WO2010084936A1 - 無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法 - Google Patents

無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法 Download PDF

Info

Publication number
WO2010084936A1
WO2010084936A1 PCT/JP2010/050756 JP2010050756W WO2010084936A1 WO 2010084936 A1 WO2010084936 A1 WO 2010084936A1 JP 2010050756 W JP2010050756 W JP 2010050756W WO 2010084936 A1 WO2010084936 A1 WO 2010084936A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
base station
radio base
terminal
information
Prior art date
Application number
PCT/JP2010/050756
Other languages
English (en)
French (fr)
Inventor
孝宜 田中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009012326A external-priority patent/JP5244630B2/ja
Priority claimed from JP2009017397A external-priority patent/JP5232031B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/145,764 priority Critical patent/US8934558B2/en
Publication of WO2010084936A1 publication Critical patent/WO2010084936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to a wireless communication system, a wireless terminal, a wireless base station, a control device, and a wireless communication method using multi-antenna technology.
  • a multi-antenna technique in which at least one of a transmission side or a reception side of a radio signal uses a plurality of antennas has been used.
  • a plurality of signal sequences using the same frequency are simultaneously transmitted via a plurality of transmission antennas, and the signal sequences are received via a plurality of reception antennas and separated into signal sequences.
  • Input multiple output (MIMO) communication is known.
  • closed loop MIMO In MIMO communication, there is a method (so-called closed loop MIMO) in which a receiving side estimates propagation path characteristics with a transmission side, and feedback information based on the estimated propagation path characteristics is fed back to the transmission side.
  • the transmission side performs various types of transmission control, for example, weighting for each transmission antenna, based on feedback information from the reception side.
  • transmission quality can be improved because the transmission side can perform transmission control adapted to changes in propagation path characteristics.
  • a wireless terminal on the wireless signal receiving side receives not only a desired signal from a connected wireless base station but also an interference signal from other wireless base stations located in the vicinity. May receive.
  • closed feedback control is performed between the transmission side and the reception side, and when the wireless terminal receives an interference signal, the communication quality cannot be sufficiently improved. was there.
  • a wireless base station on the wireless signal receiving side is not only a desired signal from a wireless terminal connected to the local station, but also other wireless base stations located in the vicinity In some cases, an interference signal is received from a wireless terminal connected to the.
  • the present invention provides a wireless communication system, a wireless terminal, a control device, and a wireless communication method capable of sufficiently improving communication quality even when the wireless terminal receives an interference signal in downlink communication. This is the first purpose.
  • the present invention provides a radio communication system, a radio base station, a control device, and a radio communication method capable of sufficiently improving communication quality even when the radio base station receives an interference signal in uplink communication.
  • the second purpose is to provide it.
  • the present invention has the following features.
  • a predetermined communication channel (channel A) is used via a first radio terminal (radio terminal UE1) and a plurality of first transmission antennas (antennas 1301 to 1304).
  • a first radio base station (radio base station BS1) that transmits one radio signal to the first radio terminal and a plurality of second transmission antennas (antennas 1401 to 1404) use the predetermined communication channel.
  • a second radio base station (radio base station BS2) that transmits two radio signals to a second radio terminal (radio terminal UE5), and a control device (control) that controls the first radio base station and the second radio base station Device 1100A or 1100B), and when the first radio terminal receives the second radio signal from the second radio base station, the arrival direction of the second radio signal to the first radio terminal ( Arrival Direction D1), and transmits the interference information based on the estimated arrival direction to the first radio base station, and the control device, based on the interference information received by the first radio base station, 2
  • a wireless communication system wireless communication system 1010A or 1010B) that transmits control information for directing a null point of a directional beam formed by a transmission antenna toward the first wireless terminal to the second wireless base station. Is the gist.
  • the first radio terminal when the first radio terminal receives a second radio signal (ie, an interference signal) from the second radio base station, the direction of the first radio terminal is determined in the second radio base station. Since the null point can be directed to the first wireless terminal, reception of the second wireless signal by the first wireless terminal can be avoided, and communication quality in the first wireless terminal can be sufficiently improved.
  • a second radio signal ie, an interference signal
  • a second feature of the present invention relates to the first feature of the present invention, wherein the second radio base station includes the control information received from the control device and feedback information fed back from the second radio terminal.
  • the second wireless signal is transmitted with the null point directed toward the first wireless terminal and the directional beam directed toward the second wireless terminal.
  • a third feature of the present invention relates to the first feature of the present invention, and is summarized in that the control device is included in the first radio base station.
  • a fourth feature of the present invention relates to the first feature of the present invention, and is summarized in that the control device is provided separately for the first radio base station and the second radio base station.
  • a fifth feature of the present invention relates to the first feature of the present invention, wherein the first wireless terminal sets base station identification information for identifying the second wireless base station based on the second wireless signal.
  • the control device Transmitting to the first radio base station, the control device identifies the second radio base station from a plurality of radio base stations based on the base station identification information received by the first radio base station, The gist is to transmit the control information to the specified second radio base station.
  • a sixth feature of the present invention relates to the first feature of the present invention, wherein the control device holds correspondence information in which the interference information is associated with the second radio base station in advance, and the first radio Based on the interference information received by the base station and the held correspondence information, the second radio base station is identified from a plurality of radio base stations, and the identified second radio base station The gist is to transmit the control information.
  • a seventh feature of the present invention relates to the first feature of the present invention, wherein the interference information is information indicating the arrival direction estimated by the first wireless terminal or the direction of the first wireless terminal.
  • the gist of the present invention is information identifying transmission antenna weights to which a null point is directed.
  • An eighth feature of the present invention relates to the first feature of the present invention, wherein the control information includes information indicating the arrival direction estimated by the first wireless terminal, or the direction of the first wireless terminal.
  • the gist of the present invention is information identifying transmission antenna weights to which a null point is directed.
  • a ninth feature of the present invention is that a first radio base station (radio base station BS1) that transmits a first radio signal using a predetermined communication channel (channel A) via a plurality of transmission antennas (antennas 1301 to 1304). ) From the second radio base station (radio base station BS2), the receiver (receiver 1211) that receives the first radio signal and the receiver receives a second radio signal using the predetermined communication channel.
  • the arrival direction estimation unit (arrival direction estimation unit 1221) that estimates the arrival direction (arrival direction D1) of the second radio signal to the wireless terminal, and the arrival direction estimated by the arrival direction estimation unit
  • the wireless terminal radio terminal UE1 includes a transmission unit (transmission unit 212) that transmits interference information based on directions to the first radio base station.
  • a tenth feature of the present invention is that a first radio signal using a predetermined communication channel (channel A) is transmitted to a first radio terminal (radio terminal UE1) via a plurality of first transmission antennas (antennas 1301 to 1304).
  • a first radio base station (radio base station BS1) to transmit and a second radio signal using the predetermined communication channel are transmitted to a second radio terminal via a plurality of second transmission antennas (antennas 1401 to 1404).
  • a control device for controlling a second radio base station (radio base station BS2), wherein interference information based on the arrival direction of the second radio signal to the first radio terminal is
  • a null point of the directional beam formed by the second transmission antenna is determined by the first radio terminal.
  • Transmitter for transmitting control information for directing the direction to the second radio base station that includes a (transmit section 1112) and summary.
  • the eleventh feature of the present invention is that a first radio signal using a predetermined communication channel (channel A) is transmitted to a first radio base station (radio base station BS1) via a plurality of first transmission antennas (antennas 1301 to 1304). ) To the first radio terminal (radio terminal UE1) (step S1101 or S1201), and the second radio signal using the predetermined communication channel is transmitted via a plurality of second transmission antennas (antennas 1401 to 1404).
  • the gist of the present invention is a wireless communication method including a step (step S1115 or S1214) of transmitting control information for directing a null point toward the first wireless terminal to the second wireless base station.
  • a twelfth feature of the present invention is that a first radio base that receives a first radio signal using a predetermined communication channel (channel A) from a first radio terminal (radio terminal UE1) having a plurality of first transmission antennas.
  • a second radio signal using the predetermined communication channel is transmitted from a station (radio base station BS1 or BS1 ′) and a second radio terminal (radio terminal UE4) having a plurality of second transmission antennas (antennas 2401 and 4022).
  • a second radio base station (radio base station BS2) for receiving, and a control device (control device 2100A or 2100B) for controlling the first radio base station and the second radio base station
  • the first radio base station Generates interference information based on the arrival direction (direction D1) of the second radio signal to the first radio base station when the second radio signal is received from the second radio terminal
  • the control apparatus transmits the interference information generated by the first radio base station to the second radio base station, and the second radio base station receives the interference information when receiving the interference information.
  • a wireless communication system wireless communication for transmitting control information for directing a null point of a directional beam formed by the plurality of second transmission antennas toward the first wireless base station to the second wireless terminal.
  • the gist is that the system is 2010A or 2010B).
  • the first radio base station when the first radio base station receives a second radio signal (that is, an interference signal) from the second radio terminal, the direction of the first radio base station is determined in the second radio terminal. Since the first wireless base station can avoid receiving the second wireless signal, the communication quality in the first wireless base station can be sufficiently improved.
  • a second radio signal that is, an interference signal
  • a thirteenth feature of the present invention relates to the twelfth feature of the present invention, wherein the second radio terminal is fed back from the control information received from the second radio base station and from the second radio base station. Based on the feedback information, the second radio signal is transmitted by directing the null point toward the first radio base station and directing the directional beam toward the second radio base station. Is the gist.
  • a fourteenth feature of the present invention relates to the twelfth feature of the present invention, wherein the control device is based on information on the second radio signal from a plurality of radio base stations including the second radio base station.
  • a base station specifying unit (base station specifying unit 2121) for specifying the second radio base station, and interference information transmission for transmitting the interference information to the second radio base station specified by the base station specifying unit
  • a transmission unit (transmission unit 2112).
  • a fifteenth feature of the present invention relates to the fourteenth feature of the present invention, wherein the control device includes terminal identification information for identifying a radio terminal connected to any of the plurality of radio base stations, and the radio terminal.
  • a storage unit storage unit 2130 that stores connection information in association with a connection-destination radio base station, wherein the second radio signal includes terminal identification information that identifies the second radio terminal, and
  • the station specifying unit specifies the second radio base station from the plurality of radio base stations based on the connection information stored in the storage unit and the terminal identification information included in the second radio signal.
  • the gist is to do.
  • a sixteenth feature of the present invention relates to the fifteenth feature of the present invention, wherein the interference information transmitting unit transmits the terminal identification information included in the second radio signal in addition to the interference information to the second radio base.
  • the second radio base station transmits the second radio terminal from among a plurality of radio terminals connected to the second radio base station based on the terminal identification information received from the control device.
  • a control information transmitting unit transmits the control information to the second wireless terminal specified by the terminal specifying unit.
  • a seventeenth feature of the present invention relates to the fourteenth feature of the present invention, wherein the control device uses a communication channel used for uplink communication by a wireless terminal connected to any of the plurality of wireless base stations.
  • a storage unit (storage unit 2130) that stores channel information in which channel identification information to be identified and a wireless base station to which the wireless terminal is connected are associated; and the storage unit stores the base station specifying unit The gist is to identify the second radio base station from the plurality of radio base stations based on the channel information and channel identification information for identifying the predetermined communication channel.
  • An eighteenth feature of the present invention relates to the seventeenth feature of the present invention, wherein the interference information transmitting unit transmits the channel identification information for identifying the predetermined communication channel in addition to the interference information to the second radio base.
  • the second radio base station transmits the second radio terminal from a plurality of radio terminals connected to the second radio base station based on the channel identification information received from the control device.
  • a control information transmitting unit transmits the control information to the second wireless terminal specified by the terminal specifying unit.
  • a nineteenth feature of the present invention relates to the fourteenth feature of the present invention, wherein the second radio signal includes a signal sequence unique to the second radio base station, and the base station specifying unit is configured to The gist is to identify the second radio base station from the plurality of radio base stations based on the signal series included in the radio signal.
  • a twentieth feature of the present invention relates to the twelfth feature of the present invention, wherein the interference information is information indicating the arrival direction estimated by the first radio base station, or a direction of the first radio base station.
  • the gist of the present invention is information for identifying a transmission antenna weight that directs the null point.
  • a twenty-first feature of the present invention relates to the twelfth feature of the present invention, wherein the control information is information indicating the arrival direction estimated by the first radio base station, or a direction of the first radio base station.
  • the gist of the present invention is information for identifying a transmission antenna weight that directs the null point.
  • a twenty-second feature of the present invention relates to the thirteenth feature of the present invention, wherein the control device is included in the first radio base station, or the first radio base station and the second radio base station
  • the gist is that they are provided individually.
  • a receiver that receives a first radio signal using a predetermined communication channel (channel A) from a radio terminal (radio terminal UE1) having a plurality of transmission antennas, and When a second radio signal using the predetermined communication channel is received from a radio terminal (radio terminal UE4) connected to another radio base station (radio base station BS2), the radio base station An interference information generation unit (interference information generation unit 2222) that generates interference information based on the arrival direction (direction D1) of the second radio signal, and the other radio base station, or the radio base station and the other radio base A radio base station comprising an interference information transmission unit (wired communication unit 2240) that transmits the interference information generated by the interference information generation unit to a control device (control device 2100A) that controls the station. And summarized in that a line base station BS1 or BS1 ').
  • a twenty-fourth feature of the present invention is a receiving unit (receiving) that receives a radio signal using a predetermined communication channel (channel A) from a radio terminal (radio terminal UE4) having a plurality of transmission antennas (antennas 2401 and 4022).
  • Unit 2311) having the interference information based on the arrival direction (direction D1) of the radio signal to the other radio base station (radio base station BS1).
  • An interference information acquisition unit (interference information acquisition unit 2321) acquired from a radio base station or a control device (control device 2100A) that controls the radio base station and the other radio base station, and the interference information acquisition unit Based on the acquired interference information, control information for directing a null point of a directional beam formed by the plurality of transmission antennas toward the other radio base station is transmitted to the radio terminal. And gist further comprising signal control information transmission unit (transmission unit 2312).
  • a twenty-fifth feature of the present invention is that a first radio base that receives a first radio signal using a predetermined communication channel (channel A) from a first radio terminal (radio terminal UE1) having a plurality of first transmission antennas.
  • a second radio signal using the predetermined communication channel is transmitted from a station (radio base station BS1 or BS1 ′) and a second radio terminal (radio terminal UE4) having a plurality of second transmission antennas (antennas 2401 and 4022).
  • a control device for controlling a second radio base station (radio base station BS2) to receive, wherein the first radio base station receives the second radio signal from the second radio terminal
  • a base station specifying unit (base station specifying unit 2) that specifies the second radio base station from a plurality of radio base stations including the second radio base station based on information on the second radio signal. 21) and interference for transmitting interference information based on the arrival direction (direction D1) of the second radio signal to the first radio base station to the second radio base station identified by the base station identification unit
  • the gist is to include an information transmission unit (transmission unit 2112).
  • a twenty-sixth feature of the present invention is that a first radio base station receives a first radio signal using a predetermined communication channel from a first radio terminal having a plurality of first transmission antennas, and a plurality of second radio terminals.
  • a second radio base station receiving a second radio signal using the predetermined communication channel from a second radio terminal having a transmission antenna; and the first radio base station receives the second radio signal from the second radio terminal.
  • a control device that transmits the interference information generated by the first radio base station to the second radio base station, and the reception when the second radio base station receives the interference information.
  • the gist is that it is a communication method.
  • the present invention it is possible to provide a radio communication system, a radio terminal, a control device, and a radio communication method that can sufficiently improve communication quality even when the radio terminal receives an interference signal in downlink communication. .
  • a radio communication system a radio base station, a control device, and a radio communication that can sufficiently improve communication quality even when the radio base station receives an interference signal in uplink communication Can provide a method.
  • 1 is an overall configuration diagram of a wireless communication system according to a first embodiment of the present invention. It is a figure for demonstrating the channel used in the radio
  • FIG. 1 is an overall configuration diagram of a radio communication system 1010A according to the first embodiment.
  • the radio communication system 1010A includes a radio terminal UE1, a radio terminal UE2, a radio terminal UE3, a radio terminal UE4, a radio terminal UE5, a radio base station BS1 (first radio base station), a radio base station BS2 ( A second radio base station) and a control device 1100A.
  • radio base station BS1 and the radio base station BS2 are illustrated, but actually, other radio base stations are installed adjacent to the radio base station BS1 and the radio base station BS2. Has been.
  • the wireless communication system 1010A has a configuration based on LTE (Long Term Evolution) standardized in 3GPP (3rd Generation Partnership Project).
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • the radio base station BS1 is a connection destination of the radio terminals UE1 to UE4 located in the cell C1, and performs downlink communication with the radio terminals UE1 to UE4.
  • the radio terminals UE1 to UE3 are located at the end of the cell C1.
  • the radio base station BS2 is a connection destination of the radio terminal UE5 located in the cell C2 adjacent to the cell C1, and performs downlink communication with the radio terminal UE5.
  • the control device 1100A is provided on a backbone network that is a wired communication network, and is wired to the radio base station BS1 and the radio base station BS2.
  • the control device 1100A controls the radio base station BS1 and the radio base station BS2.
  • the radio communication system 1010A employs an orthogonal frequency division multiple access (OFDMA) system, which is one of the multicarrier communication systems.
  • OFDMA orthogonal frequency division multiple access
  • a plurality of subcarriers are used to form a communication channel called a subchannel (hereinafter referred to as a channel), and the channel is assigned from a radio base station to a radio terminal.
  • the radio communication system 1010A employs a frequency division duplex (FDD) scheme as a duplex scheme.
  • FDD frequency division duplex
  • the radio base station BS1 assigns channel A shown in FIG. 2 to the radio terminal UE1, channel B to the radio terminal UE2, channel C to the radio terminal UE3, and channel D to the radio terminal UE4. Yes.
  • a radio signal transmitted by the radio base station BS1 using these channels is referred to as a first radio signal.
  • the radio base station BS2 assigns channel A shown in FIG. 2 to the radio terminal UE5 and assigns channels B, C, and D to other radio terminals not shown.
  • a radio signal transmitted by the radio base station BS2 using these channels is referred to as a second radio signal.
  • the radio terminal UE1 receives the first radio signal using the channel A as a desired signal from the connection-destination radio base station BS1, and receives the second radio signal using the channel A as an interference signal from the radio base station BS2. ing.
  • the second radio signal using channel A arrives at the radio terminal UE1 from the radio base station BS2 toward the D1 direction.
  • the radio terminal UE5 receives the second radio signal using the channel A as a desired signal from the radio base station BS2.
  • the second radio signal using channel A arrives at the radio terminal UE1 in the direction D5 from the radio base station BS2.
  • the radio terminal UE2 receives the first radio signal using the channel B as a desired signal from the radio base station BS1 to which the radio terminal UE2 is connected, and receives the second radio signal using the channel B from the radio base station BS2 as an interference signal. As received.
  • the second radio signal using channel B arrives at the radio terminal UE2 from the radio base station BS2 in the direction D2.
  • the radio terminal UE3 receives the first radio signal using the channel C as a desired signal from the connection-destination radio base station BS1, and receives the second radio signal using the channel C as an interference signal from the radio base station BS2. ing.
  • the second radio signal using channel C arrives at the radio terminal UE3 from the radio base station BS2 in the direction D3.
  • the radio base station BS1 and the radio base station BS2 execute downlink communication based on the above-described closed loop MIMO.
  • the radio base station BS1 transmits the first radio signal to the radio terminals UE1 to UE4 via a plurality of antennas (first transmission antennas) provided in the radio base station BS1.
  • the radio terminals UE1 to UE4 receive the first radio signals via a plurality of antennas (reception antennas) provided in the radio terminals UE1 to UE4, respectively.
  • the radio base station BS2 transmits the second radio signal to the radio terminal UE5 via a plurality of antennas (second transmission antennas) provided in the radio base station BS2.
  • the radio terminal UE5 receives the second radio signal via a plurality of antennas (reception antennas) provided in the radio terminal UE5.
  • MIMO (so-called 4 ⁇ 2 MIMO) having four transmission antennas and two reception antennas in downlink communication will be described.
  • Each of the radio terminals UE1 to UE4 analyzes the first radio signal received from the radio base station BS1, and periodically provides feedback information for adaptively controlling multi-antenna transmission in the radio base station BS1 to the radio base station BS1.
  • the radio terminal UE5 analyzes the second radio signal received from the radio base station BS2, and periodically transmits feedback information for adaptively controlling multi-antenna transmission in the radio base station BS2 to the radio base station BS2.
  • feedback information includes “RI (Rank Indicator)”, “PMI (Precoding Matrix Indicator)”, and “CQI (Channel Quality Indicator)”.
  • the RI is information for controlling the number of streams (referred to as layers in the LTE standard) that are signal sequences.
  • PMI is information for controlling transmit antenna weight (referred to as a precoding matrix in the LTE standard).
  • CQI is information for controlling transmission power and modulation scheme.
  • the RI, PMI, and CQI are also used for resource scheduling in the radio base stations BS1 and BS2.
  • Each of the radio terminals UE1 to UE4 determines the number of layers, and transmits RI corresponding to the determined number of layers to the radio base station BS1 as feedback information.
  • Each of the radio terminals UE1 to UE4 calculates a precoding matrix that maximizes reception quality (for example, SNR) according to the number of layers, and transmits the PMI according to the calculation result to the radio base station BS1 as feedback information. Further, each of the radio terminals UE1 to UE4 obtains a CQI corresponding to the reception quality, and transmits the CQI as feedback information to the radio base station BS1.
  • the radio base station BS1 controls the number of layers, precoding matrix, transmission power, modulation scheme, and the like according to the feedback information.
  • the radio terminal UE5 analyzes the radio signal received from the radio base station BS2, and periodically provides feedback information (RI, PMI, CQI) for adaptively controlling multi-antenna transmission in the radio base station BS2. Transmit to the radio base station BS2.
  • RI, PMI, CQI feedback information
  • the radio terminal UE1 When receiving the second radio signal from the radio base station BS2 as an interference signal, the radio terminal UE1 estimates the arrival direction D1 of the second radio signal to the radio terminal UE1, and transmits interference information based on the arrival direction D1 to the radio base station. Transmit to station BS1.
  • the radio terminal UE2 when the radio terminal UE2 receives the second radio signal from the radio base station BS2 as an interference signal, the radio terminal UE2 estimates the arrival direction D2 of the second radio signal to the radio terminal UE2, and obtains interference information based on the arrival direction D2. Transmit to the radio base station BS1.
  • the radio terminal UE3 When receiving the second radio signal from the radio base station BS2 as an interference signal, the radio terminal UE3 estimates the arrival direction D3 of the second radio signal to the radio terminal UE3, and transmits the interference information based on the arrival direction D3 to the radio base station. Transmit to station BS1.
  • the radio terminals UE1 to UE3 transmit interference information to the radio base station BS1 together with the feedback information described above.
  • the radio base station BS1 relays interference information received from the radio terminals UE1 to UE3 to the control device 1100A. Based on the received interference information, control apparatus 1100A performs directional beams formed by a plurality of transmission antennas provided in radio base station BS2 with respect to the directions of radio terminals UE1 to UE3 (arrival directions D1 to D3). Control information for directing the null point (insensitive point) of the wireless device in the direction of arrival is transmitted to the radio base station BS2.
  • a communication form in which MIMO communication is performed while forming a directional beam is generally referred to as beam forming MIMO.
  • the radio base station BS2 Based on the control information received from the control apparatus 1100A and feedback information fed back from the radio terminal UE5, the radio base station BS2 directs null points in the directions D1 to D3 of the radio terminals UE1 to UE3, and A second radio signal is transmitted by directing a directional beam in a direction D5 of the terminal UE5.
  • the interference information is, for example, information indicating a coefficient or angle indicating the arrival direction of the interference signal.
  • An existing direction-of-arrival estimation technique can be used for estimating the direction of arrival.
  • an absolute direction can be obtained by using in combination with a GPS or a direction sensor provided in the wireless terminal.
  • information indicating a coefficient or angle indicating an arrival direction may be converted into PMI, and the PMI may be used as interference information.
  • the radio terminal UE1 transmits, as interference information, the PMI corresponding to the precoding matrix that directs the null point in the direction D1 of the radio terminal UE1 to the radio base station BS1.
  • the radio terminal UE2 transmits PMI corresponding to the precoding matrix that directs the null point in the direction D2 of the radio terminal UE2 to the radio base station BS1 as interference information.
  • the radio terminal UE3 transmits the PMI corresponding to the precoding matrix that directs the null point in the direction D3 of the radio terminal UE3 as interference information to the radio base station BS1.
  • information indicating a coefficient or angle indicating the direction of arrival is used as interference information
  • information indicating a coefficient or angle indicating the direction of arrival is used as control information, or the information is converted into PMI and used. can do.
  • PMI is used as interference information
  • the PMI can be used as it is as control information.
  • FIG. 4 is a functional block diagram showing the configuration of the radio terminal UE1. Since the other radio terminals (radio terminals UE2 to UE5) are configured in the same manner as the radio terminal UE1, here, the radio terminal UE1 will be described as a representative of each radio terminal.
  • the radio terminal UE1 includes antennas 1201 and 1202, a radio communication unit 1210, a control unit 1220, and a storage unit 1230.
  • the wireless communication unit 210 includes a reception unit 1211 that receives wireless signals via the antennas 1201 and 1202 and a transmission unit 1212 that transmits wireless signals via the antennas 1201 and 1202.
  • the receiving unit 1211 performs channel estimation based on a pilot signal that is a known signal included in the first radio signal received from the radio base station BS1, and generates feedback information using the channel estimation result.
  • the transmission unit 1212 transmits the generated feedback information to the radio base station BS1.
  • the control unit 1220 is configured by a CPU, for example, and controls various functions provided in the radio terminal UE1.
  • the storage unit 1230 includes, for example, a memory, and stores various types of information used for control and the like in the radio terminal UE1.
  • the control unit 1220 includes an arrival direction estimation unit 1221 and an interference information generation unit 1222.
  • the arrival direction estimation unit 1221 estimates the arrival direction D1 of the second radio signal to the radio terminal UE1 when the reception unit 1211 receives the second radio signal (interference signal) from the radio base station BS2.
  • the interference information generation unit 1222 generates interference information based on the arrival direction D1 estimated by the arrival direction estimation unit 1221. As described above, when PMI is used as the interference information, the storage unit 1230 holds the association between the arrival direction D1 and the PMI in advance, and the interference information generation unit 1222 generates the PMI from the association ( get. Then, the transmission unit 212 transmits interference information to the radio base station BS1.
  • FIG. 5 is a functional block diagram showing the configuration of the radio base station BS1.
  • the radio base station BS1 includes antennas 1301 to 1304, a radio communication unit 1310, a control unit 1320, a storage unit 1330, and a wired communication unit 1340.
  • the radio communication unit 1310 receives a radio signal from the radio terminals UE1 to UE4 via the antennas 1301 to 1304, and a transmission unit 1312 transmits the radio signal to the radio terminals UE1 to UE4 via the antennas 1301 to 1304. And have.
  • the receiving unit 1311 acquires feedback information included in the received radio signal.
  • the reception unit 1311 acquires interference information included in the received radio signal.
  • the transmission unit 1312 controls multi-antenna transmission based on the feedback information. Specifically, the transmission unit 1312 distributes the transmission signal to a plurality of layers according to RI, weights the transmission signal of each layer according to PMI (hereinafter, precoding), and converts the transmission signal after precoding into CQI. Accordingly, adaptive modulation and transmission power control are performed.
  • PMI hereinafter, precoding
  • the control unit 1320 is constituted by a CPU, for example, and controls various functions provided in the radio base station BS1.
  • the storage unit 1330 includes, for example, a memory, and stores various information used for control and the like in the radio base station BS1.
  • the wired communication unit 1340 is connected to the control device 1100A via a wired communication network.
  • the wired communication unit 1340 transmits interference information to the control device 1100A.
  • FIG. 6 is a functional block diagram showing the configuration of the control device 1100A.
  • control device 1100A includes a wired communication unit 1110, a control unit 1120, and a storage unit 1130.
  • the wired communication unit 1110 is connected to the radio base stations BS1 and BS2 via a wired communication network.
  • the wired communication unit 1110 includes a reception unit 1111 that receives a signal and a transmission unit 1112 that transmits a signal.
  • the receiving unit 1111 receives interference information from the radio base station BS1.
  • the control unit 1120 is constituted by a CPU, for example, and controls various functions provided in the control device 1100A.
  • the storage unit 1130 is configured by a memory, for example, and stores various types of information used for control and the like in the control device 1100A.
  • the control unit 1120 includes an interference source specifying unit 1121 and a control information generation unit 1122.
  • the interference source specifying unit 1121 specifies a radio base station that is an interference source from among a plurality of radio base stations. A method for specifying the interference source will be described later.
  • the control information generation unit 1122 generates control information based on the interference information received by the reception unit 1111.
  • the transmission unit 1112 transmits the control information to the radio base station BS2.
  • FIG. 7 is a functional block diagram showing the configuration of the radio base station BS2.
  • the radio base station BS2 includes antennas 1401 to 1404, a radio communication unit 1410, a control unit 1420, a storage unit 1430, and a wired communication unit 1440.
  • the radio communication unit 1410 includes a reception unit 1411 that receives a radio signal from the radio terminal UE5 via the antennas 1401 to 1404, and a transmission unit 1412 that transmits the radio signal to the radio terminal UE5 via the antennas 1401 to 1404.
  • the receiving unit 1411 acquires feedback information included in the radio signal received from the radio terminal UE5.
  • the transmission unit 1412 controls multi-antenna transmission based on the feedback information. Specifically, the transmission unit 1412 distributes the transmission signal to a plurality of layers according to RI, precodes the transmission signal of each layer according to PMI, and applies adaptive modulation and CQI to the transmission signal after precoding. Perform transmission power control.
  • the control unit 1420 is configured by a CPU, for example, and controls various functions provided in the radio base station BS2.
  • the storage unit 1430 is configured by a memory, for example, and stores various types of information used for control in the radio base station BS2.
  • the wired communication unit 1440 is connected to the control device 1100A via a wired communication network. The wired communication unit 1440 receives control information from the control device 1100A.
  • the control unit 1420 includes an information acquisition unit 1421 and a transmission directivity control unit 1422.
  • the information acquisition unit 1421 acquires control information for directing a null point toward the radio terminals UE1 to UE3 that receive the second radio signal as an interference signal during communication with another radio base station (radio base station BS1). Configure the acquisition unit.
  • the transmission directivity control unit 1422 constitutes a control unit that controls the directional beam formed by the antennas 1401 to 1404 based on feedback information fed back from the radio terminal UE5. Specifically, the directional beam formed by the antennas 1401 to 1404 can be directed toward the radio terminal UE5 by precoding using a precoding matrix corresponding to the PMI fed back from the radio terminal UE5. Further, the transmission directivity control unit 1422 directs the directional beam to the direction D5 of the radio terminal UE5 and the directions of the radio terminals UE1 to UE3 based on the feedback information and the control information acquired by the information acquisition unit 1421. A null point is directed to D1 to D3.
  • the transmission directivity control unit 1422 selects a precoding matrix group that directs a null point in the direction of the radio terminal UE1 (D1 direction) based on the control information.
  • the precoding matrix group is a group including a plurality of precoding matrices having null points in the same direction, and is stored in advance in the storage unit 1430.
  • precoding matrix groups 1 to 8 having null points in different directions are illustrated.
  • the precoding matrix group includes a plurality of precoding matrices each having directional beams in different directions, as shown in FIG.
  • each of the precoding matrices 1 to 6 included in the precoding matrix group 1 has directional beams in six directions.
  • the patterns of directional beams in the precoding matrices 1 to 6 are different.
  • the transmission directivity control unit 1422 is based on feedback information (specifically, PMI) fed back from the radio terminal UE5 from the precoding matrix group having a null point in the direction D1 of the radio terminal UE1.
  • a precoding matrix having a directional beam in direction D5 of UE5 is selected.
  • the selected precoding matrix is applied to precoding in the transmission unit 412.
  • FIG. 10 is an operation sequence diagram showing the operation of the radio communication system 1010A. In FIG. 10, only PMI is illustrated and described among feedback information (RI, PMI, CQI) according to the LTE standard. Note that the operation sequence shown in FIG. 10 is repeatedly executed at predetermined time intervals (for example, in communication frame units).
  • the transmission unit 1312 of the radio base station BS1 transmits the first radio signal using the channel A to the radio terminal UE1, the first radio signal using the channel B to the radio terminal UE2, and the channel C.
  • the first radio signal using is transmitted to each radio terminal UE3.
  • the transmission unit 1412 of the radio base station BS2 sends a second radio signal using the channel A to the radio terminal UE5 and a second radio signal using the channel B to the radio terminal UE6 (not shown).
  • the second radio signal using channel C is transmitted to radio terminal UE7 (not shown).
  • the radio terminals UE1, UE2 and UE3 located in the self-ringe of the radio base station BS1 receive the first radio signal transmitted by the radio base station BS1 as a desired signal and the second radio signal transmitted by the radio base station BS2 A radio signal is received as an interference signal.
  • the receiving units 1211 of the radio terminals UE1, UE2, and UE3 execute channel responses of radio propagation paths based on the pilot signals included in the first radio signal received from the radio base station BS1. Perform channel estimation.
  • Each of the reception units 1211 of the radio terminals UE1, UE2, and UE3 is based on a pilot signal included in the second radio signal received from the radio base station BS2 or a cell ID included in the second radio signal.
  • Base station identification information for identifying BS2 is acquired.
  • Steps S1108a, S1108b, and S1108c the receiving units 1211 of the radio terminals UE1, UE2, and UE3 calculate a precoding matrix based on the estimated channel response, and obtain a PMI corresponding to the calculated precoding matrix. .
  • step S1109a the arrival direction estimation unit 1221 of the radio terminal UE1 estimates the arrival direction D1 of the second radio signal to the radio terminal UE1.
  • the interference information generation unit 1222 of the radio terminal UE1 generates interference information based on the arrival direction D1.
  • step S1109b the arrival direction estimation unit 1221 of the radio terminal UE2 estimates the arrival direction D2 of the second radio signal to the radio terminal UE2.
  • the interference information generation unit 1222 of the radio terminal UE2 generates interference information based on the arrival direction D2.
  • step S1109c the arrival direction estimation unit 1221 of the radio terminal UE3 estimates the arrival direction D3 of the second radio signal to the radio terminal UE3.
  • the interference information generation unit 1222 of the radio terminal UE3 generates interference information based on the arrival direction D3.
  • the receiving units 1211 of the radio terminals UE1, UE2, and UE3 equalize the received signal (channel equalization) based on the estimated channel response, and decode the equalized received signal To do.
  • the decoded received signal is input to the control unit 1220 of each of the radio terminals UE1, UE2, and UE3.
  • the transmission units 1212 of the radio terminals UE1, UE2, and UE3 transmit interference information, PMI, and base station identification information to the radio base station BS1.
  • the receiving unit 1311 of the radio base station BS1 receives interference information, PMI, and base station identification information.
  • step S1112 the transmission unit 1312 of the radio base station BS1 selects a precoding matrix corresponding to the PMI received from the radio terminal UE1.
  • the transmitter 1312 performs precoding using a precoding matrix corresponding to the PMI received from the radio terminal UE1 when the first radio signal using the channel A is next transmitted to the radio terminal UE1.
  • the transmitter 1312 of the radio base station BS1 uses the precoding matrix corresponding to the PMI received from the radio terminal UE2 when the first radio signal using the channel B is next transmitted to the radio terminal UE2. Do coding.
  • the transmitter 1312 performs precoding using a precoding matrix corresponding to the PMI received from the radio terminal UE3 when the first radio signal using the channel C is next transmitted to the radio terminal UE3.
  • step S1113 the wired communication unit 1340 of the radio base station BS1 transmits the interference information and the base station identification information received from each of the radio terminals UE1, UE2, and UE3 to the control device 1100A.
  • the receiving unit 1111 of the control device 1100A receives interference information and base station identification information.
  • the interference source specifying unit 1121 of the control device 1100A specifies the radio base station BS2 as an interference source from among a plurality of radio base stations based on the base station identification information received by the receiving unit 1111.
  • the control information generation unit 1122 of the control device 1100A generates control information addressed to the radio base station BS2 identified by the interference source identification unit 1121 based on the interference information received by the reception unit 1111.
  • the control information generation unit 1122 corresponds to control information corresponding to channel A (wireless terminal UE1), control information corresponding to channel B (wireless terminal UE2), and channel C (wireless terminal UE3). Control information.
  • step S1113 the transmission unit 1112 of the control device 1100A transmits the control information generated by the control information generation unit 1122 to the radio base station BS2.
  • the wired communication unit 1440 of the radio base station BS2 receives control information.
  • the receiving unit 1411 of the radio base station BS2 receives PMI as feedback information from the radio terminal UE5, the radio terminal UE6 (not shown), and the radio terminal UE7 (not shown) to which the radio base station BS2 is connected. Receiving.
  • the information acquisition unit 1421 of the radio base station BS2 acquires control information from the wired communication unit 1440 and acquires PMI from the reception unit 1411.
  • step S1116 the transmission directivity control unit 1422 of the radio base station BS2 directs a directional beam in the direction D5 of the radio terminal UE5 when the transmission unit 1412 transmits the second radio signal using the channel A, and The transmitter 1412 is controlled so that the null point is directed to D1 of the radio terminal UE1.
  • the transmission directivity control unit 1422 selects a precoding matrix that directs the directional beam in the direction D5 of the radio terminal UE5 from the precoding matrix group that directs the null point in the direction D1 of the radio terminal UE1. To do.
  • the transmission directivity control unit 1422 directs a directional beam in the direction of the radio terminal UE6 (not shown) when the transmission unit 1412 transmits the second radio signal using the channel B, and the radio terminal Transmitter 1412 is controlled so that the null point is directed in the direction of UE2 (D2 direction).
  • the transmission directivity control unit 1422 directs a directional beam in the direction of the radio terminal UE7 (not shown) when the transmission unit 1412 transmits the second radio signal using the channel C, and the radio terminal UE3.
  • the transmission unit 1412 is controlled so that the null point is directed in the direction (D3 direction).
  • the radio communication system 1010A when the radio terminals UE1 to UE3 receive the second radio signal from the radio base station BS2 as an interference signal, the radio terminal in the radio base station BS2 A null point is directed in the direction D1 to D3 of UE1 to UE3.
  • wireless terminal UE1 receives a 2nd radio signal (interference signal), and the communication quality in radio
  • cell throughput is increased and high-speed downlink communication can be provided to each wireless terminal.
  • the transmission directivity control unit 1422 of the radio base station BS2 determines the directions of the radio terminals UE1 to UE3 based on the control information received from the control device 1100A and the feedback information fed back from the radio terminal UE5.
  • the second radio signal is transmitted with the null point directed to D1 to D3 and the directional beam directed to the direction D5 of the radio terminal UE5. Therefore, the communication quality in the radio terminal UE5 can be kept good while sufficiently improving the communication quality in the radio terminal UE1.
  • the interference source specifying unit 1121 of the control device 1100A specifies the radio base station BS2 from the plurality of radio base stations based on the base station identification information, and controls the specified radio base station BS2 with the control information. Send. Accordingly, even when there are a plurality of radio base stations that are candidates for interference sources, the interference sources can be easily identified, and control information can be transmitted to an appropriate radio base station.
  • the interference source specifying unit 1121 of the control device 1100A specifies the interference base radio base station BS2 from the plurality of radio base stations based on the base station identification information. The interference source may be specified by the method as described above.
  • the storage unit 1130 of the control device 1100A holds correspondence information in which interference information is associated with each radio base station in advance.
  • the interference source specifying unit 1121 of the control device 1100A specifies the interference base radio base station BS2 from the plurality of radio base stations based on the interference information received by the reception unit 1111 and the correspondence information held therein. .
  • position information indicating the positions of the radio terminals UE1, UE2, and UE3 may be used as interference information and control information.
  • an existing position detection method such as position detection using GPS can be used.
  • the transmission directivity control unit 422 of the radio base station BS2 specifies the directions of the radio terminals UE1, UE2, and UE3 from the positions of the radio terminals UE1, UE2, and UE3. do it.
  • the information acquisition unit 1421 of the radio base station BS2 has acquired the information indicating the coefficient or angle indicating the arrival direction or the PMI as the control information. May be obtained.
  • the information acquisition unit 1421 estimates the arrival direction of the uplink radio signal and indicates the estimated arrival direction Information may be acquired as control information.
  • the transmission directivity control unit 1422 of the radio base station BS2 may specify the directions of the radio terminals UE1, UE2, and UE3 from the arrival direction of the uplink radio signal.
  • FIG. 11 is an overall configuration diagram of a radio communication system 1010B according to the second embodiment.
  • the radio base station BS2 ′ has the function of the control device 1100B.
  • the control unit 1320 of the radio base station BS2 ′ includes an interference source specifying unit 1321 that specifies an interference source, and a control information generating unit 1322 that generates control information.
  • the functions of the interference source identification unit 1321 and the control information generation unit 1322 are the same as the functions of the interference source identification unit 1121 and the control information generation unit 1122 described in the first embodiment.
  • FIG. 13 is an operation sequence diagram showing the operation of the radio communication system 1010B. In FIG. 13, the processes up to step S1213 are the same as those in the first embodiment, and therefore, the processes after step S1213 will be described.
  • the interference source specifying unit 1321 of the radio base station BS1 specifies the radio base station BS2 as an interference source from the plurality of radio base stations based on the base station identification information received by the receiving unit 1311.
  • the control information generation unit 1322 of the radio base station BS1 generates control information addressed to the radio base station BS2 identified by the interference source identification unit 1321, based on the interference information received by the reception unit 1311.
  • control information generation unit 322 corresponds to control information corresponding to channel A (wireless terminal UE1), control information corresponding to channel B (wireless terminal UE2), and channel C (wireless terminal UE3). Control information.
  • step S1214 the wired communication unit 1340 of the radio base station BS1 'transmits the control information generated by the control information generation unit 1322 to the radio base station BS2.
  • the wired communication unit 1440 of the radio base station BS2 receives control information.
  • step S1215 the transmission directivity control unit 1422 of the radio base station BS2 directs the directional beam in the direction D5 of the radio terminal UE5 when the transmission unit 1412 transmits the second radio signal using the channel A, and The transmitter 1412 is controlled so that the null point is directed in the direction D1 of the radio terminal UE1.
  • the transmission directivity control unit 1422 directs a directional beam in the direction of the radio terminal UE6 (not shown) when the transmission unit 1412 transmits the second radio signal using the channel B, and the radio terminal The transmitter 1412 is controlled so that the null point is directed in the direction D2 of the UE2.
  • the transmission directivity control unit 1422 directs a directional beam in the direction of the radio terminal UE7 (not shown) when the transmission unit 1412 transmits the second radio signal using the channel C, and the radio terminal UE3.
  • the transmission unit 1412 is controlled so that the null point is directed in the direction D3.
  • the second radio signal when each of the radio terminals UE1 to UE3 receives the second radio signal from the radio base station BS2, the second radio signal is regarded as an interference signal.
  • a second radio signal less than the reception level may be allowed.
  • each of the radio terminals UE1 to UE3 receives the second radio signal from the radio base station BS2, and when the reception level of the second radio signal is equal to or higher than a predetermined reception level, the second radio signal Are regarded as interference signals.
  • the FDD scheme is adopted as a duplex scheme, but a time division duplex (TDD) scheme may be adopted instead of the FDD scheme.
  • TDD time division duplex
  • each of the radio base stations BS1 and BS2 performs radio communication with a plurality of radio terminals. However, each of the radio base stations BS1 and BS2 performs radio communication with one radio terminal. But you can.
  • the wireless communication systems 1010A and 1010B based on the LTE standard have been described.
  • the present invention can be applied to the UMB (Ultra Mobile Broadband) standard.
  • UMB Ultra Mobile Broadband
  • (1) Overview of Radio Communication System An overview of a radio communication system according to the third embodiment will be described in the order of (1.1) schematic configuration of radio communication system and (1.2) schematic operation of radio communication system.
  • (1.1) Schematic Configuration of Radio Communication System FIG. 14 is an overall configuration diagram of a radio communication system 2010A according to the third embodiment.
  • the radio communication system 2010A includes a radio terminal UE1 (first radio terminal), a radio terminal UE2, a radio terminal UE3, a radio terminal UE4 (second radio terminal), a radio terminal UE5, a radio terminal UE6,
  • a base station BS1 (first radio base station), a radio base station BS2 (second radio base station), and a control device 2100A are included.
  • radio base station BS1 and the radio base station BS2 are illustrated, but actually, a radio base station is further installed adjacent to each of the radio base station BS1 and the radio base station BS2. ing.
  • the wireless communication system 2010A has a configuration based on the LTE (Long Term Evolution) standard standardized in 3GPP (3rd Generation Partnership Project). In the following, mainly uplink (hereinafter, uplink) communication will be described.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • the radio base station BS1 is a connection destination of the radio terminals UE1 to UE3 located in the cell C1, and performs uplink communication with the radio terminals UE1 to UE3.
  • the radio terminals UE1 to UE3 are movable, and are located at the end of the cell C1 in the example of FIG. Radio terminals other than the radio terminals UE1 to UE3 may be further connected to the radio base station BS1.
  • the radio base station BS2 is a connection destination of the radio terminals UE4 to UE6 located in the cell C2 adjacent to the cell C1, and performs uplink communication with the radio terminals UE4 to UE6.
  • the radio terminals UE4 to UE6 are movable, and are located at the end of the cell C2 in the example of FIG. Radio terminals other than the radio terminals UE4 to UE6 may be further connected to the radio base station BS2.
  • the control device 2100A is provided on a backbone network, which is a wired communication network, and is wired to the radio base station BS1 and the radio base station BS2.
  • the control device 2100A controls the radio base station BS1 and the radio base station BS2.
  • the control device 2100A may control radio base stations adjacent to the radio base station BS1 and the radio base station BS2 in addition to the radio base station BS1 and the radio base station BS2.
  • the control device 2100A periodically collects information from the radio base station BS1, the radio base station BS2, and other radio base stations, and stores and manages the collected information.
  • an orthogonal frequency division multiple access (OFDMA) system which is one of multicarrier communication systems, is employed.
  • OFDMA orthogonal frequency division multiple access
  • a plurality of subcarriers are used to form a communication channel called a subchannel (hereinafter referred to as a channel), and the channel is assigned from a radio base station to a radio terminal.
  • the radio communication system 2010A employs a frequency division duplex (FDD) scheme as a duplex scheme.
  • FDD frequency division duplex
  • the radio base station BS1 assigns the channel A shown in FIG. 15 to the radio terminal UE1, the channel B to the radio terminal UE2, and the channel C to the radio terminal UE3.
  • a radio signal transmitted from the radio terminals UE1 to UE3 using a channel assigned by the radio base station BS1 is appropriately referred to as a “first radio signal”.
  • the radio base station BS2 assigns the channel A shown in FIG. 15 to the radio terminal UE4, the channel B to the radio terminal UE5, and the channel C to the radio terminal UE6.
  • the radio signal transmitted by the radio terminals UE4 to UE6 using the channel allocated by the radio base station BS2 is appropriately referred to as a “second radio signal”.
  • the radio base station BS1 receives a first radio signal using the channel A as a desired signal from the radio terminal UE1, and receives a second radio signal using the channel A from the radio terminal UE4 as an interference signal.
  • the second radio signal using channel A arrives at the radio base station BS1 from the radio terminal UE4 in the direction D1, and arrives at the radio base station BS2 from the radio terminal UE4 in the direction D4.
  • the radio base station BS1 receives a first radio signal using the channel B as a desired signal from the radio terminal UE2, and receives a second radio signal using the channel B as an interference signal from the radio terminal UE5. Yes.
  • the second radio signal using channel B arrives at the radio base station BS1 from the radio terminal UE5 in the direction D2, and arrives at the radio base station BS2 from the radio terminal UE5 in the direction D5.
  • the radio base station BS1 receives the first radio signal using the channel C as a desired signal from the radio terminal UE3 and receives the second radio signal using the channel C from the radio terminal UE6 as an interference signal.
  • the second radio signal using channel C arrives at the radio base station BS1 from the radio terminal UE6 in the direction D3, and arrives at the radio base station BS2 from the radio terminal UE6 in the direction D6.
  • the radio base station BS1 and the radio terminals UE1 to UE3 perform uplink communication based on closed loop MIMO.
  • the radio base station BS2 and the radio terminals UE4 to UE6 perform uplink communication based on closed-loop MIMO.
  • each of the radio terminals UE1 to UE3 transmits the first radio signal to the radio base station BS1 via a plurality of antennas (transmission antennas).
  • the radio base station BS1 receives each first radio signal via a plurality of antennas (receive antennas).
  • Each of the radio terminals UE4 to UE6 transmits the second radio signal to the radio base station BS2 via a plurality of antennas (transmission antennas).
  • the radio base station BS2 receives each second radio signal via a plurality of antennas (receive antennas).
  • FIG. 14 exemplifies MIMO (so-called 2 ⁇ 4 MIMO) in which there are two transmission antennas and four reception antennas in uplink communication.
  • the radio base station BS1 analyzes the first radio signals received from the radio terminals UE1 to UE3, and periodically provides feedback information for adaptively controlling multi-antenna transmission in the radio terminals UE1 to UE3. Send to.
  • feedback information includes “RI (Rank Indicator)”, “PMI (Precoding Matrix Indicator)”, and “CQI (Channel Quality Indicator)”.
  • the RI is information for controlling the number of streams (referred to as layers in the LTE standard) that are signal sequences.
  • PMI is information for controlling transmit antenna weight (referred to as a precoding matrix in the LTE standard).
  • CQI is information for controlling transmission power and modulation scheme.
  • the radio base station BS1 determines the number of layers for each of the radio terminals UE1 to UE3, and transmits RI corresponding to the determined number of layers as feedback information. For each of the radio terminals UE1 to UE3, the radio base station BS1 calculates a precoding matrix that maximizes reception quality (for example, SNR) according to the number of layers, and transmits PMI according to the calculation result as feedback information. Also, the radio base station BS1 obtains a CQI corresponding to the reception quality for each of the radio terminals UE1 to UE3, and transmits the CQI as feedback information. Each of the radio terminals UE1 to UE3 controls the number of layers, the directional beam, the transmission power, the modulation scheme, and the like according to feedback information fed back from the radio base station BS1.
  • the radio base station BS2 analyzes the second radio signals received from the radio terminals UE4 to UE6, and feedback information (RI, PMI, CQI) for adaptively controlling multi-antenna transmission in the radio terminals UE4 to UE6. ) Is periodically transmitted to the radio terminals UE4 to UE6. Each of the radio terminals UE4 to UE6 controls the number of layers, the directional beam, the transmission power, the modulation scheme, and the like according to feedback information fed back from the radio base station BS2. (1.2) Schematic Operation of Radio Communication System Next, a schematic operation of the radio communication system 2010A will be described using FIG. 14, FIG. 16, and FIG.
  • the radio base station BS1 When the radio base station BS1 receives the second radio signal using the channel A from the radio terminal UE4 as an interference signal, the radio base station BS1 estimates the arrival direction D1 of the second radio signal to the radio base station BS1. As illustrated in FIG. 16, the radio base station BS1 generates interference information based on the arrival direction D1, and transmits the generated interference information to the control apparatus 2100A.
  • the radio base station BS1 when the radio base station BS1 receives the second radio signal using the channel B as an interference signal from the radio terminal UE5, the radio base station BS1 estimates the arrival direction D2 of the second radio signal to the radio base station BS1. The radio base station BS1 generates interference information based on the arrival direction D2, and transmits the generated interference information to the control apparatus 2100A.
  • the radio base station BS1 When the radio base station BS1 receives the second radio signal using the channel C as an interference signal from the radio terminal UE6, the radio base station BS1 estimates the arrival direction D3 of the second radio signal to the radio base station BS1. The radio base station BS1 generates interference information based on the arrival direction D3, and transmits the generated interference information to the control device 2100A.
  • the control apparatus 2100A specifies the radio base station BS2 from a plurality of radio base stations including the radio base station BS2 based on information on the second radio signal, and transmits interference information to the specified radio base station BS2. To do.
  • the information related to the second radio signal is information included in the second radio signal or information identifying a channel used for the second radio signal.
  • the radio base station BS2 When receiving the interference information, the radio base station BS2 transmits control information to the radio terminals UE4 to UE6 based on the received interference information. Specifically, the radio base station BS2 transmits to the radio terminal UE4 control information for directing the null point (dead point) of the directional beam formed by the radio terminal UE4 in the direction D1 of the radio base station BS1. The radio base station BS2 transmits control information for directing the null point of the directional beam formed by the radio terminal UE5 in the direction D2 of the radio base station BS1 to the radio terminal UE5. The radio base station BS2 transmits to the radio terminal UE6 control information for directing the null point of the directional beam formed by the radio terminal UE6 in the direction D3 of the radio base station BS1.
  • beam forming MIMO a communication form in which MIMO communication is performed while forming a directional beam.
  • the radio terminal UE4 directs a null point in the direction D1 of the radio base station BS1 based on the control information received from the radio base station BS2 and the PMI fed back from the radio base station BS2, and the radio terminal station BS2 A second radio signal using channel A is transmitted with a directional beam directed in direction D4.
  • the radio terminal UE4 By directing the null point in the direction D1 of the radio base station BS1 by the radio terminal UE4, it is possible to prevent the radio base station BS1 from receiving the second radio signal from the radio terminal UE4 as shown in FIG.
  • the radio terminal UE5 directs a null point in the direction D2 of the radio base station BS1 based on the control information received from the radio base station BS2 and the PMI fed back from the radio base station BS2, and the radio terminal station BS2
  • a second radio signal using channel B is transmitted by directing a directional beam in direction D5.
  • the radio terminal UE6 directs a null point in the direction D3 of the radio base station BS1 based on the control information received from the radio base station BS2 and the PMI fed back from the radio base station BS2, and the radio terminal station BS2 A directional beam is directed in the direction D6, and the second radio signal using the channel C is transmitted.
  • the interference information is, for example, information on a coefficient or angle indicating the arrival direction of the interference signal.
  • An existing direction-of-arrival estimation technique can be used for estimating the direction of arrival.
  • coefficient or angle information indicating the arrival direction may be converted into PMI, and the PMI obtained by the conversion may be used as interference information.
  • the radio base station BS1 or the control apparatus 2100A the PMI corresponding to the precoding matrix that directs the null point in the direction D1, the PMI corresponding to the precoding matrix that directs the null point in the direction D2, and the null point in the direction D3. Is transmitted as interference information to the radio base station BS2.
  • the control information transmitted by the radio base station BS2 uses the coefficient or angle information indicating the arrival direction as it is, or uses the information as PMI. Can be used by converting to When PMI is used as interference information, the PMI can be used as it is as control information.
  • the information amount of interference information and control information can be reduced, and mounting in the radio communication system 2010A can be facilitated.
  • each of the radio terminals UE4 to UE6 is provided with a means for detecting an absolute direction (direction) such as a GPS or a direction sensor, and the detected absolute The direction and control information may be used in combination.
  • an absolute direction direction
  • the direction and control information may be used in combination.
  • (2) Detailed Configuration of Radio Communication System Next, regarding the detailed configuration of the radio communication system 2010A, (2.1) configuration of the radio base station BS1, (2.2) configuration of the control device 2100A, (2.3) radio The configuration of the base station BS2 and (2.4) the configuration of the radio terminal UE4 will be described in this order. In the following, the configuration related to the present invention will be mainly described.
  • (2.1) Configuration of Radio Base Station BS1 FIG. 18 is a functional block diagram showing the configuration of the radio base station BS1.
  • the radio base station BS1 includes antennas 2201 to 2204, a radio communication unit 2210, a control unit 2220, a storage unit 2230, and a wired communication unit 2240.
  • the wireless communication unit 2210 includes a reception unit 2211 that receives wireless signals via the antennas 2201 to 2204 and a transmission unit 2212 that transmits wireless signals via the antennas 2201 to 2204.
  • the reception unit 2211 performs channel estimation for each of the radio terminals UE1 to UE3 based on a pilot signal that is a known signal included in the received radio signal, and uses the channel estimation result to feedback information (RI, PMI, CQI). ) Is generated.
  • the transmission unit 2212 transmits feedback information to each of the radio terminals UE1 to UE3.
  • the control unit 2220 is configured by a CPU, for example, and controls various functions provided in the radio base station BS1.
  • the storage unit 2230 is configured by a memory, for example, and stores various information used for control and the like in the radio base station BS1.
  • the wired communication unit 2240 is connected to the control device 2100A via a wired communication network.
  • the control unit 2220 includes an arrival direction estimation unit 2221, an interference information generation unit 2222, and an identification information acquisition unit 2223.
  • the arrival direction estimation unit 2221 estimates the arrival direction of the second radio signal to the radio base station BS1 using the arrival direction estimation technique when the reception unit 2211 receives the second radio signal (interference signal).
  • the interference information generation unit 2222 generates interference information based on the arrival direction estimated by the arrival direction estimation unit 2221. As described above, when PMI is used as the interference information, the storage unit 2230 holds the association between the arrival direction and the PMI in advance, and the interference information generation unit 2222 generates (acquires) the PMI from the association. .
  • the identification information acquisition unit 2223 acquires information regarding the second radio signal received by the reception unit 2211 as identification information.
  • the identification information is information for identifying a radio terminal as an interference source (hereinafter, an interference source terminal) and a radio base station to which the interference source terminal is connected.
  • the specifying information acquisition unit 2223 acquires the specifying information using any one of the following methods (a1) to (c1) or a combination of the methods.
  • the identification information acquisition unit 2223 acquires terminal identification information (terminal ID) included in the second radio signal received by the reception unit 2211 as identification information.
  • the terminal identification information is information for identifying the wireless terminal that is the transmission source of the second wireless signal.
  • the specifying information acquisition unit 2223 acquires channel identification information for identifying a channel used for the second radio signal received by the receiving unit 2211 as specifying information.
  • the identification information acquisition unit 2223 acquires the identification information from the pilot signal included in the second radio signal received by the reception unit 2211. Specifically, the pilot signal includes a cell-specific orthogonal sequence, and the specifying information acquisition unit 2223 acquires the orthogonal sequence as specifying information.
  • the wired communication unit 2240 transmits the interference information generated by the interference information generation unit 2222 and the specification information acquired by the specification information acquisition unit 2223 to the control device 2100A.
  • the wired communication unit 2240 constitutes an interference information transmission unit that transmits interference information.
  • FIG. 19 is a functional block diagram showing the configuration of the control device 2100A.
  • the control device 2100A includes a wired communication unit 2110, a control unit 2120, and a storage unit 2130.
  • the wired communication unit 2110 is connected to the radio base stations BS1 and BS2 via a wired communication network.
  • the wired communication unit 2110 includes a reception unit 2111 that receives a signal and a transmission unit 2112 that transmits the signal.
  • the reception unit 2111 receives interference information and identification information from the radio base station BS1.
  • the control unit 2120 is constituted by a CPU, for example, and controls various functions provided in the control device 2100A.
  • the storage unit 2130 is configured by a memory, for example, and stores various types of information used for control and the like in the control device 2100A.
  • the control unit 2120 includes a base station specifying unit 2121. Based on the identification information received by the wired communication unit 2110, the base station identification unit 2121 identifies a radio base station to which the interference source terminal is connected from among a plurality of radio base stations. The base station specifying unit 2121 specifies the radio base station to which the interference source terminal is connected using any one of the following methods (a2) to (c2) or a combination of the methods.
  • the base station identification unit 2121 identifies the radio base station to which the interference source terminal is connected using the connection information stored in the storage unit 2130. To do.
  • the connection information is information in which terminal identification information of a wireless terminal currently connected to either the wireless base station BS2 or another wireless base station is associated with a wireless base station to which the wireless terminal is connected.
  • the base station specifying unit 2121 specifies the radio base station corresponding to the terminal identification information received by the receiving unit 2111 as the radio base station to which the interference source terminal is connected.
  • the base station identification unit 2121 identifies the radio base station to which the interference source terminal is connected using the channel information stored in the storage unit 2130. To do.
  • the channel information includes channel identification information of a channel used for uplink communication by a radio terminal connected to either the radio base station BS2 or another radio base station, and a radio base station to which the radio terminal is connected Is information associated with each other.
  • the base station specifying unit 2121 specifies the radio base station corresponding to the channel identification information received by the receiving unit 2111 as the radio base station to which the interference source terminal is connected.
  • the transmission unit 2112 transmits interference information and identification information to the radio base station (in the third embodiment, the radio base station BS2) identified by the base station identification unit 2121.
  • the radio base station in the third embodiment, the radio base station BS2
  • the base station identification unit 2121 (2.3) Configuration of Radio Base Station BS2
  • FIG. 20 is a functional block diagram showing the configuration of the radio base station BS2.
  • the radio base station BS2 includes antennas 2301 to 2304, a radio communication unit 2310, a control unit 2320, a storage unit 2330, and a wired communication unit 2340.
  • the radio communication unit 2310 receives a radio signal from the radio terminals UE4 to UE6 via the antennas 2301 to 2304, and a transmission unit 2312 that transmits the radio signal to the radio terminals UE4 to UE6 via the antennas 2301 to 2304. And have.
  • Receiving section 2311 performs channel estimation for each of radio terminals UE4 to UE6 based on a pilot signal included in the received radio signal, and generates feedback information (RI, PMI, CQI) using the result of channel estimation .
  • the transmission unit 2312 transmits feedback information to each of the radio terminals UE4 to UE6.
  • the control unit 2320 is configured by a CPU, for example, and controls various functions provided in the radio base station BS1.
  • the storage unit 2330 is configured by a memory, for example, and stores various information used for control and the like in the radio base station BS1.
  • the wired communication unit 2340 is connected to the control device 2100A via a wired communication network. The wired communication unit 2340 receives the interference information and identification information from the control device 2100A.
  • the control unit 2320 includes an interference information acquisition unit 2321 and a terminal identification unit 2322.
  • the interference information acquisition unit 2321 acquires the interference information received by the wired communication unit 2340 from the control device 2100A.
  • the terminal specifying unit 2322 uses the specifying information received by the wired communication unit 2340 from the control device 2100A to specify an interference source terminal from among a plurality of wireless terminals connected to the wireless base station BS2.
  • the terminal specifying unit 2322 specifies the interference source terminal using any one of the following methods (a3) and (b3), or a combination of the methods.
  • the wireless terminal being used is identified as the interference source terminal.
  • the transmission unit 2312 transmits the control information described above to the interference source terminal (in the third embodiment, the radio terminals UE4 to UE6) specified by the terminal specification unit 2322.
  • FIG. 21 is a functional block diagram showing a configuration of the radio terminal UE4. Since the other radio terminals (radio terminals UE1 to UE3, UE5, UE6) are configured in the same manner as the radio terminal UE4, here, the radio terminal UE4 will be described as a representative of each radio terminal.
  • the radio terminal UE4 includes antennas 2401 and 4022, a radio communication unit 2410, a control unit 2420, and a storage unit 2430.
  • the radio communication unit 2410 includes a reception unit 2411 that receives a radio signal from the radio base station BS2 via the antennas 2401 and 4022, and a transmission unit 2412 that transmits the radio signal to the radio base station BS2 via the antennas 2401 and 4022.
  • the radio signal received by the reception unit 2411 from the radio base station BS2 includes feedback information and control information.
  • the transmission unit 2412 controls multi-antenna transmission based on the feedback information received by the reception unit 2411. Specifically, the transmission unit 2412 distributes the transmission signal to a plurality of layers according to RI, weights the transmission signal of each layer (hereinafter referred to as precoding), and follows the CQI for the transmission signal after precoding. Perform adaptive modulation and transmit power control.
  • the control unit 2420 is configured by a CPU, for example, and controls various functions provided in the radio terminal UE4.
  • the storage unit 2430 is configured by a memory, for example, and stores various types of information used for control in the radio terminal UE4.
  • the control unit 2420 includes a control information acquisition unit 2421 and a transmission directivity control unit 2422.
  • the control information acquisition unit 2421 acquires the control information for directing the null point of the directional beam with respect to the direction D1 of the radio base station BS1 that receives the second radio signal transmitted by the transmission unit 2412 as an interference signal. Parts.
  • the transmission directivity control unit 2422 constitutes a control unit that controls the directional beam formed by the antennas 2401 and 2402 based on the PMI in the feedback information. Specifically, the directional beam formed by the antennas 2401 and 4022 can be directed in the direction D4 of the radio base station BS2 by precoding using a precoding matrix corresponding to the PMI fed back from the radio base station BS2. .
  • the transmission directivity control unit 2422 directs the directional beam in the direction D4 of the radio base station BS2 based on the feedback information and the control information acquired by the control information acquisition unit 2421, and the radio base station BS1. A null point is directed in the direction D1.
  • (3) Transmission Directivity Control in Wireless Terminal details of the transmission directivity control executed by the transmission directivity control unit 2422 will be described using FIG. 22 and FIG. Here, a case where a null point is directed in the direction D1 of the radio base station BS1 will be described as an example.
  • the transmission directivity control unit 2422 selects a precoding matrix group that directs the null point in the direction D1 of the radio base station BS1 based on the control information.
  • the precoding matrix group is a group including a plurality of precoding matrices having null points in the same direction, and is stored in advance in the storage unit 2430 of the radio terminal UE4.
  • precoding matrix groups 1 to 8 having null points in different directions are illustrated.
  • the precoding matrix group includes a plurality of precoding matrices each having a directional beam in a different direction, as shown in FIG.
  • each of the precoding matrices 1 to 6 included in the precoding matrix group 1 has directional beams in six directions.
  • the patterns of directional beams in the precoding matrices 1 to 6 are different.
  • the transmission directivity control unit 2422 directs the radio base station BS2 in the direction D4 based on the PMI fed back from the radio base station BS2 from the precoding matrix group having a null point in the direction D1 of the radio base station BS1.
  • a precoding matrix having a beam of directional characteristics is selected.
  • the selected precoding matrix is applied to precoding in the transmission unit 2412 of the radio terminal UE4.
  • FIG. 24 is an operation sequence diagram showing the operation of the radio communication system 2010A. In FIG. 24, only PMI is illustrated and described among feedback information (RI, PMI, CQI) according to the LTE standard.
  • the operation sequence shown in FIG. 24 is repeatedly executed at predetermined time intervals (for example, in communication frame units).
  • step S2101 the radio terminal UE4 transmits a second radio signal using the channel A.
  • step S2104 the radio terminal UE1 transmits a first radio signal using the channel A.
  • the receiving unit 2211 of the radio base station BS1 receives the first radio signal using the channel A as a desired signal, and receives the second radio signal using the channel A as an interference signal that interferes with the desired signal.
  • step S2102 the radio terminal UE5 transmits a second radio signal using the channel B.
  • step S2105 the radio terminal UE2 transmits a first radio signal using the channel B.
  • the receiving unit 2211 of the radio base station BS1 receives the first radio signal using the channel B as a desired signal and receives the second radio signal using the channel B as an interference signal that interferes with the desired signal.
  • step S2103 the radio terminal UE6 transmits a second radio signal using the channel C.
  • step S2106 the radio terminal UE3 transmits a first radio signal using the channel C.
  • the receiving unit 211 of the radio base station BS1 receives the first radio signal using the channel C as a desired signal, and receives the second radio signal using the channel C as an interference signal of the desired signal.
  • step S2107 the reception unit 2211 of the radio base station BS1 performs channel estimation for estimating the channel response of the radio channel based on the pilot signal included in the first radio signal for each of the radio terminals UE1 to UE3.
  • the identification information acquisition unit 2223 of the radio base station BS1 acquires the identification information from the second radio signals received by the reception unit 2211 from the radio terminals UE1 to UE3 according to the methods (a1) to (c1). .
  • step S2108 the reception unit 2211 of the radio base station BS1 calculates a precoding matrix based on the estimated channel response, and acquires a PMI corresponding to the calculated precoding matrix.
  • the arrival direction estimation unit 2221 of the radio base station BS1 estimates the arrival direction D1 of the second radio signal to the radio base station BS1.
  • the interference information generation unit 2222 of the radio base station BS1 generates interference information based on the arrival direction D1.
  • the arrival direction estimation unit 2221 estimates the arrival directions D2 and D3 of the second radio signal to the radio base station BS1.
  • the interference information generation unit 2222 generates interference information based on the arrival directions D2 and D3.
  • step S2110 the receiving unit 2211 of the radio base station BS1 equalizes the received signal (channel equalization) based on the estimated channel response, and decodes the equalized received signal.
  • the decoded received signal is input to the control unit 2220 of the radio base station BS1.
  • step S2111 the transmission unit 2212 of the radio base station BS1 transmits PMI as feedback information to the radio terminal UE1. Similarly, the transmitter 2212 transmits PMI to the radio terminal UE2 (step S2112), and transmits PMI to the radio terminal UE3 (step S2113).
  • step S2115a the radio terminal UE1 selects a precoding matrix corresponding to the PMI received from the radio base station BS1.
  • the radio terminal UE1 performs precoding using the selected precoding matrix when transmitting the first radio signal using the channel A to the radio base station BS1 next time.
  • step S2115b the radio terminal UE2 selects a precoding matrix corresponding to the PMI received from the radio base station BS1.
  • the radio terminal UE2 performs precoding using the selected precoding matrix when transmitting the first radio signal using the channel B to the radio base station BS1 next time.
  • step S2115c the radio terminal UE3 selects a precoding matrix corresponding to the PMI received from the radio base station BS1.
  • the radio terminal UE3 performs precoding using the selected precoding matrix when transmitting the first radio signal using the channel C to the radio base station BS1 next time.
  • step S2114 the wired communication unit 2240 of the radio base station BS1 transmits the interference information generated by the interference information generation unit 2222 and the specification information acquired by the specification information acquisition unit 2223 to the control device 2100A.
  • the receiving unit 2111 of the control device 2100A receives interference information and identification information.
  • the base station specifying unit 2121 of the control apparatus 2100A uses the specifying information received by the receiving unit 2111 according to the methods (a2) to (c2) above, and the radio base station to which the interference source terminal is connected Specify BS2.
  • the transmission unit 2112 of the control apparatus 2100A transmits interference information and identification information to the radio base station BS2 identified by the base station identification unit 2121.
  • the wired communication unit 2340 of the radio base station BS2 receives interference information and identification information.
  • the receiving unit 2311 of the radio base station BS2 calculates a precoding matrix for each of the radio terminals UE4 to UE6 to which the radio base station BS2 is connected, and acquires a PMI corresponding to the calculated precoding matrix.
  • the interference information acquisition unit 2321 of the radio base station BS2 acquires the interference information received by the wired communication unit 2340 from the control device 2100A.
  • the terminal identification unit 2322 of the radio base station BS2 uses the identification information received by the wired communication unit 2340 from the control device 2100A, and is connected to the radio base station BS2 in accordance with the methods (a3) and (b3).
  • the interference source terminal is identified from among the wireless terminals.
  • the radio terminals UE4 to UE6 are specified as interference source terminals.
  • step S2119a the transmission unit 2312 of the radio base station BS2 transmits PMI as feedback information and control information to the radio terminal UE4.
  • step S2119b the transmission unit 2312 transmits PMI as feedback information and control information to the radio terminal UE5.
  • step S2119c the transmission unit 2312 transmits PMI as feedback information and control information to the radio terminal UE6.
  • the receiving unit 2411 of each of the radio terminals UE4 to UE6 receives PMI and control information.
  • the transmission directivity control unit 2422 of the radio terminal UE4 directs a directional beam in the direction D4 of the radio base station BS2 based on the PMI and control information received by the reception unit 2411, and the radio base station BS1.
  • the transmission unit 2412 is controlled so that the null point is directed in the direction D1.
  • the transmission directivity control unit 2422 of the radio terminal UE4 directs the directional beam in the direction D4 of the radio base station BS2 from the precoding matrix group that directs the null point in the direction D1 of the radio base station BS1.
  • Select a precoding matrix Select a precoding matrix.
  • the transmitter 2412 of the radio terminal UE4 performs precoding using the selected precoding matrix when transmitting the second radio signal using the channel A next time.
  • step S2120b the transmission directivity control unit 2422 of the radio terminal UE5, based on the PMI and control information received by the reception unit 2411, a precoding matrix group that directs the null point in the direction D2 of the radio base station BS1.
  • the precoding matrix for directing the directional beam in the direction D5 of the radio base station BS2 is selected from the above.
  • the transmitter 2412 of the radio terminal UE5 performs precoding using the selected precoding matrix when transmitting the second radio signal using the channel B next time.
  • step S2120b the transmission directivity control unit 2422 of the radio terminal UE6, based on the PMI and control information received by the reception unit 2411, out of the precoding matrix group that directs the null point in the direction D3 of the radio base station BS1, A precoding matrix for directing a directional beam in the direction D6 of the radio base station BS2 is selected.
  • the transmitter 2412 of the radio terminal UE6 performs precoding using the selected precoding matrix when transmitting the second radio signal using the channel C next time.
  • the radio base station BS1 when the radio base station BS1 receives the second radio signal from the radio terminals UE4 to UE6 as an interference signal, the radio terminals UE4 to UE6 A null point is directed in the direction D1 to D3 of the base station BS1. For this reason, it can avoid that radio base station BS1 receives a 2nd radio signal (interference signal), and the communication quality in radio base station BS1 can fully be improved.
  • interference signal interference signal
  • the transmission directivity control unit 2422 of the radio terminals UE4 to UE6 directs a null point in the directions D1 to D3 of the radio base station BS1 based on the PMI and control information received from the radio base station BS2.
  • the directional beam is directed in the directions D4 to D6 of the radio base station BS2. Therefore, the communication quality in the radio base station BS2 can be kept good while sufficiently improving the communication quality in the radio base station BS1.
  • the base station specifying unit 2121 of the control device 2100A specifies the radio base station BS2 to which the interference source terminal is connected in accordance with the methods (a2) to (c2).
  • the terminal specifying unit 2322 of the radio base station BS2 specifies an interference source terminal according to the methods (a3) and (b3).
  • the control information acquisition unit 2421 of the radio terminals UE4 to UE6 acquires coefficient or angle information indicating the arrival direction, or PMI from the radio base station BS2 as interference information and control information. It was.
  • the rough direction of the radio base station BS1 can be specified from the position of the radio base station BS1, information indicating the position of the radio base station BS1 may be used as interference information and control information. Since the installation position of the radio base station BS1 is fixed, the position information of the radio base station BS1 can be held in advance in the radio base station BS1 or the control device 2100A.
  • the transmission directivity control unit 2422 of the radio terminals UE4 to UE6 can identify the direction of the radio base station BS1 from the location of the radio base station BS1. Good.
  • the control information acquisition unit 2421 uses the GPS or the like provided in each of the radio terminals UE4 to UE6 to obtain the position information of each of the radio terminals UE4 to UE6. Furthermore, you may acquire.
  • the detailed direction of the radio base station BS1 can be specified from the position of each of the radio terminals UE4 to UE6 and the position of the radio base station BS1.
  • the control information acquisition unit 2421 of the radio terminals UE4 to UE6 acquires coefficient or angle information indicating the arrival direction, or PMI from the radio base station BS2 as interference information and control information.
  • the control information may be acquired by other methods.
  • the control information acquisition unit 421 estimates the arrival direction of the downlink radio signal and indicates the estimated arrival direction. Information may be acquired as control information.
  • the transmission directivity control unit 422 of the radio terminals UE4 to UE6 may specify the direction of the radio base station BS1 from the arrival direction of the downlink radio signal.
  • the control device 2100A is provided separately for the radio base station BS1 and the radio base station BS2. In the fourth embodiment, a mode in which the control device 2100A is included in the radio base station BS1 will be described.
  • FIG. 25 is an overall configuration diagram of a radio communication system 2010B according to the fourth embodiment.
  • the radio base station BS1 ′ has the function of the control device 2100B.
  • the control unit 2220 of the radio base station BS1 ′ includes a base station specifying unit 2224 that specifies a radio base station to which the interference source terminal is connected.
  • the function of the base station specifying unit 2224 is the same as the function of the base station specifying unit 2121 described in the third embodiment.
  • FIG. 27 is an operation sequence diagram showing the operation of the radio communication system 2010B. In FIG. 27, each process up to step S2213 and each process after step S2218 are the same as those in the third embodiment, so the processes in steps S2214 and S2217 will be described.
  • step S2214 the base station specifying unit 2224 of the radio base station BS1 ′ specifies the radio base station BS2 to which the interference source terminal is connected according to the methods (a2) to (c2) using the specifying information. .
  • step S2217 the wired communication unit 2240 of the radio base station BS1 ′ transmits interference information and identification information to the radio base station BS2 identified by the base station identification unit 2224.
  • the wired communication unit 2340 of the radio base station BS2 receives interference information and identification information.
  • the second radio signal when the radio base station BS1 receives the second radio signal, the second radio signal is regarded as an interference signal. However, the second radio signal less than a predetermined reception level is used. May be allowed. In this case, when the radio base station BS1 receives the second radio signal and the reception level of the second radio signal is equal to or higher than a predetermined reception level, the radio base station BS1 considers the second radio signal as an interference signal. Become.
  • the FDD scheme is adopted as a duplex scheme, but a time division duplex (TDD) scheme may be adopted instead of the FDD scheme.
  • TDD time division duplex
  • the case where there are two transmission antennas and four reception antennas in uplink communication (2 ⁇ 4 MIMO) has been described.
  • uplink communication when there is one receiving antenna, that is, a multi-antenna transmission with multiple inputs and one output (MISO) may be implemented.
  • MISO multi-antenna transmission with multiple inputs and one output
  • a plurality of radio terminals are connected to each of the radio base stations BS1 and BS2.
  • one radio terminal may be connected to each of the radio base stations BS1 and BS2.
  • the wireless communication systems 2010A and 2010B based on the LTE standard have been described.
  • the wireless communication system based on the WiMAX standard (IEEE 802.16) and 3GPP2 are not limited to the LTE standard.
  • the present invention can be applied to the UMB (Ultra Mobile Broadband) standard.

Abstract

 本発明に係る無線通信システム1010Aは、複数の第1送信アンテナを介して、チャネルAが用いられる第1無線信号を無線端末UE1に送信する無線基地局BS1と、複数の第2送信アンテナを介して、チャネルAが用いられる第2無線信号を無線端末UE5に送信する無線基地局BS2とを制御する制御装置1100Aを備える。無線端末UE1は、第2無線信号を受信した場合に、無線端末UE1への第2無線信号の到来方向D1に基づく干渉情報を無線基地局BS1に送信する。制御装置1100Aは、無線基地局BS1が受信した干渉情報に基づいて、第2送信アンテナが形成する指向性ビームのヌル点を到来方向D1に向けるための制御情報を無線基地局BS2に送信する。

Description

無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法
 本発明は、マルチアンテナ技術が用いられる無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法に関する。
 近年、無線通信システムでは、有限な周波数帯域を効率的に利用するために、無線信号の送信側又は受信側の少なくとも一方が複数のアンテナを用いるマルチアンテナ技術が利用されている。マルチアンテナ技術の一つとして、複数の送信アンテナを介して同一の周波数を用いる信号系列を複数同時に送信するとともに、複数の受信アンテナを介して当該信号系列を受信し、各信号系列に分離する複数入力複数出力(MIMO)通信が知られている。
 MIMO通信には、受信側が、送信側との間の伝搬路特性を推定し、推定した伝搬路特性に基づくフィードバック情報を送信側にフィードバックする方式(いわゆる、閉ループMIMO)がある。送信側は、受信側からのフィードバック情報に基づいて、各種の送信制御、例えば送信アンテナ毎の重み付けを行う。閉ループMIMOによれば、送信側が伝搬路特性の変化に適応した送信制御を行うことができるため、通信品質を改善することができる。
特表2008-536342号公報
 ところで、近年では、周波数帯域をさらに効率的に利用するために、隣接するセル間で同一の通信チャネル(具体的には、同一の周波数)を使用する無線通信システムが実現されている。
 このような無線通信システムにおける下り通信では、無線信号の受信側となる無線端末は、接続先の無線基地局からの所望信号だけでなく、周辺に位置する他の無線基地局からの干渉信号を受信する場合がある。
 しかしながら、上述した閉ループMIMOにおいては、送信側と受信側との間で閉じたフィードバック制御を行っており、無線端末が干渉信号を受信する場合には、通信品質を十分に改善することができない問題があった。
 また、このような無線通信システムにおける上り通信では、無線信号の受信側となる無線基地局は、自局に接続中の無線端末からの所望信号だけでなく、周辺に位置する他の無線基地局に接続中の無線端末からの干渉信号を受信する場合がある。
 しかしながら、上述した閉ループMIMOにおいては、送信側と受信側との間で閉じたフィードバック制御を行っているため、無線基地局が干渉信号を受信する場合には、通信品質を十分に改善することができない問題があった。
 そこで、本発明は、下り通信において無線端末が干渉信号を受信する場合であっても、通信品質を十分に改善することができる無線通信システム、無線端末、制御装置、及び無線通信方法を提供することを第1の目的とする。
 また、本発明は、上り通信において無線基地局が干渉信号を受信する場合であっても、通信品質を十分に改善することができる無線通信システム、無線基地局、制御装置、及び無線通信方法を提供することを第2の目的とする。
 上述した第1の目的を達成するために、本発明は以下のような特徴を有している。まず、本発明の第1の特徴は、第1無線端末(無線端末UE1)と、複数の第1送信アンテナ(アンテナ1301~1304)を介して、所定の通信チャネル(チャネルA)が用いられる第1無線信号を前記第1無線端末に送信する第1無線基地局(無線基地局BS1)と、複数の第2送信アンテナ(アンテナ1401~1404)を介して、前記所定の通信チャネルが用いられる第2無線信号を第2無線端末(無線端末UE5)に送信する第2無線基地局(無線基地局BS2)と、前記第1無線基地局と前記第2無線基地局とを制御する制御装置(制御装置1100A又は1100B)とを備え、前記第1無線端末は、前記第2無線基地局から前記第2無線信号を受信した場合に、前記第1無線端末への前記第2無線信号の到来方向(到来方向D1)を推定し、前記推定した到来方向に基づく干渉情報を前記第1無線基地局に送信し、前記制御装置は、前記第1無線基地局が受信した前記干渉情報に基づいて、前記第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線端末の方向に向けるための制御情報を前記第2無線基地局に送信する無線通信システム(無線通信システム1010A又は1010B)であることを要旨とする。
 このような無線通信システムによれば、第1無線端末が第2無線基地局から第2無線信号(すなわち、干渉信号)を受信する場合に、第2無線基地局において、第1無線端末の方向にヌル点を向けることができるため、第1無線端末が第2無線信号を受信することを回避でき、第1無線端末における通信品質を十分に改善することができる。
 本発明の第2の特徴は、本発明の第1の特徴に係り、前記第2無線基地局は、前記制御装置から受信した前記制御情報と、前記第2無線端末からフィードバックされるフィードバック情報とに基づいて、前記第1無線端末の方向に前記ヌル点を向け、且つ、前記第2無線端末の方向に前記指向性ビームを向けて、前記第2無線信号を送信することを要旨とする。
 本発明の第3の特徴は、本発明の第1の特徴に係り、前記制御装置は、前記第1無線基地局に含まれることを要旨とする。
 本発明の第4の特徴は、本発明の第1の特徴に係り、前記制御装置は、前記第1無線基地局と前記第2無線基地局とは個別に設けられることを要旨とする。
 本発明の第5の特徴は、本発明の第1の特徴に係り、前記第1無線端末は、前記第2無線信号に基づいて、前記第2無線基地局を識別する基地局識別情報を前記第1無線基地局に送信し、前記制御装置は、前記第1無線基地局が受信した前記基地局識別情報に基づいて、複数の無線基地局の中から前記第2無線基地局を特定し、前記特定した第2無線基地局に対し、前記制御情報を送信することを要旨とする。
 本発明の第6の特徴は、本発明の第1の特徴に係り、前記制御装置は、前記干渉情報と前記第2無線基地局とを対応付けた対応情報を予め保持し、前記第1無線基地局が受信した前記干渉情報と、前記保持している対応情報とに基づいて、複数の無線基地局の中から前記第2無線基地局を特定し、前記特定した第2無線基地局に対し、前記制御情報を送信することを要旨とする。
 本発明の第7の特徴は、本発明の第1の特徴に係り、前記干渉情報は、前記第1無線端末が推定した前記到来方向を示す情報、又は、前記第1無線端末の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報であることを要旨とする。
 本発明の第8の特徴は、本発明の第1の特徴に係り、前記制御情報は、前記第1無線端末が推定した前記到来方向を示す情報、又は、前記第1無線端末の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報であることを要旨とする。
 本発明の第9の特徴は、所定の通信チャネル(チャネルA)が用いられる第1無線信号を複数の送信アンテナ(アンテナ1301~1304)を介して送信する第1無線基地局(無線基地局BS1)から、前記第1無線信号を受信する受信部(受信部1211)と、前記受信部が、前記所定の通信チャネルが用いられる第2無線信号を第2無線基地局(無線基地局BS2)から受信した場合に、前記無線端末への前記第2無線信号の到来方向(到来方向D1)を推定する到来方向推定部(到来方向推定部1221)と、前記到来方向推定部によって推定された前記到来方向に基づく干渉情報を前記第1無線基地局に送信する送信部(送信部212)とを備える無線端末(無線端末UE1)であることを要旨とする。
 本発明の第10の特徴は、所定の通信チャネル(チャネルA)が用いられる第1無線信号を複数の第1送信アンテナ(アンテナ1301~1304)を介して第1無線端末(無線端末UE1)に送信する第1無線基地局(無線基地局BS1)と、前記所定の通信チャネルが用いられる第2無線信号を複数の第2送信アンテナ(アンテナ1401~1404)を介して第2無線端末に送信する第2無線基地局(無線基地局BS2)とを制御する制御装置(制御装置1100A又は1100B)であって、前記第1無線端末への前記第2無線信号の到来方向に基づく干渉情報を前記第1無線基地局が前記第1無線端末から受信した場合に、前記干渉情報に基づいて、前記第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線端末の方向に向けるための制御情報を前記第2無線基地局に送信する送信部(送信部1112)を備えることを要旨とする。
 本発明の第11の特徴は、所定の通信チャネル(チャネルA)が用いられる第1無線信号を複数の第1送信アンテナ(アンテナ1301~1304)を介して第1無線基地局(無線基地局BS1)から第1無線端末(無線端末UE1)に送信するステップ(ステップS1101又はS1201)と、前記所定の通信チャネルが用いられる第2無線信号を複数の第2送信アンテナ(アンテナ1401~1404)を介して第2無線基地局(無線基地局BS2)から第2無線端末(無線端末UE5)に送信するステップ(ステップS1102又はS1202)と、前記第1無線端末が、前記第2無線基地局から前記第2無線信号を受信した場合に、前記第1無線端末への前記第2無線信号の到来方向を推定するステップ(ステップS1109a又はS1209a)と、前記推定するステップにおいて推定した前記到来方向に基づく干渉情報を前記第1無線端末から前記第1無線基地局に送信するステップ(ステップS1111a又はS1211a)と、前記第1無線基地局と前記第2無線基地局とを制御する制御装置(制御装置1100A又は1100B)が、前記第1無線基地局が受信した前記干渉情報に基づいて、前記第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線端末の方向に向けさせるための制御情報を前記第2無線基地局に送信するステップ(ステップS1115又はS1214)とを備える無線通信方法であることを要旨とする。
 上述した第2の目的を達成するために、本発明は以下のような特徴を有している。本発明の第12の特徴は、複数の第1送信アンテナを有する第1無線端末(無線端末UE1)から、所定の通信チャネル(チャネルA)が用いられる第1無線信号を受信する第1無線基地局(無線基地局BS1又はBS1’)と、複数の第2送信アンテナ(アンテナ2401,2402)を有する第2無線端末(無線端末UE4)から、前記所定の通信チャネルが用いられる第2無線信号を受信する第2無線基地局(無線基地局BS2)と、前記第1無線基地局及び前記第2無線基地局を制御する制御装置(制御装置2100A又は2100B)とを備え、前記第1無線基地局は、前記第2無線端末から前記第2無線信号を受信した場合に、前記第1無線基地局への前記第2無線信号の到来方向(方向D1)に基づく干渉情報を生成し、前記制御装置は、前記第1無線基地局によって生成された前記干渉情報を前記第2無線基地局に送信し、前記第2無線基地局は、前記干渉情報を受信した場合に、前記受信した干渉情報に基づいて、前記複数の第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線基地局の方向に向けるための制御情報を前記第2無線端末に送信する無線通信システム(無線通信システム2010A又は2010B)であることを要旨とする。
 このような無線通信システムによれば、第1無線基地局が第2無線端末から第2無線信号(すなわち、干渉信号)を受信する場合に、第2無線端末において、第1無線基地局の方向にヌル点を向けることができるため、第1無線基地局が第2無線信号を受信することを回避でき、第1無線基地局における通信品質を十分に改善することができる。
 本発明の第13の特徴は、本発明の第12の特徴に係り、前記第2無線端末は、前記第2無線基地局から受信した前記制御情報と、前記第2無線基地局からフィードバックされるフィードバック情報とに基づいて、前記第1無線基地局の方向に前記ヌル点を向け、且つ、前記第2無線基地局の方向に前記指向性ビームを向けて、前記第2無線信号を送信することを要旨とする。
 本発明の第14の特徴は、本発明の第12の特徴に係り、前記制御装置は、前記第2無線基地局を含む複数の無線基地局の中から、前記第2無線信号に関する情報に基づいて前記第2無線基地局を特定する基地局特定部(基地局特定部2121)と、前記基地局特定部によって特定された前記第2無線基地局に対し、前記干渉情報を送信する干渉情報送信部(送信部2112)とを備えることを要旨とする。
 本発明の第15の特徴は、本発明の第14の特徴に係り、前記制御装置は、前記複数の無線基地局の何れかに接続中の無線端末を識別する端末識別情報と、前記無線端末の接続先の無線基地局とを対応付けた接続情報を記憶する記憶部(記憶部2130)を備え、前記第2無線信号は、前記第2無線端末を識別する端末識別情報を含み、前記基地局特定部は、前記記憶部が記憶する前記接続情報と、前記第2無線信号に含まれる前記端末識別情報とに基づいて、前記複数の無線基地局の中から前記第2無線基地局を特定することを要旨とする。
 本発明の第16の特徴は、本発明の第15の特徴に係り、前記干渉情報送信部は、前記干渉情報に加え、前記第2無線信号に含まれる前記端末識別情報を前記第2無線基地局に送信し、前記第2無線基地局は、前記制御装置から受信した前記端末識別情報に基づいて、前記第2無線基地局に接続中の複数の無線端末の中から前記第2無線端末を特定する端末特定部(端末特定部2322)と、前記端末特定部によって特定された前記第2無線端末に対し、前記制御情報を送信する制御情報送信部(送信部2312)とを備えることを要旨とする。
 本発明の第17の特徴は、本発明の第14の特徴に係り、前記制御装置は、前記複数の無線基地局の何れかに接続中の無線端末が上り通信に使用している通信チャネルを識別するチャネル識別情報と、前記無線端末の接続先の無線基地局とを対応付けたチャネル情報を記憶する記憶部(記憶部2130)を備え、前記基地局特定部は、前記記憶部が記憶する前記チャネル情報と、前記所定の通信チャネルを識別するチャネル識別情報とに基づいて、前記複数の無線基地局の中から前記第2無線基地局を特定することを要旨とする。
 本発明の第18の特徴は、本発明の第17の特徴に係り、前記干渉情報送信部は、前記干渉情報に加え、前記所定の通信チャネルを識別する前記チャネル識別情報を前記第2無線基地局に送信し、前記第2無線基地局は、前記制御装置から受信した前記チャネル識別情報に基づいて、前記第2無線基地局に接続中の複数の無線端末の中から前記第2無線端末を特定する端末特定部(端末特定部2322)と、前記端末特定部によって特定された前記第2無線端末に対し、前記制御情報を送信する制御情報送信部(送信部2312)とを備えることを要旨とする。
 本発明の第19の特徴は、本発明の第14の特徴に係り、前記第2無線信号は、前記第2無線基地局に固有の信号系列を含み、前記基地局特定部は、前記第2無線信号に含まれる前記信号系列に基づいて、前記複数の無線基地局の中から前記第2無線基地局を特定することを要旨とする。
 本発明の第20の特徴は、本発明の第12の特徴に係り、前記干渉情報は、前記第1無線基地局が推定した前記到来方向を示す情報、又は、前記第1無線基地局の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報であることを要旨とする。
 本発明の第21の特徴は、本発明の第12の特徴に係り、前記制御情報は、前記第1無線基地局が推定した前記到来方向を示す情報、又は、前記第1無線基地局の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報であることを要旨とする。
 本発明の第22の特徴は、本発明の第13の特徴に係り、前記制御装置は、前記第1無線基地局に含まれる、又は、前記第1無線基地局と前記第2無線基地局とは個別に設けられることを要旨とする。
 本発明の第23の特徴は、複数の送信アンテナを有する無線端末(無線端末UE1)から、所定の通信チャネル(チャネルA)が用いられる第1無線信号を受信する受信部と、前記受信部が、他の無線基地局(無線基地局BS2)に接続中の無線端末(無線端末UE4)から、前記所定の通信チャネルが用いられる第2無線信号を受信した場合に、前記無線基地局への前記第2無線信号の到来方向(方向D1)に基づく干渉情報を生成する干渉情報生成部(干渉情報生成部2222)と、前記他の無線基地局、又は、前記無線基地局と前記他の無線基地局とを制御する制御装置(制御装置2100A)に対し、前記干渉情報生成部によって生成された前記干渉情報を送信する干渉情報送信部(有線通信部2240)とを備える無線基地局(無線基地局BS1又はBS1’)であることを要旨とする。
 本発明の第24の特徴は、複数の送信アンテナ(アンテナ2401,2402)を有する無線端末(無線端末UE4)から、所定の通信チャネル(チャネルA)が用いられる無線信号を受信する受信部(受信部2311)を有する無線基地局(無線基地局BS2)であって、他の無線基地局(無線基地局BS1)への前記無線信号の到来方向(方向D1)に基づく干渉情報を、前記他の無線基地局、又は、前記無線基地局と前記他の無線基地局とを制御する制御装置(制御装置2100A)から取得する干渉情報取得部(干渉情報取得部2321)と、前記干渉情報取得部が取得した前記干渉情報に基づいて、前記複数の送信アンテナが形成する指向性ビームのヌル点を前記他の無線基地局の方向に向けるための制御情報を前記無線端末に送信する制御情報送信部(送信部2312)とを備えることを要旨とする。
 本発明の第25の特徴は、複数の第1送信アンテナを有する第1無線端末(無線端末UE1)から、所定の通信チャネル(チャネルA)が用いられる第1無線信号を受信する第1無線基地局(無線基地局BS1又はBS1’)と、複数の第2送信アンテナ(アンテナ2401,2402)を有する第2無線端末(無線端末UE4)から、前記所定の通信チャネルが用いられる第2無線信号を受信する第2無線基地局(無線基地局BS2)とを制御する制御装置(制御装置2100A)であって、前記第1無線基地局が、前記第2無線端末から前記第2無線信号を受信した場合に、前記第2無線基地局を含む複数の無線基地局の中から、前記第2無線信号に関する情報に基づいて前記第2無線基地局を特定する基地局特定部(基地局特定部2121)と、前記基地局特定部によって特定された前記第2無線基地局に対し、前記第1無線基地局への前記第2無線信号の到来方向(方向D1)に基づく干渉情報を送信する干渉情報送信部(送信部2112)とを備えることを要旨とする。
 本発明の第26の特徴は、複数の第1送信アンテナを有する第1無線端末から、所定の通信チャネルが用いられる第1無線信号を第1無線基地局が受信するステップと、複数の第2送信アンテナを有する第2無線端末から、前記所定の通信チャネルが用いられる第2無線信号を第2無線基地局が受信するステップと、前記第1無線基地局が、前記第2無線端末から前記第2無線信号を受信した場合に、前記第1無線基地局への前記第2無線信号の到来方向に基づく干渉情報を生成するステップと、前記第1無線基地局及び前記第2無線基地局を制御する制御装置が、前記第1無線基地局によって生成された前記干渉情報を前記第2無線基地局に送信するステップと、前記第2無線基地局が、前記干渉情報を受信した場合に、前記受信した干渉情報に基づいて、前記複数の第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線基地局の方向に向けるための制御情報を前記第2無線端末に送信するステップとを備える無線通信方法であることを要旨とする。
 本発明によれば、下り通信において無線端末が干渉信号を受信する場合であっても、通信品質を十分に改善することができる無線通信システム、無線端末、制御装置、及び無線通信方法を提供できる。
 また、本発明によれば、上り通信において無線基地局が干渉信号を受信する場合であっても、通信品質を十分に改善することができる無線通信システム、無線基地局、制御装置、及び無線通信方法を提供できる。
本発明の第1実施形態に係る無線通信システムの全体構成図である。 本発明の第1実施形態に係る無線通信システムにおいて用いられるチャネルを説明するための図である。 本発明の第1実施形態に係る無線通信システムの概略動作を説明するための図である。 本発明の第1実施形態に係る無線端末の構成を示す機能ブロック図である。 本発明の第1実施形態に係る無線基地局(第1無線基地局)の構成を示す機能ブロック図である。 本発明の第1実施形態に係る制御装置の構成を示す機能ブロック図である。 本発明の第1実施形態に係る無線基地局(第2無線基地局)の構成を示す機能ブロック図である。 本発明の第1実施形態において実行される送信指向性制御の詳細について説明するための図である。 本発明の第1実施形態において実行される送信指向性制御の詳細について説明するための図である。 本発明の第1実施形態に係る無線通信システムの動作を示す動作シーケンス図である。 本発明の第2実施形態に係る無線通信システムの全体構成図である。 本発明の第2実施形態に係る無線基地局(第1無線基地局)の構成を示す機能ブロック図である。 本発明の第2実施形態に係る無線通信システムの動作を示す動作シーケンス図である。 本発明の第3実施形態に係る無線通信システムの全体構成図である。 本発明の第3実施形態に係る無線通信システムにおいて用いられるチャネルを説明するための図である。 本発明の第3実施形態に係る無線通信システムの概略動作を説明するための図である。 本発明の第3実施形態に係る無線通信システムの概略動作を説明するための図である。 本発明の第3実施形態に係る無線基地局(第1無線基地局)の構成を示す機能ブロック図である。 本発明の第3実施形態に係る制御装置の構成を示す機能ブロック図である。 本発明の第3実施形態に係る無線基地局(第2無線基地局)の構成を示す機能ブロック図である。 本発明の第3実施形態に係る無線端末の構成を示す機能ブロック図である。 本発明の第3実施形態において実行される送信指向性制御の詳細について説明するための図である。 本発明の第3実施形態において実行される送信指向性制御の詳細について説明するための図である。 本発明の第3実施形態に係る無線通信システムの動作を示す動作シーケンス図である。 本発明の第4実施形態に係る無線通信システムの全体構成図である。 本発明の第4実施形態に係る無線基地局(第1無線基地局)の構成を示す機能ブロック図である。 本発明の第4実施形態に係る無線通信システムの動作を示す動作シーケンス図である。
 次に、図面を参照して、本発明の第1実施形態~第4実施形態を説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
[第1実施形態]
 第1実施形態では、(1)無線通信システム1010Aの概要、(2)無線通信システム1010Aの詳細構成、(3)無線基地局BS2における送信指向性制御、(4)無線通信システムの動作、(5)効果について説明する。
(1)無線通信システム1010Aの概要
 無線通信システム1010Aの概要について、(1.1)無線通信システム1010Aの概略構成、(1.2)無線通信システム1010Aの概略動作の順に説明する。
(1.1)無線通信システム10Aの概略構成
 図1は、第1実施形態に係る無線通信システム1010Aの全体構成図である。
 図1に示すように、無線通信システム1010Aは、無線端末UE1、無線端末UE2、無線端末UE3、無線端末UE4、無線端末UE5、無線基地局BS1(第1無線基地局)、無線基地局BS2(第2無線基地局)、及び制御装置1100Aを有する。
 図1では、説明の便宜上、無線基地局BS1及び無線基地局BS2のみを図示しているが、実際には、無線基地局BS1及び無線基地局BS2それぞれに隣接して他の無線基地局が設置されている。
 無線通信システム1010Aは、3GPP(3rd Generation Partnership Project)において標準化されているLTE(Long Term Evolution)規格に基づく構成を有している。第1実施形態では、主に下り方向(以下、ダウンリンク)通信について説明する。
 無線基地局BS1は、セルC1内に位置する無線端末UE1~UE4の接続先であり、無線端末UE1~UE4とダウンリンク通信を実行する。無線端末UE1~UE4のうち無線端末UE1~UE3は、セルC1の端部に位置している。
 無線基地局BS2は、セルC1に隣接するセルC2内に位置する無線端末UE5の接続先であり、無線端末UE5とダウンリンク通信を実行する。
 制御装置1100Aは、有線通信網であるバックボーンネットワーク上に設けられ、無線基地局BS1及び無線基地局BS2に有線接続される。制御装置1100Aは、無線基地局BS1及び無線基地局BS2を制御する。
 無線通信システム1010Aには、マルチキャリア通信方式の一つである直交周波数分割多元接続(OFDMA)方式が採用されている。OFDMA方式では、複数のサブキャリアを用いてサブチャネルと呼ばれる通信チャネル(以下、チャネル)が構成され、当該チャネルが無線基地局から無線端末に割り当てられる。また、無線通信システム1010Aには、複信方式として周波数分割複信(FDD)方式が採用されている。
 図1の例では、無線基地局BS1は、図2に示すチャネルAを無線端末UE1に、チャネルBを無線端末UE2に、チャネルCを無線端末UE3に、チャネルDを無線端末UE4にそれぞれ割り当てている。以下では、これらのチャネルを用いて無線基地局BS1が送信する無線信号を第1無線信号と称する。
 無線基地局BS2は、図2に示すチャネルAを無線端末UE5に割り当て、チャネルB,C,Dを不図示の他の無線端末に割り当てている。以下では、これらのチャネルを用いて無線基地局BS2が送信する無線信号を第2無線信号と称する。
 無線端末UE1は、チャネルAが用いられる第1無線信号を接続先の無線基地局BS1から所望信号として受信するとともに、チャネルAが用いられる第2無線信号を無線基地局BS2から干渉信号として受信している。チャネルAが用いられる第2無線信号は、無線基地局BS2からD1方向に向けて無線端末UE1に到来する。
 なお、無線端末UE5は、チャネルAが用いられる第2無線信号を無線基地局BS2から所望信号として受信する。チャネルAが用いられる第2無線信号は、無線基地局BS2からD5方向に向けて無線端末UE1に到来する。
 同様に、無線端末UE2は、チャネルBが用いられる第1無線信号を接続先の無線基地局BS1から所望信号として受信するとともに、チャネルBが用いられる第2無線信号を無線基地局BS2から干渉信号として受信している。チャネルBが用いられる第2無線信号は、無線基地局BS2からD2方向に向けて無線端末UE2に到来する。
 無線端末UE3は、チャネルCが用いられる第1無線信号を接続先の無線基地局BS1から所望信号として受信するとともに、チャネルCが用いられる第2無線信号を無線基地局BS2から干渉信号として受信している。チャネルCが用いられる第2無線信号は、無線基地局BS2からD3方向に向けて無線端末UE3に到来する。
 無線基地局BS1及び無線基地局BS2は、上述した閉ループMIMOに基づくダウンリンク通信を実行する。
 具体的には、無線基地局BS1は、無線基地局BS1に設けられた複数のアンテナ(第1送信アンテナ)を介して、第1無線信号を無線端末UE1~UE4に送信する。無線端末UE1~UE4は、無線端末UE1~UE4に設けられた複数のアンテナ(受信アンテナ)を介して第1無線信号をそれぞれ受信する。
 無線基地局BS2は、無線基地局BS2に設けられた複数のアンテナ(第2送信アンテナ)を介して、第2無線信号を無線端末UE5に送信する。無線端末UE5は、無線端末UE5に設けられた複数のアンテナ(受信アンテナ)を介して第2無線信号を受信する。
 第1実施形態では、ダウンリンク通信において、送信アンテナが4つであり、受信アンテナが2つであるMIMO(いわゆる、4×2MIMO)について説明する。
 無線端末UE1~UE4それぞれは、無線基地局BS1から受信した第1無線信号を分析し、無線基地局BS1におけるマルチアンテナ送信を適応的に制御するためのフィードバック情報を周期的に無線基地局BS1に送信する。無線端末UE5は、無線基地局BS2から受信した第2無線信号を分析し、無線基地局BS2におけるマルチアンテナ送信を適応的に制御するためのフィードバック情報を周期的に無線基地局BS2に送信する。
 LTE規格において、フィードバック情報は、“RI(Rank Indicator)”、“PMI(Precoding Matrix Indicator)”、“CQI(Channel Quality Indicator)”を含む。RIは、信号系列であるストリーム(LTE規格ではレイヤと称される)の数を制御するための情報である。PMIは、送信アンテナ重み(LTE規格ではプリコーディングマトリクスと称される)を制御するための情報である。CQIは、送信電力および変調方式を制御するための情報である。また、RI、PMI及びCQIは、無線基地局BS1及びBS2におけるリソーススケジューリングにも用いられる。
 無線端末UE1~UE4それぞれは、レイヤ数を決定し、決定したレイヤ数に対応するRIをフィードバック情報として無線基地局BS1に送信する。無線端末UE1~UE4それぞれは、レイヤ数に応じて、受信品質(例えばSNR)が最大となるプリコーディングマトリクスを算出し、算出結果に応じたPMIをフィードバック情報として無線基地局BS1に送信する。また、無線端末UE1~UE4それぞれは、受信品質に対応するCQIを求め、当該CQIをフィードバック情報として無線基地局BS1に送信する。無線基地局BS1は、フィードバック情報に従って、レイヤ数、プリコーディングマトリクス、送信電力および変調方式などを制御する。
 同様に、無線端末UE5は、無線基地局BS2から受信した無線信号を分析し、無線基地局BS2におけるマルチアンテナ送信を適応的に制御するためのフィードバック情報(RI,PMI,CQI)を周期的に無線基地局BS2に送信する。
(1.2)無線通信システム10Aの概略動作
 次に、図3を用いて、無線通信システム1010Aの概略動作について説明する。
 無線端末UE1は、無線基地局BS2からの第2無線信号を干渉信号として受信した場合、無線端末UE1への第2無線信号の到来方向D1を推定し、到来方向D1に基づく干渉情報を無線基地局BS1に送信する。
 また、無線端末UE2は、無線基地局BS2からの第2無線信号を干渉信号として受信した場合、無線端末UE2への第2無線信号の到来方向D2を推定し、到来方向D2に基づく干渉情報を無線基地局BS1に送信する。
 無線端末UE3は、無線基地局BS2からの第2無線信号を干渉信号として受信した場合、無線端末UE3への第2無線信号の到来方向D3を推定し、到来方向D3に基づく干渉情報を無線基地局BS1に送信する。
 例えば、無線端末UE1~UE3は、上述したフィードバック情報と共に、干渉情報を無線基地局BS1に送信する。
 無線基地局BS1は、無線端末UE1~UE3から受信した干渉情報を制御装置1100Aに中継する。制御装置1100Aは、受信した干渉情報に基づいて、無線端末UE1~UE3それぞれの方向(到来方向D1~D3)に対して、無線基地局BS2に設けられた複数の送信アンテナが形成する指向性ビームのヌル点(不感点)を到来方向に向けるための制御情報を無線基地局BS2に送信する。
 指向性ビームを形成しつつMIMO通信を行う通信形態は、一般的にビームフォーミングMIMOと称される。
 無線基地局BS2は、制御装置1100Aから受信した制御情報と、無線端末UE5からフィードバックされるフィードバック情報とに基づいて、無線端末UE1~UE3それぞれの方向D1~D3にヌル点を向け、且つ、無線端末UE5の方向D5に指向性ビームを向けて、第2無線信号を送信する。
 なお、干渉情報は、例えば、干渉信号の到来方向を示す係数又は角度を示す情報である。到来方向の推定には、既存の到来方向推定技術が利用できる。ただし、到来方向の推定には、無線端末の状態に応じて変化する相対的な方向を推定するのではなく、絶対的な方向が得られる必要がある。相対的な方向を得る到来方向推定技術を用いる場合には、無線端末に設けられたGPS又は方位センサなどと併用することで、絶対的な方向を得ることができる。
 干渉情報の情報量を低減するためには、到来方向を示す係数又は角度を示す情報をPMIに変換し、当該PMIを干渉情報として使用してもよい。この場合、無線端末UE1は、無線端末UE1の方向D1にヌル点を向けるプリコーディングマトリクスに対応するPMIを干渉情報として無線基地局BS1に送信する。
 同様に、無線端末UE2は、無線端末UE2の方向D2にヌル点を向けるプリコーディングマトリクスに対応するPMIを干渉情報として無線基地局BS1に送信する。無線端末UE3は、無線端末UE3の方向D3にヌル点を向けるプリコーディングマトリクスに対応するPMIを干渉情報として無線基地局BS1に送信する。
 到来方向を示す係数又は角度を示す情報が干渉情報として使用される場合、制御情報としては、到来方向を示す係数又は角度を示す情報をそのまま使用する、又は、当該情報をPMIに変換して使用することができる。PMIが干渉情報として使用される場合、制御情報としては、当該PMIをそのまま使用することができる。
 干渉情報および制御情報としてPMIを用いることで、干渉情報および制御情報の情報量を低減でき、無線通信システム1010Aにおける実装を容易にすることができる。
(2)無線通信システム1010Aの詳細構成
 次に、無線通信システム1010Aの詳細構成について、(2.1)無線端末UE1の構成、(2.2)無線基地局BS1の構成、(2.3)制御装置1100Aの構成、(2.4)無線基地局BS2の構成の順に説明する。なお、以下においては、本発明に関連する構成について主に説明する。
(2.1)無線端末UE1の構成
 図4は、無線端末UE1の構成を示す機能ブロック図である。他の無線端末(無線端末UE2~無線端末UE5)は無線端末UE1と同様に構成されるため、ここでは、各無線端末を代表して無線端末UE1について説明する。
 図4に示すように、無線端末UE1は、アンテナ1201及び1202、無線通信部1210、制御部1220および記憶部1230を有する。
 無線通信部210は、アンテナ1201及び1202を介して無線信号を受信する受信部1211と、アンテナ1201及び1202を介して無線信号を送信する送信部1212とを有する。受信部1211は、無線基地局BS1から受信した第1無線信号に含まれる既知信号であるパイロット信号に基づいてチャネル推定を実行し、チャネル推定の結果を用いてフィードバック情報を生成する。送信部1212は、生成されたフィードバック情報を無線基地局BS1に送信する。
 制御部1220は、例えばCPUによって構成され、無線端末UE1が具備する各種機能を制御する。記憶部1230は、例えばメモリによって構成され、無線端末UE1における制御などに用いられる各種情報を記憶する。
 制御部1220は、到来方向推定部1221、及び干渉情報生成部1222を有する。
 到来方向推定部1221は、受信部1211が第2無線信号(干渉信号)を無線基地局BS2から受信した場合に、無線端末UE1への第2無線信号の到来方向D1を推定する。
 干渉情報生成部1222は、到来方向推定部1221によって推定された到来方向D1に基づく干渉情報を生成する。上記のように干渉情報としてPMIが用いられる場合には、記憶部1230が到来方向D1とPMIとの対応付けを予め保持しており、干渉情報生成部1222は、当該対応付けからPMIを生成(取得)する。そして、送信部212は、干渉情報を無線基地局BS1に送信する。
(2.2)無線基地局BS1の構成
 図5は、無線基地局BS1の構成を示す機能ブロック図である。
 図5に示すように、無線基地局BS1は、アンテナ1301~1304、無線通信部1310、制御部1320、記憶部1330、及び有線通信部1340を有する。
 無線通信部1310は、アンテナ1301~1304を介して無線端末UE1~UE4から無線信号を受信する受信部1311と、アンテナ1301~1304を介して無線端末UE1~UE4に無線信号を送信する送信部1312とを有する。受信部1311は、受信した無線信号に含まれるフィードバック情報を取得する。また、受信部1311は、受信した無線信号に含まれる干渉情報を取得する。
 送信部1312は、当該フィードバック情報に基づいてマルチアンテナ送信を制御する。具体的には、送信部1312は、送信信号をRIに従って複数のレイヤに分配し、各レイヤの送信信号をPMIに従って重み付け(以下、プリコーディング)し、プリコーディング後の送信信号に対してCQIに従った適応変調及び送信電力制御を行う。
 制御部1320は、例えばCPUによって構成され、無線基地局BS1が具備する各種機能を制御する。記憶部1330は、例えばメモリによって構成され、無線基地局BS1における制御などに用いられる各種情報を記憶する。有線通信部1340は、有線通信網を介して制御装置1100Aに接続される。有線通信部1340は、干渉情報を制御装置1100Aに送信する。
(2.3)制御装置1100Aの構成
 図6は、制御装置1100Aの構成を示す機能ブロック図である。
 図6に示すように、制御装置1100Aは、有線通信部1110、制御部1120、及び記憶部1130を有する。
 有線通信部1110は、有線通信網を介して無線基地局BS1及びBS2に接続される。
 有線通信部1110は、信号を受信する受信部1111と、信号を送信する送信部1112とを有する。受信部1111は、干渉情報を無線基地局BS1から受信する。
 制御部1120は、例えばCPUによって構成され、制御装置1100Aが具備する各種機能を制御する。記憶部1130は、例えばメモリによって構成され、制御装置1100Aにおける制御などに用いられる各種情報を記憶する。
 制御部1120は、干渉源特定部1121、及び制御情報生成部1122を有する。干渉源特定部1121は、複数の無線基地局の中から、干渉源の無線基地局を特定する。干渉源の特定方法については後述する。制御情報生成部1122は、受信部1111が受信した干渉情報に基づいて制御情報を生成する。送信部1112は、当該制御情報を無線基地局BS2に送信する。
(2.4)無線基地局BS2の構成
 図7は、無線基地局BS2の構成を示す機能ブロック図である。
 図7に示すように、無線基地局BS2は、アンテナ1401~1404、無線通信部1410、制御部1420、記憶部1430、及び有線通信部1440を有する。
 無線通信部1410は、アンテナ1401~1404を介して無線端末UE5から無線信号を受信する受信部1411と、アンテナ1401~1404を介して無線信号を無線端末UE5に送信する送信部1412とを有する。
 受信部1411は、無線端末UE5から受信した無線信号に含まれるフィードバック情報を取得する。送信部1412は、当該フィードバック情報に基づいてマルチアンテナ送信を制御する。具体的には、送信部1412は、送信信号をRIに従って複数のレイヤに分配し、各レイヤの送信信号をPMIに従ってプリコーディングし、プリコーディング後の送信信号に対してCQIに従った適応変調及び送信電力制御を行う。
 制御部1420は、例えばCPUによって構成され、無線基地局BS2が具備する各種機能を制御する。記憶部1430は、例えばメモリによって構成され、無線基地局BS2における制御などに用いられる各種情報を記憶する。有線通信部1440は、有線通信網を介して制御装置1100Aに接続される。有線通信部1440は、制御装置1100Aから制御情報を受信する。
 制御部1420は、情報取得部1421、及び送信指向性制御部1422を有する。情報取得部1421は、他の無線基地局(無線基地局BS1)と通信中に第2無線信号を干渉信号として受信する無線端末UE1~UE3の方向にヌル点を向けるための制御情報を取得する取得部を構成する。
 送信指向性制御部1422は、無線端末UE5からフィードバックされたフィードバック情報に基づいて、アンテナ1401~1404が形成する指向性ビームを制御する制御部を構成する。具体的には、無線端末UE5からフィードバックされたPMIに対応するプリコーディングマトリクスを用いたプリコーディングによって、アンテナ1401~1404が形成する指向性ビームを無線端末UE5の方向に向けることができる。さらに、送信指向性制御部1422は、フィードバック情報と、情報取得部1421が取得した制御情報とに基づいて、無線端末UE5の方向D5に指向性ビームを向け、且つ、無線端末UE1~UE3の方向D1~D3にヌル点を向ける。
(3)無線基地局BS2における送信指向性制御
 次に、図8及び図9を用いて、送信指向性制御部1422によって実行される送信指向性制御の詳細について説明する。ここでは、無線端末UE1の方向(D1方向)にヌル点を向ける場合を例に説明する。
 送信指向性制御部1422は、制御情報に基づいて、無線端末UE1の方向(D1方向)にヌル点を向けるプリコーディングマトリクスグループを選択する。プリコーディングマトリクスグループとは、図8に示すように、同一方向にヌル点を有する複数のプリコーディングマトリクスからなるグループであり、記憶部1430に予め記憶されている。図8の例では、それぞれ異なる方向にヌル点を有するプリコーディングマトリクスグループ1~8を図示している。
 プリコーディングマトリクスグループは、図9に示すように、それぞれ異なる方向に指向性ビームを有する複数のプリコーディングマトリクスを含む。図9の例では、プリコーディングマトリクスグループ1に含まれるプリコーディングマトリクス1~6それぞれは、指向性ビームを6方向に有している。プリコーディングマトリクス1~6それぞれの指向性ビームのパターンは異なっている。
 送信指向性制御部1422は、無線端末UE1の方向D1にヌル点を有するプリコーディングマトリクスグループの中から、無線端末UE5からフィードバックされたフィードバック情報(具体的には、PMI)に基づいて、無線端末UE5の方向D5に指向性ビームを有するプリコーディングマトリクスを選択する。選択されたプリコーディングマトリクスは、送信部412におけるプリコーディングに適用される。
(4)無線通信システムの動作
 図10は、無線通信システム1010Aの動作を示す動作シーケンス図である。図10においては、LTE規格に従ったフィードバック情報(RI,PMI,CQI)のうち、PMIのみを図示して説明する。なお、図10に示す動作シーケンスは、所定の時間間隔(例えば、通信フレーム単位)で繰り返し実行される。
 ステップS1101,S1103及びS1105において、無線基地局BS1の送信部1312は、チャネルAが用いられる第1無線信号を無線端末UE1に、チャネルBが用いられる第1無線信号を無線端末UE2に、チャネルCが用いられる第1無線信号を無線端末UE3にそれぞれ送信する。
 ステップS1102,S1104及びS1106において、無線基地局BS2の送信部1412は、チャネルAが用いられる第2無線信号を無線端末UE5に、チャネルBが用いられる第2無線信号を無線端末UE6(不図示)に、チャネルCが用いられる第2無線信号を無線端末UE7(不図示)にそれぞれ送信する。その際、無線基地局BS1のセルフリンジに位置する無線端末UE1,UE2及びUE3は、無線基地局BS1が送信する第1無線信号を所望信号として受信するとともに、無線基地局BS2が送信する第2無線信号を干渉信号として受信する。
 ステップS1107a,S1107b及びS1107cにおいて、無線端末UE1,UE2及びUE3それぞれの受信部1211は、無線基地局BS1から受信した第1無線信号に含まれるパイロット信号に基づいて、無線伝搬路のチャネル応答を実行するチャネル推定を実行する。無線端末UE1,UE2及びUE3それぞれの受信部1211は、無線基地局BS2から受信した第2無線信号に含まれるパイロット信号、又は、当該第2無線信号に含まれるセルIDに基づいて、無線基地局BS2を識別する基地局識別情報を取得する。
 ステップS1108a,S1108b及びS1108cにおいて、無線端末UE1,UE2及びUE3それぞれの受信部1211は、推定されたチャネル応答に基づいて、プリコーディングマトリクスを計算し、計算したプリコーディングマトリクスに対応するPMIを取得する。
 ステップS1109aにおいて、無線端末UE1の到来方向推定部1221は、無線端末UE1への第2無線信号の到来方向D1を推定する。無線端末UE1の干渉情報生成部1222は、到来方向D1に基づく干渉情報を生成する。
 ステップS1109bにおいて、無線端末UE2の到来方向推定部1221は、無線端末UE2への第2無線信号の到来方向D2を推定する。無線端末UE2の干渉情報生成部1222は、到来方向D2に基づく干渉情報を生成する。
 ステップS1109cにおいて、無線端末UE3の到来方向推定部1221は、無線端末UE3への第2無線信号の到来方向D3を推定する。無線端末UE3の干渉情報生成部1222は、到来方向D3に基づく干渉情報を生成する。
 ステップS1110a,S1110b及びS1110cにおいて、無線端末UE1,UE2及びUE3それぞれの受信部1211は、推定されたチャネル応答に基づいて、受信信号を等化(チャネル等化)し、等化した受信信号を復号する。復号された受信信号は、無線端末UE1,UE2及びUE3それぞれの制御部1220に入力される。
 ステップS1111a,S1111b及びS1111cにおいて、無線端末UE1,UE2及びUE3それぞれの送信部1212は、干渉情報、PMI及び基地局識別情報を無線基地局BS1に送信する。無線基地局BS1の受信部1311は、干渉情報、PMI及び基地局識別情報を受信する。
 ステップS1112において、無線基地局BS1の送信部1312は、無線端末UE1から受信したPMIに対応するプリコーディングマトリクスを選択する。送信部1312は、チャネルAが用いられる第1無線信号を無線端末UE1に次回送信する際に、無線端末UE1から受信したPMIに対応するプリコーディングマトリクスを用いたプリコーディングを行う。
 同様に、無線基地局BS1の送信部1312は、チャネルBが用いられる第1無線信号を無線端末UE2に次回送信する際に、無線端末UE2から受信したPMIに対応するプリコーディングマトリクスを用いたプリコーディングを行う。送信部1312は、チャネルCが用いられる第1無線信号を無線端末UE3に次回送信する際に、無線端末UE3から受信したPMIに対応するプリコーディングマトリクスを用いたプリコーディングを行う。
 ステップS1113において、無線基地局BS1の有線通信部1340は、無線端末UE1,UE2及びUE3それぞれから受信した干渉情報及び基地局識別情報を制御装置1100Aに送信する。制御装置1100Aの受信部1111は、干渉情報及び基地局識別情報を受信する。
 ステップS1114において、制御装置1100Aの干渉源特定部1121は、受信部1111が受信した基地局識別情報に基づいて、複数の無線基地局の中から無線基地局BS2を干渉源として特定する。制御装置1100Aの制御情報生成部1122は、受信部1111が受信した干渉情報に基づいて、干渉源特定部1121によって特定された無線基地局BS2宛ての制御情報を生成する。具体的には、制御情報生成部1122は、チャネルA(無線端末UE1)に対応する制御情報と、チャネルB(無線端末UE2)に対応する制御情報と、チャネルC(無線端末UE3)に対応する制御情報とを生成する。
 ステップS1113において、制御装置1100Aの送信部1112は、制御情報生成部1122によって生成された制御情報を無線基地局BS2に送信する。無線基地局BS2の有線通信部1440は、制御情報を受信する。
 一方で、無線基地局BS2の受信部1411は、無線基地局BS2を接続先とする無線端末UE5、無線端末UE6(不図示)、及び無線端末UE7(不図示)から、フィードバック情報としてのPMIを受信している。無線基地局BS2の情報取得部1421は、制御情報を有線通信部1440から取得し、PMIを受信部1411から取得する。
 ステップS1116において、無線基地局BS2の送信指向性制御部1422は、チャネルAが用いられる第2無線信号を送信部1412が送信する場合に、無線端末UE5の方向D5に指向性ビームを向け、且つ、無線端末UE1のD1にヌル点を向けるように送信部1412を制御する。具体的には、送信指向性制御部1422は、無線端末UE1の方向D1方向にヌル点を向けるプリコーディングマトリクスグループの中から、無線端末UE5の方向D5に指向性ビームを向けるプリコーディングマトリクスを選択する。
 同様に、送信指向性制御部1422は、チャネルBが用いられる第2無線信号を送信部1412が送信する場合に、無線端末UE6(不図示)の方向に指向性ビームを向け、且つ、無線端末UE2の方向(D2方向)にヌル点を向けるように送信部1412を制御する。
 また、送信指向性制御部1422は、チャネルCが用いられる第2無線信号を送信部1412が送信する場合に、無線端末UE7(不図示)の方向に指向性ビームを向け、且つ、無線端末UE3の方向(D3方向)にヌル点を向けるように送信部1412を制御する。
(5)効果
 第1実施形態に係る無線通信システム1010Aによれば、無線端末UE1~UE3が無線基地局BS2から第2無線信号を干渉信号として受信する場合に、無線基地局BS2において、無線端末UE1~UE3の方向D1~D3にヌル点を向ける。このため、無線端末UE1が第2無線信号(干渉信号)を受信することを回避でき、無線端末UE1における通信品質を十分に改善することができる。このように、干渉信号の発生を元から防ぐことで、セルスループットが増大するとともに各無線端末に高速なダウンリンク通信を提供できる。
 第1実施形態では、無線基地局BS2の送信指向性制御部1422は、制御装置1100Aから受信した制御情報と、無線端末UE5からフィードバックされるフィードバック情報とに基づいて、無線端末UE1~UE3の方向D1~D3にヌル点を向け、且つ、無線端末UE5の方向D5に指向性ビームを向けて、第2無線信号を送信する。したがって、無線端末UE1における通信品質を十分に改善しつつ、無線端末UE5における通信品質も良好に保つことができる。
 第1実施形態では、制御装置1100Aの干渉源特定部1121は、基地局識別情報に基づいて、複数の無線基地局の中から無線基地局BS2を特定し、特定した無線基地局BS2に制御情報を送信する。これにより、干渉源の候補となる無線基地局が複数存在する場合であっても干渉源を容易に特定でき、制御情報を適切な無線基地局に対して送信できる。
[第1実施形態の変更例1]
 上述した第1実施形態では、制御装置1100Aの干渉源特定部1121は、基地局識別情報に基づいて、複数の無線基地局の中から干渉源の無線基地局BS2を特定していたが、次のような方法で干渉源を特定してもよい。
 本変更例では、制御装置1100Aの記憶部1130は、干渉情報と各無線基地局とを対応付けた対応情報を予め保持している。制御装置1100Aの干渉源特定部1121は、受信部1111が受信した干渉情報と、保持している対応情報とに基づいて、複数の無線基地局の中から干渉源の無線基地局BS2を特定する。
 このような方法によれば、基地局識別情報を送受信する必要がないため、第1実施形態よりも、送受信される情報量を低減できる。
[第1実施形態の変更例2]
 上述した第1実施形態では、干渉情報及び制御情報として、到来方向を示す係数又は角度を示す情報、又は、PMIが使用されていた。
 しかしながら、無線端末UE1,UE2及びUE3それぞれの位置を示す位置情報を干渉情報及び制御情報として使用してもよい。この場合、GPSを利用した位置検出などの既存の位置検出手法を用いることができる。位置情報を干渉情報及び制御情報として使用する場合、無線基地局BS2の送信指向性制御部422は、無線端末UE1,UE2及びUE3それぞれの位置から、無線端末UE1,UE2及びUE3それぞれの方向を特定すればよい。
[第1実施形態の変更例3]
 上述した第1実施形態では、無線基地局BS2の情報取得部1421は、制御情報として、到来方向を示す係数又は角度を示す情報、又は、PMIを取得していたが、他の方法で制御情報を取得してもよい。
 具体的には、無線端末UE1,UE2及びUE3から上り無線信号を無線基地局BS2が受信する場合に、情報取得部1421は、当該上り無線信号の到来方向を推定し、推定した到来方向を示す情報を制御情報として取得してもよい。この場合、無線基地局BS2の送信指向性制御部1422は、当該上り無線信号の到来方向から、無線端末UE1,UE2及びUE3それぞれの方向を特定すればよい。
[第2実施形態]
 上述した第1実施形態では、制御装置1100Aが、無線基地局BS1と無線基地局BS2とは個別に設けられていた。第2実施形態では、制御装置1100Aが無線基地局BS1に含まれる形態について説明する。
 なお、第2実施形態においては、(1)無線通信システム1010Bの構成、(2)無線通信システム1010Bの動作、(3)効果について説明する。
(1)無線通信システム1010Bの構成
 図11は、第2実施形態に係る無線通信システム1010Bの全体構成図である。
 図11に示すように、無線通信システム1010Bにおいて、無線基地局BS2’は、制御装置1100Bの機能を有している。具体的には、図12に示すように、無線基地局BS2’の制御部1320は、干渉源を特定する干渉源特定部1321と、制御情報を生成する制御情報生成部1322とを有する。干渉源特定部1321及び制御情報生成部1322それぞれの機能は、第1実施形態で説明した干渉源特定部1121及び制御情報生成部1122それぞれの機能と同様である。
(2)無線通信システムの動作
 図13は、無線通信システム1010Bの動作を示す動作シーケンス図である。図13において、ステップS1213までの各処理は第1実施形態と同様であるため、ステップS1213以降の処理について説明する。
 ステップS1213において、無線基地局BS1’の干渉源特定部1321は、受信部1311が受信した基地局識別情報に基づいて、複数の無線基地局の中から無線基地局BS2を干渉源として特定する。無線基地局BS1’の制御情報生成部1322は、受信部1311が受信した干渉情報に基づいて、干渉源特定部1321によって特定された無線基地局BS2宛ての制御情報を生成する。
 具体的には、制御情報生成部322は、チャネルA(無線端末UE1)に対応する制御情報と、チャネルB(無線端末UE2)に対応する制御情報と、チャネルC(無線端末UE3)に対応する制御情報とを生成する。
 ステップS1214において、無線基地局BS1’の有線通信部1340は、制御情報生成部1322によって生成された制御情報を無線基地局BS2に送信する。無線基地局BS2の有線通信部1440は、制御情報を受信する。
 ステップS1215において、無線基地局BS2の送信指向性制御部1422は、チャネルAが用いられる第2無線信号を送信部1412が送信する場合に、無線端末UE5の方向D5に指向性ビームを向け、且つ、無線端末UE1の方向D1にヌル点を向けるように送信部1412を制御する。
 同様に、送信指向性制御部1422は、チャネルBが用いられる第2無線信号を送信部1412が送信する場合に、無線端末UE6(不図示)の方向に指向性ビームを向け、且つ、無線端末UE2の方向D2にヌル点を向けるように送信部1412を制御する。
 また、送信指向性制御部1422は、チャネルCが用いられる第2無線信号を送信部1412が送信する場合に、無線端末UE7(不図示)の方向に指向性ビームを向け、且つ、無線端末UE3の方向D3にヌル点を向けるように送信部1412を制御する。
(3)効果
 第2実施形態に係る無線通信システム1010Bによれば、第1実施形態の効果に加えて、次のような効果が得られる。すなわち、制御装置1100Bを別途設ける必要がないため、制御装置1100Bの設置コストを削減できる。
[第1及び第2実施形態に係るその他の実施形態]
 例えば、第1実施形態の変更例1~3それぞれは、第1実施形態に限らず、第2実施形態に対しても適用可能である。
 上述した第1及び第2実施形態では、無線端末UE1~UE3それぞれが、無線基地局BS2から第2無線信号を受信した場合に、当該第2無線信号を干渉信号とみなしていたが、所定の受信レベル未満の第2無線信号を許容してもよい。この場合、無線端末UE1~UE3それぞれは、無線基地局BS2から第2無線信号を受信し、且つ、当該第2無線信号の受信レベルが所定の受信レベル以上である場合に、当該第2無線信号を干渉信号とみなすことになる。
 第1及び第2実施形態では、複信方式としてFDD方式が採用されていたが、FDD方式に代えて時分割複信(TDD)方式が採用されてもよい。
 第1及び第2実施形態では、ダウンリンク通信において、送信アンテナが4つであり、受信アンテナが2つである場合(4×2MIMO)について説明した。しかしながら、ダウンリンク通信において、受信アンテナが1つである場合、すなわち、複数入力一出力(MISO)のマルチアンテナ送信が実施される形態でもよい。
 第1及び第2実施形態では、無線基地局BS1及びBS2それぞれが複数の無線端末と無線通信を実行していたが、無線基地局BS1及びBS2それぞれが1つの無線端末と無線通信を実行する形態でもよい。
 第1及び第2実施形態では、LTE規格に基づく無線通信システム1010A及び1010Bについて説明したが、LTE規格に限らず、WiMAX規格(IEEE 802.16)に基づく無線通信システムや、3GPP2において標準化されているUMB(Ultra Mobile Broadband)規格など対しても本発明を適用可能である。
[第3実施形態]
 第3実施形態では、(1)無線通信システムの概要、(2)無線通信システムの詳細構成、(3)無線端末における送信指向性制御、(4)無線通信システムの動作、(5)効果について説明する。
(1)無線通信システムの概要
 第3実施形態に係る無線通信システムの概要について、(1.1)無線通信システムの概略構成、(1.2)無線通信システムの概略動作の順に説明する。
(1.1)無線通信システムの概略構成
 図14は、第3実施形態に係る無線通信システム2010Aの全体構成図である。
 図14に示すように、無線通信システム2010Aは、無線端末UE1(第1無線端末)、無線端末UE2、無線端末UE3、無線端末UE4(第2無線端末)、無線端末UE5、無線端末UE6、無線基地局BS1(第1無線基地局)、無線基地局BS2(第2無線基地局)、及び制御装置2100Aを有する。
 図14では、説明の便宜上、無線基地局BS1及び無線基地局BS2のみを図示しているが、実際には、無線基地局BS1及び無線基地局BS2それぞれに隣接して無線基地局がさらに設置されている。
 無線通信システム2010Aは、3GPP(3rd Generation Partnership Project)において標準化されているLTE(Long Term Evolution)規格に基づく構成を有している。以下においては、主に上り(以下、アップリンク)通信について説明する。
 無線基地局BS1は、セルC1内に位置する無線端末UE1~UE3の接続先であり、無線端末UE1~UE3とアップリンク通信を実行する。無線端末UE1~UE3は、移動可能であり、図14の例ではセルC1の端部に位置している。無線基地局BS1には、無線端末UE1~UE3以外の無線端末がさらに接続されていてもよい。
 無線基地局BS2は、セルC1に隣接するセルC2内に位置する無線端末UE4~UE6の接続先であり、無線端末UE4~UE6とアップリンク通信を実行する。無線端末UE4~UE6は、移動可能であり、図14の例ではセルC2の端部に位置している。無線基地局BS2には、無線端末UE4~UE6以外の無線端末がさらに接続されていてもよい。
 制御装置2100Aは、有線通信網であるバックボーンネットワーク上に設けられ、無線基地局BS1及び無線基地局BS2に有線接続される。制御装置2100Aは、無線基地局BS1及び無線基地局BS2を制御する。制御装置2100Aは、無線基地局BS1及び無線基地局BS2に加え、無線基地局BS1及び無線基地局BS2それぞれに隣接する無線基地局を制御してもよい。制御装置2100Aは、無線基地局BS1、無線基地局BS2、及び、その他の無線基地局から定期的に情報を収集し、収集した情報を記憶及び管理する。
 無線通信システム2010Aには、マルチキャリア通信方式の一つである直交周波数分割多元接続(OFDMA)方式が採用されている。OFDMA方式では、複数のサブキャリアを用いてサブチャネルと呼ばれる通信チャネル(以下、チャネル)が構成され、当該チャネルが無線基地局から無線端末に割り当てられる。また、無線通信システム2010Aには、複信方式として周波数分割複信(FDD)方式が採用されている。
 無線基地局BS1は、図15に示すチャネルAを無線端末UE1に、チャネルBを無線端末UE2に、チャネルCを無線端末UE3にそれぞれ割り当てている。以下では、無線基地局BS1によって割り当てられたチャネルを使用して無線端末UE1~UE3が送信する無線信号を適宜「第1無線信号」と称する。
 無線基地局BS2は、図15に示すチャネルAを無線端末UE4に、チャネルBを無線端末UE5に、チャネルCを無線端末UE6にそれぞれ割り当てている。以下では、無線基地局BS2によって割り当てられたチャネルを使用して無線端末UE4~UE6が送信する無線信号を適宜「第2無線信号」と称する。
 無線基地局BS1は、チャネルAが用いられる第1無線信号を無線端末UE1から所望信号として受信するとともに、チャネルAが用いられる第2無線信号を無線端末UE4から干渉信号として受信している。チャネルAが用いられる第2無線信号は、無線端末UE4からD1方向に向けて無線基地局BS1に到来し、無線端末UE4からD4方向に向けて無線基地局BS2に到来する。
 同様に、無線基地局BS1は、チャネルBが用いられる第1無線信号を無線端末UE2から所望信号として受信するとともに、チャネルBが用いられる第2無線信号を無線端末UE5から干渉信号として受信している。チャネルBが用いられる第2無線信号は、無線端末UE5からD2方向に向けて無線基地局BS1に到来し、無線端末UE5からD5方向に向けて無線基地局BS2に到来する。
 無線基地局BS1は、チャネルCが用いられる第1無線信号を無線端末UE3から所望信号として受信するとともに、チャネルCが用いられる第2無線信号を無線端末UE6から干渉信号として受信している。チャネルCが用いられる第2無線信号は、無線端末UE6からD3方向に向けて無線基地局BS1に到来し、無線端末UE6からD6方向に向けて無線基地局BS2に到来する。
 無線基地局BS1及び無線端末UE1~UE3は、閉ループMIMOに基づくアップリンク通信を実行する。無線基地局BS2及び無線端末UE4~UE6は、閉ループMIMOに基づくアップリンク通信を実行する。
 具体的には、無線端末UE1~UE3それぞれは、複数のアンテナ(送信アンテナ)を介して、第1無線信号を無線基地局BS1に送信する。無線基地局BS1は、複数のアンテナ(受信アンテナ)を介して各第1無線信号を受信する。
 無線端末UE4~UE6それぞれは、複数のアンテナ(送信アンテナ)を介して、第2無線信号を無線基地局BS2に送信する。無線基地局BS2は、複数のアンテナ(受信アンテナ)を介して各第2無線信号を受信する。
 図14では、アップリンク通信において、送信アンテナが2つであり、受信アンテナが4つであるMIMO(いわゆる、2×4MIMO)を例示している。
 無線基地局BS1は、無線端末UE1~UE3から受信した第1無線信号を分析し、無線端末UE1~UE3におけるマルチアンテナ送信を適応的に制御するためのフィードバック情報を周期的に無線端末UE1~UE3に送信する。
 LTE規格において、フィードバック情報は、“RI(Rank Indicator)”、“PMI(Precoding Matrix Indicator)”、“CQI(Channel Quality Indicator)”を含む。RIは、信号系列であるストリーム(LTE規格ではレイヤと称される)の数を制御するための情報である。PMIは、送信アンテナ重み(LTE規格ではプリコーディングマトリクスと称される)を制御するための情報である。CQIは、送信電力および変調方式を制御するための情報である。
 無線基地局BS1は、無線端末UE1~UE3それぞれについて、レイヤ数を決定し、決定したレイヤ数に対応するRIをフィードバック情報として送信する。無線基地局BS1は、無線端末UE1~UE3それぞれについて、受信品質(例えばSNR)が最大となるプリコーディングマトリクスをレイヤ数に応じて算出し、算出結果に応じたPMIをフィードバック情報として送信する。また、無線基地局BS1は、無線端末UE1~UE3それぞれについて、受信品質に対応するCQIを求め、当該CQIをフィードバック情報として送信する。無線端末UE1~UE3それぞれは、無線基地局BS1からフィードバックされるフィードバック情報に従って、レイヤ数、指向性ビーム、送信電力および変調方式などを制御する。
 同様に、無線基地局BS2は、無線端末UE4~UE6から受信した第2無線信号を分析し、無線端末UE4~UE6におけるマルチアンテナ送信を適応的に制御するためのフィードバック情報(RI,PMI,CQI)を周期的に無線端末UE4~UE6に送信する。無線端末UE4~UE6それぞれは、無線基地局BS2からフィードバックされるフィードバック情報に従って、レイヤ数、指向性ビーム、送信電力および変調方式などを制御する。
(1.2)無線通信システムの概略動作
 次に、図14、図16、及び図17を用いて、無線通信システム2010Aの概略動作について説明する。
 無線基地局BS1は、チャネルAが用いられる第2無線信号を無線端末UE4から干渉信号として受信した場合、無線基地局BS1への当該第2無線信号の到来方向D1を推定する。図16に示すように、無線基地局BS1は、到来方向D1に基づく干渉情報を生成し、生成した干渉情報を制御装置2100Aに送信する。
 また、無線基地局BS1は、チャネルBが用いられる第2無線信号を無線端末UE5から干渉信号として受信した場合、無線基地局BS1への当該第2無線信号の到来方向D2を推定する。無線基地局BS1は、到来方向D2に基づく干渉情報を生成し、生成した干渉情報を制御装置2100Aに送信する。
 無線基地局BS1は、チャネルCが用いられる第2無線信号を無線端末UE6から干渉信号として受信した場合、無線基地局BS1への当該第2無線信号の到来方向D3を推定する。無線基地局BS1は、到来方向D3に基づく干渉情報を生成し、生成した干渉情報を制御装置2100Aに送信する。
 制御装置2100Aは、無線基地局BS2を含む複数の無線基地局の中から、第2無線信号に関する情報に基づいて無線基地局BS2を特定し、特定した無線基地局BS2に対して干渉情報を送信する。第2無線信号に関する情報とは、第2無線信号に含まれる情報、又は、第2無線信号に用いられるチャネルを識別する情報である。
 無線基地局BS2は、干渉情報を受信した場合、受信した干渉情報に基づいて、無線端末UE4~UE6に制御情報を送信する。具体的には、無線基地局BS2は、無線端末UE4が形成する指向性ビームのヌル点(不感点)を無線基地局BS1の方向D1に向けるための制御情報を無線端末UE4に送信する。無線基地局BS2は、無線端末UE5が形成する指向性ビームのヌル点を無線基地局BS1の方向D2に向けるための制御情報を無線端末UE5に送信する。無線基地局BS2は、無線端末UE6が形成する指向性ビームのヌル点を無線基地局BS1の方向D3に向けるための制御情報を無線端末UE6に送信する。
 なお、指向性ビームを形成しつつMIMO通信を行う通信形態は、一般的にビームフォーミングMIMOと称される。
 無線端末UE4は、無線基地局BS2から受信した制御情報と、無線基地局BS2からフィードバックされるPMIとに基づいて、無線基地局BS1の方向D1にヌル点を向け、且つ、無線基地局BS2の方向D4に指向性ビームを向けて、チャネルAが用いられる第2無線信号を送信する。無線端末UE4が無線基地局BS1の方向D1にヌル点を向けることによって、図17に示すように、無線基地局BS1が無線端末UE4から第2無線信号を受信することを回避できる。
 無線端末UE5は、無線基地局BS2から受信した制御情報と、無線基地局BS2からフィードバックされるPMIとに基づいて、無線基地局BS1の方向D2にヌル点を向け、且つ、無線基地局BS2の方向D5に指向性ビームを向けて、チャネルBが用いられる第2無線信号を送信する。無線端末UE5が無線基地局BS1の方向D2にヌル点を向けることによって、図17に示すように、無線基地局BS1が無線端末UE5から第2無線信号を受信することを回避できる。
 無線端末UE6は、無線基地局BS2から受信した制御情報と、無線基地局BS2からフィードバックされるPMIとに基づいて、無線基地局BS1の方向D3にヌル点を向け、且つ、無線基地局BS2の方向D6に指向性ビームを向けて、チャネルCが用いられる第2無線信号を送信する。無線端末UE6が無線基地局BS1の方向D3にヌル点を向けることによって、図17に示すように、無線基地局BS1が無線端末UE6から第2無線信号を受信することを回避できる。
 なお、干渉情報は、例えば、干渉信号の到来方向を示す係数又は角度の情報である。到来方向の推定には、既存の到来方向推定技術が利用できる。干渉情報の情報量を低減するためには、到来方向を示す係数又は角度の情報をPMIに変換し、変換して得られたPMIを干渉情報として使用してもよい。この場合、無線基地局BS1又は制御装置2100Aは、方向D1にヌル点を向けるプリコーディングマトリクスに対応するPMIと、方向D2にヌル点を向けるプリコーディングマトリクスに対応するPMIと、方向D3にヌル点を向けるプリコーディングマトリクスに対応するPMIとを干渉情報として無線基地局BS2に送信する。
 到来方向を示す係数又は角度の情報が干渉情報として使用される場合、無線基地局BS2が送信する制御情報としては、到来方向を示す係数又は角度の情報をそのまま使用する、又は、当該情報をPMIに変換して使用することができる。PMIが干渉情報として使用される場合、制御情報としては、当該PMIをそのまま使用することができる。
 干渉情報および制御情報としてPMIを用いることで、干渉情報および制御情報の情報量を低減でき、無線通信システム2010Aにおける実装を容易にすることができる。
 なお、無線端末UE4~UE6の状態の変化に対応するために、無線端末UE4~UE6それぞれにGPS又は方位センサなどの絶対的な方向(方位)を検出する手段を設け、検出される絶対的な方向と、制御情報とを組み合わせて使用してもよい。
(2)無線通信システムの詳細構成
 次に、無線通信システム2010Aの詳細構成について、(2.1)無線基地局BS1の構成、(2.2)制御装置2100Aの構成、(2.3)無線基地局BS2の構成、(2.4)無線端末UE4の構成の順に説明する。なお、以下においては、本発明に関連する構成について主に説明する。
(2.1)無線基地局BS1の構成
 図18は、無線基地局BS1の構成を示す機能ブロック図である。
 図18に示すように、無線基地局BS1は、アンテナ2201~2204、無線通信部2210、制御部2220、記憶部2230、及び有線通信部2240を有する。
 無線通信部2210は、アンテナ2201~2204を介して無線信号を受信する受信部2211と、アンテナ2201~2204を介して無線信号を送信する送信部2212とを有する。受信部2211は、無線端末UE1~UE3それぞれについて、受信した無線信号に含まれる既知信号であるパイロット信号に基づいてチャネル推定を実行し、チャネル推定の結果を用いてフィードバック情報(RI,PMI,CQI)を生成する。送信部2212は、無線端末UE1~UE3それぞれに対し、フィードバック情報を送信する。
 制御部2220は、例えばCPUによって構成され、無線基地局BS1が具備する各種機能を制御する。記憶部2230は、例えばメモリによって構成され、無線基地局BS1における制御などに用いられる各種情報を記憶する。有線通信部2240は、有線通信網を介して制御装置2100Aに接続される。
 制御部2220は、到来方向推定部2221、干渉情報生成部2222、及び特定用情報取得部2223を有する。
 到来方向推定部2221は、受信部2211が第2無線信号(干渉信号)を受信した場合に、到来方向推定技術を用いて、無線基地局BS1への第2無線信号の到来方向を推定する。
 干渉情報生成部2222は、到来方向推定部2221によって推定された到来方向に基づく干渉情報を生成する。上記のように干渉情報としてPMIが用いられる場合には、記憶部2230が到来方向とPMIとの対応付けを予め保持し、干渉情報生成部2222は、当該対応付けからPMIを生成(取得)する。
 特定用情報取得部2223は、受信部2211が受信した第2無線信号に関する情報を特定用情報として取得する。特定用情報とは、干渉源の無線端末(以下、干渉源端末)と、当該干渉源端末の接続先の無線基地局とを特定するための情報である。特定用情報取得部2223は、次の(a1)~(c1)の何れかの方法、あるいは各方法の組み合わせを用いて特定用情報を取得する。
 方法(a1):特定用情報取得部2223は、受信部2211が受信した第2無線信号に含まれる端末識別情報(端末ID)を特定用情報として取得する。端末識別情報は、第2無線信号の送信元の無線端末を識別する情報である。
 方法(b1):特定用情報取得部2223は、受信部2211が受信した第2無線信号に用いられているチャネルを識別するチャネル識別情報を特定用情報として取得する。
 方法(c1):特定用情報取得部2223は、受信部2211が受信した第2無線信号に含まれるパイロット信号から特定用情報を取得する。具体的には、パイロット信号はセル固有の直交系列を含み、特定用情報取得部2223は、当該直交系列を特定用情報として取得する。
 有線通信部2240は、干渉情報生成部2222によって生成された干渉情報と、特定用情報取得部2223によって取得された特定用情報とを制御装置2100Aに送信する。第3実施形態において有線通信部2240は、干渉情報を送信する干渉情報送信部を構成する。
(2.2)制御装置2100Aの構成
 図19は、制御装置2100Aの構成を示す機能ブロック図である。
 図19に示すように、制御装置2100Aは、有線通信部2110、制御部2120、及び記憶部2130を有する。
 有線通信部2110は、有線通信網を介して無線基地局BS1及びBS2に接続される。
 有線通信部2110は、信号を受信する受信部2111と、信号を送信する送信部2112とを有する。受信部2111は、干渉情報及び特定用情報を無線基地局BS1から受信する。
 制御部2120は、例えばCPUによって構成され、制御装置2100Aが具備する各種機能を制御する。記憶部2130は、例えばメモリによって構成され、制御装置2100Aにおける制御などに用いられる各種情報を記憶する。
 制御部2120は、基地局特定部2121を有する。基地局特定部2121は、有線通信部2110が受信した特定用情報に基づいて、複数の無線基地局の中から、干渉源端末の接続先の無線基地局を特定する。基地局特定部2121は、次の(a2)~(c2)の何れかの方法、あるいは各方法の組み合わせを用いて、干渉源端末の接続先の無線基地局を特定する。
 方法(a2):端末識別情報が特定用情報として用いられる場合、基地局特定部2121は、記憶部2130に記憶されている接続情報を用いて、干渉源端末の接続先の無線基地局を特定する。接続情報とは、無線基地局BS2及び他の無線基地局の何れかに接続中の無線端末の端末識別情報と、当該無線端末の接続先の無線基地局とを対応付けた情報である。基地局特定部2121は、受信部2111が受信した端末識別情報に対応する無線基地局を、干渉源端末の接続先の無線基地局として特定する。
 方法(b2):チャネル識別情報が特定用情報として用いられる場合、基地局特定部2121は、記憶部2130に記憶されているチャネル情報を用いて、干渉源端末の接続先の無線基地局を特定する。チャネル情報とは、無線基地局BS2及び他の無線基地局の何れかに接続中の無線端末が上り通信に使用しているチャネルのチャネル識別情報と、当該無線端末の接続先の無線基地局とを対応付けた情報である。基地局特定部2121は、受信部2111が受信したチャネル識別情報に対応する無線基地局を、干渉源端末の接続先の無線基地局として特定する。
 方法(c2):セル固有の直交系列が特定用情報として用いられる場合、基地局特定部2121は、当該直交系列に対応する無線基地局を、干渉源端末の接続先の無線基地局を特定する。
 送信部2112は、基地局特定部2121によって特定された無線基地局(第3実施形態では、無線基地局BS2)に対し、干渉情報及び特定用情報を送信する。
(2.3)無線基地局BS2の構成
 図20は、無線基地局BS2の構成を示す機能ブロック図である。
 図20に示すように、無線基地局BS2は、アンテナ2301~2304、無線通信部2310、制御部2320、記憶部2330、及び有線通信部2340を有する。
 無線通信部2310は、アンテナ2301~2304を介して無線端末UE4~UE6から無線信号を受信する受信部2311と、アンテナ2301~2304を介して無線端末UE4~UE6に無線信号を送信する送信部2312とを有する。受信部2311は、無線端末UE4~UE6それぞれについて、受信した無線信号に含まれるパイロット信号に基づいてチャネル推定を実行し、チャネル推定の結果を用いてフィードバック情報(RI,PMI,CQI)を生成する。送信部2312は、無線端末UE4~UE6それぞれに対し、フィードバック情報を送信する。
 制御部2320は、例えばCPUによって構成され、無線基地局BS1が具備する各種機能を制御する。記憶部2330は、例えばメモリによって構成され、無線基地局BS1における制御などに用いられる各種情報を記憶する。有線通信部2340は、有線通信網を介して制御装置2100Aに接続される。有線通信部2340は、干渉情報及び特定用情報を制御装置2100Aから受信する。
 制御部2320は、干渉情報取得部2321、及び端末特定部2322を有する。
 干渉情報取得部2321は、有線通信部2340が制御装置2100Aから受信した干渉情報を取得する。端末特定部2322は、有線通信部2340が制御装置2100Aから受信した特定用情報を用いて、無線基地局BS2に接続中の複数の無線端末の中から、干渉源端末を特定する。端末特定部2322は、次の(a3)又は(b3)の何れかの方法、あるいは各方法の組み合わせを用いて干渉源端末を特定する。
 方法(a3):端末識別情報が特定用情報として用いられる場合、端末特定部2322は、無線基地局BS2に接続中の複数の無線端末の中から、当該端末識別情報が示す無線端末を干渉源端末として特定する。
 方法(b3):チャネル識別情報が特定用情報として用いられる場合、端末特定部2322は、無線基地局BS2に接続中の複数の無線端末の中から、当該チャネル識別情報が示すチャネルを上り通信に使用している無線端末を干渉源端末として特定する。
 送信部2312は、端末特定部2322によって特定された干渉源端末(第3実施形態では、無線端末UE4~UE6)に対し、上述した制御情報を送信する。
(2.4)無線端末UE4の構成
 図21は、無線端末UE4の構成を示す機能ブロック図である。他の無線端末(無線端末UE1~UE3,UE5,UE6)は無線端末UE4と同様に構成されるため、ここでは、各無線端末を代表して無線端末UE4について説明する。
 図21に示すように、無線端末UE4は、アンテナ2401,2402、無線通信部2410、制御部2420、及び記憶部2430を有する。
 無線通信部2410は、アンテナ2401,2402を介して無線基地局BS2から無線信号を受信する受信部2411と、アンテナ2401,2402を介して無線信号を無線基地局BS2に送信する送信部2412とを有する。受信部2411が無線基地局BS2から受信した無線信号は、フィードバック情報及び制御情報を含む。
 送信部2412は、受信部2411が受信したフィードバック情報に基づいてマルチアンテナ送信を制御する。具体的には、送信部2412は、送信信号をRIに従って複数のレイヤに分配し、各レイヤの送信信号を重み付け(以下、プリコーディング)し、プリコーディング後の送信信号に対してCQIに従った適応変調及び送信電力制御を行う。
 制御部2420は、例えばCPUによって構成され、無線端末UE4が具備する各種機能を制御する。記憶部2430は、例えばメモリによって構成され、無線端末UE4における制御などに用いられる各種情報を記憶する。
 制御部2420は、制御情報取得部2421、及び送信指向性制御部2422を有する。制御情報取得部2421は、送信部2412が送信する第2無線信号を干渉信号として受信する無線基地局BS1の方向D1に対して、指向性ビームのヌル点を向けるための制御情報を取得する取得部を構成する。
 送信指向性制御部2422は、フィードバック情報のうちのPMIに基づいて、アンテナ2401,2402が形成する指向性ビームを制御する制御部を構成する。具体的には、無線基地局BS2からフィードバックされたPMIに対応するプリコーディングマトリクスを用いたプリコーディングによって、アンテナ2401,2402が形成する指向性ビームを無線基地局BS2の方向D4に向けることができる。
 さらに、送信指向性制御部2422は、フィードバック情報と、制御情報取得部2421が取得した制御情報とに基づいて、無線基地局BS2の方向D4に指向性ビームを向け、且つ、無線基地局BS1の方向D1にヌル点を向ける。
(3)無線端末における送信指向性制御
 次に、図22及び図23を用いて、送信指向性制御部2422によって実行される送信指向性制御の詳細について説明する。ここでは、無線基地局BS1の方向D1にヌル点を向ける場合を例に説明する。
 送信指向性制御部2422は、制御情報に基づいて、無線基地局BS1の方向D1にヌル点を向けるプリコーディングマトリクスグループを選択する。プリコーディングマトリクスグループとは、図22に示すように、同一方向にヌル点を有する複数のプリコーディングマトリクスからなるグループであり、無線端末UE4の記憶部2430に予め記憶されている。図22の例では、それぞれ異なる方向にヌル点を有するプリコーディングマトリクスグループ1~8を図示している。
 プリコーディングマトリクスグループは、図23に示すように、それぞれ異なる方向に指向性ビームを有する複数のプリコーディングマトリクスを含む。図23の例では、プリコーディングマトリクスグループ1に含まれるプリコーディングマトリクス1~6それぞれは、指向性ビームを6方向に有している。プリコーディングマトリクス1~6それぞれの指向性ビームのパターンは異なっている。
 送信指向性制御部2422は、無線基地局BS1の方向D1にヌル点を有するプリコーディングマトリクスグループの中から、無線基地局BS2からフィードバックされたPMIに基づいて、無線基地局BS2の方向D4に指向性ビームを有するプリコーディングマトリクスを選択する。選択されたプリコーディングマトリクスは、無線端末UE4の送信部2412におけるプリコーディングに適用される。
(4)無線通信システムの動作
 図24は、無線通信システム2010Aの動作を示す動作シーケンス図である。図24においては、LTE規格に従ったフィードバック情報(RI,PMI,CQI)のうち、PMIのみを図示して説明する。図24に示す動作シーケンスは、所定の時間間隔(例えば、通信フレーム単位)で繰り返し実行される。
 ステップS2101において、無線端末UE4は、チャネルAが用いられる第2無線信号を送信する。ステップS2104において、無線端末UE1は、チャネルAが用いられる第1無線信号を送信する。無線基地局BS1の受信部2211は、チャネルAが用いられる第1無線信号を所望信号として受信し、チャネルAが用いられる第2無線信号を当該所望信号と干渉する干渉信号として受信する。
 ステップS2102において、無線端末UE5は、チャネルBが用いられる第2無線信号を送信する。ステップS2105において、無線端末UE2は、チャネルBが用いられる第1無線信号を送信する。無線基地局BS1の受信部2211は、チャネルBが用いられる第1無線信号を所望信号として受信し、チャネルBが用いられる第2無線信号を当該所望信号と干渉する干渉信号として受信する。
 ステップS2103において、無線端末UE6は、チャネルCが用いられる第2無線信号を送信する。ステップS2106において、無線端末UE3は、チャネルCが用いられる第1無線信号を送信する。無線基地局BS1の受信部211は、チャネルCが用いられる第1無線信号を所望信号として受信し、チャネルCが用いられる第2無線信号を当該所望信号の干渉信号として受信する。
 ステップS2107において、無線基地局BS1の受信部2211は、無線端末UE1~UE3それぞれについて、第1無線信号に含まれるパイロット信号に基づき、無線伝搬路のチャネル応答を推定するチャネル推定を実行する。
 無線基地局BS1の特定用情報取得部2223は、無線端末UE1~UE3それぞれから受信部2211が受信した第2無線信号から、上記(a1)~(c1)の方法に従い、特定用情報を取得する。
 ステップS2108において、無線基地局BS1の受信部2211は、推定されたチャネル応答に基づいて、プリコーディングマトリクスを計算し、計算したプリコーディングマトリクスに対応するPMIを取得する。
 ステップS2109において、無線基地局BS1の到来方向推定部2221は、無線基地局BS1への第2無線信号の到来方向D1を推定する。無線基地局BS1の干渉情報生成部2222は、到来方向D1に基づく干渉情報を生成する。同様にして、到来方向推定部2221は、無線基地局BS1への第2無線信号の到来方向D2及びD3を推定する。干渉情報生成部2222は、到来方向D2及びD3に基づく干渉情報を生成する。
 ステップS2110において、無線基地局BS1の受信部2211は、推定されたチャネル応答に基づいて、受信信号を等化(チャネル等化)し、等化した受信信号を復号する。復号された受信信号は、無線基地局BS1の制御部2220に入力される。
 ステップS2111において、無線基地局BS1の送信部2212は、フィードバック情報としてのPMIを無線端末UE1に送信する。同様にして、送信部2212は、PMIを無線端末UE2に送信し(ステップS2112)、PMIを無線端末UE3に送信する(ステップS2113)。
 ステップS2115aにおいて、無線端末UE1は、無線基地局BS1から受信したPMIに対応するプリコーディングマトリクスを選択する。無線端末UE1は、チャネルAが用いられる第1無線信号を無線基地局BS1に次回送信する際に、選択したプリコーディングマトリクスを用いたプリコーディングを行う。
 ステップS2115bにおいて、無線端末UE2は、無線基地局BS1から受信したPMIに対応するプリコーディングマトリクスを選択する。無線端末UE2は、チャネルBが用いられる第1無線信号を無線基地局BS1に次回送信する際に、選択したプリコーディングマトリクスを用いたプリコーディングを行う。
 ステップS2115cにおいて、無線端末UE3は、無線基地局BS1から受信したPMIに対応するプリコーディングマトリクスを選択する。無線端末UE3は、チャネルCが用いられる第1無線信号を無線基地局BS1に次回送信する際に、選択したプリコーディングマトリクスを用いたプリコーディングを行う。
 ステップS2114において、無線基地局BS1の有線通信部2240は、干渉情報生成部2222によって生成された干渉情報と、特定用情報取得部2223によって取得された特定用情報とを制御装置2100Aに送信する。制御装置2100Aの受信部2111は、干渉情報及び特定用情報を受信する。
 ステップS2116において、制御装置2100Aの基地局特定部2121は、受信部2111が受信した特定用情報を用いて、上記(a2)~(c2)の方法に従い、干渉源端末の接続先の無線基地局BS2を特定する。制御装置2100Aの送信部2112は、基地局特定部2121によって特定された無線基地局BS2に対し、干渉情報及び特定用情報を送信する。無線基地局BS2の有線通信部2340は、干渉情報及び特定用情報を受信する。
 一方で、無線基地局BS2の受信部2311は、無線基地局BS2を接続先とする無線端末UE4~UE6それぞれについて、プリコーディングマトリクスを計算し、計算したプリコーディングマトリクスに対応するPMIを取得する。
 また、無線基地局BS2の干渉情報取得部2321は、有線通信部2340が制御装置2100Aから受信した干渉情報を取得する。無線基地局BS2の端末特定部2322は、有線通信部2340が制御装置2100Aから受信した特定用情報を用いて、上記(a3)、(b3)の方法に従い、無線基地局BS2に接続中の複数の無線端末の中から、干渉源端末を特定する。ここでは、無線端末UE4~UE6が干渉源端末として特定されたものとする。
 ステップS2119aにおいて、無線基地局BS2の送信部2312は、フィードバック情報としてのPMIと、制御情報とを無線端末UE4に送信する。ステップS2119bにおいて、送信部2312は、フィードバック情報としてのPMIと、制御情報とを無線端末UE5に送信する。ステップS2119cにおいて、送信部2312は、フィードバック情報としてのPMIと、制御情報とを無線端末UE6に送信する。無線端末UE4~UE6それぞれの受信部2411は、PMI及び制御情報を受信する。
 ステップS2120aにおいて、無線端末UE4の送信指向性制御部2422は、受信部2411が受信したPMI及び制御情報に基づいて、無線基地局BS2の方向D4に指向性ビームを向け、且つ、無線基地局BS1の方向D1にヌル点を向けるように送信部2412を制御する。具体的には、無線端末UE4の送信指向性制御部2422は、無線基地局BS1の方向D1にヌル点を向けるプリコーディングマトリクスグループの中から、無線基地局BS2の方向D4に指向性ビームを向けるプリコーディングマトリクスを選択する。無線端末UE4の送信部2412は、チャネルAが用いられる第2無線信号を次回送信する際に、選択したプリコーディングマトリクスを用いたプリコーディングを行う。
 同様にして、ステップS2120bにおいて、無線端末UE5の送信指向性制御部2422は、受信部2411が受信したPMI及び制御情報に基づいて、無線基地局BS1の方向D2にヌル点を向けるプリコーディングマトリクスグループの中から、無線基地局BS2の方向D5に指向性ビームを向けるプリコーディングマトリクスを選択する。無線端末UE5の送信部2412は、チャネルBが用いられる第2無線信号を次回送信する際に、選択したプリコーディングマトリクスを用いたプリコーディングを行う。
 ステップS2120bにおいて、無線端末UE6の送信指向性制御部2422は、受信部2411が受信したPMI及び制御情報に基づいて、無線基地局BS1の方向D3にヌル点を向けるプリコーディングマトリクスグループの中から、無線基地局BS2の方向D6に指向性ビームを向けるプリコーディングマトリクスを選択する。無線端末UE6の送信部2412は、チャネルCが用いられる第2無線信号を次回送信する際に、選択したプリコーディングマトリクスを用いたプリコーディングを行う。
(5)効果
 第3実施形態に係る無線通信システム2010Aによれば、無線基地局BS1が無線端末UE4~UE6から第2無線信号を干渉信号として受信する場合に、無線端末UE4~UE6において、無線基地局BS1の方向D1~D3にヌル点を向ける。このため、無線基地局BS1が第2無線信号(干渉信号)を受信することを回避でき、無線基地局BS1における通信品質を十分に改善することができる。このように、干渉信号の発生を元から防ぐことで、セルスループットが増大するとともに各無線端末に高速なアップリンク通信を提供できる。
 第3実施形態では、無線端末UE4~UE6の送信指向性制御部2422は、無線基地局BS2から受信したPMI及び制御情報に基づいて、無線基地局BS1の方向D1~D3にヌル点を向け、且つ、無線基地局BS2の方向D4~D6に指向性ビームを向ける。したがって、無線基地局BS1における通信品質を十分に改善しつつ、無線基地局BS2における通信品質も良好に保つことができる。
 第3実施形態では、制御装置2100Aの基地局特定部2121は、上記(a2)~(c2)の方法に従い、干渉源端末の接続先の無線基地局BS2を特定する。これにより、干渉源端末の接続先無線基地局の候補が複数存在する場合であっても、干渉源端末の接続先無線基地局を容易に特定でき、干渉情報を適切な無線基地局に対して送信できる。
 第3実施形態では、無線基地局BS2の端末特定部2322は、上記(a3)、(b3)の方法に従い、干渉源端末を特定する。これにより、干渉源端末の候補が複数存在する場合であっても、干渉源端末を容易に特定でき、制御情報を適切な無線端末に対して送信できる。
[第3実施形態の変更例1]
 上述した第3実施形態では、無線端末UE4~UE6の制御情報取得部2421は、干渉情報及び制御情報として、到来方向を示す係数又は角度の情報、又は、PMIを無線基地局BS2から取得していた。
 しかしながら、無線基地局BS1の位置から無線基地局BS1の大まかな方向が特定できるため、干渉情報及び制御情報としては、無線基地局BS1の位置を示す情報を使用してもよい。無線基地局BS1の設置位置は固定であるため、無線基地局BS1の位置情報を予め無線基地局BS1又は制御装置2100Aに保持させておくことができる。
 無線基地局BS1の位置情報を干渉情報及び制御情報として使用する場合、無線端末UE4~UE6の送信指向性制御部2422は、無線基地局BS1の位置から、無線基地局BS1の方向を特定すればよい。
 無線基地局BS1の方向をより正確に特定するためには、制御情報取得部2421は、無線端末UE4~UE6それぞれに設けられたGPS等を利用して、無線端末UE4~UE6それぞれの位置情報をさらに取得してもよい。無線端末UE4~UE6それぞれの位置と、無線基地局BS1の位置とから、無線基地局BS1の詳細な方向が特定できる。
[第3実施形態の変更例2]
 上述した第3実施形態では、無線端末UE4~UE6の制御情報取得部2421は、干渉情報及び制御情報として、到来方向を示す係数又は角度の情報、又は、PMIを無線基地局BS2から取得していたが、他の方法で制御情報を取得してもよい。
 具体的には、無線基地局BS1からの下り無線信号を無線端末UE4~UE6が受信する場合に、制御情報取得部421は、当該下り無線信号の到来方向を推定し、推定した到来方向を示す情報を制御情報として取得してもよい。この場合、無線端末UE4~UE6の送信指向性制御部422は、当該下り無線信号の到来方向から、無線基地局BS1の方向を特定すればよい。
[第4実施形態]
 上述した第3実施形態では、制御装置2100Aが、無線基地局BS1と無線基地局BS2とは個別に設けられていた。第4実施形態では、制御装置2100Aが無線基地局BS1に含まれる形態について説明する。
 なお、第4実施形態においては、(1)無線通信システムの構成、(2)無線通信システムの動作、(3)効果について説明する。
(1)無線通信システムの構成
 図25は、第4実施形態に係る無線通信システム2010Bの全体構成図である。
 図25に示すように、無線通信システム2010Bにおいて、無線基地局BS1’は、制御装置2100Bの機能を有している。具体的には、図26に示すように、無線基地局BS1’の制御部2220は、干渉源端末の接続先の無線基地局を特定する基地局特定部2224を有する。基地局特定部2224の機能は、第3実施形態で説明した基地局特定部2121の機能と同様である。
(2)無線通信システムの動作
 図27は、無線通信システム2010Bの動作を示す動作シーケンス図である。図27において、ステップS2213までの各処理、及び、ステップS2218以降の各処理は第3実施形態と同様であるため、ステップS2214,S2217の処理について説明する。
 ステップS2214において、無線基地局BS1’の基地局特定部2224は、特定用情報を用いて、上記(a2)~(c2)の方法に従い、干渉源端末の接続先の無線基地局BS2を特定する。
 ステップS2217において、無線基地局BS1’の有線通信部2240は、基地局特定部2224によって特定された無線基地局BS2に対し、干渉情報及び特定用情報を送信する。無線基地局BS2の有線通信部2340は、干渉情報及び特定用情報を受信する。
(3)効果
 第4実施形態に係る無線通信システム2010Bによれば、第3実施形態の効果に加えて、次のような効果が得られる。すなわち、制御装置2100Bを別途設ける必要がないため、制御装置2100Bの設置コストを削減できる。
[第3及び第4実施形態に係るその他の実施形態]
 例えば、第3実施形態の変更例1,2は、第3実施形態に限らず、第4実施形態に対しても適用可能である。
 上述した第3及び第4実施形態では、無線基地局BS1が、第2無線信号を受信した場合に当該第2無線信号を干渉信号とみなしていたが、所定の受信レベル未満の第2無線信号を許容してもよい。この場合、無線基地局BS1は、第2無線信号を受信し、且つ、当該第2無線信号の受信レベルが所定の受信レベル以上である場合に、当該第2無線信号を干渉信号とみなすことになる。
 第3及び第4実施形態では、複信方式としてFDD方式が採用されていたが、FDD方式に代えて時分割複信(TDD)方式が採用されてもよい。
 第3及び第4実施形態では、アップリンク通信において、送信アンテナが2つであり、受信アンテナが4つである場合(2×4MIMO)について説明した。しかしながら、アップリンク通信において、受信アンテナが1つである場合、すなわち、複数入力一出力(MISO)のマルチアンテナ送信が実施される形態でもよい。
 第3及び第4実施形態では、無線基地局BS1及びBS2それぞれに複数の無線端末が接続されていたが、無線基地局BS1及びBS2それぞれに1つの無線端末が接続される形態でもよい。
 第3及び第4実施形態では、LTE規格に基づく無線通信システム2010A及び2010Bについて説明したが、LTE規格に限らず、WiMAX規格(IEEE 802.16)に基づく無線通信システムや、3GPP2において標準化されているUMB(Ultra Mobile Broadband)規格など対しても本発明を適用可能である。
 なお、日本国特許出願第2009-12326号(2009年1月22日出願)、及び第2009-17397号(2009年1月28日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明によれば、無線通信における干渉の問題の解決を図ることができるため、移動体通信などの無線通信において有用である。

Claims (26)

  1.  第1無線端末と、
     複数の第1送信アンテナを介して、所定の通信チャネルが用いられる第1無線信号を前記第1無線端末に送信する第1無線基地局と、
     複数の第2送信アンテナを介して、前記所定の通信チャネルが用いられる第2無線信号を第2無線端末に送信する第2無線基地局と、
     前記第1無線基地局と前記第2無線基地局とを制御する制御装置とを備え、
     前記第1無線端末は、前記第2無線基地局から前記第2無線信号を受信した場合に、前記第1無線端末への前記第2無線信号の到来方向を推定し、前記推定した到来方向に基づく干渉情報を前記第1無線基地局に送信し、
     前記制御装置は、前記第1無線基地局が受信した前記干渉情報に基づいて、前記第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線端末の方向に向けるための制御情報を前記第2無線基地局に送信する無線通信システム。
  2.  前記第2無線基地局は、前記制御装置から受信した前記制御情報と、前記第2無線端末からフィードバックされるフィードバック情報とに基づいて、前記第1無線端末の方向に前記ヌル点を向け、且つ、前記第2無線端末の方向に前記指向性ビームを向けて、前記第2無線信号を送信する請求項1に記載の無線通信システム。
  3.  前記制御装置は、前記第1無線基地局に含まれる請求項1に記載の無線通信システム。
  4.  前記制御装置は、前記第1無線基地局と前記第2無線基地局とは個別に設けられる請求項1に記載の無線通信システム。
  5.  前記第1無線端末は、前記第2無線信号に基づいて、前記第2無線基地局を識別する基地局識別情報を前記第1無線基地局に送信し、
     前記制御装置は、
     前記第1無線基地局が受信した前記基地局識別情報に基づいて、複数の無線基地局の中から前記第2無線基地局を特定し、
     前記特定した第2無線基地局に対し、前記制御情報を送信する請求項1に記載の無線通信システム。
  6.  前記制御装置は、
     前記干渉情報と前記第2無線基地局とを対応付けた対応情報を予め保持し、
     前記第1無線基地局が受信した前記干渉情報と、前記保持している対応情報とに基づいて、複数の無線基地局の中から前記第2無線基地局を特定し、
     前記特定した第2無線基地局に対し、前記制御情報を送信する請求項1に記載の無線通信システム。
  7.  前記干渉情報は、前記第1無線端末が推定した前記到来方向を示す情報、又は、前記第1無線端末の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報である請求項1に記載の無線通信システム。
  8.  前記制御情報は、前記第1無線端末が推定した前記到来方向を示す情報、又は、前記第1無線端末の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報である請求項1に記載の無線通信システム。
  9.  所定の通信チャネルが用いられる第1無線信号を複数の送信アンテナを介して送信する第1無線基地局から、前記第1無線信号を受信する受信部と、
     前記受信部が、前記所定の通信チャネルが用いられる第2無線信号を第2無線基地局から受信した場合に、前記無線端末への前記第2無線信号の到来方向を推定する到来方向推定部と、
     前記到来方向推定部によって推定された前記到来方向に基づく干渉情報を前記第1無線基地局に送信する送信部とを備える無線端末。
  10.  所定の通信チャネルが用いられる第1無線信号を複数の第1送信アンテナを介して第1無線端末に送信する第1無線基地局と、前記所定の通信チャネルが用いられる第2無線信号を複数の第2送信アンテナを介して第2無線端末に送信する第2無線基地局とを制御する制御装置であって、
     前記第1無線端末への前記第2無線信号の到来方向に基づく干渉情報を前記第1無線基地局が前記第1無線端末から受信した場合に、前記干渉情報に基づいて、前記第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線端末の方向に向けるための制御情報を前記第2無線基地局に送信する送信部を備える制御装置。
  11.  所定の通信チャネルが用いられる第1無線信号を複数の第1送信アンテナを介して第1無線基地局から第1無線端末に送信するステップと、
     前記所定の通信チャネルが用いられる第2無線信号を複数の第2送信アンテナを介して第2無線基地局から第2無線端末に送信するステップと、
     前記第1無線端末が、前記第2無線基地局から前記第2無線信号を受信した場合に、前記第1無線端末への前記第2無線信号の到来方向を推定するステップと、
     前記推定するステップにおいて推定した前記到来方向に基づく干渉情報を前記第1無線端末から前記第1無線基地局に送信するステップと、
     前記第1無線基地局と前記第2無線基地局とを制御する制御装置が、前記第1無線基地局が受信した前記干渉情報に基づいて、前記第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線端末の方向に向けさせるための制御情報を前記第2無線基地局に送信するステップとを備える無線通信方法。
  12.  複数の第1送信アンテナを有する第1無線端末から、所定の通信チャネルが用いられる第1無線信号を受信する第1無線基地局と、
     複数の第2送信アンテナを有する第2無線端末から、前記所定の通信チャネルが用いられる第2無線信号を受信する第2無線基地局と、
     前記第1無線基地局及び前記第2無線基地局を制御する制御装置とを備え、
     前記第1無線基地局は、前記第2無線端末から前記第2無線信号を受信した場合に、前記第1無線基地局への前記第2無線信号の到来方向に基づく干渉情報を生成し、
     前記制御装置は、前記第1無線基地局によって生成された前記干渉情報を前記第2無線基地局に送信し、
     前記第2無線基地局は、前記干渉情報を受信した場合に、前記受信した干渉情報に基づいて、前記複数の第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線基地局の方向に向けるための制御情報を前記第2無線端末に送信する無線通信システム。
  13.  前記第2無線端末は、前記第2無線基地局から受信した前記制御情報と、前記第2無線基地局からフィードバックされるフィードバック情報とに基づいて、前記第1無線基地局の方向に前記ヌル点を向け、且つ、前記第2無線基地局の方向に前記指向性ビームを向けて、前記第2無線信号を送信する請求項12に記載の無線通信システム。
  14.  前記制御装置は、
     前記第2無線基地局を含む複数の無線基地局の中から、前記第2無線信号に関する情報に基づいて前記第2無線基地局を特定する基地局特定部と、
     前記基地局特定部によって特定された前記第2無線基地局に対し、前記干渉情報を送信する干渉情報送信部とを備える請求項12に記載の無線通信システム。
  15.  前記制御装置は、前記複数の無線基地局の何れかに接続中の無線端末を識別する端末識別情報と、前記無線端末の接続先の無線基地局とを対応付けた接続情報を記憶する記憶部を備え、
     前記第2無線信号は、前記第2無線端末を識別する端末識別情報を含み、
     前記基地局特定部は、前記記憶部が記憶する前記接続情報と、前記第2無線信号に含まれる前記端末識別情報とに基づいて、前記複数の無線基地局の中から前記第2無線基地局を特定する請求項14に記載の無線通信システム。
  16.  前記干渉情報送信部は、前記干渉情報に加え、前記第2無線信号に含まれる前記端末識別情報を前記第2無線基地局に送信し、
     前記第2無線基地局は、
     前記制御装置から受信した前記端末識別情報に基づいて、前記第2無線基地局に接続中の複数の無線端末の中から前記第2無線端末を特定する端末特定部と、
     前記端末特定部によって特定された前記第2無線端末に対し、前記制御情報を送信する制御情報送信部とを備える請求項15に記載の無線通信システム。
  17.  前記制御装置は、前記複数の無線基地局の何れかに接続中の無線端末が上り通信に使用している通信チャネルを識別するチャネル識別情報と、前記無線端末の接続先の無線基地局とを対応付けたチャネル情報を記憶する記憶部を備え、
     前記基地局特定部は、前記記憶部が記憶する前記チャネル情報と、前記所定の通信チャネルを識別するチャネル識別情報とに基づいて、前記複数の無線基地局の中から前記第2無線基地局を特定する請求項14に記載の無線通信システム。
  18.  前記干渉情報送信部は、前記干渉情報に加え、前記所定の通信チャネルを識別する前記チャネル識別情報を前記第2無線基地局に送信し、
     前記第2無線基地局は、
     前記制御装置から受信した前記チャネル識別情報に基づいて、前記第2無線基地局に接続中の複数の無線端末の中から前記第2無線端末を特定する端末特定部と、
     前記端末特定部によって特定された前記第2無線端末に対し、前記制御情報を送信する制御情報送信部とを備える請求項17に記載の無線通信システム。
  19.  前記第2無線信号は、前記第2無線基地局に固有の信号系列を含み、
     前記基地局特定部は、前記第2無線信号に含まれる前記信号系列に基づいて、前記複数の無線基地局の中から前記第2無線基地局を特定する請求項14に記載の無線通信システム。
  20.  前記干渉情報は、前記第1無線基地局が推定した前記到来方向を示す情報、又は、前記第1無線基地局の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報である請求項12に記載の無線通信システム。
  21.  前記制御情報は、前記第1無線基地局が推定した前記到来方向を示す情報、又は、前記第1無線基地局の方向に前記ヌル点を向けさせる送信アンテナ重みを識別する情報である請求項12に記載の無線通信システム。
  22.  前記制御装置は、前記第1無線基地局に含まれる、又は、前記第1無線基地局と前記第2無線基地局とは個別に設けられる請求項12に記載の無線通信システム。
  23.  複数の送信アンテナを有する無線端末から、所定の通信チャネルが用いられる第1無線信号を受信する受信部と、
     前記受信部が、他の無線基地局に接続中の無線端末から、前記所定の通信チャネルが用いられる第2無線信号を受信した場合に、前記無線基地局への前記第2無線信号の到来方向に基づく干渉情報を生成する干渉情報生成部と、
     前記他の無線基地局、又は、前記無線基地局と前記他の無線基地局とを制御する制御装置に対し、前記干渉情報生成部によって生成された前記干渉情報を送信する干渉情報送信部とを備える無線基地局。
  24.  複数の送信アンテナを有する無線端末から、所定の通信チャネルが用いられる無線信号を受信する受信部と、
     他の無線基地局への前記無線信号の到来方向に基づく干渉情報を、前記他の無線基地局、又は、前記無線基地局と前記他の無線基地局とを制御する制御装置から取得する干渉情報取得部と、
     前記干渉情報取得部が取得した前記干渉情報に基づいて、前記複数の送信アンテナが形成する指向性ビームのヌル点を前記他の無線基地局の方向に向けるための制御情報を前記無線端末に送信する制御情報送信部とを備える無線基地局。
  25.  複数の第1送信アンテナを有する第1無線端末から、所定の通信チャネルが用いられる第1無線信号を受信する第1無線基地局と、
     複数の第2送信アンテナを有する第2無線端末から、前記所定の通信チャネルが用いられる第2無線信号を受信する第2無線基地局とを制御する制御装置であって、
     前記第1無線基地局が、前記第2無線端末から前記第2無線信号を受信した場合に、前記第2無線基地局を含む複数の無線基地局の中から、前記第2無線信号に関する情報に基づいて前記第2無線基地局を特定する基地局特定部と、
     前記基地局特定部によって特定された前記第2無線基地局に対し、前記第1無線基地局への前記第2無線信号の到来方向に基づく干渉情報を送信する干渉情報送信部とを備える制御装置。
  26.  複数の第1送信アンテナを有する第1無線端末から、所定の通信チャネルが用いられる第1無線信号を第1無線基地局が受信するステップと、
     複数の第2送信アンテナを有する第2無線端末から、前記所定の通信チャネルが用いられる第2無線信号を第2無線基地局が受信するステップと、
     前記第1無線基地局が、前記第2無線端末から前記第2無線信号を受信した場合に、前記第1無線基地局への前記第2無線信号の到来方向に基づく干渉情報を生成するステップと、
     前記第1無線基地局及び前記第2無線基地局を制御する制御装置が、前記第1無線基地局によって生成された前記干渉情報を前記第2無線基地局に送信するステップと、
     前記第2無線基地局が、前記干渉情報を受信した場合に、前記受信した干渉情報に基づいて、前記複数の第2送信アンテナが形成する指向性ビームのヌル点を前記第1無線基地局の方向に向けるための制御情報を前記第2無線端末に送信するステップとを備える無線通信方法。
PCT/JP2010/050756 2009-01-22 2010-01-22 無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法 WO2010084936A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/145,764 US8934558B2 (en) 2009-01-22 2010-01-22 Radio communication system, radio terminal, radio base station, control device and radio communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-012326 2009-01-22
JP2009012326A JP5244630B2 (ja) 2009-01-22 2009-01-22 無線通信システム、無線端末、制御装置、及び無線通信方法
JP2009017397A JP5232031B2 (ja) 2009-01-28 2009-01-28 無線通信システム、無線基地局、制御装置、及び無線通信方法
JP2009-017397 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010084936A1 true WO2010084936A1 (ja) 2010-07-29

Family

ID=42355988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050756 WO2010084936A1 (ja) 2009-01-22 2010-01-22 無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法

Country Status (2)

Country Link
US (1) US8934558B2 (ja)
WO (1) WO2010084936A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073488A1 (ja) * 2012-11-06 2014-05-15 京セラ株式会社 移動通信システム、ユーザ端末、及びプロセッサ
WO2014073487A1 (ja) * 2012-11-06 2014-05-15 京セラ株式会社 通信制御方法、基地局、及びプロセッサ
EP2642809A4 (en) * 2010-11-18 2016-01-20 Fujitsu Ltd BASISSTATION DEVICE, COMMUNICATION SYSTEM AND COMMUNICATION PROCESS

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369539B (zh) 2012-04-06 2016-10-05 华为技术有限公司 干扰协调的方法和装置
US20130331136A1 (en) * 2012-06-07 2013-12-12 Kai Yang Method And Apparatus For Coordinated Beamforming
JP5954126B2 (ja) * 2012-11-14 2016-07-20 富士通株式会社 無線装置、制御方法、制御プログラム、及び、表示方法
JP6182393B2 (ja) * 2013-08-27 2017-08-16 株式会社Nttドコモ 無線基地局装置、及び送信電力決定方法
AU2015380881A1 (en) 2015-01-29 2017-07-06 Sony Corporation Device and method
WO2016141954A1 (en) * 2015-03-06 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) A method, control system and communication system for adapting beam patterns
EP3282593B1 (en) * 2015-04-09 2021-03-03 Samsung Electronics Co., Ltd. Method and device for controlling transmission power in wireless communication system using multiple antennas
CN105812001B (zh) * 2016-03-10 2018-02-06 上海斐讯数据通信技术有限公司 一种多频信号共用接收方法及系统
US11683823B2 (en) * 2020-03-02 2023-06-20 Fujitsu Limited Control device and control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008494A (ja) * 2001-06-22 2003-01-10 Kddi Corp 無線基地局
JP2003115792A (ja) * 2001-10-03 2003-04-18 Kyocera Corp アダプティブアレイ基地局
JP2004297483A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 移動局、通信制御方法
JP2007312205A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd 基地局装置およびアレイアンテナ制御方法
JP2008160380A (ja) * 2006-12-22 2008-07-10 Nec Corp セル間干渉抑圧方法、無線基地局、ユーザ端末
JP2008536342A (ja) * 2005-04-14 2008-09-04 松下電器産業株式会社 無線受信装置、無線送信装置、無線通信システム、無線受信方法、無線送信方法および無線通信方法
JP2008236222A (ja) * 2007-03-19 2008-10-02 Hitachi Communication Technologies Ltd 無線通信方法
JP2008252359A (ja) * 2007-03-29 2008-10-16 Kyocera Corp 通信制御方法、通信システムおよび通信制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512481B1 (en) * 1996-10-10 2003-01-28 Teratech Corporation Communication system using geographic position data
AU2009222991B2 (en) * 2008-03-12 2013-02-07 Raytheon Company Autonomous sonar system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008494A (ja) * 2001-06-22 2003-01-10 Kddi Corp 無線基地局
JP2003115792A (ja) * 2001-10-03 2003-04-18 Kyocera Corp アダプティブアレイ基地局
JP2004297483A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 移動局、通信制御方法
JP2008536342A (ja) * 2005-04-14 2008-09-04 松下電器産業株式会社 無線受信装置、無線送信装置、無線通信システム、無線受信方法、無線送信方法および無線通信方法
JP2007312205A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd 基地局装置およびアレイアンテナ制御方法
JP2008160380A (ja) * 2006-12-22 2008-07-10 Nec Corp セル間干渉抑圧方法、無線基地局、ユーザ端末
JP2008236222A (ja) * 2007-03-19 2008-10-02 Hitachi Communication Technologies Ltd 無線通信方法
JP2008252359A (ja) * 2007-03-29 2008-10-16 Kyocera Corp 通信制御方法、通信システムおよび通信制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2642809A4 (en) * 2010-11-18 2016-01-20 Fujitsu Ltd BASISSTATION DEVICE, COMMUNICATION SYSTEM AND COMMUNICATION PROCESS
WO2014073488A1 (ja) * 2012-11-06 2014-05-15 京セラ株式会社 移動通信システム、ユーザ端末、及びプロセッサ
WO2014073487A1 (ja) * 2012-11-06 2014-05-15 京セラ株式会社 通信制御方法、基地局、及びプロセッサ
JPWO2014073487A1 (ja) * 2012-11-06 2016-09-08 京セラ株式会社 通信制御方法、基地局、及びプロセッサ
JPWO2014073488A1 (ja) * 2012-11-06 2016-09-08 京セラ株式会社 移動通信システム、ユーザ端末、及びプロセッサ

Also Published As

Publication number Publication date
US8934558B2 (en) 2015-01-13
US20110280330A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2010084937A1 (ja) 無線基地局、無線端末および無線通信方法
WO2010084936A1 (ja) 無線通信システム、無線端末、無線基地局、制御装置、及び無線通信方法
JP7359808B2 (ja) セルラ時分割複信(tdd)ミリ波システムのためのサウンディング参照信号(srs)設計
JP5244631B2 (ja) 無線装置および無線通信方法
EP3289817B1 (en) System and method for multi-level beamformed non-orthogonal multiple access communications
CA2878381C (en) Method and apparatus for channel state information feedback reporting
KR101241910B1 (ko) 다중 셀 환경에서 사운딩 채널을 이용한 협력적 mimo 기법
JP5406919B2 (ja) 無線通信システムおよび統合基地局
JP5682710B2 (ja) Mimo通信ネットワークにおいて使用される方法及びユーザ装置
US8457008B2 (en) Method of transmitting feedback information for performing collaborative MIMO
Li et al. Advancement of MIMO technology in WiMAX: from IEEE 802.16 d/e/j to 802.16 m
CA3053235A1 (en) Method for measuring and reporting channel state information in wireless communication system and device therefor
KR20170091664A (ko) 부분 프리코딩 csi-rs 및 csi 피드백을 위한 다운링크 시그널링 방법 및 장치
WO2010048745A1 (zh) 基于多输入多输出的多基站协作通信的方法及装置
JP2013516799A (ja) ダウンリンクマルチアンテナマルチ基地局干渉協調方法と基地局
US9125074B2 (en) Coordinated multi-point transmission and multi-user MIMO
KR102306100B1 (ko) Mu­mimo 간섭 채널 네트워크 환경에서의 간섭정렬 송수신 신호처리 장치 및 방법
US20160269940A1 (en) Central control station, radio base station and radio communication control method
EP3089507A1 (en) User terminal, wireless base station, and wireless communication method
AU2013247558A2 (en) Method and apparatus for transmitting and receiving a feedback signal in a mobile communication system
CN103220088A (zh) 一种上行干扰抵消的方法、终端和基站
JP5244630B2 (ja) 無線通信システム、無線端末、制御装置、及び無線通信方法
KR20180009776A (ko) 무선 통신 제어 방법, 무선 통신 시스템, 수신 장치 및 송신 장치
CN110011706B (zh) 一种优化协作传输的方法及装置
JP5302024B2 (ja) 無線端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13145764

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733543

Country of ref document: EP

Kind code of ref document: A1