WO2010086091A1 - Reacteur notamment un reacteur pour aeronef - Google Patents

Reacteur notamment un reacteur pour aeronef Download PDF

Info

Publication number
WO2010086091A1
WO2010086091A1 PCT/EP2010/000195 EP2010000195W WO2010086091A1 WO 2010086091 A1 WO2010086091 A1 WO 2010086091A1 EP 2010000195 W EP2010000195 W EP 2010000195W WO 2010086091 A1 WO2010086091 A1 WO 2010086091A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
combustion
ejection
parts
gases
Prior art date
Application number
PCT/EP2010/000195
Other languages
English (en)
Inventor
Michel Aguilar
Original Assignee
Michel Aguilar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0900330A external-priority patent/FR2941496A1/fr
Application filed by Michel Aguilar filed Critical Michel Aguilar
Priority to BRPI1007499A priority Critical patent/BRPI1007499A2/pt
Priority to EP10700712A priority patent/EP2391802A1/fr
Priority to US13/142,673 priority patent/US8925296B2/en
Priority to CA2748891A priority patent/CA2748891A1/fr
Publication of WO2010086091A1 publication Critical patent/WO2010086091A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/12Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the combustion chambers having inlet or outlet valves, e.g. Holzwarth gas-turbine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/02Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
    • F02K7/06Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet with combustion chambers having valves
    • F02K7/067Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet with combustion chambers having valves having aerodynamic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/40Cooling arrangements

Definitions

  • the best known constant-volume combustion reactor is the "wave rotor".
  • the "wave rotor” operates according to the principle of the barrel. It consists of several speakers arranged around the axis of a cylinder.
  • the cylinder turns between two immobile ends called flanges. Each of its ends includes ports controlling the flow of gas including the compressor and the turbine. During rotation of the cylinder, the enclosures are thus cyclically connected to the compressor and the turbine.
  • the enclosure In a first phase of the cycle, the enclosure is connected only to the compressor. The chamber then fills with compressed gas and fuel. This phase is followed by a phase during which the chamber is closed, opposing the flow of gas to the compressor or the turbine. A combustion is then carried out in the enclosure. This combustion is therefore at constant volume. Finally, the enclosure is connected to the turbine. The gases resulting from the combustion are then ejected towards the turbine.
  • Humphrey's constant volume reactors in which the volume of the combustion chamber is kept constant by valves.
  • the document FR2829528 describes such a reactor which comprises several combustion chambers closed periodically by butterfly valves.
  • the valves partly reduce the gas leakage but, because of the alternation of the closing and opening cycles, they are subjected to repeated shocks which, under the conditions of high temperatures, of the order of 2000.degree. C, cause rapid wear.
  • current constant volume combustion reactors present a risk of significant wear of surfaces subjected to pressure and temperature fluctuations.
  • the invention aims to provide a reactor which does not have the aforementioned drawbacks of the prior art.
  • the invention aims in particular to provide a reactor with high performance and adapted to operate under conditions of large pressure fluctuations and high temperature.
  • the invention relates to a reactor, in particular an aircraft reactor, comprising at least one chamber, called combustion chamber, adapted to perform combustion during at least one stage, called combustion, and being connected.
  • at least one gas inlet called compressed gas inlet
  • at least one outlet called the exhaust gas outlet, by which the gases are ejected from the combustion chamber during at least one said step of said expansion
  • said exhaust gas outlet including a valve, said ejection valve,
  • the ejection valve comprises two rotating parts, called rotary ejection parts, the rotary ejection parts comprising curved walls and intermediate walls connecting the curved walls and being in coordinated and continuous rotation so as to to be :
  • closed position In an angular position, called closed position, in which a curved wall of a rotating part ejection is substantially in contact with the other piece of curved wall in order to oppose a significant ejection of gas combustion chamber, during at least one combustion step, and
  • an open position in which one of the intermediate walls of a rotary ejection piece is situated facing one wall of the other rotary ejection part in order to define an open space between the two walls through which the gases are ejected from the combustion chamber during at least one expansion step.
  • the combustion chamber is closed through Vaive ejection during combustion spruced up.
  • the combustion is carried out at constant volume according to the Humphrey cycle, and a higher energy efficiency is obtained than that of the usual turbomachines.
  • the closure of the combustion chamber by the rotary ejection parts prevents gas leaks when they are in the closed position.
  • the rotational movement of the rotating parts is fluid and progressive which eliminates shocks and / or strong pressure fluctuations, especially between the combustion and expansion stages and therefore avoids premature wear of the reactor.
  • one of the intermediate walls of a rotary ejection piece is located facing one of the intermediate walls of the other rotary ejection piece.
  • the rotary ejection parts are advantageously in direct rotation relative to the direction of the ejection of the gases of the combustion chamber, so as to accompany the movement of gases during their ejection and to reduce the turbulence phenomena.
  • the ejection pieces may also be arranged to rotate counter to the direction of gas ejection from the combustion chamber.
  • This arrangement requires the addition of so-called secondary nozzles positioned symmetrically with respect to the main nozzle through which the gases of the combustion chamber are ejected. This arrangement offers the advantage of a better filling of the fresh gases and a more complete ejection of the flue gases, as well as a significant reduction of the mechanical powers necessary for the rotation of the ejection parts.
  • the rotating parts are symmetrical with respect to the axis of the combustion chamber.
  • the curved walls of a rotating part have the same radius of curvature as the curved walls of the other rotary part.
  • the intermediate walls of the rotating parts are convex.
  • the open space through which the gases are ejected from the combustion chamber will have a shape close to that of the divergent nozzle to obtain an optimal gas ejection speed.
  • the compressed gas inlet comprises a valve, called an injection valve, adapted to oppose the flow of gases between the compressed gas inlet and the combustion chamber when at least one combustion step.
  • a valve called an injection valve
  • the injection valve comprises two rotating parts, called rotary injection parts, similar in structure to the rotary ejection parts, and - being rotationally coordinated so as to be:
  • a closed position in which a curved wall of a rotary injection part is substantially in contact with a curved wall of the other part, in order to oppose a significant flow of gases between the arrival of compressed gases and the combustion chamber, during at least one combustion step, and
  • the rotary injection and ejection parts are adapted to be in fixed open position during several successive combustion-expansion stages and then in coordinated and continuous rotation so as to alternate several successive combustion-expansion cycles. during which they are in the closed position in the combustion phase and then in the open position in the expansion phase.
  • the reactor When the ejection and injection valves are in the fixed open position, the reactor operates as a conventional constant pressure combustion turbine engine. This mode of operation is continuous in contrast to the constant-volume combustion that has been drawn.
  • a continuous mode of operation is sometimes preferable. These are in particular the take-off and landing phases.
  • the reactor according to the invention can allow continuous operation at constant pressure during takeoff followed by pulsed operation at constant volume during the cruise phase.
  • the rotary injection and ejection parts are adapted to be in coordinated and continuous rotation so as to alternate several successive combustion-expansion cycles during which they are in the closed position in the combustion phase. then in the open position in the expansion phase and then in the open position for several successive stages of combustion - relaxation.
  • the reactor according to the invention allows operation pulsed at constant volume during the cruise phase followed by continuous operation at constant pressure during landing.
  • each combustion chamber comprises at least one fuel supply and at least one means ignition adapted to ignite a mixture of fuel and compressed gases.
  • the reactor comprises several ignition means each located at different distances from the arrival of compressed gas, said ignition means being actuated in a delayed manner.
  • the flue gases from the first expansion combustion will compress the unburned gases, called fresh gases, and increase their pressure beyond the initial injection pressure due to the initial compression of the compressed gases. Once a certain amount of fresh gas pressure is reached, a second ignition is triggered. The final pressure of the flue gas will be higher than that reached by flue gases from fresh compressed gases that would have undergone a single ignition. In addition, this configuration makes it possible to tend towards a sufficient pressure of fresh gas so that they ignite spontaneously according to the phenomenon of detonation.
  • the rotary ejection parts are located in chambers, each chamber having at least one opening allowing the flow of gas between the outside of said chamber and the exhaust gas outlet when the rotating parts of ejection are in the closed position.
  • the rotary ejection parts comprise a passage passing through them from one side to the other and adapted to allow fluid to circulate through said parts. The circulation of fluid through the parts ensures their cooling.
  • the fluid flowing through the rotary ejection parts is compressed gas which comes from the arrival of compressed gases.
  • the compressed gas supplying the combustion chamber is then preheated by the heat of the rotary ejection parts.
  • part of the thermal energy emitted by the gases from the output of the flue gases is used to heat the compressed gases upstream of the combustion chamber.
  • FIG. 1 is a sectional view of an embodiment of the reactor
  • FIG. 2 a sectional view of an embodiment of the reactor during the filling step
  • FIG. 3 is a sectional view of the reactor
  • FIG. 4 is a sectional view of an embodiment of the reactor at the end of the combustion step
  • FIG. 5 is a sectional view of FIG.
  • Figure 6 is a perspective view of a rotating part
  • Figure 7 is a sectional view of a rotating part.
  • Figure 8 is a partial sectional view of the reactor at the outlet of the flue gases
  • Figure 9 is a diagram of the yields of different thermodynamic cycles as a function of the compression ratio of the inlet gas.
  • FIGS. 1 to 5 show a reactor 1 according to the invention comprising a combustion chamber 3.
  • the combustion chamber 3 is supplied with compressed gas by a compressed gas inlet 4.
  • the compressed gas is generated by a compressor.
  • the compressed gas is compressed air at a pressure of between 2 and 4 bar.
  • the combustion chamber 3 is adapted to achieve combustion.
  • the combustion chamber 3 comprises at least one fuel supply 15 and at least one ignition means 16 for igniting a mixture of fuel and compressed gas.
  • the combustion chamber 3 comprises several ignition means 16 each located at different distances from the raring of compressed gases. 16 can be preferably and conventionally a controlled electric ignition.
  • the combustion chamber 3 may also comprise a flame tube 19 whose purpose is to keep the gases burned at a very high temperature out of contact with the walls of the combustion chamber 3.
  • the combustion chamber 3 may also include dilution and embossing orifices 20 for directing a portion of the compressed air called "primary air" between the hot gases and the walls of the combustion chamber 3, and thus of contain the hot gases out of contact with the walls.
  • the combustion chamber 3 is connected to an outlet 5 of the flue gases through which the gases can be ejected from the combustion chamber.
  • This outlet 5 is equipped with an ejection valve 6.
  • the ejection valve 6 consists of two rotary ejection parts 7, preferably symmetrical with respect to the axis of the combustion chamber 3.
  • the rotary ejection pieces 7 comprise substantially curved walls 8 and intermediate walls 9 connecting the curved walls 8.
  • the rotary ejection parts 7 comprise two curved walls 8 and two intermediate walls 9.
  • Figure 6 illustrates a rotating part.
  • the rotating part is drawn from a cylinder.
  • Curved walls 8 follow the geometry of this cylinder and therefore have the same radius of curvature.
  • the intermediate walls 9 are convex and have a radius of curvature greater than the radius of the initial cylinder.
  • the rotating parts comprise a passage passing through them from one side to the other and adapted to allow a circulation of fluid, in particular a cooling fluid, through said parts.
  • the passage is of helical shape, the axis of the helicoid being the axis of rotation of the parts so as to accelerate the circulation of the cooling fluid. through the rotating part.
  • the compressed gas inlet 4 comprises an injection valve 11.
  • the injection valve 11 is of a structure similar to the ejection valve 6, ie it consists of two rotating parts, called rotary rotating parts. Injection 12, these rotating injection parts 12 themselves being of a similar structure to the rotary ejection parts 7. Indeed, they comprise curved walls and intermediate walls connecting the curved walls.
  • these rotary injection parts 12 are symmetrical with respect to the axis of the combustion chamber 3 and comprise two curved walls and two convex intermediate walls and having a radius of curvature greater than that of curved walls.
  • the rotary ejection 7 and injection 12 parts are preferably located in chambers 17.
  • An opening 18 is provided at the chambers 17 of the rotary ejection pieces 7. This opening 18 connects the outside to the interior of the chamber 17.
  • Figure 2 shows the reactor 1 during the filling step.
  • the combustion chamber 3 is supplied with compressed gas.
  • the injection valve 11 is in the open position.
  • the rotary injection parts 12 are then in an angular position, called an open position, in which an intermediate wall 14 of a rotary injection part is located facing an intermediate wall 14 a wall of the other rotary injection part in order to define a space through which the compressed gases feed the combustion chamber 3 during at least one filling step.
  • the ejection valve 6 is also in the open position.
  • the rotary ejection pieces 7 are then in an angular position in which one of the intermediate walls 9 of a rotary ejection piece 7 is situated opposite an intermediate wall of a wall of the other rotary ejection piece 7 to define an open space 10 between the two walls through which the gases are ejected from the combustion chamber 3.
  • the combustion chamber 3 is thus filled with fresh 21 compressed, i in case of i compressed air, driving ies gas remaining in the combustion chamber 3.
  • the rotating ejection parts 7 are rotated around their central axis . This movement is preferably carried out in the direction of ejection of the gases from the combustion chamber 3 in order to reduce the turbulence phenomena.
  • the rotary ejection pieces 7 which were in an open position in which two of their intermediate walls 9 were facing each other during the filling step, as illustrated in FIG. 2, will undergo a rotational movement.
  • This rotational movement is coordinated and continuous so that a curved wall 8 of a rotary ejection piece 7 comes into contact with a curved wall 8 of the other part.
  • the curved walls 8 oppose their contact with the ejection of gas from the combustion chamber 3.
  • the rotary ejection pieces 7 are then in a closed position, as shown in FIGS. 3 and 4.
  • the clearance is defined to oppose a significant flow of gases through the outlet 5 of the flue gases, in particular due to the phenomenon of aerodynamic blockage.
  • the pressure of the burnt gases in the space 10 becomes lower than the external atmospheric pressure thus creating a negative thrust.
  • the opening 18 connects the outside and the outlet of the burnt gases at the beginning of the combustion phase shown in FIG. 8. Thanks to this opening 18, the equilibrium pressure is restored.
  • the rotating injection parts 12 which were in an open position in which two of their intermediate walls were facing each other during the filling step, like this was shown in Figure 2, will also undergo a rotational movement. This movement is preferably in the direction of the injection of the gases of the combustion chamber 3 in order to reduce the turbulence phenomena.
  • This rotational movement is coordinated and continuous so that a curved wall of a rotating injection part 12 comes into contact with a curved wall of the other part.
  • the curved walls are opposed by their contact with the flow of gases between the inlet 4 of the compressed gases and the combustion chamber 3.
  • the rotary injection parts 12 are then in a closed position, as shown in FIGS. Figures 3 and 4. Just as for rotary ejection parts 7, there is a slight clearance between the two curved walls to avoid the risk of shock and wear on these walls.
  • the injection and ejection valves are thus in the closed position. They respectively oppose the flow of gas between the inlet 4 of compressed gas and the combustion chamber 3 and the ejection of the gases from the combustion chamber 3, thus keeping the combustion chamber 3 at a constant volume.
  • the combustion step is then performed. This step is illustrated in FIGS. 3 and 4. As illustrated in FIG. 9, Humphrey's constant volume combustion has a much better energy efficiency than Joule-Brayton cycle constant pressure combustion.
  • the combustion chamber 3 is supplied with fuel via a fuel supply 15.
  • the compressed gas-fuel mixture is ignited by ignition means 16.
  • the flue gases 22 from the first expanding combustion will compress the unburned gases, so-called fresh gases, and increase their pressure beyond the initial injection pressure. Once a certain amount of fresh gas pressure is reached, a second ignition is triggered. The final pressure of the flue gas will be higher than that reached by flue gases from fresh compressed gases that would have undergone a single ignition.
  • the intermediate walls 9 being of convex shape, when the rotary ejection pieces 7 are in the open position, the space 10 through which the gases are ejected from the combustion chamber is of a shape similar to that of the diverging portion of a nozzle.
  • the injection valve 11 remains in the closed position during the expansion step.

Abstract

L'invention concerne un réacteur (1), notamment un réacteur d'aéronef, comprenant au moins une chambre de combustion (3). La chambre de combustion (3) est reliée à au moins une arrivée (4) de gaz comprimés et à au moins une sortie (5) des gaz brûlés. Ladite ou lesdites sorties (5) des gaz brûlés comprend une valve d'éjection. La valve d'éjection comprend deux pièces rotatives (7), dites pièces rotatives d'éjection, les pièces rotatives d'éjection (7) comprenant des parois courbes (8) et des parois intermédiaires (9) reliant les parois courbes (8), et étant en rotation en rotation coordonnée et continue de façon à être dans une position fermée afin de s'opposer à une éjection de gaz, lors d'au moins une étape de combustion, et dans une position ouverte afin de définir un espace (10) au travers duquel les gaz sont éjectés de la chambre de combustion (3) lors d'au moins une étape de détente.

Description

Domaine technique de l'invention.
REACTEUR D "AERONEF A COMBUSTION ISOCHORE
Etat de la technique. Actuellement, les réacteurs utilisés en aéronautique et appelés communément turbomachines fonctionnent selon un cycle thermodynamique dit de Joule-Brayton par combustion à pression constante d'un mélange d'air comprimé et de carburant. Les gaz issus de cette combustion sont ensuite éjectés à grande vitesse dans l'atmosphère au travers d'une tuyère, produisant ainsi une force propulsive.
Ces turbomachines ont fait l'objet depuis soixante ans de nombreux efforts de R&D et arrivent à un degré de maturité élevé. Leur potentiel d'amélioration est aujourd'hui limité. Or, face à la pression environnementale et à l'augmentation du prix du carburant, l'industrie aéronautique doit trouver des nouvelles solutions technologiques pour améliorer les performances des réacteurs.
L'utilisation de réacteurs qui fonctionnent selon un cycle thermodynamique dit de Humphrey sernbls être une voie prometteuse. Contrairement aux turbomachines traditionnelles, la combustion se fait non plus à pression constante mais à volume constant. Le potentiel théorique de tels réacteurs est connu depuis très longtemps mais leur réalisation se heurte à des difficultés technologiques.
Le réacteur à combustion à volume constant le plus connu est le « wave rotor ». Le « wave rotor » fonctionne selon le principe du barillet. Il est constitué de plusieurs enceintes disposées autour de l'axe d'un cylindre. Le cylindre tourne entre deux extrémités immobiles appelées flasques. Chacune de ses extrémités comprend des ports contrôlant l'écoulement des gaz notamment vers le compresseur et la turbine. Lors de la rotation du cylindre, les enceintes sont ainsi cycliquement reliées au compresseur et à la turbine.
Dans une première phase du cycle, l'enceinte est reliée uniquement au compresseur. L'enceinte se remplit alors de gaz comprimé et de carburant. Cette phase est suivie d'une phase pendant laquelle l'enceinte est fermée, s'opposant à la circulation des gaz vers le compresseur ou la turbine. On réalise alors une combustion dans l'enceinte. Cette combustion se fait donc à volume constant. Enfin, l'enceinte est reliée à la turbine. Les gaz issus de la combustion sont alors éjectés vers la turbine.
Dans ce type de réacteur, il existe une fuite de gaz importante entre les extrémités fixes et le cylindre qui diminue considérablement les performances de tels systèmes.
Afin de diminuer ces pertes, il existe des réacteurs à volume constant selon le cycle de Humphrey dans lesquels le volume de la chambre de combustion est maintenu constant par des valves. Le document FR2829528 décrit un tel réacteur qui comprend plusieurs chambres de combustion fermées périodiquement par des valves papillons. Les valves diminuent en partie la fuite de gaz mais, du fait de l'alternance des cycles de fermeture et d'ouverture, elles sont soumises à des chocs répétés qui, dans les conditions de températures élevées, de l'ordre de 2 0000C, entrainent une usure rapide. Plus généralement, les réacteurs à combustion à volume constant actuels présentent un risque d'usure important des surfaces soumises à des fluctuations de pression et de température.
De plus, à la baisse de performance engendrée par les fuites de gaz s'ajoutent les pertes d'efficacité dues aux nombreuses zones d'écoulement fortement turbulent.
Objet de l'invention.
L'invention vise à proposer un réacteur qui ne présente pas les inconvénients précités de l'art antérieur.
L'invention vise en particulier à proposer un réacteur avec des performances élevées et adapté pour fonctionner dans des conditions de fluctuations de pression importantes et de température élevée.
Pour ce faire, l'invention concerne un réacteur, notamment un réacteur d'aéronef, comprenant au moins une enceinte, dite chambre de combustion, adaptée pour y réaliser une combustion lors d'au moins une étape, dite de combustion, et étant reliée à au moins une arrivée de gaz, dite arrivée de gaz comprimés, permettant d'alimenter la chambre de combustion en gaz comprimés lors d'au moins une étape, dite de remplissage, et à au moins une sortie, dite sortie des gaz brûlés, par laquelle les gaz sont éjectés de la chambre de combustion lors d'au moins une étape, dite de détente, ladite ou lesdites sortie des gaz brûlés comprenant une valve, dite valve d'éjection,
Selon l'invention, la valve d'éjection comprend deux pièces rotatives, dites pièces rotatives d'éjection, les pièces rotatives d'éjection comprenant des parois courbes et des parois intermédiaires reliant les parois courbes et étant en rotation coordonnée et continue de façon à être :
* dans une position angulaire, dite position fermée, dans laquelle une paroi courbe d'une pièce rotative d'éjection est sensiblement en contact avec une paroi courbe de l'autre pièce, afin de s'opposer à une éjection significative de gaz de la chambre de combustion, lors d'au moins une étape de combustion, et
* dans une position angulaire, dite position ouverte, dans laquelle une des parois intermédiaires d'une pièce rotative d'éjection est située en regard d'une paroi de l'autre pièce rotative d'éjection afin de définir un espace ouvert entre les deux parois au travers duquel les gaz sont éjectés de la chambre de combustion lors d'au moins une étape de détente.
La chambre de combustion est fermée grâce à la vaive d'éjection pendant rétape de combustion. Ainsi, la combustion est réalisée à volume constant selon le cycle de Humphrey, et on obtient un rendement énergétique supérieur à celui des turbomachines usuelles.
De plus, la fermeture de la chambre de combustion par les pièces rotatives d'éjection permet d'éviter les fuites de gaz lorsque celles-ci-ci sont en position fermée.
Le mouvement de rotation des pièces rotatives est fluide et progressif ce qui supprime les chocs et/ou les fortes fluctuations de pression notamment entre les étapes de combustion et de détente et par conséquent évite une usure prématurée du réacteur.
Le fonctionnement des pièces rotatives d'éjection permet également de mieux maîtriser les phénomènes de turbulence. Avantageusement et selon l'invention, en position ouverte, une des parois intermédiaires d'une pièce rotative d'éjection est située en regard d'une des parois intermédiaires de l'autre pièce rotative d'éjection.
Par ailleurs, selon l'invention, les pièces rotatives d'éjection sont avantageusement en rotation directe par rapport au sens de l'éjection des gaz de la chambre de combustion, de façon à accompagner le mouvement des gaz lors de leur éjection et à diminuer les phénomènes de turbulence. Il est toutefois à noter que les pièces d'éjection peuvent être également agencées de façon à être en rotation contraire par rapport au sens de l'éjection des gaz de la chambre de combustion. Cet agencement nécessite toutefois l'adjonction de tuyères dites secondaires positionnées symétriquement par rapport à la tuyère principale par laquelle les gaz de la chambre de combustion sont éjectés. Cette disposition offrant l'avantage d'un meilleur remplissage des gaz frais et d'une éjection des gaz brûlés plus complète, ainsi qu'une réduction sensible des puissances mécaniques nécessaires à la rotation des pièces d'éjection.
Par ailleurs, avantageusement selon l'invention, les pièces rotatives sont symétriques par rapport à l'axe de la chambre de combustion. En outre, avantageusement et selon l'invention, les parois courbes d'une pièce rotative ont le même rayon de courbure que les parois courbes de l'autre pièce rotative.
Ainsi, en position fermée, les pièces rotatives viennent rouler l'une sur l'autre, sans choc.
En outre, avantageusement et selon l'invention, les parois intermédiaires des pièces rotatives sont convexes. Ainsi, l'espace ouvert par lequel les gaz sont éjectés de la chambre de combustion présentera une forme proche de celle du divergent d'une tuyère afin d'obtenir une vitesse d'éjection des gaz optimale.
De préférence, avantageusement et selon l'invention, l'arrivée de gaz comprimés comprend une valve, dite valve d'injection, adaptée pour s'opposer à l'écoulement des gaz entre l'arrivée de gaz comprimés et la chambre de combustion lors d'au moins une étape de combustion.
En outre, avantageusement et selon l'invention la valve d'injection comprend deux pièces rotatives, dites pièces rotatives d'injection, de structure semblable aux pièces rotatives d'éjection, et - étant en rotation coordonnée de façon à être :
* dans une position angulaire, dite position fermée, dans laquelle une paroi courbe d'une pièce rotative d'injection est sensiblement en contact avec une paroi courbe de l'autre pièce, afin de s'opposer à un écoulement significatif des gaz entre l'arrivée de gaz comprimés et la chambre de combustion, lors d'au moins une étape de combustion, et
* dans une position angulaire, dite position ouverte, dans laquelle une paroi intermédiaire d'une pièce rotative d'injection est située en regard d'une paroi intermédiaire de l'autre pièce rotative d'injection afin de définir un espace au travers duquel les gaz comprimés alimentent la chambre de combustion, lors d'au moins une étape de remplissage.
Avantageusement et selon l'invention, les pièces rotatives d'injection et d'éjection sont adaptées pour être en position ouverte fixe pendant plusieurs étapes de combustion-détente successives puis en rotation coordonnée et continue de façon à alterner plusieurs cycles successifs de combustion-détente durant lesquels elles sont en position fermée en phase de combustion puis en position ouverte en phase de détente.
Lorsque les valves d'éjection et d'injection sont en position ouverte fixe, le réacteur fonctionne comme une turbomachine à combustion à pression constante classique. Ce mode de fonctionnement est continu contrairement à la combustion à voiume constant qui eue est puisée.
Durant certaines phases de vol, un mode de fonctionnement en continu est parfois préférable. Il s'agit en particulier des phases de décollage et d'atterrissage. Le réacteur selon l'invention peut autoriser un fonctionnement en continu à pression constante lors du décollage suivi d'un fonctionnement puisé à volume constant lors de la phase de croisière.
Egalement, avantageusement et selon l'invention, les pièces rotatives d'injection et d'éjection sont adaptées pour être en rotation coordonnée et continue de façon à alterner plusieurs cycles successifs de combustion-détente durant lesquels elles sont en position fermée en phase de combustion puis en position ouverte en phase de détente puis en position ouverte fixe pendant plusieurs étapes de combustion - détente successives.
De même que précédemment, le réacteur selon l'invention autorise d'un fonctionnement puisé à volume constant lors de la phase de croisière suivi d'un fonctionnement en continu à pression constante lors de l'atterrissage.
Avantageusement et selon l'invention, chaque chambre de combustion comprend au moins une alimentation en carburant et au moins un moyen d'allumage adapté pour enflammer un mélange de carburant et de gaz comprimés.
De préférence, avantageusement et selon l'invention, le réacteur comprend plusieurs moyens d'allumage situés chacun à des distances différentes de l'arrivée de gaz comprimés, lesdits moyens d'allumage étant actionnés de manière différée.
Ainsi, pour une chambre de combustion comprenant deux moyens d'allumage situés à des positions extrêmes de cette chambre, on peut actionner le moyen d'allumage situés à une extrémité à un temps donné puis actionner le moyen d'allumage situé à l'autre extrémité en temps différé.
Les gaz brûlés issus de la première combustion se dilatant vont comprimer les gaz non brûlés, dits gaz frais, et augmenter leur pression au delà de la pression d'injection initiale due à la seule compression initiale des gaz comprimés. Une fois une certaine pression de gaz frais atteinte, un deuxième allumage est déclenché. La pression finale des gaz brûlés sera ainsi supérieure à celle atteinte par des gaz brûlés issus de gaz frais comprimés qui n'auraient subi qu'un unique allumage. De plus, cette configuration permet de tendre vers une pression de gaz frais suffisante pour qu'ils s'enflamment spontanément conformément au phénomène de détonation. Avantageusement et selon l'invention, les pièces rotatives d'éjection sont situées dans des chambres, chaque chambre présentant au moins une ouverture permettant la circulation de gaz entre l'extérieur de ladite chambre et la sortie de gaz brûlés lorsque les pièces rotatives d'éjection sont en position fermée. Au moment de la fermeture des valves d'éjection, par inertie, la pression des gaz brûlés au niveau de la sortie des gaz brûlés devient inférieure à la pression atmosphérique extérieure créant ainsi une poussée négative. Pour remédier à ce phénomène une ouverture relie l'extérieur et la sortie des gaz brûlés rétablissant ainsi la pression d'équilibre. Avantageusement et selon l'invention, les pièces rotatives d'éjection comprennent un passage les traversant de part en part et adapté pour permettre une circulation de fluide au travers desdites pièces. La circulation de fluide au travers des pièces assure leur refroidissement. En outre avantageusement et selon l'invention, le fluide circulant au travers des pièces rotatives d'éjection est du gaz comprimé qui provient de l'arrivée de gaz comprimés.
Le gaz comprimé alimentant la chambre de combustion est alors préchauffé par la chaleur des pièces rotatives d'éjection.
Avantageusement et selon l'invention, une partie de l'énergie thermique émise par les gaz issus de la sortie des gaz brûlés est utilisée pour réchauffer les gaz comprimés en amont de la chambre de combustion.
Description des figures.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfère aux figures annexées représentant des modes de réalisation préférentiels de l'invention, donnés uniquement à titre d'exemples non limitatifs, et dans lesquelles : la figure 1 sst uns vue en coupe d'un mode de réalisation du réacteur, la figure 2 une vue en coupe d'un mode de réalisation du réacteur lors de l'étape de remplissage, la figure 3 est une vue en coupe d'un mode de réalisation du réacteur au début de l'étape de combustion la figure 4 est une vue en coupe d'un mode de réalisation du réacteur en fin de l'étape de combustion, - la figure 5 est une vue en coupe d'un mode de réalisation du réacteur lors de l'étape de détente, la figure 6 est une vue en perspective d'une pièce rotative, la figure 7 est une vue en coupe d'une pièce rotative. la figure 8 est une vue partielle en coupe du réacteur au niveau de la sortie des gaz brûlés, la figure 9 est un schéma des rendements des différents cycles thermodynamiques en fonction du rapport de compression du gaz d'admission. Exposé détaillé d'une forme de réalisation préférentielle de l'invention Description des figures.
Les figures 1 à 5 représentent un réacteur 1 selon l'invention comprenant une chambre de combustion 3.
La chambre de combustion 3 est alimentée en gaz comprimé par une arrivée 4 de gaz comprimés.
Le gaz comprimé est généré par un compresseur.
De préférence, le gaz comprimé est de l'air comprimé à une pression comprise entre 2 et 4 bars.
La chambre de combustion 3 est adaptée pour y réaliser une combustion.
Pour ce faire, elle comprend au moins une alimentation en carburant 15 et au moins un moyen d'allumage 16 pour enflammer un mélange de carburant et de gaz comprimés. Dans un mode de réalisation préférentiel de l'invention et comme représenté sur les figures 1 à 5, la chambre de combustion 3 comprend plusieurs moyens d'allumage 16 situés chacun à des distances différentes de rarrivée de gaz comprimés 4. Les moyens d'allumage 16 peuvent être de préférence et classiquement un allumage électrique commandé. La chambre de combustion 3 peut également comprendre un tube à flamme 19 dont le but est de maintenir les gaz brûlés à très haute température hors du contact avec les parois de la chambre de combustion 3.
La chambre de combustion 3 peut également comprendre des orifices 20 de dilution et de gaufrage afin d'orienter une partie de l'air comprimé dit « air primaire », entre les gaz chauds et les parois de la chambre de combustion 3, et donc de confiner les gaz chauds hors du contact avec les parois.
La chambre de combustion 3 est reliée à une sortie 5 des gaz brûlés par laquelle les gaz peuvent être éjectés de la chambre de combustion. Cette sortie 5 est équipée d'une valve d'éjection 6. La valve d'éjection 6 est constituée de deux pièces rotatives d'éjection 7, de préférence symétriques par rapport à l'axe de la chambre de combustion 3.
Les pièces rotatives d'éjection 7 comprennent des parois sensiblement courbes 8 et des parois intermédiaires 9 reliant les parois courbes 8. De préférence, comme représenté sur les figures 1 à 6, les pièces rotatives d'éjection 7 comprennent deux parois courbes 8 et deux parois intermédiaires 9. La figure 6 illustre une pièce rotative. Dans un mode de réalisation préférentiel de l'invention, la pièce rotative est dessinée à partir d'un cylindre. Les parois courbes 8 suivent la géométrie de ce cylindre et ont par conséquent le même rayon de courbure. Les parois intermédiaires 9 sont convexes et d'un rayon de courbure supérieur au rayon du cylindre initial.
Comme illustré sur les figures 6 et 7, les pièces rotatives comprennent un passage les traversant de part en part et adapté pour permettre une circulation de fluide, en particulier un fluide de refroidissement, au travers desdites pièces.
Comme illustré sur la figure 7, selon un mode de réalisation préférentiel de l'invention, le passage est de forme hélicoïdale, l'axe de l'hélicoïde étant l'axe de rotation des pièces de façon à accélérer la circulation du fluide de refroidissement au travers de la pièce rotative. De préférence, comme représenté sur les figures 1 à 5, l'arrivée de gaz comprimés 4 comprend une valve d'injection 11.
De préférence, comme représenté sur les figures 1 à 5, la valve d'injection 11 est d'une structure similaire à la valve d'éjection 6 c'est à dire qu'elle est constituée de deux pièces rotatives, dites pièces rotatives d'injection 12, ces pièces rotatives d'injection 12 étant, elles-mêmes, d'une structure similaire aux pièces rotatives d'éjection 7. En effet, elles comprennent des parois courbes et des parois intermédiaires reliant les parois courbes.
Selon un mode préférentiel de l'invention et comme représenté sur les figures 1 à 5, ces pièces rotatives d'injection 12 sont symétriques par rapport à l'axe de la chambre de combustion 3 et comprennent deux parois courbes et deux parois intermédiaires convexes et présentant un rayon de courbure supérieur à celui des parois courbes.
Toutefois même si les pièces rotatives d'injection 12 et d'éjection 7 présentent des structures similaires, elles peuvent présenter des dimensions et/ou un mouvement de rotation différents.
Comme représentés sur les figures 1 à 5, les pièces rotatives d'éjection 7 et d'injection 12 sont de préférence situées dans des chambres 17. Une ouverture 18 est ménagée au niveau des chambres 17 des pièces rotatives d'éjection 7. Cette ouverture 18 relie l'extérieur à l'intérieur de la chambre 17. La figure 2 représente le réacteur 1 lors de l'étape de remplissage. Lors de cette étape la chambre de combustion 3 est alimentée en gaz comprimé. Pour ce faire, la valve d'injection 11 est en position ouverte. Comme représenté sur la figure 2, les pièces rotatives d'injection 12 sont alors dans une position angulaire, dite position ouverte, dans laquelle une paroi intermédiaire 14 d'une pièce rotative d'injection est située en regard d'une paroi intermédiaire 14 d'une paroi de l'autre pièce rotative d'injection afin de définir un espace au travers duquel les gaz comprimés alimentent la chambre de combustion 3, lors d'au moins une étape de remplissage. La valve d'éjection 6 est également en position ouverte.
Comme représenté sur la figure 2, les pièces rotatives d'éjection 7 sont alors dans une position angulaire dans laquelle une des parois intermédiaires 9 d'une pièce rotative d'éjection 7 est située en regard d'une paroi intermédiaire d'une paroi de l'autre pièce rotative d'éjection 7 afin de définir un espace 10 ouvert entre les deux parois au travers duquel les gaz sont éjectés de la chambre de combustion 3.
La chambre de combustion 3 se remplit ainsi de gaz frais 21 comprimés, en i'occurrence de i'air comprimé, chassant ies gaz restant dans ia chambre de combustion 3. Les pièces rotatives d'éjection 7 sont en rotation autour de leur axe central. Ce mouvement s'effectue de préférence dans le sens de l'éjection des gaz de la chambre de combustion 3 afin de diminuer les phénomènes de turbulences. Les pièces rotatives d'éjection 7 qui étaient dans une position ouverte dans laquelle deux de leurs parois intermédiaires 9 étaient en regard l'une de l'autre lors de l'étape de remplissage, comme cela était illustré sur la figure 2, vont subir un mouvement de rotation.
Ce mouvement de rotation est coordonné et continu de sorte qu'une paroi courbe 8 d'une pièce rotative d'éjection 7 vienne en contact avec une paroi courbe 8 de l'autre pièce. Ainsi, les parois courbes 8 s'opposent de par leur contact à l'éjection de gaz de la chambre de combustion 3. Les pièces rotatives d'éjection 7 sont alors dans une position fermée, comme représenté sur les figures 3 et 4.
De préférence, il existe un jeu minimum entre les deux parois courbes 8 pour éviter les risques de choc et d'usure au niveau de ces parois. Toutefois, le jeu est défini pour s'opposer à un écoulement significatif des gaz par la sortie 5 des gaz brûlés notamment de par le phénomène de blocage aérodynamique.
Au moment de la fermeture des valves d'éjection, par inertie, la pression des gaz brûlés dans l'espace 10 devient inférieure à la pression atmosphérique extérieure créant ainsi une poussée négative. Pour remédier à ce phénomène l'ouverture 18 relie l'extérieur et la sortie des gaz brûlés lors du début de la phase de combustion représenté sur la figure 8. Grâce à cette ouverture 18, la pression d'équilibre est rétablie. Tout comme les pièces rotatives d'éjection 7, les pièces rotatives d'injection 12 qui étaient dans une position ouverte dans laquelle deux de leurs parois intermédiaires étaient en regard l'une de l'autre lors de l'étape de remplissage, comme cela était illustré sur la figure 2, vont également subir un mouvement de rotation. Ce mouvement s'effectue de préférence dans le sens de l'injection des gaz de la chambre de combustion 3 afin de diminuer les phénomènes de turbulences. Ce mouvement de rotation est coordonné et continu de sorte qu'une paroi courbe d'une pièce rotative d'injection 12 vienne en contact avec une paroi courbe de l'autre pièce. Ainsi les parois courbes s'opposent de par leur contact à l'écoulement des gaz entre l'arrivée 4 des gaz comprimés et la chambre de combustion 3. Les pièces rotatives d'injection 12 sont alors dans une position fermée, comme représenté sur les figures 3 et 4. Tout comme pour les pièces rotatives d'éjection 7, il existe un léger jeu entre les deux parois courbes pour éviter les risques de choc et d'usure au niveau de ces parois.
Les valves d'injection et d'éjection sont ainsi en position fermée. Elles s'opposent respectivement à l'écoulement des gaz entre l'arrivée 4 de gaz comprimés et la chambre de combustion 3 et à l'éjection des gaz de la chambre de combustion 3, maintenant ainsi la chambre de combustion 3 à volume constant. L'étape de combustion est alors réalisée. Cette étape est illustrée sur les figures 3 et 4. Comme illustré sur la figure 9, la combustion à volume constant selon le cycle de Humphrey présente un rendement énergétique bien meilleur que la combustion à pression constante selon le cycle de Joule-Brayton. Pour effectuer cette combustion, la chambre de combustion 3 est alimentée en carburant par le biais d'une alimentation en carburant 15. Le mélange gaz comprimé-carburant est enflammé par des moyens d'allumage 16.
Comme illustré sur la figure 3, on peut positionner deux moyens d'allumage 16 à des positions extrêmes de la chambre de combustion 3, actionner un premier moyen d'allumage 16 à un temps donné puis actionner le moyen d'allumage 16 situé à l'autre extrémité en temps différé.
Les gaz brûlés 22 issus de la première combustion se dilatant vont comprimer les gaz non brûlés, dits gaz frais, et augmenter leur pression au delà de la pression d'injection initiale. Une fois une certaine pression de gaz frais atteinte, un deuxième allumage est déclenché. La pression finale des gaz brûlés sera ainsi supérieure à celle atteinte par des gaz brûlés issus de gaz frais comprimés qui n'auraient subi qu'un unique allumage.
Lors de l'étape de combustion, les pièces rotatives d'éjection 7 et d'injection 12 poursuivent leur rotation continue. En fait, les parois courbes 8 des pièces rotatives « roulent » l'une sur l'autre de manière fluide et sans choc.
Du fait de ce mouvement de rotation, ies pièces rotatives d'éjection 7 viennent en position ouverte, comme représenté sur la figure 5. Les gaz brûlés lors de la combustion sont alors éjectés de la chambre de combustion 3 en produisant une force propulsive dont l'intensité est le produit du débit massique des gaz brûlés éjectés par leur vitesse d'éjection. Il s'agit alors de l'étape de détente. Cette étape est illustrée sur la figure 5.
Les parois intermédiaires 9 étant de forme convexe, lorsque les pièces rotatives d'éjection 7 sont en position ouverte, l'espace 10 par lequel les gaz sont éjectés de la chambre de combustion est d'une forme semblable à celle du divergent d'une tuyère.
Comme représenté sur la figure 5, la valve d'injection 11 reste en position fermée lors de l'étape de détente.
Elle ne vient en position ouverte qu'à la fin de cette étape. On se retrouve alors dans la configuration de l'étape de remplissage. Les gaz comprimés chassent les gaz brûlés restant de la chambre de combustion 3. Un nouveau cycle de remplissage, combustion, détente peut être réalisé.
Plusieurs cycles de remplissage-combustion-détente successifs peuvent ainsi être enchaînés. II est également possible de réaliser plusieurs cycles successifs de remplissage- combustion-détente, également appelés cycle de combustion-détente, pendant lesquels les valves d'éjection et d'injection restent en position ouvertes fixes. On se retrouve alors dans la configuration d'une turbomachine classique fonctionnant en continu et avec une combustion à pression constante.
Puis de réaliser des cycles de combustion-détente durant lesquels les valves d'injection et d'éjection sont en rotation comme illustré sur les figures 2 à 5 et comme décrit précédemment et enfin de repasser dans une configuration dans laquelle les valves d'éjection et d'injection restent en position ouvertes fixes pendant plusieurs cycles de combustion-détente. On est alors dans une configuration avec une combustion à volume constant et fonctionnant de manière puisée.
Ce type de fonctionnement alternant fonctionnement en continu (combustion à pression constante) et puisé (combustion à volume constant) est particulièrement intéressant dans le cas d'un réacteur 1 d'avion. En effet, durant certaines phases de vol, un mode de fonctionnement en continu est parfois préférable. Il s'agit en particulier des phases de décollage et d'atterrissage. Alors, qu'un mode de fonctionnement avec une combustion à volume constant peut être préférable lors de la phase de croisière. Tel que cela ressort de l'examen de la figure 9, il apparaît d'un grand intérêt de développer une turbomachine qui réalise le cycle thermodynamique dit de Humphrey qui autorise de fait, pour un même taux de compression P2/Pa des gaz frais, des rendements η très supérieurs au cycle de Brayton (turbomachine classique), et plus encore, au cycle de Beau de Rochas (moteur à combustion interne/automobile). La consommation en carburant s'en trouve fortement réduite. L'invention a été décrite ci-dessus en référence à une forme de réalisation donnée à titre de pur exemple. Il va de soi qu'elle n'est pas limitée à cette forme de réalisation mais qu'elle s'étend à toutes les formes de réalisations couvertes par les revendications ci-annexées.

Claims

REVENDICATIONS
1/ Réacteur (1 ), notamment un réacteur d'aéronef, comprenant au moins une enceinte (3), dite chambre de combustion, adaptée pour y réaliser une combustion lors d'au moins une étape, dite de combustion, et étant reliée à :
* au moins une arrivée de gaz (4), dite arrivée de gaz comprimés, permettant d'alimenter la chambre de combustion (3) en gaz comprimés lors d'au moins une étape, dite de remplissage, et à
* au moins une sortie (5), dite sortie des gaz brûlés, par laquelle les gaz sont éjectés de la chambre de combustion lors d'au moins une étape, dite de détente,
- ladite ou lesdites sortie (5) des gaz brûlés comprenant une valve (6), dite valve d'éjection, caractérisé en ce que : - la valve d'éjection (6) comprend deux pièces rotatives (7), dites pièces rotatives d'éjection, les pièces rotatives d'éjection (7) comprenant des parois courbes (8) et des parois intermédiaires (9) reliant les parois courbes (8) et étant en rotation coordonnée et continue de façon à être :
* dans une position angulaire, dite position fermée, dans laquelle une paroi courbe (8) d'une pièce rotative d'éjection (7) est sensiblement en contact avec une paroi courbe (8) de l'autre pièce, afin de s'opposer à une éjection significative de gaz de la chambre de combustion (3), lors d'au moins une étape de combustion, et
* dans une position angulaire, dite position ouverte, dans laquelle une des parois intermédiaires (9) d'une pièce rotative d'éjection (7) est située en regard d'une paroi de l'autre pièce rotative d'éjection (7) afin de définir un espace (10) ouvert entre les deux parois au travers duquel les gaz sont éjectés de la chambre de combustion (3) lors d'au moins une étape de détente.
2/ Réacteur selon la revendication 1 caractérisé en ce qu'en position ouverte, une des parois intermédiaires (9) d'une pièce rotative d'éjection (7) est située en regard d'une des parois intermédiaires (9) de l'autre pièce rotative d'éjection (7). 3/ Réacteur selon la revendication 1 ou 2 caractérisé en ce que les pièces rotatives d'éjection (7) sont en rotation directe par rapport au sens de l'éjection des gaz de la chambre de combustion (3).
4/ Réacteur selon l'une des revendications 1 à 3 caractérisé en ce que les pièces rotatives sont symétriques par rapport à l'axe de la chambre de combustion
(3).
5/ Réacteur selon l'une des revendications 1 à 4 caractérisé en ce que les parois courbes (8) d'une pièce rotative ont le même rayon de courbure que les parois courbes de l'autre pièce rotative. 6/ Réacteur selon l'une des revendications 1 à 5 caractérisé en ce que les parois intermédiaires (9) des pièces rotatives sont convexes. 7/ Réacteur selon l'une des revendications 1 à 6 caractérisé en ce que l'arrivée de gaz comprimés (4) comprend une valve (11 ), dite valve d'injection, adaptée pour s'opposer à l'écoulement des gaz entre l'arrivée (4) de gaz comprimés et la chambre de combustion (3) lors d'au moins une étape de combustion.
8/ Réacteur selon la revenuicaiion 7 caractérisé en ce que ia vaive d'injection (11) comprend deux pièces rotatives, dites pièces rotatives d'injection, de structure semblable aux pièces rotatives d'éjection (7), et - étant en rotation coordonnée de façon à être :
* dans une position angulaire, dite position fermée, dans laquelle une paroi courbe (13) d'une pièce rotative d'injection (12) est sensiblement en contact avec une paroi courbe (13) de l'autre pièce, afin de s'opposer à un écoulement significatif des gaz entre l'arrivée de gaz comprimés et la chambre de combustion (3), lors d'au moins une étape de combustion, et
* dans une position angulaire, dite position ouverte, dans laquelle une paroi intermédiaire (14) d'une pièce rotative d'injection est située en regard d'une paroi intermédiaire (14) de l'autre pièce rotative d'injection afin de définir un espace au travers duquel les gaz comprimés alimentent la chambre de combustion (3), lors d'au moins une étape de remplissage.
9/ Réacteur selon la revendication 8 caractérisé en ce que les pièces rotatives d'injection et d'éjection sont adaptées pour être : en position ouverte fixe pendant plusieurs étapes de combustion-détente successives puis en rotation coordonnée et continue de façon à alterner plusieurs cycles successifs de combustion-détente durant lesquels elles sont en position fermée en phase de combustion puis en position ouverte en phase de détente. 10/ Réacteur selon la revendication 8 ou 9 caractérisé en ce que les pièces rotatives d'injection et d'éjection sont adaptées pour être : en rotation coordonnée et continue de façon à alterner plusieurs cycles successifs de combustion-détente durant lesquels elles sont en position fermée en phase de combustion puis en position ouverte en phase de détente puis en position ouverte fixe pendant plusieurs étapes de combustion - détente successives.
11/ Réacteur selon l'une des revendications 1 à 10 caractérisé en ce que chaque chambre de combustion (3) comprend :
- au moins une alimentation en carburant (15) et
- au moins un moyen d'allumage (16) adapté pour enflammer un mélange de carburant et de gaz comprimés.
12/ Réacteur selon la revendication 11 caractérisé en ce qu'il comprend plusieurs moyens d:aiiumage (16) situés chacun à des distances différentes de l'arrivée de gaz comprimés (4) et en ce que lesdits moyens d'allumage (16) sont actionnés de manière différée. 13/ Réacteur selon l'une des revendications 1 à 12 caractérisé en ce que les pièces rotatives d'éjection (7) sont situées dans des chambres, chaque chambre (17) présentant au moins une ouverture (18) permettant la circulation de gaz entre l'extérieur de ladite chambre (17) et la sortie de gaz brûlés lorsque les pièces rotatives d'éjection (7) sont en position fermée. 14/ Réacteur selon l'une des revendications 1 à 13 caractérisé en ce que les pièces rotatives d'éjection (7) comprennent un passage les traversant de part en part et adapté pour permettre une circulation de fluide au travers desdites pièces. 15/ Réacteur selon la revendication 14 caractérisé en ce que le fluide circulant au travers des pièces rotatives d'éjection (7) est du gaz comprimé qui provient de l'arrivée (4) de gaz comprimés.
16/ Réacteur selon l'une des revendications 1 à 15 caractérisé en ce qu'une partie de l'énergie thermique émise par les gaz issus de la sortie (5) des gaz brûlés est utilisée pour réchauffer les gaz comprimés en amont de la chambre de combustion (3).
PCT/EP2010/000195 2009-01-27 2010-01-15 Reacteur notamment un reacteur pour aeronef WO2010086091A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI1007499A BRPI1007499A2 (pt) 2009-01-27 2010-01-15 reator, especialmente um reator de aeronave
EP10700712A EP2391802A1 (fr) 2009-01-27 2010-01-15 Reacteur notamment un reacteur pour aeronef
US13/142,673 US8925296B2 (en) 2009-01-27 2010-01-15 Jet engine, in particular a jet engine for an aircraft
CA2748891A CA2748891A1 (fr) 2009-01-27 2010-01-15 Reacteur d'aeronef a combustion isochore

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0900330 2009-01-27
FR0900330A FR2941496A1 (fr) 2009-01-27 2009-01-27 Turbomachine a combustion isochore, detente totale et effet statoreacteur pulse
FR0903942A FR2945316B1 (fr) 2009-01-27 2009-08-12 Reacteur, notamment reacteur pour aeronef
FR0903942 2009-08-12

Publications (1)

Publication Number Publication Date
WO2010086091A1 true WO2010086091A1 (fr) 2010-08-05

Family

ID=42061050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000195 WO2010086091A1 (fr) 2009-01-27 2010-01-15 Reacteur notamment un reacteur pour aeronef

Country Status (6)

Country Link
US (1) US8925296B2 (fr)
EP (1) EP2391802A1 (fr)
BR (1) BRPI1007499A2 (fr)
CA (1) CA2748891A1 (fr)
FR (1) FR2945316B1 (fr)
WO (1) WO2010086091A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182301A1 (fr) * 2012-06-07 2013-12-12 Michel Aguilar Procede et thermoreacteur de propulsion mono-valve a injection et combustion multiples par cycle de rotation
WO2014020275A1 (fr) * 2012-08-03 2014-02-06 Snecma Chambre de combustion cvc pour turbomachine d'aeronef comprenant une valve d'admission / d'echappement a tournant spherique
CN105066175A (zh) * 2015-08-31 2015-11-18 华能国际电力股份有限公司 一种旋转等容增压燃烧室

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971814A1 (fr) 2011-02-21 2012-08-24 Michel Aguilar Reacteur, notamment reacteur d'aeronef.
FR2983906B1 (fr) * 2011-12-09 2014-06-27 Michel Aguilar Procede d'allumage thermique de moteur a combustion pulsee, ainsi que thermoreacteur a allumage thermique
CN104234869A (zh) * 2014-06-27 2014-12-24 吴润秀 气流隔热保温航天冲压发动机
FR3032025B1 (fr) 2015-01-26 2018-06-15 Safran Module de combustion a volume constant pour une turbomachine
FR3037384B1 (fr) * 2015-06-11 2017-06-23 Turbomeca Module de chambre de combustion cvc de turbomachine comportant une prechambre de combustion
FR3092615B1 (fr) 2019-02-13 2021-01-22 Safran Aircraft Engines module de combustion CVC pour turbomachine d’aéronef comprenant des sous-ensembles de chambres indépendants
FR3098859B1 (fr) * 2019-07-15 2023-04-28 Safran Aircraft Engines Chambre de combustion de turbomachine a volume constant
US11933498B2 (en) * 2020-10-13 2024-03-19 Venture Aerospace, Llc Aerospace structure methods of manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE548631C (de) * 1930-07-31 1932-04-15 E H Hans Holzwarth Dr Ing Betriebsverfahren fuer Verpuffungskammern, insbesondere fuer Brennkraftturbinen
DE947655C (de) * 1952-06-15 1956-08-23 Schmidt Paul Ventil fuer einen Brennraum mit periodisch wiederholten angenaeherten Gleichraumverbrennungen, insbesondere fuer Strahltriebwerke
FR2562199A1 (fr) * 1984-03-28 1985-10-04 Messerschmitt Boelkow Blohm Dispositif a valve pour la commande de l'ecoulement des fluides, en particulier pour le dosage des quantites de gaz riches en combustibles penetrant dans la chambre de combustion de statoreacteurs-fusees
WO1989012741A1 (fr) * 1989-08-21 1989-12-28 Moog Inc. Ajutage de vectorisation de poussee de type a aube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2623355A (en) * 1946-04-30 1952-12-30 Boulet Georges Hot pressurized gas producing means
GB2377257B (en) * 2001-07-06 2004-09-01 Hubert Michael Benians Compound gas turbine engines and methods of operation thereof
FR2829528B1 (fr) 2001-09-07 2004-02-27 Bernard Gilbert Macarez Pulsomoteur-turbomoteur a impulsion-turbine a gaz a chambre de combustion impulsionnelle et a detente de bouffees
GB0613781D0 (en) * 2006-07-12 2006-08-23 Rolls Royce Plc Flow modulation method and apparatus
US7891164B2 (en) * 2006-10-31 2011-02-22 General Electric Company Inlet airflow management system for a pulse detonation engine for supersonic applications
FR2941496A1 (fr) 2009-01-27 2010-07-30 Michel Aguilar Turbomachine a combustion isochore, detente totale et effet statoreacteur pulse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE548631C (de) * 1930-07-31 1932-04-15 E H Hans Holzwarth Dr Ing Betriebsverfahren fuer Verpuffungskammern, insbesondere fuer Brennkraftturbinen
DE947655C (de) * 1952-06-15 1956-08-23 Schmidt Paul Ventil fuer einen Brennraum mit periodisch wiederholten angenaeherten Gleichraumverbrennungen, insbesondere fuer Strahltriebwerke
FR2562199A1 (fr) * 1984-03-28 1985-10-04 Messerschmitt Boelkow Blohm Dispositif a valve pour la commande de l'ecoulement des fluides, en particulier pour le dosage des quantites de gaz riches en combustibles penetrant dans la chambre de combustion de statoreacteurs-fusees
WO1989012741A1 (fr) * 1989-08-21 1989-12-28 Moog Inc. Ajutage de vectorisation de poussee de type a aube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182301A1 (fr) * 2012-06-07 2013-12-12 Michel Aguilar Procede et thermoreacteur de propulsion mono-valve a injection et combustion multiples par cycle de rotation
FR2991721A1 (fr) * 2012-06-07 2013-12-13 Michel Aguilar Procede et thermoreacteur de propulsion mono-valve a injection et combustion multiples par cycle de rotation
US9982631B2 (en) 2012-06-07 2018-05-29 Michel Aguilar Method and thermal reactor for single-valve propulsion with multiple injections and combustions per rotation cycle
WO2014020275A1 (fr) * 2012-08-03 2014-02-06 Snecma Chambre de combustion cvc pour turbomachine d'aeronef comprenant une valve d'admission / d'echappement a tournant spherique
FR2994250A1 (fr) * 2012-08-03 2014-02-07 Snecma Chambre de combustion cvc pour turbomachine d'aeronef comprenant une valve d'admission / d'echappement a tournant spherique
RU2633743C2 (ru) * 2012-08-03 2017-10-17 Снекма Камера сгорания постоянного объема для авиационного турбинного двигателя, содержащая впускной/выпускной клапан, имеющий сферическую заглушку
US10215092B2 (en) 2012-08-03 2019-02-26 Safran Aircraft Engines Constant-volume combustion (CVC) chamber for an aircraft turbine engine including an intake/exhaust valve having a spherical plug
US11066991B2 (en) 2012-08-03 2021-07-20 Safran Aircraft Engines Constant-volume combustion (CVC) chamber for an aircraft turbine engine including an intake/exhaust valve having a spherical plug
CN105066175A (zh) * 2015-08-31 2015-11-18 华能国际电力股份有限公司 一种旋转等容增压燃烧室

Also Published As

Publication number Publication date
BRPI1007499A2 (pt) 2016-02-16
FR2945316A1 (fr) 2010-11-12
US20120017563A1 (en) 2012-01-26
CA2748891A1 (fr) 2010-08-05
FR2945316B1 (fr) 2013-01-04
EP2391802A1 (fr) 2011-12-07
US8925296B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
WO2010086091A1 (fr) Reacteur notamment un reacteur pour aeronef
KR20150032911A (ko) 내부 폭발 엔진, 그것을 포함하는 하이브리드 엔진, 및 그것의 제조 및 사용 방법
WO2012156595A1 (fr) Statoréacteur à chambre de détonation, engin volant comprenant un tel statoréacteur.
FR2863314A1 (fr) Systeme de detonation pulsee a deux etages
EP3250859B1 (fr) Module de combustion a volume constant pour une turbomachine comportant un allumage par communication
EP3259461A1 (fr) Système de combustion à volume constant pour turbomachine de moteur d'aéronef
FR3021351B1 (fr) Paroi de turbomachine comportant une partie au moins d'orifices de refroidissement obtures
CA2237843C (fr) Systeme de rechauffe dichotomique reduisant les pertes en sec
FR2960259A1 (fr) Compresseur thermodynamique
EP3642538B1 (fr) Système de combustion à volume constant comprenant un élément d'obturation tournant à lumières segmentées
EP3688294A1 (fr) Chambre de combustion a volume constant et système de combustion pour turbomachine associe
FR3068076A1 (fr) Systeme de combustion a volume constant avec flux de contournement
EP3308080B1 (fr) Module de chambre de combustion cvc de turbomachine comportant une préchambre de combustion
EP4004359B1 (fr) Couple volet convergent-volet divergent pour tuyère de turboréacteur à géométrie variable comprenant des conduits de circulation d'air de refroidissement raccordés au travers de surfaces de contact
FR3068074B1 (fr) Systeme de combustion a volume constant avec collecteur d'echappement cloisonne
FR2870883A1 (fr) Turbomachines a aubes rotatives
FR2944829A1 (fr) Moteur rotatif a explosion equipe de pales coulissantes
FR3100283A1 (fr) Couple volet convergent-volet divergent pour tuyère de turboréacteur à géométrie variable dont le volet divergent comprend un conduit d'éjection d'air de refroidissement
FR3114613A1 (fr) Revetement thermique pour un moteur a combustion interne a allumage commande
FR3097592A1 (fr) Système de combustion à volume constant avec injection synchronisée
FR3100285A1 (fr) Couple volet convergent-volet divergent pour tuyère de turboréacteur à géométrie variable comprenant un volet divergent refroidi par impact et par pompage thermique
FR3100282A1 (fr) Couple volet convergent-volet divergent pour tuyère de turboréacteur à géométrie variable dont les volets comprennent des conduits de circulation d’air de refroidissement raccordés par emmanchement
FR3092615A1 (fr) module de combustion CVC pour turbomachine d’aéronef comprenant des sous-ensembles de chambres indépendants
FR2882785A1 (fr) Moteur a combustion interne a recyclage des produits de combustion et a allumage a prechambre, procede de fonctionnement associe
EP1359309A1 (fr) Turbine à gaz comportant un dispositif de mélange de gaz à lobes et à tubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10700712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13142673

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2748891

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010700712

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007499

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007499

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110720