 1.7 g in Example 9, and 2.5 g in Example 10. In Example 11, it was 0.3 g.
  • the phosphorus removal rate is higher when both the woven carbon fiber and the centipede-type purification material are used as the cathode member, because the dissolution rate of iron is increased by the placement of the centipede-type purification material. Is considered to have increased further.
  • Example 12 Sample water E having a phosphorus concentration of 5 mg / L was prepared by adding disodium monohydrogenphosphate to pure water. Then, using the sample water E, a phosphorus removal experiment was performed under the conditions shown in Table 9. The change over time of the phosphorus concentration is shown in Table 10. Note that (AB) in Table 9 indicates the standard electrode potential (A) of the substance used as the material of the high standard electrode potential material (cathode) and the standard electrode potential of the metal used as the material of the anode member (B) ) And the difference (AB).
  • a phosphorus removal experiment was performed in a 300 mL beaker, and removal of the phosphorus compound deposited on the surfaces of the cathode member and the anode member was performed by stirring the inside of the beaker using a stirring blade.
  • the cathode member and the anode member are contacted by placing an iron nail in a platinum crucible, and in Example 15, a copper plate (donut shape, thickness: 0.5 mm, outer circle) Diameter: 9.0 cm, diameter of inner circle: 4.5 cm) Copper plate (donut shape, thickness: 0.5 mm, outer circle) wound with galvanized wire mesh (width: 2.5 cm, length: 30 cm) Diameter: 9.0 cm, diameter of inner circle: 4.5 cm) by alternately laminating two sheets.
  • Example 14 the iron portion of the galvanized wire mesh is the cathode member, the zinc portion of the galvanized wire mesh is the anode member, and the cathode member inside the wire mesh is a sample in the cross section existing on four sides of the wire mesh. It was set as the structure which contacts water E.
  • Waste water from the fish processing industry contains a large amount of phosphorus.
  • the drainage standard of phosphorus established by the Ministry of the Environment is 8 mg / L of total phosphorus. Therefore, we conducted experiments to determine if phosphorus in the wastewater from the fish processing industry could be removed. Drain water into a water tank (10 L) and weave textile carbon fibers (width: 21 cm, length: 18 cm, submerged section: 12 cm) with 60 iron nails (length: 2 cm, weight: 0.5 g) I put it inside. The iron nails were passed through the weft of the fabric three times, instead of piercing the fabric, to increase the contact efficiency. In addition, aeration was performed with a submersible pump.
  • the total phosphorus concentration which was 28 mg / L before the start of the experiment, drops to 16 mg / L six hours after the start of the experiment, and then becomes 4 mg / L after 24 hours, which is below the environmental standard value.
  • the odor decreased significantly and did not feel.
  • the drainage before the start of the experiment was totally cloudy, but after 4 hours, the turbidity decreased, and a white precipitate was deposited at the bottom of the water tank or adhered to the carbon fiber fabric.
  • the infrared absorption spectrum was measured using a Fourier transform infrared microspectroscope (Varian 3100 FT-IR / 600 UMA). It was iron phosphate, as a result of comparing and examining the obtained infrared spectrum with a tale book.
  • the phosphorus removal method and apparatus according to the present invention can effectively remove phosphorus, thereby contributing to environmental maintenance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

 不要なイオンや成分を水中に添加することなしに、迅速に水中のリンを除去することができるリン除去装置およびリン除去方法を提供する。 リンを含有する処理対象水中に設置して当該処理対象水中に溶解しているリンを除去するための装置であって、マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された1種または2種以上の金属よりなるアノード部材と、前記金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材よりなるカソード部材とからなり、且つ、少なくとも前記アノード部材の一部と前記カソード部材の一部が接触していることを特徴とするリンの除去装置である。また、アノード部材の一部と、カソード部材の一部とを処理対象水中で接触させてリン化合物を析出させるリンの除去方法である。

Description

水中に溶解しているリンの除去方法および除去装置
 本発明は、水中に溶解しているリンを効率的に除去するための方法およびそれに用いる装置に関するものである。
 一般に、リンは、枯渇が懸念されている貴重な資源であると共に、環境水(湖沼池、河川、ため池、湾、海域等に存在する水)の富栄養化の原因物質でもある。
 そこで、湖沼や内湾等の閉鎖性水域の富栄養化による水質汚染を防止するために、環境水、産業排水、畜産排水、下水などからリンを除去する技術の開発が求められている。
 これに対し、排水中に溶解しているリンを除去する方法として、鉄塩またはアルミニウム塩を排水に添加することにより、水中のリンを水に不溶性のリン酸鉄またはリン酸アルミニウムとして析出させて除去する方法が知られている(例えば、特許文献1参照)。
 また、糞尿中のリンを除去する方法として、糞尿中に微鉄粉を添加することにより、リン化合物を水不溶性成分として除去する方法が知られている(例えば、特許文献2参照)。
特開2008-68248号公報 特開2000-140862号公報
 しかしながら、上記鉄塩またはアルミニウム塩を用いた除去方法では、鉄イオンやアルミニウムイオン以外のイオンや成分も水中に加えられてしまうという問題があった。即ち、処理対象水への鉄塩やアルミニウム塩の添加に伴い、鉄イオンまたはアルミニウムイオンと結合して鉄塩またはアルミニウム塩を形成している塩化物イオンや硫酸イオン等の対イオンも処理対象水中に添加されることとなり、処理対象水中の塩化物イオン濃度や硫酸イオン濃度が上昇し、生態系へ悪影響が生じるという問題があった。
 また、上記微鉄粉を用いた除去方法では、微鉄粉とリン化合物とが水不溶性成分を形成する速度が遅い、即ちリン除去速度が低いという問題があった。
 そのため、不要なイオンや成分を水中に添加する必要がなく、且つ、迅速に水中のリンを除去することができるリン除去装置が求められていた。また、リンの効率的な除去方法も求められていた。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリンの除去装置は、リンを含有する処理対象水中に設置して当該処理対象水中に溶解しているリンを除去するための装置であって、マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された1種または2種以上の金属よりなるアノード部材と、前記金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材よりなるカソード部材とからなり、且つ、少なくとも前記アノード部材の一部と前記カソード部材の一部が接触していることを特徴とする。
 このように、アノード部材とカソード部材とを接触させれば、アノード部材とカソード部材とで局部電池が形成されるので、標準電極電位が低い金属からなるアノード部材から金属イオンが迅速に溶出し、水中に溶解していたリンと反応して不溶性のリン化合物を形成する。従って、不要なイオンや成分を水中に添加することなく、低い環境負荷で、処理対象水中のリンを迅速かつ効率的に除去することができる。
 また、本発明のリンの除去装置は、必要に応じて、析出物除去手段を備えることができる。そのため、析出物がアノード部材等の表面を覆って金属イオンの溶出を阻害することを防止し得る。なお、局部電池を形成するという観点から、本発明のリンの除去装置では、アノード部材とカソード部材とは互いに一部が接触している必要がある。因みに、標準電極電位は、基準電極との電位差として、サイクリックボルタンメトリー等を用いて測定することができる。また、本発明において、電気伝導性を有するとは、電気伝導率が10-3S/m以上であることを指す。
 ここで、本発明のリンの除去装置は、前記カソード部材が高標準電極電位材からなり、且つ、当該高標準電極電位材の標準電極電位と、前記金属の標準電極電位との差が0.3V以上であることが好ましい。というのは、標準電極電位の差が0.3V以上であれば、金属イオンの溶出速度が充分に高くなり、リンの除去速度を向上することができるからである。なお、標準電極電位の差の上限は特に制限はないが、1.93V程度が現実的な上限である。
 また、本発明のリンの除去装置は、前記カソード部材が、電気伝導性を有する炭素繊維からなることが好ましい。というのは、炭素繊維は比表面積が非常に大きい素材であり、アノード部材との接触面積を大きく保つことができるからである。また、炭素繊維は高標準電極電位材と同等の作用をもつ物質だからである。
 更に、本発明のリンの除去装置は、前記アノード部材および前記カソード部材に気体を吹き付ける曝気装置であることが好ましい。なお、本発明において、気体を吹き付けるとは、前記アノード部材および前記カソード部材に気体が到達することを意味するのみならず、曝気に伴い生じる水流が前記アノード部材および前記カソード部材に到達することも意味する。というのは、曝気装置からの曝気に伴い生じる水流を用いれば、アノード部材およびカソード部材の表面に析出した析出物を容易に除去することができるからである。
 また、本発明のリンの除去装置は、前記アノード部材の形状が、線状、板状、塊状、フィルム状、棒状、筒状、粉状、粒状、メッシュ状、または繊維状であることが好ましく、前記カソード部材の形状が、フィラメント状、板状、塊状、フィルム状、棒状、筒状、粉状、粒状、メッシュ状、または織物状であることが好ましい。アノード部材およびカソード部材を上述のような形状とすれば、両部材の接触面積を大きくして金属イオンの溶出速度を高めることができ、リンの除去速度を向上することができるからである。
 そして、本発明のリンの除去方法は、リンを含有する処理対象水中からリンを除去する方法であって、マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された金属よりなるアノード部材の一部と、当該金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材からなるカソード部材の一部とを前記処理対象水中で接触させて前記アノード部材から金属イオンを溶出させ、溶出した前記金属イオンと、処理対象水中のリンとを反応させてリン化合物として析出させることを特徴とする。
 このように、アノード部材とカソード部材とを接触させて局部電池を形成した際に溶出する金属イオンを用いて水中のリンを除去すれば、不要なイオンや成分を水中に添加することなく、低い環境負荷で、処理対象水中のリンを迅速かつ効率的に除去することができる。また、アノード部材およびカソード部材の表面に析出した析出物を析出物除去手段で除去すれば、析出物がアノード部材等の表面を覆って金属イオンの溶出が阻害されることを防止し得る。
 なお、本発明において、電気伝導性を有するとは、電気伝導率が10-3S/m以上であることを指す。
 ここで、前記析出物を除去するには、気体を吹き付ける曝気装置を用い、前記アノード部材および前記カソード部材の表面に向かって、線速度:0.1~60m/minで吹き付ける気体を利用することが好ましい。というのは、気体の吹き付け力だけではなく、曝気に伴い生じる水流等を利用すれば、アノード部材およびカソード部材の表面に析出した析出物を容易に除去することができるからである。また、線速度:0.1~60m/minで気体を吹き付けることにより、アノード部材およびカソード部材の表面に析出した析出物を確実に除去することができるからである。
 本発明では、好適には金属鉄と炭素材を用いる。これら金属鉄と炭素材を接触させると鉄イオンが生成し、水中に存在するリン酸イオンと反応してリン酸鉄を生成する。この反応によって、水に溶解しているリンが除去される。すなわち、本発明でのリンの除去は2種類の化学反応であり、これら化学反応の起こりやすさが、リンの除去速度の律速条件となる。
 一般的に、化学反応は温度によって影響される。処理対象水の温度が10℃高くなると、反応速度は3倍になるといわれている。すなわち、反応環境の温度はできる限り高いことが望ましい。
 一方、金属鉄の溶解速度は、pHに影響される。処理対象水のpHが低い、つまり酸性であるほど、鉄の溶解速度は大となる。処理対象水が産業排水の場合には、pHのコントロールも可能であるが、自然環境下では、特殊な場合(例えば温泉の排水など)以外は、処理対象水は中性付近である。環境に負荷を与えないで、反応環境を酸性にすることができれば、リンの除去反応はより早くすることができる。
 また、金属鉄と炭素材との反応は、固体―固体反応であって、両者の接触する点のみでしか生じず、接触点が多ければ多いほど、反応は早くなる。そのため、効率よく反応を進めるには、いかに両者の接触を保持できるかが重要である。
 さらに、鉄イオンとリン酸イオンとの反応は、溶液反応で均一反応である。この反応速度を高めるには、両者の接触頻度、移動度に関係する。具体的には、温度と攪拌による。特に攪拌による混合は効果がある。
 ここに、金属鉄と炭素材との反応中に生成した鉄イオンは、リン酸イオンとの反応がないと、時間経過とともに水酸化鉄に変化する。この水酸化鉄が金属鉄と炭素材との間に存在すると、反応が停止する。というのは、水酸化鉄は絶縁体であるからである。
 生成したリン酸鉄、水酸化鉄および酸化鉄は、回収し、リンや鉄資源として再利用することが望まれる。水溶液中に分散している細かいリン酸鉄、水酸化鉄あるいは酸化鉄を分離回収するには、ろ過、遠心分離、フィルタープレスなどの従来公知の分離回収方法がいずれも適用できる。
 また、金属鉄と炭素材との複合物の外側(外周)に繊維製の袋をおく。この袋の中に金属鉄と炭素材との複合物を設置することで、反応によって生じたリン酸鉄、水酸化鉄、酸化鉄などは、袋の中に捕集され、それを資源として再利用することが可能となる。あるいは、フィルタープレスを用いて、リン酸鉄等を分離し、回収することもできる。
 本発明のリンの除去装置およびリンの除去方法によれば、不要なイオンや成分を水中に添加することなく、水中のリンを迅速かつ効率的に除去することができる。
本発明装置の概略を示す模式図である。 本発明装置の概略を示す他の模式図である。
 以下に、本発明のリンの除去装置を具体的に説明する。本発明のリンの除去装置は、環境水、産業排水、畜産排水、下水、し尿、井戸水などの処理対象水に含まれているリンの除去に用いるものである。
 例えば、窒素やリンを含む環境水の場合、水温が高くなる夏場になると水面が緑色になる植物性プランクトン(通称 アオコ)が大量に発生する。このアオコは、リンによって発生量が影響される。というのは、リンがクロフィルの形成に不可欠だからである。従って、水中のリンを除去することで、アオコの発生を抑制することができる。実際、アオコの発生する池水内に、炭素繊維織物中に金属鉄を挿入して接触させたものを差し入れることにより、アオコの発生が抑制できることを確認した。
 本発明のリンの除去装置は、マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された金属よりなるアノード部材と、アノード部材に用いた金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材からなるカソード部材と、アノード部材およびカソード部材の表面に析出した析出物を除去する析出物除去手段とを備えており、アノード部材の一部とカソード部材の一部とが互いに接触しているものである。
(アノード部材)
 ここで、アノード部材は、処理対象水中でカソード部材と局部電池を形成するものである。そして、本発明のリンの除去装置では、アノード部材とカソード部材との局部電池の形成により、アノード部材の材料として使用した金属が陽イオン(金属イオン)となって処理対象水中へと溶出し、溶出した金属イオンと処理対象水中のリンとが反応して水に不溶性のリン化合物を形成する。
 従って、アノード部材の材料としては、処理対象水中のリン(例えばリン酸など)と反応して水に不溶性のリン化合物を形成する金属イオンを溶出し得る金属を用いる必要がある。具体的には、アノード部材の材料としては、マグネシウム、アルミニウム、亜鉛または鉄を用いることができる。これらの金属は単独で使用することは勿論のこと、2種以上複合して使用することもできる。
 上記したアノード部材の材料としては、取扱い性および入手容易性の観点から亜鉛、鉄またはアルミニウムを用いることが好ましく、鉄を用いることが更に好ましい。鉄は、安価かつ入手が容易であると共に、形状が多様だからである。アノード部材としては、例えば、鉄釘、鉄製金網、鉄鋼スラグを用いることができる。
 また、本発明では、カソード部材の一部を、上記した金属、例えば亜鉛でコーティング(めっき)し、この亜鉛コーティング部分をアノード部材とすることもできる。
 アノード部材の形状は、特に限定されることなく、線状、板状、塊状、フィルム状、棒状、筒状、粉状、粒状、メッシュ状、または繊維状にすることができる。
 なお、線状とはアスペクト比が1超5未満で、外力を加えなければ長さ方向に割れることがない形状であり、繊維状とはアスペクト比が5以上で自由に変形することができる形状である。また、粒状とは径の長さが0.1mm超の粒子状であることを指し、粉状とは径の長さが0.1mm以下の粒子状であることを指す。ここで、径の長さとは、球状粒子の場合には直径を、矩形粒子の場合には対角線の長さを指し、例えばデジタルCCDマイクロスコープ(モリテックス(株)製、MS-804)等を用いて測定することができる。
(カソード部材)
 一方、カソード部材は、アノード部材に用いた金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材からなる。ここで、高標準電極電位材の材料としては、アノード部材にマグネシウムを用いた場合には標準電極電位が-2.37Vより高い物質、アルミニウムを用いた場合には標準電極電位が-1.66Vより高い物質、亜鉛を用いた場合には標準電極電位が-0.76Vより高い物質、鉄を用いた場合には標準電極電位が-0.44Vより高い物質を用いる必要がある。
 具体的には、アノード部材の材料と、高標準電極電位材との組み合わせ(アノード部材-高標準電極電位材)として、Zn-Fe、Al-Fe、Mg-Fe、Al-Zn、Mg-Zn、Mg-Al、Fe-Cu、Zn-Cu、Al-Cu、Mg-Cu、Al-Pt、Mg-Pt、Zn-Pt、Fe-Ptなどが挙げられる。
 ここで、高標準電極電位材の材料として用いた物質の標準電極電位(A)と、アノード部材の材料として用いた金属の標準電極電位(B)との差(A-B)は、0.3V以上であることが好ましい。というのは、標準電極電位の差(A-B)が大きければ、アノード部材での金属イオンの溶出速度が増加し、リンの除去速度が向上するからである。なお、標準電極電位の差の上限は特に制限はないが、1.93V程度が現実的な上限である。
 また、カソード部材としては、電気伝導性を有する炭素材、例えば炭素繊維、木炭、竹炭、黒鉛、カーボンブラック、電極用炭素材、或いはこれらの混合物などを好適に用いることもできる。ここで、炭素繊維としては、既知の炭素繊維を用いることができ、例えば、直径7μmのフィラメントが12000本、24000本、さらには48000本集合してなる炭素繊維を用いることができる。
 また、カソード部材の形状は、特に限定されることなく、フィラメント状、板状、塊状、フィルム状、棒状、筒状、粉状、粒状、メッシュ状、または織物状にすることができる。
(アノード部材とカソード部材との接触)
 上述したアノード部材とカソード部材とは、例えば以下のようにして互いに接触させることができる。なお、アノード部材とカソード部材との接触形式は下記に限定されることはなく、アノード部材とカソード部材とが処理対象水中で局部電池を形成することができる任意の接触形式を用いることができる。
(1)処理対象水が流通可能な容器内に、アノード部材とカソード部材とを混在させる。なお、容器の形状は、筒型、箱型など任意の形状とすることができる。
(2)アノード部材とカソード部材とを積層する。
(3)メッシュ状のアノード部材と、板状のカソード部材とを積層する。
(4)アノード部材に繊維状のカソード部材を絡ませる。
(5)コップ状のカソード部材内にアノード部材を設置する。
 また、特にカソード部材が炭素繊維の場合は、以下の接触形式も取ることができる。
(6)炭素繊維の織物に、鉄釘を差し込む。
(7)炭素繊維の織物に、鉄線を差し込む。
(8)炭素繊維の織物に、鉄線を絡ませる。
(9)炭素繊維の織物に、鉄線を縫い込む。
(10)炭素繊維の織物に、鉄線を交織する。
(11)炭素繊維織物を二つ折りにし、その中に金属鉄板や網を挿入する。
(12)金属鉄板(網)と炭素繊維織物を重ね合わせ、それを筒状に巻く。
(析出物除去手段)
 析出物除去手段としては、アノード部材およびカソード部材の表面に析出した析出物を除去することができるものであれば、既知の手段を用いることができる。具体的には、処理対象水中に水流を起こして析出物を除去する析出物除去手段として、曝気装置、撹拌装置、旋回流発生装置、超音波照射装置などが挙げられ、機械的な力で析出物を除去する析出物除去手段として、アノード部材およびカソード部材を振動させる振動装置、アノード部材およびカソード部材を回転させる回転装置などが挙げられる。具体的には、例えば、容器内に設置したアノード部材およびカソード部材を撹拌する撹拌装置を、析出物除去手段として用いることができる。
 ここで、析出物を簡単に除去するという観点からは、曝気装置を用いることが好ましく、その際の曝気速度は、線速度:0.1~60m/minとすることが好ましい。なお、曝気する気体は、任意の気体とすることができるが、空気を用いることが好ましい。というのは、空気は、低コストで利用することができる気体だからである。また、空気を曝気することで水中の溶存酸素量を高めて好気性微生物による水質浄化も促進することができるからである。
 そして、上述したようなリンの除去装置によれば、アノード部材およびカソード部材が一部接触しつつ処理対象水中に浸漬されて局部電池を形成し、アノード部材から金属イオンが溶出し、該金属イオンと処理対象水中のリンとが反応することで、例えば、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、リン酸第二鉄などの水に不溶性のリン化合物が析出する。即ち、処理対象水中からリンが除去される。
 なお、上記リンの除去装置では、析出物除去手段により、アノード部材およびカソード部材の表面に析出した析出物は除去されることとなるので、析出物の堆積によりリンの除去速度が低下することがない。
 ここで、析出したリン化合物は、例えば、アノード部材およびカソード部材の下方に受け器、或いは、アノード部材およびカソード部材を包み込む容器、織物や不織布で作られた袋等を配置する、または、処理対象水を濾過するなどの手段を用いて回収し、酸に溶解することでリン資源として再利用することができる。また、アノード部材の材料に鉄を用いている場合には、リン酸鉄として、例えば、電池材料として再利用することもでき、また、析出したリン酸第二鉄を鉄資源として再利用することもできる。
 なお、処理対象水のpHは、5.0~8.0であることが好ましい。というのは、pHが5.0に満たないとアノード部材などに使用した金属の溶解が生じることがあると共に、リン化合物の溶解度が増加して効率的にリンを除去できなくなるからである。また、pHが8.0を超えると溶解した金属イオンが水酸化物イオンと反応して水酸化物を形成してしまうため、リン酸化合物の形成が抑制されてしまうからである。特に好ましいpHは、7.0である。
 また、処理対象水のリン濃度は、特に制限されることはないが、500mg/L以下であることが好ましい。なお、処理対象水のリン濃度が高すぎる場合、任意に、希釈してから処理することが好ましい。
(析出物の分析)
 上記した処理対象水のリン濃度は、以下のとおり測定した。
 金属鉄と炭素繊維を接触させてリン酸を含む水溶液につけて、沈殿を生成させ、この主成分の分析を行った。まず、X線マイクロアナラーザーで元素分析を行い、リンの存在を確認した。ついで、X線回折装置を用いて物質の同定を行ったが、非晶質であることから、回折線はブロードとなり、顕著な回折線は得られなかった。そこで、フーリエ変換赤外線分光分析装置で測定を行い、リン酸鉄特有のスペクトルを示した。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。なお、以下の実施例において、リン濃度およびCODは、ポータブル簡易全窒素、全リン計(TOA-DKK(株)製、TNP-10)を使用して求めた。また、鉄釘(1本)の質量とは任意に選択した3本の鉄釘の質量から算出した平均質量であり、亜鉛濃度とは亜鉛用パックテスト(共立理化学研究所製、WAK-Zn、商標)を用いて測定した値である。
(実施例1~3および比較例1)
 ため池水(高崎市中尾町、正観寺池より採取)にリン酸一水素二ナトリウムを添加してリン濃度を5mg/Lとした試料水Aを作成した。そして、試料水Aを利用して、水槽内で表1に示す条件でリン除去実験を行った。実験装置の概略を図1(a)および(b)に示す。図中、1はリン含有水溶液、2は織物状の炭素繊維、3は鉄釘、4は曝気球、5はムカデ形浄化材である。ここで、ムカデ形浄化材5とは、織物状炭素繊維をムカデ形に成形したものである。なお、実験中、水槽下部に設置した曝気球4を用いて水槽内を曝気した。リン濃度、COD、鉄釘3(1本)の質量の経時変化を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、本発明リンの除去装置を用いた場合には、いずれもリン濃度が早期に低下していることが分かる。表中、NDとは、検出下限値未満を意味する。なお、この実験で検出下限値未満は、0.05[mg/L]である。
(実施例4~5および比較例2~5)
 海水(小笠原諸島近海より採取)にリン酸一水素二ナトリウムを添加してリン濃度を5mg/Lとした試料水Bを作成した。そして、試料水Bを利用して、水槽内で表3に示す条件でリン除去実験を行った。因みに、実験中、水槽下部に設置した曝気装置を用いて水槽内を曝気した。リン濃度の経時変化を表4に示す。
 なお、実施例4~5および比較例3について実験前後での鉄釘の総重量の変化(減少量)を測定したところ、実施例4では8.56g、実施例5では17.08g、比較例3では1.16gであった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示したとおり、本発明リンの除去装置を用いた場合には、いずれも1日で、リン濃度がND(検出下限値)未満となっていることが分かる。
(実施例6~7および比較例6~7)
 海水(小笠原諸島近海より採取)にリン酸一水素二ナトリウムを添加してリン濃度を20mg/Lとした試料水Cを作成した。そして、試料水Cを利用して、水槽内で表5に示す条件でリン除去実験を行った。因みに、実験中、水槽下部に設置した曝気装置を用いて水槽内を曝気した。リン濃度の経時変化を表6に示す。
 なお、実施例6~7および比較例7について実験前後での鉄釘の総重量の変化(減少量)を測定したところ、実施例6では4.74g、実施例7では22.99g、比較例7では0.24gであった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表6に示したとおり、本発明リンの除去装置を用いた場合には、いずれもリン濃度が早期に低下していることが分かる。
(実施例8~11)
 ため池水(高崎市中尾町、正観寺池より採取)にリン酸一水素二ナトリウムを添加してリン濃度を6.6mg/Lとした試料水Dを作成した。そして、試料水Dを利用して、水槽内で表7に示す条件でリン除去実験を行った。実験装置の概略を図2(a)および(b)に示す。図中、1はリン含有水溶液、2は織物状の炭素繊維、4は曝気球、5はムカデ形浄化材、6は金網である。実験中、水槽下部に設置した曝気球4を用いて水槽内を曝気した。リン濃度および亜鉛濃度の経時変化を表8に示す。
 なお、実施例8~11について実験前後での金網6の重量の変化(減少量)を測定したところ、実施例8では2.4g、実施例9では1.7g、実施例10では2.5g、実施例11では0.3gであった。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表8に示したとおり、本発明リンの除去装置を用いた場合には、いずれもリン濃度が早期に低下していることが分かる。また、亜鉛めっき金網をアノード部材として用いると、試料水中の亜鉛濃度が上がっていることが分かる。
 ここで、上記実施例1~11において、カソード部材として織物状炭素繊維およびムカデ形浄化材の双方を用いた方がリンの除去速度が高いのは、ムカデ形浄化材の設置により鉄の溶出速度が更に増加したためであると考えられる。
(実施例12~15)
 純水にリン酸一水素二ナトリウムを添加してリン濃度を5mg/Lとした試料水Eを作成した。そして、試料水Eを利用して、表9に示す条件でリン除去実験を行った。リン濃度の経時変化を表10に示す。なお、表9中の(A-B)は、高標準電極電位材(カソード)の材料として用いた物質の標準電極電位(A)と、アノード部材の材料として用いた金属の標準電極電位(B)との差(A-B)である。
 本実験は、リン除去実験を300mLビーカー内で行い、カソード部材およびアノード部材の表面へ析出したリン化合物の除去は、撹拌翼を用いてビーカー内を撹拌することで行った。また、カソード部材とアノード部材との接触は、実施例12および13では、白金ルツボ内に鉄釘を配置することにより行い、実施例15では、銅板(ドーナツ状、厚さ:0.5mm、外円の直径:9.0cm、内円の直径:4.5cm)2枚と、亜鉛メッキ金網(幅:2.5cm、長さ:30cm)を巻きつけた銅板(ドーナツ状、厚さ:0.5mm、外円の直径:9.0cm、内円の直径:4.5cm)2枚とを交互に積層することにより行った。
 なお、実施例14では、亜鉛めっき金網の鉄部分がカソード部材となり、亜鉛めっき金網の亜鉛部分がアノード部材となっており、金網内部のカソード部材は、金網の4辺に存在する断面部分で試料水Eと接触する構成とした。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表10に示したとおり、本発明リンの除去装置を用いた場合には、いずれもリン濃度が早期に低下していることが分かる。
(実施例16 産業排水)
 水産加工業からの排水中には、リンを大量に含む。一方、環境省の定めるリンの排水基準は、全リン8mg/Lである。そこで、水産加工業の排水中のリンが除去できるか実験を行った。水槽(10L)に排水をいれ、そこに織物状炭素繊維(幅:21cm、縦:18cm、水中浸漬部:12cm)に鉄釘(長さ:2cm、重さ:0.5g)60本を織物の中に差し入れた。鉄釘は、織物に刺すのではなく、織物の横糸の中を3回くぐるように通して、接触効率を高めた。また、水中ポンプでエアレーションを行った。
 その結果、実験開始前に28mg/Lであった全リン濃度は、実験開始6時間後には16mg/Lにまで低下して、その後、24時間後には4mg/Lとなり、環境基準値以下となった。
 また、実験開始前は、水産加工業からの排水に特有の強いニオイがあったが、4時間後、ニオイは著しく低下して感じなくなった。さらに、実験開始前の排水は、全体が白濁していたが、4時間後には、濁りが少なくなり、白色の沈殿物が水槽の下部に沈殿したり、炭素繊維織物に付着していた。
 そこで、フーリエ変換赤外顕微分光装置(Varian 3100 FT-IR/600UMA)を使用して赤外線吸収スペクトルを測定した。得られた赤外線スペクトルをデターブックと比較検討した結果、リン酸鉄であった。
 本発明に従うリンの除去方法および装置は効果的にリンを除去でき、もって環境維持に貢献する。
1 リン含有水溶液
2 織物状の炭素繊維
3 鉄釘
4 曝気球
5 ムカデ形浄化材
6 金網

Claims (10)

  1.  リンを含有する処理対象水中に設置して当該処理対象水中に溶解しているリンを除去するための装置であって、
     マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された1種または2種以上の金属よりなるアノード部材と、
     前記金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材よりなるカソード部材とからなり、且つ、
     少なくとも前記アノード部材の一部と前記カソード部材の一部が接触していることを特徴とする、リンの除去装置。
  2.  前記アノード部材および前記カソード部材の表面に析出した析出物を除去する析出物除去手段を備えることを特徴とする、請求項1に記載のリンの除去装置。
  3.  前記カソード部材が高標準電極電位材からなり、且つ、当該高標準電極電位材の標準電極電位と、前記金属の標準電極電位との差が0.3V以上であることを特徴とする、請求項1または2に記載のリンの除去装置。
  4.  前記電気伝導性を有する炭素材が、炭素繊維からなることを特徴とする、請求項1または2に記載のリンの除去装置。
  5.  前記析出物除去手段が、前記アノード部材および前記カソード部材に気体を吹き付ける曝気装置であることを特徴とする、請求項1~4の何れかに記載のリンの除去装置。
  6.  前記アノード部材の形状が、線状、板状、塊状、フィルム状、棒状、筒状、粉状、粒状、メッシュ状、または繊維状であることを特徴とする、請求項1~5の何れかに記載のリンの除去装置。
  7.  前記カソード部材の形状が、フィラメント状、板状、塊状、フィルム状、棒状、筒状、粉状、粒状、メッシュ状、または織物状であることを特徴とする、請求項1~6の何れかに記載のリンの除去装置。
  8.  リンを含有する処理対象水中からリンを除去する方法であって、
     マグネシウム、アルミニウム、亜鉛および鉄からなる群より選択された金属よりなるアノード部材の一部と、当該金属よりも標準電極電位が高い高標準電極電位材、或いは、電気伝導性を有する炭素材からなるカソード部材の一部とを前記処理対象水中で接触させて前記アノード部材から金属イオンを溶出させ、
     溶出した前記金属イオンと、前記処理対象水中のリンとを反応させてリン化合物として析出させることを特徴とする、リンの除去方法。
  9.  析出した前記リン化合物のうち、前記アノード部材および前記カソード部材の表面に析出した析出物を除去することを特徴とする、請求項8に記載のリンの除去方法。
  10.  前記析出物の除去を、
     前記アノード部材および前記カソード部材の表面への線速度が0.1~60m/minの気体吹き付けを利用して行うことを特徴とする、請求項8または9に記載のリンの除去方法。
PCT/JP2009/065109 2009-01-29 2009-08-28 水中に溶解しているリンの除去方法および除去装置 WO2010087050A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010548366A JP5540434B2 (ja) 2009-01-29 2009-08-28 水中に溶解しているリンの除去方法および除去装置
CN200980155752.2A CN102300817A (zh) 2009-01-29 2009-08-28 溶解于水中的磷的去除方法及去除装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-018799 2009-01-29
JP2009018799 2009-01-29

Publications (1)

Publication Number Publication Date
WO2010087050A1 true WO2010087050A1 (ja) 2010-08-05

Family

ID=42395318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065109 WO2010087050A1 (ja) 2009-01-29 2009-08-28 水中に溶解しているリンの除去方法および除去装置

Country Status (4)

Country Link
JP (1) JP5540434B2 (ja)
KR (1) KR20110110266A (ja)
CN (1) CN102300817A (ja)
WO (1) WO2010087050A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059464A1 (de) * 2010-11-06 2012-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren rückgewinnung von phosphatsalzen aus einer flüssigkeit
JP2012125740A (ja) * 2010-12-17 2012-07-05 Komatsu Seiren Co Ltd 水浄化材
JP5738499B1 (ja) * 2015-01-16 2015-06-24 復建調査設計株式会社 水質改善装置及び水質改善方法
WO2016024408A1 (ja) * 2014-08-14 2016-02-18 石井商事株式会社 環境水への鉄分供給材、鉄分供給材の保守方法および環境水への鉄分供給方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944532B (zh) * 2014-03-26 2018-03-09 宝山钢铁股份有限公司 一种冷轧含磷废水的处理装置和处理方法
CN114380362B (zh) * 2022-02-16 2024-05-28 西安建筑科技大学 一种同步脱氮除磷且实现产能的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056376A (ja) * 1973-09-20 1975-05-17
JPH0311496U (ja) * 1989-06-16 1991-02-05
JP2003154366A (ja) * 2001-11-21 2003-05-27 Asahi Glass Engineering Co Ltd 冷却水系の水処理方法
JP2003181455A (ja) * 2002-12-27 2003-07-02 Fuji Clean Kogyo Kk 汚水処理の脱リン方法と脱リン用金属電極を備えた好気性処理槽
JP2006088085A (ja) * 2004-09-27 2006-04-06 Toshihiro Kido 水処理具および水処理具
JP2008155150A (ja) * 2006-12-25 2008-07-10 Toshiba Corp リン回収装置
JP2008200636A (ja) * 2007-02-21 2008-09-04 Mhi Environment Engineering Co Ltd 水処理方法及び該装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056376A (ja) * 1973-09-20 1975-05-17
JPH0311496U (ja) * 1989-06-16 1991-02-05
JP2003154366A (ja) * 2001-11-21 2003-05-27 Asahi Glass Engineering Co Ltd 冷却水系の水処理方法
JP2003181455A (ja) * 2002-12-27 2003-07-02 Fuji Clean Kogyo Kk 汚水処理の脱リン方法と脱リン用金属電極を備えた好気性処理槽
JP2006088085A (ja) * 2004-09-27 2006-04-06 Toshihiro Kido 水処理具および水処理具
JP2008155150A (ja) * 2006-12-25 2008-07-10 Toshiba Corp リン回収装置
JP2008200636A (ja) * 2007-02-21 2008-09-04 Mhi Environment Engineering Co Ltd 水処理方法及び該装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059464A1 (de) * 2010-11-06 2012-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren rückgewinnung von phosphatsalzen aus einer flüssigkeit
JP2012125740A (ja) * 2010-12-17 2012-07-05 Komatsu Seiren Co Ltd 水浄化材
WO2016024408A1 (ja) * 2014-08-14 2016-02-18 石井商事株式会社 環境水への鉄分供給材、鉄分供給材の保守方法および環境水への鉄分供給方法
JP5738499B1 (ja) * 2015-01-16 2015-06-24 復建調査設計株式会社 水質改善装置及び水質改善方法

Also Published As

Publication number Publication date
JPWO2010087050A1 (ja) 2012-07-26
CN102300817A (zh) 2011-12-28
KR20110110266A (ko) 2011-10-06
JP5540434B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
Lei et al. Electrochemical induced calcium phosphate precipitation: importance of local pH
Abou-Shady et al. Recovery of Pb (II) and removal of NO3− from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process
Kekedy-Nagy et al. Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode
WO2010087050A1 (ja) 水中に溶解しているリンの除去方法および除去装置
CN101198549B (zh) 水处理装置和水处理方法
CN110691758B (zh) 用于从流中回收磷酸盐的方法和系统
Iddya et al. Efficient ammonia recovery from wastewater using electrically conducting gas stripping membranes
Cho et al. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater
CN107337301B (zh) 一种外加过氧化氢的电芬顿处理废水的方法
EP3041795B1 (en) Electrodialytic separation of heavy metals from particulate material
Chai et al. Two-sectional struvite formation process for enhanced treatment of copper–ammonia complex wastewater
US20140076804A1 (en) Struvite Precipitation Using Magnesium Sacrificial Anode
Chen et al. Fouling-free membrane stripping for ammonia recovery from real biogas slurry
JP4572302B2 (ja) し尿排水中のリンの除去方法および除去装置
Liu et al. Factors influencing the removal of phosphorus and the purity of recycling struvite in wastewater by the electrochemical sacrificial magnesium anode method
Shaker et al. Nickel and chromium removal by electrocoagulation using copper electrodes
Liu et al. Carbon nanotubes functionalized with calcium carbonate for flow-through sequential electrochemical phosphate recovery
JP2007307432A (ja) 重金属の除去方法および装置、汚染土壌の浄化方法および浄化装置
JP2011050878A (ja) アオコ抑制材およびその使用方法ならびにアオコ抑制装置
Eivazihollagh et al. Influences of the operational variables on electrochemical treatment of chelated Cu (II) in alkaline solutions using a membrane cell
JP2009039705A (ja) 空気電池式廃水処理装置
CN102464392A (zh) 一种去除高浓度含氯废水的复合除氯剂及其应用方法
Al-Marri et al. Electrocoagulation using aluminum electrodes as a sustainable and economic method for the removal of kinetic hydrate inhibitor (polyvinyl pyrrolidone) from produced wastewaters
JP6129533B2 (ja) 廃水の処理方法及び廃水処理装置
CN106045229B (zh) 一种工业废水的处理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155752.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839239

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010548366

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117017767

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839239

Country of ref document: EP

Kind code of ref document: A1