WO2010084912A1 - Waterproofing sound-transmitting film, process for producing same, and electrical product employing same - Google Patents

Waterproofing sound-transmitting film, process for producing same, and electrical product employing same Download PDF

Info

Publication number
WO2010084912A1
WO2010084912A1 PCT/JP2010/050711 JP2010050711W WO2010084912A1 WO 2010084912 A1 WO2010084912 A1 WO 2010084912A1 JP 2010050711 W JP2010050711 W JP 2010050711W WO 2010084912 A1 WO2010084912 A1 WO 2010084912A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptfe
sound
permeable membrane
waterproof sound
porous
Prior art date
Application number
PCT/JP2010/050711
Other languages
French (fr)
Japanese (ja)
Inventor
堀江百合
阿部悠一
古内浩二
瀧石公正
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP10733519.2A priority Critical patent/EP2351647B1/en
Priority to KR1020117007080A priority patent/KR101249195B1/en
Priority to CN2010800023291A priority patent/CN102123863B/en
Publication of WO2010084912A1 publication Critical patent/WO2010084912A1/en
Priority to US13/009,510 priority patent/US8272517B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/80Sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/001Moulding aspects of diaphragm or surround
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials

Abstract

A waterproofing sound-transmitting film which comprises a polytetrafluoroethylene (PTFE) porous film and the waterproofing properties of which have been further improved while keeping the sound-transmitting properties as much intact as possible.  The waterproofing sound-transmitting film comprises a PTFE porous film, the PTFE porous film being composed of a first porous layer and a second porous layer that has been laminated to the first porous layer on the basis of a binding power acting between the PTFE matrixes.  The first and second porous layers are constituted of PTFE having a number-average molecular weight as determined by the standard specific-gravity method of 5.0×107 or higher.  The first porous layer and/or the second porous layer has an average pore diameter of 1 µm or smaller.  The waterproofing sound-transmitting film has a surface density of 1-10 g/m2 and a tensile strength of 10-100 MPa, and the value obtained by dividing the piercing strength of the waterproofing sound-transmitting film by the surface density of the film is 25-50 kPa·m2/g.

Description

防水通音膜とその製造方法ならびにそれを用いた電気製品Waterproof sound-permeable membrane, method for producing the same, and electrical product using the same
 本発明は、音声機能を備えた電気製品に使用される防水通音膜と、その製造方法とに関する。本発明は、さらに、その防水通音膜を用いた電気製品に関する。 The present invention relates to a waterproof sound-permeable membrane used for an electrical product having a voice function, and a manufacturing method thereof. The present invention further relates to an electrical product using the waterproof sound-permeable membrane.
 携帯電話、ノートパソコン、電子手帳、デジタルカメラ、ゲーム機器といった電気製品は、しばしば屋外で使用されるため、防水構造とすることが望まれる。電気製品において防水構造とすることが最も困難な部分は、スピーカ、マイク、ブザーなどの発音部および受音部である。音声機能を備えた電気製品の筐体には、通常、発音部および受音部に対応する位置に開口が設けられ、この開口において、発音部および受音部と外部との間で音声が伝達される。 Since electrical products such as mobile phones, notebook computers, electronic notebooks, digital cameras, and game machines are often used outdoors, it is desirable to have a waterproof structure. The most difficult part of an electrical product to have a waterproof structure is a sound generator and a sound receiver such as a speaker, a microphone, and a buzzer. The housing of an electrical product having a sound function is usually provided with openings at positions corresponding to the sound generation unit and the sound reception unit, and sound is transmitted between the sound generation unit and the sound reception unit and the outside through this opening. Is done.
 良好な通音性を確保しつつ、発音部および受音部のための開口から筐体内部への水の侵入を防ぐ部材として、防水通音膜が知られている。防水通音膜は、音の透過を阻害しにくい材料からなる薄膜である。筐体に設けられた開口を防水通音膜で塞ぐことにより、当該開口における通音性と防水性との両立を図ることができる。防水通音膜には、ポリテトラフルオロエチレン(PTFE)多孔質膜が好適である(特開2004-83811号公報参照)。 A waterproof sound-permeable membrane is known as a member that prevents the entry of water from the opening for the sound generation part and the sound receiving part into the inside of the housing while ensuring good sound permeability. The waterproof sound-permeable membrane is a thin film made of a material that does not obstruct sound transmission. By closing the opening provided in the housing with a waterproof sound-permeable membrane, it is possible to achieve both sound permeability and waterproofness in the opening. As the waterproof sound-permeable membrane, a polytetrafluoroethylene (PTFE) porous membrane is suitable (see Japanese Patent Application Laid-Open No. 2004-83811).
 PTFE多孔質膜の平均孔径を小さくすると、当該膜の防水性が向上する一方で、膜の面密度が大きくなって通音性が低下する。即ち、防水通音膜における防水性と通音性とはトレードオフの関係にあり、通音性を低下させることなく防水性を高めることは容易ではない。特開2004-83811号公報では、PTFE多孔質膜の平均孔径と面密度とを規定することで、防水性と通音性との両立が図られている。 When the average pore diameter of the PTFE porous membrane is reduced, the waterproof property of the membrane is improved, while the surface density of the membrane is increased and the sound transmission property is lowered. That is, there is a trade-off relationship between waterproofness and sound permeability in the waterproof sound-permeable membrane, and it is not easy to improve waterproofness without reducing sound permeability. In Japanese Patent Application Laid-Open No. 2004-83811, both the waterproof property and the sound permeability are achieved by defining the average pore diameter and the surface density of the PTFE porous membrane.
 近年、電気製品に求められる防水性は、年を追うごとに高まってきている。具体的には、生活防水レベルにとどまらず、水中に浸漬可能なレベル、さらには所定の水深で一定時間の使用が可能なレベルの防水性が求められるようになってきている。しかし、特開2004-83811号公報に開示された防水通音膜は、電気製品が水に浸漬した状況までは想定していない。 In recent years, the waterproofness required for electrical products has been increasing year by year. Specifically, there is a demand for waterproofness that is not limited to the level of waterproofing for daily life but that can be immersed in water, and that can be used for a predetermined time at a predetermined depth. However, the waterproof sound-permeable membrane disclosed in Japanese Patent Application Laid-Open No. 2004-83811 does not assume a situation where an electrical product is immersed in water.
 ところで、特開平7-292144号公報には、防水通音膜ではないが、空気中の微粒子を除去するための高性能エアフィルター(いわゆるULPAまたはHEPAフィルター)用PTFE複合多孔膜の製造方法が開示されている。特開平7-292144号公報に記載の製造方法(請求項参照)では、最初に、乳化重合法によって得られたPTFE粉末および液状潤滑剤を含んでなる混合物をペースト押出成形してPTFEフィルムを形成する。次に、得られたフィルムをPTFE焼成体の融点以下の温度で押出方向(長手方向、MD方向)に延伸することにより、少なくとも2枚の延伸されたPTFEフィルムが重なっている複合体を形成する。次に、得られた複合体を幅方向(長手方向に垂直な方向、TD方向)に延伸することにより、長手方向延伸および幅方向延伸による伸長面積倍率が少なくとも50倍となるようにして延伸された複合体を形成する。最後に、必要に応じて、この複合体を熱固定して高性能エアフィルタを得る。また、特開平7-292144号公報には、上述した製造方法によって、圧力損失が小さく(通気性が高く)、孔径が小さく、ピンホールなどの欠陥部が非常に少ないPTFE多孔質膜が得られること、ならびにこの多孔質膜が高性能エアフィルターに好適であることが記載されている(段落0014参照)。 By the way, JP-A-7-292144 discloses a method for producing a PTFE composite porous membrane for a high performance air filter (so-called ULPA or HEPA filter) for removing fine particles in the air, although it is not a waterproof sound-permeable membrane. Has been. In the production method described in JP-A-7-292144 (see claims), first, a PTFE film is formed by paste extrusion molding a mixture containing PTFE powder and liquid lubricant obtained by an emulsion polymerization method. To do. Next, the obtained film is stretched in the extrusion direction (longitudinal direction, MD direction) at a temperature equal to or lower than the melting point of the PTFE fired body to form a composite in which at least two stretched PTFE films overlap. . Next, the obtained composite is stretched in the width direction (direction perpendicular to the longitudinal direction, TD direction) so that the stretched area ratio by longitudinal stretching and width stretching is at least 50 times. To form a complex. Finally, if necessary, the composite is heat-set to obtain a high-performance air filter. Japanese Patent Laid-Open No. 7-292144 discloses that a PTFE porous membrane having a small pressure loss (high air permeability), a small hole diameter, and very few defects such as pinholes can be obtained by the above-described manufacturing method. And that this porous membrane is suitable for high performance air filters (see paragraph 0014).
特開2004-83811号公報JP 2004-83811 A 特開平7-292144号公報JP 7-292144 A
 本発明は、PTFE多孔質膜を含む防水通音膜であって、通音性をなるべく低下させることなく防水性をさらに向上させた、例えば水に浸漬可能な電気製品を実現できる、防水通音膜の提供を目的とする。 The present invention relates to a waterproof sound-permeable membrane including a porous PTFE membrane, which can realize an electrical product that can be immersed in water, for example, which can further improve the waterproof property without reducing the sound-permeable property as much as possible. The purpose is to provide a membrane.
 本発明者らは、水に浸漬可能な電気製品を実現するために、次のような検討結果を得た。 The present inventors obtained the following examination results in order to realize an electrical product that can be immersed in water.
 第1に、水への浸漬によって高い水圧が防水通音膜に一定時間以上加わると、水圧によって膜が伸び、膜の微孔が変形することで水が膜を透過したり、膜が破裂しやすくなったりする。ここで、一定の水圧にも耐えうるような高い防水性(耐水圧性)を実現するには、膜の引張強度が重要なファクターとなる。膜の面密度を大きくすれば引張強度も向上するが、面密度の増加により通音性が低下することは上述のとおりである。バッキング材のラミネートによる引張強度の向上も可能であるが、ラミネートしたバッキング材が防水通音膜の振動を阻害するために、通音性の極端な低下が生じる。なお、ここでいう「高い水圧」とは、一般に0.01MPa以上、特に0.05MPa以上、さらには0.15MPa以上程度の水圧をいうが、これより低い値であっても長時間、膜に水圧が加わることによって、同様の現象が生じることがある。 First, when a high water pressure is applied to the waterproof sound-permeable membrane for a certain period of time by immersion in water, the membrane expands due to the water pressure, and the micropores of the membrane deform to cause water to permeate the membrane or rupture the membrane. It becomes easy. Here, the tensile strength of the membrane is an important factor for realizing high waterproofness (water pressure resistance) that can withstand a constant water pressure. If the surface density of the film is increased, the tensile strength is also improved. However, as described above, the sound permeability is lowered by increasing the surface density. Although it is possible to improve the tensile strength by laminating the backing material, the laminated backing material inhibits the vibration of the waterproof sound-permeable membrane, resulting in an extreme decrease in sound permeability. Incidentally, the “high water pressure” here generally means a water pressure of 0.01 MPa or more, particularly 0.05 MPa or more, and further about 0.15 MPa or more. A similar phenomenon may occur when water pressure is applied.
 第2に、防水通音膜は、通常、電気製品の筐体に設けられた開口に取り付けられるため、その表面が外部に露出している。このため、外部からの異物の接触による破損のおそれがある。膜が破損すると防水性が失われ、また、破損しないまでも膜の表面が傷ついたり膜が変形したりすれば、水圧が加わった際にそこを起点に水漏れや膜の破裂が生じやすくなる。この傾向は、通音性の確保を目的として防水通音膜の面密度を小さくした場合に、特に顕著である。ここで、外部からの異物の接触に対応するためには、膜の突き刺し強度が重要なファクターとなる。膜の面密度を大きくすれば突き刺し強度も向上するが、面密度の増加により通音性が低下することは上述のとおりである。 Second, since the waterproof sound-permeable membrane is usually attached to an opening provided in the housing of the electrical product, the surface thereof is exposed to the outside. For this reason, there exists a possibility of the damage by the contact of the foreign material from the outside. If the membrane breaks, the waterproofness is lost, and if the membrane surface is damaged or the membrane is deformed even if it is not damaged, water leakage or membrane rupture tends to occur when water pressure is applied. . This tendency is particularly remarkable when the surface density of the waterproof sound-permeable membrane is reduced for the purpose of ensuring sound permeability. Here, in order to cope with the contact of foreign matter from the outside, the piercing strength of the film is an important factor. If the surface density of the film is increased, the piercing strength is also improved. However, as described above, the sound permeability is lowered due to the increase of the surface density.
 本発明者らは、判明したこれら問題を鋭意検討し、本発明の防水通音膜を完成させた。本発明の防水通音膜は、PTFE多孔質膜を含む防水通音膜であって、前記PTFE多孔質膜が、第1多孔質層と、PTFEのマトリクス間に働く結着力に基づいて前記第1多孔質層と積層および一体化された第2多孔質層とを備える。前記第1および第2多孔質層は、標準比重法により算出した数平均分子量が5.0×107以上のPTFEにより構成される。前記第1および第2多孔質層から選ばれる少なくとも1つの層の平均孔径は1μm以下である。前記防水通音膜の面密度は1~10g/m2であり、前記防水通音膜の引張強度は10~100MPaである。前記防水通音膜の突き刺し強度を当該膜の面密度で除した値が、25~50kPa・m2/gである。 The present inventors diligently studied these problems, and completed the waterproof sound-permeable membrane of the present invention. The waterproof sound-permeable membrane of the present invention is a waterproof sound-permeable membrane including a PTFE porous membrane, wherein the PTFE porous membrane is based on the binding force acting between the first porous layer and the PTFE matrix. A first porous layer and a second porous layer laminated and integrated. The first and second porous layers are made of PTFE having a number average molecular weight calculated by a standard specific gravity method of 5.0 × 10 7 or more. The average pore diameter of at least one layer selected from the first and second porous layers is 1 μm or less. The surface density of the waterproof sound-permeable membrane is 1 to 10 g / m 2 , and the tensile strength of the waterproof sound-permeable membrane is 10 to 100 MPa. A value obtained by dividing the piercing strength of the waterproof sound-permeable membrane by the surface density of the membrane is 25 to 50 kPa · m 2 / g.
 本発明の製造方法は、上記本発明の防水通音膜の製造方法であって、標準比重法により算出した数平均分子量が5.0×107以上のPTFEからなるPTFE微粉末と、加工助剤と、を含むペーストを押出成形する工程と、前記ペーストの成形体であるシートまたは前記ペーストの成形体を圧延して得られるシートを、PTFEの融点未満の温度で第1方向に延伸する工程と、前記第1方向への延伸後のシートを複数枚重ね合わせる工程と、前記重ね合わせた複数枚のシートを、PTFEの融点未満の温度で前記第1方向と交差する第2方向に延伸する工程と、前記第2方向への延伸後の複数枚のシートを、PTFEの融点以上の温度で焼成して、PTFEのマトリクス間に働く結着力に基づいて一体化する工程と、を含む。 The production method of the present invention is a method for producing the waterproof sound-permeable membrane of the present invention, wherein a PTFE fine powder comprising PTFE having a number average molecular weight of 5.0 × 10 7 or more calculated by a standard specific gravity method, and a processing aid. A step of extruding a paste containing an agent, and a step of stretching a sheet which is a molded body of the paste or a sheet obtained by rolling the molded body of the paste in a first direction at a temperature lower than the melting point of PTFE. And a step of superimposing a plurality of sheets stretched in the first direction, and stretching the superposed sheets in a second direction intersecting the first direction at a temperature lower than the melting point of PTFE. And a step of firing the plurality of sheets after stretching in the second direction at a temperature equal to or higher than the melting point of PTFE and integrating them based on the binding force acting between the PTFE matrices.
 他の側面から見た本発明の製造方法は、上記本発明の防水通音膜の製造方法であって、標準比重法により算出した数平均分子量が5.0×107以上のPTFEからなるPTFE微粉末と、加工助剤と、を含むペーストを押出成形する工程と、前記ペーストの成形体であるシートまたは前記ペーストの成形体を圧延して得られるシートを、PTFEの融点未満の温度で二軸延伸する工程と、前記二軸延伸後のシートを複数枚重ね合わせる工程と、前記重ね合わせた複数枚のシートを、PTFEの融点以上の温度で焼成して、PTFEのマトリクス間に働く結着力に基づいて一体化する工程と、を含む。 The production method of the present invention viewed from another aspect is a method for producing the waterproof sound-permeable membrane of the present invention, wherein the number average molecular weight calculated by the standard specific gravity method is PTFE composed of PTFE of 5.0 × 10 7 or more. A step of extruding a paste containing fine powder and a processing aid, and a sheet obtained by rolling the paste or the paste formed body at a temperature lower than the melting point of PTFE. A step of axial stretching, a step of superimposing a plurality of the biaxially stretched sheets, and a binding force that works between the PTFE matrices by firing the superposed multiple sheets at a temperature equal to or higher than the melting point of PTFE. And integrating them on the basis of
 本発明の電気製品は、音声機能を備えた電気製品であって、音声を出力するための発音部および音声を入力するための受音部から選ばれる少なくとも1つと、前記発音部および/または受音部と外部との間で音声を伝達できるとともに、前記発音部および/または受音部への水の侵入を抑制する防水通音膜とを備え、前記防水通音膜が上記本発明の防水通音膜である。 An electrical product according to the present invention is an electrical product having a voice function, wherein at least one selected from a sound generation unit for outputting sound and a sound reception unit for inputting sound, and the sound generation unit and / or reception unit. A waterproof sound-permeable membrane that can transmit sound between the sound portion and the outside and suppress water intrusion into the sound generation portion and / or the sound-receiving portion, and the waterproof sound-permeable membrane is waterproof according to the present invention. It is a sound-permeable membrane.
 上述したように、PTFE多孔質膜を含む防水通音膜の通音性および防水性を高いレベルで両立させるためには、PTFE多孔質膜の平均孔径を小さくするとともに面密度を低下させ、さらに、面密度を低く保ったまま、引張強度および突き刺し強度の向上を図らねばならない。 As described above, in order to achieve both the sound permeability and waterproofness of the waterproof sound-permeable membrane including the PTFE porous membrane at a high level, the average pore diameter of the PTFE porous membrane is reduced and the surface density is decreased. The tensile strength and puncture strength must be improved while keeping the surface density low.
 本発明の防水通音膜では、複数の多孔質層(PTFE多孔質層)を、防水通音膜としての面密度が1~10g/m2となるように、積層および一体化している。ここで、少なくとも1つの多孔質層が、1μm以下の十分に小さい平均孔径を有する。そして、複数の多孔質層を積層および一体化していること、ならびに各多孔質層を、標準比重法により算出した数平均分子量が5.0×107以上のPTFEにより構成すること、によって、良好な通音性が得られる1~10g/m2の範囲に面密度を低く保ちながらも、高い引張強度(10~100MPa)および突き刺し強度(面密度で除した値にして25~50kPa・m2/g)を実現している。 In the waterproof sound-permeable membrane of the present invention, a plurality of porous layers (PTFE porous layers) are laminated and integrated so that the surface density of the waterproof sound-permeable membrane is 1 to 10 g / m 2 . Here, at least one porous layer has a sufficiently small average pore diameter of 1 μm or less. And it is good by laminating | stacking and integrating several porous layers, and comprising each porous layer by PTFE whose number average molecular weight computed by the standard specific gravity method is 5.0x10 < 7 > or more. High tensile strength (10 to 100 MPa) and piercing strength (value divided by surface density, 25 to 50 kPa · m 2 ) while keeping the surface density low in the range of 1 to 10 g / m 2 where a good sound transmission is obtained. / G).
 面密度を低く保ったままPTFE多孔質膜の強度を向上させる1つの方法として、当該膜の延伸倍率を高めることがある。なぜなら、PTFE多孔質膜は、延伸倍率が高くなるほどPTFE分子の配向が進み、マトリクス強度が増加する傾向を示すからである。したがって、面密度が同一であっても、延伸倍率が低い膜と高い膜とを比較すると、後者の方が高強度となる。 One method for improving the strength of the PTFE porous membrane while keeping the surface density low is to increase the draw ratio of the membrane. This is because the PTFE porous membrane shows a tendency that the orientation of PTFE molecules advances and the matrix strength increases as the draw ratio increases. Therefore, even if the areal density is the same, when comparing a film having a low draw ratio with a film having a high draw ratio, the latter has a higher strength.
 また、面密度と延伸倍率とが同一である場合、単層膜と積層膜とでは、積層膜の方が高強度となる。例えば、厚さ200μmのPTFEシートを二軸延伸および積層して得られる2層膜と、厚さ400μmのPTFEシートを同倍率で二軸延伸して得られる単層膜とを比較した場合、両者の面密度および延伸倍率は等しくなるが、2層膜の方が高強度となる。それは以下の理由による。例えば、ペーストの成形体を圧延することによって延伸前のPTFEシートを得る場合において、厚さ200μmのPTFEシートを得るためにペーストの成形体に加えられる圧力は、厚さ400μmのPTFEシートを得るためにペーストの成形体に加えられる圧力よりも大きい。ペーストの成形体に加えられる圧力が大きいと、PTFE間に働く結着力が増大し、最終的に得られるPTFE多孔質膜の強度も高くなる。圧延を行わない場合、例えば、Tダイによりペーストをシートに押出成形する場合も同様である。即ち、高強度のPTFE多孔質膜を得るためには、延伸倍率だけではなく、延伸前のPTFEシートの加圧履歴が極めて重要である。 In addition, when the surface density and the draw ratio are the same, the laminated film has higher strength between the single-layer film and the laminated film. For example, when comparing a bilayer film obtained by biaxially stretching and laminating a PTFE sheet having a thickness of 200 μm and a single layer film obtained by biaxially stretching a PTFE sheet having a thickness of 400 μm at the same magnification, However, the two-layer film has higher strength. The reason is as follows. For example, in the case of obtaining a PTFE sheet before stretching by rolling a paste compact, the pressure applied to the paste compact to obtain a PTFE sheet having a thickness of 200 μm is obtained to obtain a PTFE sheet having a thickness of 400 μm. Greater than the pressure applied to the paste compact. When the pressure applied to the paste compact is large, the binding force acting between the PTFEs increases, and the strength of the finally obtained PTFE porous membrane also increases. The same applies when not rolling, for example, when the paste is extruded into a sheet by a T-die. That is, in order to obtain a high-strength PTFE porous membrane, not only the stretching ratio but also the pressure history of the PTFE sheet before stretching is extremely important.
 本発明の防水通音膜では、これを利用し、高い延伸倍率で延伸した、平均孔径および面密度が小さいPTFE多孔質膜(多孔質層)を複数層積層および一体化することで、通音性および防水性を高いレベルで両立させた防水通音膜としている。ここで、PTFE多孔質膜を構成するPTFEの平均分子量が所定の値以上であることが重要であり、平均分子量が小さいPTFEを用いた場合、本発明の効果は得られない。 In the waterproof sound-permeable membrane of the present invention, by utilizing this, a PTFE porous membrane (porous layer) stretched at a high stretch ratio and having a small average pore diameter and surface density is laminated and integrated into a plurality of layers. It is a waterproof sound-permeable membrane that has both high performance and waterproofness. Here, it is important that the average molecular weight of PTFE constituting the PTFE porous membrane is not less than a predetermined value. When PTFE having a small average molecular weight is used, the effect of the present invention cannot be obtained.
 ところで、PTFEの分子量が高くなるほど、得られた多孔質膜の通気性が低下する(圧力損失が増大する)。その理由はよくわかっていないが、PTFEの分子量の増大により、得られた多孔質膜の網目構造が通気性を低下させる方向に変化するためであると考えられる。このため、特開平7-292144号公報に開示されているような、通気性の高さが非常に重要となる高性能エアフィルター用多孔質膜に対しては、高分子量のPTFEを適用できない。高分子量のPTFEを無理に適用した場合、延伸倍率を上げることで多孔質膜の気孔率を増加させれば、当該膜の通気性が少しは上昇すると考えられるが、今度は、特開平7-292144号公報にも記載されているように(段落0010参照)、ピンホール発生の可能性が増大してしまう。 Incidentally, the higher the molecular weight of PTFE, the lower the air permeability of the obtained porous membrane (the pressure loss increases). The reason for this is not well understood, but it is thought that this is because the network structure of the obtained porous membrane changes in the direction of decreasing the air permeability due to the increase in the molecular weight of PTFE. For this reason, high molecular weight PTFE cannot be applied to a porous membrane for a high performance air filter in which high air permeability is very important as disclosed in JP-A-7-292144. When the high molecular weight PTFE is forcibly applied, increasing the porosity of the porous membrane by increasing the draw ratio is considered to increase the air permeability of the membrane slightly. As described in Japanese Patent No. 292144 (see paragraph 0010), the possibility of occurrence of pinholes increases.
 これに対して本発明は、高い通気性を必要としない防水通音膜に関するものであり(音声は、膜自体の振動により伝播される)、エアフィルタには適していない高分子量PTFEを、あえて使用することでなされたものである。 On the other hand, the present invention relates to a waterproof sound-permeable membrane that does not require high breathability (sound is propagated by vibration of the membrane itself) and dares high molecular weight PTFE not suitable for an air filter. It was made by using.
本発明の実施形態に係る防水通音膜の製造方法を示す工程説明図である。It is process explanatory drawing which shows the manufacturing method of the waterproof sound-permeable membrane which concerns on embodiment of this invention. 図1Aに続く工程説明図である。It is process explanatory drawing following FIG. 1A. 本発明の防水通音膜の一例を示す斜視図である。It is a perspective view which shows an example of the waterproof sound-permeable membrane of this invention. 図2Aに示す防水通音膜の断面図である。It is sectional drawing of the waterproof sound-permeable membrane shown to FIG. 2A. 本発明の防水通音膜の別の一例を示す斜視図である。It is a perspective view which shows another example of the waterproof sound-permeable membrane of this invention. 防水通音膜が適用された携帯電話の一例を示す正面図である。It is a front view which shows an example of the mobile telephone to which the waterproof sound-permeable membrane was applied. 防水通音膜が適用された携帯電話の一例を示す背面図である。It is a rear view which shows an example of the mobile telephone to which the waterproof sound-permeable membrane was applied. 2枚のセパレータの間に保持された防水通音膜の一例を示す断面図である。It is sectional drawing which shows an example of the waterproof sound-permeable membrane hold | maintained between two separators. 図5Aに示す防水通音膜の平面図である。It is a top view of the waterproof sound-permeable membrane shown in FIG. 5A. セパレータおよび防水通音膜の別の一例を示す平面図である。It is a top view which shows another example of a separator and a waterproof sound-permeable membrane. セパレータおよび防水通音膜のまた別の一例を示す平面図である。It is a top view which shows another example of a separator and a waterproof sound-permeable membrane. セパレータおよび防水通音膜のさらに別の一例を示す平面図である。It is a top view which shows another example of a separator and a waterproof sound-permeable membrane.
 以下、本発明の実施形態について図面を参照しながら説明する。図1Aは、本発明の実施形態にかかる防水通音膜の製造方法を示す工程説明図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a process explanatory diagram illustrating a method for manufacturing a waterproof sound-permeable membrane according to an embodiment of the present invention.
 (1)ペースト準備工程
 最初に、PTFE微粉末20と加工助剤21(液状潤滑剤)とを所定割合で含む混合物を十分に混練し、押出成形用のペースト22を準備する。PTFE微粉末20を構成するPTFEの平均分子量は、標準比重法により算出した数平均分子量にして5.0×107以上であり、7.0×107以上が好ましく、9.0×107以上がより好ましく、1.0×108以上がさらに好ましく、1.1×108以上が最も好ましい。平均分子量の上限は特に限定されないが、上記数平均分子量にして、例えば2.0×108である。平均分子量に関するこの規定を満たす限り、PTFE微粉末20は、乳化重合法のような公知の方法によって製造された市販品でよい。PTFE微粉末20の平均粒径は、例えば0.2~1.0μmである。加工助剤21には、ナフサや流動パラフィンなどの有機溶剤を用いることができる。PTFE微粉末20と加工助剤21との混合比率は、100質量部のPTFE微粉末20に対して、例えば、加工助剤21が15~30質量部である。
(1) Paste preparation step First, a mixture 22 containing PTFE fine powder 20 and processing aid 21 (liquid lubricant) in a predetermined ratio is sufficiently kneaded to prepare a paste 22 for extrusion molding. The average molecular weight of PTFE constituting the PTFE fine powder 20 is 5.0 × 10 7 or more in terms of the number average molecular weight calculated by the standard specific gravity method, preferably 7.0 × 10 7 or more, and 9.0 × 10 7. The above is more preferable, 1.0 × 10 8 or more is more preferable, and 1.1 × 10 8 or more is most preferable. The upper limit of the average molecular weight is not particularly limited, but is, for example, 2.0 × 10 8 in terms of the number average molecular weight. As long as this rule regarding the average molecular weight is satisfied, the PTFE fine powder 20 may be a commercially available product manufactured by a known method such as an emulsion polymerization method. The average particle diameter of the PTFE fine powder 20 is, for example, 0.2 to 1.0 μm. As the processing aid 21, an organic solvent such as naphtha or liquid paraffin can be used. The mixing ratio of the PTFE fine powder 20 and the processing aid 21 is, for example, 15 to 30 parts by mass of the processing aid 21 with respect to 100 parts by mass of the PTFE fine powder 20.
 (2)予備成形工程
 次に、PTFE微粉末と加工助剤とを含むペースト22を円筒状に予備成形する。予備成形は、ペースト22に10~30kg/cm2程度の圧力を加えて行うとよい。十分な圧力を加えることにより、ペースト内部のボイド(空隙)が圧縮され、物性が安定化する。
(2) Pre-forming step Next, the paste 22 containing the PTFE fine powder and the processing aid is pre-formed into a cylindrical shape. The preforming may be performed by applying a pressure of about 10 to 30 kg / cm 2 to the paste 22. By applying a sufficient pressure, voids (voids) inside the paste are compressed and the physical properties are stabilized.
 (3)押出成形工程
 次に、予備成形されたペースト22を公知の押出法により成形し、シート状またはロッド状の成形体23aを得る。
(3) Extrusion molding step Next, the preformed paste 22 is molded by a known extrusion method to obtain a sheet-shaped or rod-shaped molded body 23a.
 シート状の成形体23aを得る場合、当該成形体の引張強度が、好ましくは1MPa以上、より好ましくは1.3MPa以上となるように成形を行うことが好ましく、このとき、最終的に得られるPTFE多孔質膜1の強度がより高く、平均孔径がより小さくなる。 When obtaining the sheet-shaped molded body 23a, it is preferable to perform molding so that the tensile strength of the molded body is preferably 1 MPa or more, more preferably 1.3 MPa or more. At this time, PTFE finally obtained The strength of the porous membrane 1 is higher and the average pore size is smaller.
 (4)圧延工程
 次に、シート状またはロッド状の成形体23aを圧延し、帯状のPTFEシート23bを得る。この時点でのPTFEシート23bの厚さは、例えば、0.1~1.0mmである。圧延工程においては、シート状またはロッド状の成形体23aに十分な圧力を加えるとよい。具体的には、(圧延後の面積)/(圧延前の面積)で表される引き延ばし率が3~30(あるいは5~20)となるように、圧延ロール25,25の隙間を調整するとよい。これによりPTFEの粒子間に働く結着力が強くなり、最終的に得られるPTFE多孔質膜の強度が向上する。
(4) Rolling Step Next, the sheet-shaped or rod-shaped formed body 23a is rolled to obtain a strip-shaped PTFE sheet 23b. The thickness of the PTFE sheet 23b at this time is, for example, 0.1 to 1.0 mm. In the rolling step, sufficient pressure may be applied to the sheet-shaped or rod-shaped molded body 23a. Specifically, the gap between the rolling rolls 25 and 25 may be adjusted so that the stretching ratio represented by (area after rolling) / (area before rolling) is 3 to 30 (or 5 to 20). . As a result, the binding force acting between the PTFE particles is increased, and the strength of the finally obtained PTFE porous membrane is improved.
 なお、圧延前の成形体23aがシート状である場合には、圧延工程を省略することも可能である。すなわち、押出法によってシート状に成形された成形体23aを乾燥させ、圧延を行うことなく延伸してもよい。 In addition, when the formed body 23a before rolling is a sheet, the rolling step can be omitted. That is, you may dry the molded object 23a shape | molded by the extrusion method in the sheet form, and without rolling.
 (5)乾燥工程
 次に、圧延されたPTFEシート23bを乾燥機26内で乾燥させる。乾燥機26の雰囲気温度は、PTFEの融点未満の温度、例えば、50~200℃に保たれる。乾燥工程により加工助剤が揮発し、加工助剤の含有量が十分に減じられたPTFEシート23cが得られる。
(5) Drying step Next, the rolled PTFE sheet 23 b is dried in the dryer 26. The atmospheric temperature of the dryer 26 is maintained at a temperature lower than the melting point of PTFE, for example, 50 to 200 ° C. The processing aid is volatilized by the drying step, and the PTFE sheet 23c in which the content of the processing aid is sufficiently reduced is obtained.
 (6)第1の延伸工程
 次に、図1Bに示すように、乾燥させたPTFEシート23cを長手方向(MD)に延伸する。長手方向の延伸倍率は、例えば3~30倍であり、5~20倍としてもよい。長手方向の延伸倍率をこの程度まで高くすることにより、PTFE分子の配向を十分に促進でき、ひいてはPTFE多孔質膜の強度を高めることができる。第1の延伸工程は、PTFEシート23cの柔軟性が十分に発揮される温度であって、PTFEの融点未満の温度、例えば、150~300℃の雰囲気温度で行うことができる。図1Aに示す乾燥工程で用いた乾燥機26内で第1の延伸工程を行ってもよい。
(6) First Stretching Step Next, as shown in FIG. 1B, the dried PTFE sheet 23c is stretched in the longitudinal direction (MD). The draw ratio in the longitudinal direction is, for example, 3 to 30 times, and may be 5 to 20 times. By increasing the stretching ratio in the longitudinal direction to this extent, the orientation of PTFE molecules can be sufficiently promoted, and consequently the strength of the PTFE porous membrane can be increased. The first stretching step can be performed at a temperature at which the flexibility of the PTFE sheet 23c is sufficiently exhibited, and a temperature lower than the melting point of PTFE, for example, an ambient temperature of 150 to 300 ° C. You may perform a 1st extending | stretching process within the dryer 26 used at the drying process shown to FIG. 1A.
 (7)重ね合わせ工程
 次に、長手方向に延伸された2枚のPTFEシート23d,23dを重ね合わせる。重ね合わせは、一方のPTFEシート23dの搬送経路と、他方のPTFEシート23dの搬送経路とを合流させる形で行うとよい。そのようにすれば、2枚のPTFEシート23d,23dの長手方向を揃えて重ね合わせを行うことになるので、重ね合わせるべきPTFEシート23dを裁断する必要がなく、生産性に優れる。ここで、PTFEシート23dの重ね合わせ枚数は、工程が煩雑にならない範囲内で定めることができる。
(7) Superposition process Next, the two PTFE sheets 23d and 23d stretched in the longitudinal direction are superposed. The superposition may be performed in such a manner that the conveyance path of one PTFE sheet 23d and the conveyance path of the other PTFE sheet 23d are merged. By doing so, since the two PTFE sheets 23d, 23d are aligned in the longitudinal direction, it is not necessary to cut the PTFE sheet 23d to be overlapped, and the productivity is excellent. Here, the number of overlapping PTFE sheets 23d can be determined within a range in which the process is not complicated.
 上述したように、PTFE多孔質膜の強度は、延伸前にPTFEシートが受けた加圧履歴と延伸倍率とによって変化する。より高い圧力で圧延されたPTFEシート23bを得るには、圧延工程において、圧延ロール25,25の隙間を狭くするとよい。圧延ロール25,25の隙間を狭くすると、得られるPTFEシート23bの厚さが小さくなるが、この場合、最終的に必要な面密度が確保されるように、重ね合わせ工程における重ね合わせ枚数を増やせばよい。また、延伸倍率の上昇に対しても、重ね合わせ枚数の増加で対応できる。具体的には、後述の実施例に示すように、3層構造や4層構造のPTFE多孔質膜を防水通音膜に好適に使用できる。 As described above, the strength of the PTFE porous membrane varies depending on the pressurization history and stretch ratio received by the PTFE sheet before stretching. In order to obtain the PTFE sheet 23b rolled at a higher pressure, the gap between the rolling rolls 25 and 25 may be narrowed in the rolling process. If the gap between the rolling rolls 25 is narrowed, the thickness of the obtained PTFE sheet 23b is reduced. In this case, however, the number of overlapping sheets in the overlapping process can be increased so that the required surface density is finally secured. That's fine. Further, an increase in the draw ratio can be handled by increasing the number of overlapping sheets. Specifically, as shown in the examples described later, a PTFE porous membrane having a three-layer structure or a four-layer structure can be suitably used for a waterproof sound-permeable membrane.
 (8)第2の延伸工程
 次に、重ね合わされた2枚のPTFEシート23d,23dを、その重ね合わせ状態を維持しつつ、長手方向と直交する幅方向(TD)に延伸する。幅方向の延伸倍率は、例えば3~100倍であり、20~80倍としてもよい。幅方向の延伸倍率をこの程度まで高くすることにより、長手方向の高い延伸倍率とあいまって、PTFE多孔質膜のさらなる高強度化を図ることができる。幅方向の延伸工程は、PTFEの融点未満の温度、例えば、50~300℃の雰囲気温度で、公知のテンター法により行うことができる。
(8) Second Stretching Step Next, the two superimposed PTFE sheets 23d and 23d are stretched in the width direction (TD) orthogonal to the longitudinal direction while maintaining the superposed state. The draw ratio in the width direction is, for example, 3 to 100 times, and may be 20 to 80 times. By increasing the stretching ratio in the width direction to this level, the PTFE porous membrane can be further strengthened in combination with the high stretching ratio in the longitudinal direction. The stretching process in the width direction can be performed by a known tenter method at a temperature lower than the melting point of PTFE, for example, an ambient temperature of 50 to 300 ° C.
 (9)焼成工程
 最後に、2軸方向に延伸された2枚のPTFEシート23e,23eをPTFEの融点以上の温度、例えば、350~500℃(炉27の雰囲気温度)で焼成する。焼成工程を行うことにより、PTFEのマトリクス間に働く結着力に基づき、2枚のPTFEシート23e,23eが両者の境界面の全体にわたって一体化する。これにより、防水通音膜に用いられるPTFE多孔質膜1が得られる。この焼成工程は、2枚のPTFEシート23e,23eを加圧しながら行ってもよいし、プレス型または熱ロールに接触させることによって行ってもよい。
(9) Firing step Finally, the two PTFE sheets 23e and 23e stretched in the biaxial direction are fired at a temperature equal to or higher than the melting point of PTFE, for example, 350 to 500 ° C. (atmosphere temperature in the furnace 27). By performing the firing step, the two PTFE sheets 23e and 23e are integrated over the entire boundary surface based on the binding force acting between the PTFE matrices. Thereby, the PTFE porous membrane 1 used for a waterproof sound-permeable membrane is obtained. This firing step may be performed while pressing the two PTFE sheets 23e and 23e, or may be performed by bringing them into contact with a press die or a hot roll.
 第1および第2の延伸工程ならびに圧延工程は、焼成工程後におけるPTFEシート(多孔質層)23e,23eの平均孔径が1μm以下となるように行う。また、第1および第2の延伸工程、圧延工程ならびに重ね合わせ工程は、焼成工程後に得られるPTFE多孔質膜1の面密度が1~10g/m2となり、引張強度が10~100MPaとなり、突き刺し強度を面密度で除した値が25~50kPa・m2/gとなるように行う。 The first and second stretching steps and the rolling step are performed so that the average pore diameter of the PTFE sheets (porous layers) 23e and 23e after the firing step is 1 μm or less. Further, in the first and second stretching steps, the rolling step and the overlapping step, the PTFE porous membrane 1 obtained after the firing step has an area density of 1 to 10 g / m 2 and a tensile strength of 10 to 100 MPa. The value obtained by dividing the strength by the surface density is 25 to 50 kPa · m 2 / g.
 本実施形態では、PTFEの融点以下の温度にて高延伸倍率で延伸を行うことで平均孔径を小さくかつマトリクス強度を向上させた延伸膜を、複数枚積層する。これにより、同じ面密度で単層の膜よりも高い防水性を示す防水通音膜を提供できる。ここで、高延伸倍率の延伸とは、第1および第2の延伸工程ならびに圧延工程を積算して、面積延伸倍率にして500~10000倍、好ましくは1000~10000倍、より好ましくは2000~10000倍の延伸である。 In this embodiment, a plurality of stretched films having a small average pore diameter and improved matrix strength are laminated by stretching at a high stretch ratio at a temperature not higher than the melting point of PTFE. Thereby, it is possible to provide a waterproof sound-permeable membrane having the same surface density and higher waterproofness than a single layer membrane. Here, the stretching at a high stretching ratio means that the first and second stretching steps and the rolling step are integrated to obtain an area stretching ratio of 500 to 10,000 times, preferably 1000 to 10,000 times, more preferably 2000 to 10,000. Double stretching.
 図1Aおよび図1Bに示す製造方法によれば、第1の延伸工程と第2の延伸工程との間に重ね合わせ工程を挟んでいるが、第1の延伸工程と第2の延伸工程とを連続的に行うようにしてもよい。すなわち、未延伸のPTFEシートを複数枚重ね合わせた後、重ね合わされたPTFEシートをテンター法のような公知の延伸方法により2軸延伸してもよい。 According to the manufacturing method shown in FIG. 1A and FIG. 1B, the overlapping process is sandwiched between the first stretching process and the second stretching process, but the first stretching process and the second stretching process are performed. You may make it carry out continuously. That is, after overlapping a plurality of unstretched PTFE sheets, the stacked PTFE sheets may be biaxially stretched by a known stretching method such as a tenter method.
 ただし、重ね合わせ工程の後で2軸延伸工程を行う場合、多孔質構造が不均一になる可能性がある。なぜなら、重ね合わされたPTFEシートの界面近傍の部分と、界面から離れた部分とで張力のかかり方が相違するからである。多孔質構造が不均一になると、通音性に影響がでる。これに対して、本実施形態によれば、長手方向の延伸で微孔を形成した後に、重ね合わせおよび幅方向の延伸を行うため、従来の単層の場合と比較しても遜色のない良質な多孔質構造が形成される。また、長手方向に延伸されたPTFEシートのハンドリング性は、未延伸のPTFEシートのハンドリング性よりも高い。したがって、本実施形態によれば、正確に重ね合わせ工程を行うことができるとともに、シート間に空気泡が挟まれるような問題も生じにくい。また、未延伸のシートを重ね合わせても容易に接着しないが、長手方向に延伸した後のシートは容易かつ均一に接着できる。 However, when the biaxial stretching process is performed after the superimposing process, the porous structure may be non-uniform. This is because the tension is applied differently in the vicinity of the interface between the overlapped PTFE sheets and the part away from the interface. If the porous structure becomes non-uniform, sound transmission will be affected. On the other hand, according to this embodiment, after forming the micropores by stretching in the longitudinal direction, superposition and stretching in the width direction are performed, so that the quality is comparable to that of a conventional single layer. A porous structure is formed. Moreover, the handling property of the PTFE sheet stretched in the longitudinal direction is higher than the handling property of the unstretched PTFE sheet. Therefore, according to the present embodiment, it is possible to perform the overlaying process accurately, and it is difficult to cause a problem that air bubbles are sandwiched between sheets. Further, even if unstretched sheets are stacked, they are not easily bonded, but the sheet after being stretched in the longitudinal direction can be easily and uniformly bonded.
 また、本実施形態のように、長手方向の延伸工程と、幅方向の延伸工程との間に、重ね合わせ工程を挟むことにより、長手方向の延伸倍率が互いに相違する2つの層を有するPTFE多孔質膜を製造できる。このような特殊なPTFE多孔質膜は、面密度および膜厚の微調整が必要となる製品(防水通音膜)に有効である。 Further, as in the present embodiment, a PTFE porous material having two layers having different stretching ratios in the longitudinal direction by sandwiching an overlapping process between the stretching process in the longitudinal direction and the stretching process in the width direction. A membrane can be produced. Such a special PTFE porous membrane is effective for a product (waterproof sound-permeable membrane) that requires fine adjustment of the surface density and the film thickness.
 また、予め2軸延伸された複数枚のPTFEシートを重ね合わせ、焼成により一体化するようにしてもよい。ただし、現実の生産過程において、幅方向への延伸を行った後のPTFEシートの面積は非常に大きくなるので、当該順序によれば、重ね合わせが困難となる可能性がある。 Also, a plurality of PTFE sheets biaxially stretched in advance may be superposed and integrated by firing. However, in the actual production process, the area of the PTFE sheet after being stretched in the width direction becomes very large. Therefore, according to the order, it may be difficult to superimpose.
 これに対し、幅方向の延伸の前に重ね合わせを行う場合には、PTFEシートの幅が狭いので重ね合わせが容易であり、重ね合わせ時にPTFEシートにシワが生じたり、亀裂が入ったりするなどの不具合が生じにくく、ひいては重ね合わせ工程の追加に伴う歩留まりの低下を抑制することが可能となる。図1Bに示すように、本実施形態によれば、重ね合わせの前に長手方向の延伸を行っているが、PTFEシートの長手方向は、通常、圧延方向や搬送方向に沿う方向であるから、長手方向の面積拡大はPTFEシートのハンドリング容易性に大した影響を及ぼさず、重ね合わせの困難性を高める要因となりにくい。 On the other hand, when overlapping is performed before stretching in the width direction, since the PTFE sheet is narrow, it is easy to overlap, and the PTFE sheet is wrinkled or cracked at the time of overlapping. Thus, it is possible to suppress a decrease in yield due to the addition of the overlaying process. As shown in FIG. 1B, according to the present embodiment, the longitudinal direction is stretched before superposition, but the longitudinal direction of the PTFE sheet is usually a direction along the rolling direction and the conveying direction. Expansion of the area in the longitudinal direction does not significantly affect the ease of handling of the PTFE sheet, and is unlikely to increase the difficulty of overlaying.
 本発明の製造方法では、上述した各工程以外の工程を、必要に応じ、任意の時点で実施してもよく、当該工程は、第1および第2の延伸工程以外の延伸工程であってもよい。 In the production method of the present invention, steps other than the above-described steps may be performed at any time as necessary, and the steps may be stretching steps other than the first and second stretching steps. Good.
 以上に説明した方法により、図2Aおよび図2Bに示す防水通音膜10を製造することができる。 The waterproof sound-permeable membrane 10 shown in FIGS. 2A and 2B can be manufactured by the method described above.
 図2Aに示す防水通音膜10は、円板状のPTFE多孔質膜1で作られている。図2Bに示すように、防水通音膜10としてのPTFE多孔質膜1は、第1多孔質層1aと、第2多孔質層1bとを備える。第2多孔質層1bは、PTFEのマトリクス間に働く結着力に基づいて第1多孔質層1aに積層および一体化されている。図1Aおよび図1Bで説明した製造方法によれば、第1多孔質層1aと第2多孔質層1bとは、実質的に同一のマトリクス構造を有したものとなる。言い換えれば、第1多孔質層1aの延伸方向と第2多孔質層1bの延伸方向とが一致するとともに、延伸倍率が各延伸方向に関して等しくなる。また、第1多孔質層1aの厚さと第2多孔質層1bの厚さも同一となる。 The waterproof sound-permeable membrane 10 shown in FIG. 2A is made of a disk-shaped PTFE porous membrane 1. As shown in FIG. 2B, the PTFE porous membrane 1 as the waterproof sound-permeable membrane 10 includes a first porous layer 1a and a second porous layer 1b. The second porous layer 1b is laminated and integrated with the first porous layer 1a based on the binding force acting between the PTFE matrices. According to the manufacturing method described in FIGS. 1A and 1B, the first porous layer 1a and the second porous layer 1b have substantially the same matrix structure. In other words, the stretching direction of the first porous layer 1a matches the stretching direction of the second porous layer 1b, and the stretching ratio is equal in each stretching direction. Moreover, the thickness of the 1st porous layer 1a and the thickness of the 2nd porous layer 1b are also the same.
 防水通音膜10の面密度は(複数層の合計で)1~10g/m2である。面密度がこのような範囲内にある防水通音膜10は、物理的強度が十分であるとともに、音響透過損失が小さく、通音性に優れる。防水通音膜10の面密度は、2~10g/m2が好ましく、2~7g/m2がより好ましい。 The surface density of the waterproof sound-permeable membrane 10 is 1 to 10 g / m 2 (total of a plurality of layers). The waterproof sound-permeable membrane 10 having an areal density in such a range has sufficient physical strength, small acoustic transmission loss, and excellent sound permeability. The surface density of the waterproof sound-permeable membrane 10 is preferably 2 to 10 g / m 2 and more preferably 2 to 7 g / m 2 .
 第1多孔質層1aおよび第2多孔質層1bから選ばれる少なくとも1つの層の平均孔径は、1μm以下である。防水性向上のためには、両方の層の平均孔径が1μm以下であることが好ましい。防水通音膜10を構成する多孔質層1a,1bの平均孔径が1μm以下であることによって、防水性が高い防水通音膜10となる。多孔質層1a,1bの平均孔径は、0.7μm以下が好ましく、0.5μm以下がより好ましい。多孔質層1a,1bの平均孔径が小さくなることによって防水通音膜10の通気性は低下するが、音声は膜自体の振動により伝播されるため、膜の通気性は通音性にそれほど影響を与えない。平均孔径の下限は特に限定されないが、例えば0.1μmである。 The average pore diameter of at least one layer selected from the first porous layer 1a and the second porous layer 1b is 1 μm or less. In order to improve waterproofness, the average pore diameter of both layers is preferably 1 μm or less. When the average pore diameter of the porous layers 1 a and 1 b constituting the waterproof sound-permeable membrane 10 is 1 μm or less, the waterproof sound-permeable membrane 10 having high waterproofness is obtained. The average pore diameter of the porous layers 1a and 1b is preferably 0.7 μm or less, and more preferably 0.5 μm or less. Although the air permeability of the waterproof sound-permeable membrane 10 is reduced by decreasing the average pore diameter of the porous layers 1a and 1b, since sound is propagated by vibration of the membrane itself, the air permeability of the membrane has a great influence on the sound permeability. Not give. Although the minimum of an average hole diameter is not specifically limited, For example, it is 0.1 micrometer.
 なお、平均孔径の測定方法は、ASTM F316-86に記載されている測定法が一般的に普及しており、自動化された測定装置が市販されている(例えば、米国Porous Material Inc.より入手可能なPerm-Porometer)。この方式は、既知の表面張力を持つ液体に浸漬したPTFE多孔質膜をホルダに固定し、一方から加圧することによって膜から液体を追い出し、その圧力から平均孔径を求めるものである。この方式は簡便かつ再現性が高いだけでなく、測定装置を完全に自動化できるという点で優れている。 As the average pore diameter measurement method, the measurement method described in ASTM F316-86 is generally widespread, and an automated measurement device is commercially available (for example, available from Porous Material Inc., USA). Perm-Porometer). In this method, a PTFE porous membrane immersed in a liquid having a known surface tension is fixed to a holder, and the liquid is expelled from the membrane by applying pressure from one side, and the average pore diameter is obtained from the pressure. This method is not only simple and high in reproducibility, but also excellent in that the measuring apparatus can be completely automated.
 第1多孔質層1aおよび第2多孔質層1bの気孔率は特に限定されないが、60~95%が好ましく、75~95%がより好ましい。 The porosity of the first porous layer 1a and the second porous layer 1b is not particularly limited, but is preferably 60 to 95%, more preferably 75 to 95%.
 防水通音膜10の引張強度は、10~100MPaである。引張強度がこの範囲にあることによって、防水性(耐水圧特性)が高い防水通音膜10となる。防水通音膜10の引張強度は20~75MPaが好ましい。なお、防水通音膜10の引張強度は、本来、高ければ高いほど膜の耐水圧性にとって好ましいが、上記面密度の範囲、即ち防水通音膜10の通音性を考慮すると、上記範囲となる。また、防水通音膜10の引張強度が方向により異なる場合、最も低くなる方向への引張強度が10~100MPaであればよい。 The tensile strength of the waterproof sound-permeable membrane 10 is 10 to 100 MPa. When the tensile strength is in this range, the waterproof sound-permeable membrane 10 having high waterproofness (water pressure resistance) is obtained. The tensile strength of the waterproof sound-permeable membrane 10 is preferably 20 to 75 MPa. Note that the tensile strength of the waterproof sound-permeable membrane 10 is inherently higher for the water pressure resistance of the membrane, but it is within the above range in consideration of the above surface density range, that is, the sound-permeable property of the waterproof sound-permeable membrane 10. . Further, when the tensile strength of the waterproof sound-permeable membrane 10 varies depending on the direction, the tensile strength in the lowest direction may be 10 to 100 MPa.
 防水通音膜10の突き刺し強度は、面密度で除した値にして25~50kPa・m2/gである。突き刺し強度がこの範囲にあることによって、防水性が高い防水通音膜10となる。なお、防水通音膜10の突き刺し強度は、本来、高ければ高いほど膜の防水性にとって好ましいが、上記面密度の範囲、即ち防水通音膜10の通音性を考慮すると、上記範囲となる。また、面密度で除した値を突き刺し強度として用いているのは、引張強度に比べて、突き刺し強度が膜の面密度に大きな影響を受けるためである。面密度で除していない突き刺し強度の値としては、例えば100~500kPaである。 The piercing strength of the waterproof sound-permeable membrane 10 is 25 to 50 kPa · m 2 / g as a value divided by the surface density. When the puncture strength is in this range, the waterproof sound-permeable membrane 10 having high waterproofness is obtained. Note that the piercing strength of the waterproof sound-permeable membrane 10 is inherently higher for the waterproof property of the membrane, but it is in the above range in consideration of the above surface density range, that is, the sound-permeable property of the waterproof sound-permeable membrane 10. . The reason why the value divided by the surface density is used as the piercing strength is that the piercing strength is greatly influenced by the surface density of the film as compared with the tensile strength. The value of the piercing strength not divided by the surface density is, for example, 100 to 500 kPa.
 防水通音膜10には、その防水性をさらに高めるために、含フッ素ポリマーなどの撥水剤を用いて撥水処理を行ってもよい。 The waterproof sound-permeable membrane 10 may be subjected to a water-repellent treatment using a water-repellent agent such as a fluorine-containing polymer in order to further improve the waterproof property.
 本発明の防水通音膜は、PTFE多孔質膜1の周縁に固着された枠を備えていてもよい。図3は、PTFE多孔質膜1の周縁部に、リング状の枠3が取り付けられた防水通音膜12を示している。このように、リング状の枠3を設けた形態によれば、PTFE多孔質膜1を補強することができ、防水通音膜12の取り扱いが容易となる。また、この枠3が電気製品の筐体への取付しろとなるため、防水通音膜12の筐体への取り付け作業が容易となる。さらに、防水通音膜12における通音部分がPTFE多孔質膜1単体であることから、PTFE多孔質膜1の全面に支持体としてネットなどを貼り合わせた形態よりも、高い通音性を確保できる。 The waterproof sound-permeable membrane of the present invention may include a frame fixed to the peripheral edge of the PTFE porous membrane 1. FIG. 3 shows a waterproof sound-permeable membrane 12 in which a ring-shaped frame 3 is attached to the peripheral edge of the PTFE porous membrane 1. Thus, according to the form in which the ring-shaped frame 3 is provided, the PTFE porous membrane 1 can be reinforced, and the waterproof sound-permeable membrane 12 can be easily handled. In addition, since the frame 3 can be attached to the housing of the electrical product, it is easy to attach the waterproof sound-permeable membrane 12 to the housing. Further, since the sound-transmitting portion of the waterproof sound-permeable membrane 12 is the PTFE porous membrane 1 alone, higher sound permeability is ensured than the form in which a net or the like is bonded to the entire surface of the PTFE porous membrane 1 as a support. it can.
 枠3の材質は特に限定されないが、熱可塑性樹脂あるいは金属が好適である。熱可塑性樹脂は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;ポリエチレンテレフタレート(PET)などのポリエステル;ポリカーボネート(PC);ポリイミド;あるいはこれらの複合材である。金属は、例えば、ステンレスやアルミニウムのような耐蝕性に優れる金属である。 The material of the frame 3 is not particularly limited, but a thermoplastic resin or metal is suitable. The thermoplastic resin is, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP); a polyester such as polyethylene terephthalate (PET); a polycarbonate (PC); a polyimide; or a composite material thereof. The metal is a metal having excellent corrosion resistance, such as stainless steel or aluminum.
 リング状の枠3の厚さは、例えば5~500μmであり、25~200μmが好ましい。また、リング幅(外径と内径の差)は0.5~2mm程度が、電気製品の筐体への取付しろとして適当である。また、リング状の枠3には、上記樹脂からなる発泡体を使用してもよい。 The thickness of the ring-shaped frame 3 is, for example, 5 to 500 μm, and preferably 25 to 200 μm. In addition, a ring width (difference between outer diameter and inner diameter) of about 0.5 to 2 mm is suitable as an allowance for mounting an electrical product on a casing. Moreover, you may use the foam which consists of the said resin for the ring-shaped frame 3. FIG.
 PTFE多孔質膜1と枠3との接着方法は特に限定されず、例えば、加熱溶着、超音波溶着、接着剤による接着、両面テープによる接着などの方法を適用できる。特に、両面テープによる接着が、PTFE多孔質膜1と枠3との接着が容易であることから好ましい。 The adhesion method between the PTFE porous membrane 1 and the frame 3 is not particularly limited, and for example, methods such as heat welding, ultrasonic welding, adhesion with an adhesive, and adhesion with a double-sided tape can be applied. In particular, adhesion with a double-sided tape is preferable because adhesion between the PTFE porous membrane 1 and the frame 3 is easy.
 図4Aおよび図4Bは、防水通音膜10が用いられた電気製品の一例を示している。図4Aおよび図4Bに示す電気製品は、携帯電話5である。携帯電話5の筐体9には、スピーカー6、マイク7、ブザー8などの発音部および受音部のための開口が設けられている。それらの開口を塞ぐ形で、防水通音膜10が内側から筐体9に取り付けられている。これにより、筐体9の内部への水や埃の侵入が阻止され、発音部および受音部が保護される。防水通音膜10の筐体9への取り付けは、筐体9との接合部から水が浸入することのないように、例えば、両面テープを用いた貼付、熱溶着、高周波溶着、超音波溶着などの方法により行われる。 4A and 4B show an example of an electric product using the waterproof sound-permeable membrane 10. The electric product shown in FIGS. 4A and 4B is a mobile phone 5. The casing 9 of the mobile phone 5 is provided with openings for sound generation units and sound reception units such as a speaker 6, a microphone 7, and a buzzer 8. A waterproof sound-permeable membrane 10 is attached to the housing 9 from the inside so as to close these openings. Thereby, the penetration | invasion of the water and dust to the inside of the housing | casing 9 is blocked | prevented and a sound generation part and a sound receiving part are protected. The waterproof sound-permeable membrane 10 is attached to the housing 9 so that water does not enter from the joint with the housing 9, for example, using double-sided tape, thermal welding, high-frequency welding, ultrasonic welding. It is performed by such methods.
 防水通音膜10は、携帯電話5だけでなく、音声の出力を行うための発音部および音声の入力を行うための受音部から選ばれる少なくとも1つを備えた電気製品に適用できる。具体的には、ノートパソコン、電子手帳、デジタルカメラ、携帯用オーディオのような音声機能を備えた各種電気製品に適用可能である。 The waterproof sound-permeable membrane 10 can be applied not only to the mobile phone 5 but also to an electrical product including at least one selected from a sound generation unit for outputting sound and a sound reception unit for inputting sound. Specifically, the present invention can be applied to various electric products having voice functions such as notebook computers, electronic notebooks, digital cameras, and portable audio.
 防水通音膜10は、その表裏に両面テープを貼り付けることによって形成されたアセンブリの形で提供されうる。図5Aに示すように、アセンブリ40は、防水通音膜10と、防水通音膜10の表裏に貼り付けられた2つの両面テープ30とを有する。両面テープ30は、平面視でリングまたは枠の形状を有する。両面テープ30の開口部30hに防水通音膜10が露出している。アセンブリ40の一方の面に台紙セパレータ34が設けられ、他方の面にタブ付きセパレータ32が設けられている。アセンブリ40が2枚のセパレータ32,34の間に保持されているので、防水通音膜10を確実に保護できるとともに、携帯電話の筐体などの対象物への取り付け作業が容易となる。 The waterproof sound-permeable membrane 10 can be provided in the form of an assembly formed by sticking double-sided tape on the front and back. As shown in FIG. 5A, the assembly 40 includes a waterproof sound-permeable membrane 10 and two double-sided tapes 30 attached to the front and back of the waterproof sound-permeable membrane 10. The double-sided tape 30 has a ring or frame shape in plan view. The waterproof sound-permeable membrane 10 is exposed at the opening 30 h of the double-sided tape 30. A mount separator 34 is provided on one side of the assembly 40, and a tabbed separator 32 is provided on the other side. Since the assembly 40 is held between the two separators 32 and 34, the waterproof sound-permeable membrane 10 can be surely protected, and attachment work to an object such as a cellular phone housing is facilitated.
 セパレータ32は、アセンブリ40とともに台紙セパレータ34から剥離されうる。図5Bの平面図に示すように、セパレータ32のタブ32tは、アセンブリ40の外縁から外向きに突出するように形成されている。セパレータ32のタブ32tの部分を掴んだまま、アセンブリ40を携帯電話の筐体などの対象物に貼り付けることができる。そして、タブ32tを引き上げることにより、アセンブリ40からセパレータ32を容易に剥離できる。このように、防水通音膜10に直接触れることなく、防水通音膜10を対象物に取り付けることができるので、作業時に防水通音膜10にダメージが及びにくい。また、対象物を傷付ける可能性も低減する。 The separator 32 can be peeled from the mount separator 34 together with the assembly 40. As shown in the plan view of FIG. 5B, the tab 32 t of the separator 32 is formed to protrude outward from the outer edge of the assembly 40. The assembly 40 can be affixed to an object such as a mobile phone casing while holding the tab 32t portion of the separator 32. The separator 32 can be easily peeled from the assembly 40 by pulling up the tab 32t. Thus, since the waterproof sound-permeable membrane 10 can be attached to an object without directly touching the waterproof sound-permeable membrane 10, the waterproof sound-permeable membrane 10 is hardly damaged during work. It also reduces the possibility of damaging the object.
 セパレータ32,34は、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの樹脂製であってもよいし、紙製であってもよい。台紙セパレータ34におけるアセンブリ40を載せる部分に、エンボス加工が施されていてもよい。台紙セパレータ34と両面テープ30との間の接着力(180°ピール接着強度)よりも、タブ付きセパレータ32と両面テープ30との間の接着力が強いことが好ましい。この場合、タブ付きセパレータ32を、アセンブリ40とともに、台紙セパレータ34から容易に剥離できる。 The separators 32 and 34 may be made of resin such as polyethylene, polypropylene, polyethylene terephthalate, or may be made of paper. An embossing process may be performed on a portion of the mount separator 34 on which the assembly 40 is placed. It is preferable that the adhesive force between the tabbed separator 32 and the double-sided tape 30 is stronger than the adhesive force between the mount separator 34 and the double-sided tape 30 (180 ° peel adhesive strength). In this case, the tabbed separator 32 can be easily peeled from the mount separator 34 together with the assembly 40.
 通常、1つのアセンブリ40に対して1つのタブ付きセパレータ32が設けられる。一方で、台紙セパレータ34は、多数個のアセンブリ40に共有されていてもよいし、1つのアセンブリ40に対して1つの台紙セパレータ34が設けられていてもよい。後者の製品は、タブ付きセパレータ32をアセンブリ40の上に載せた後、タブ付きセパレータ32よりも大きく台紙セパレータ34を打ち抜くことによって得られる。 Usually, one tabbed separator 32 is provided for one assembly 40. On the other hand, the mount separator 34 may be shared by many assemblies 40, and one mount separator 34 may be provided for one assembly 40. The latter product is obtained by placing the tabbed separator 32 on the assembly 40 and then punching the backing separator 34 larger than the tabbed separator 32.
 アセンブリ40およびタブ付きセパレータ32の形状は特に限定されない。図6Aに示すように、アセンブリ40が円形であってもよい。また、図6Bに示すように、アセンブリ40の全周に渡って円形のタブ32tが形成されていてもよい。また、図6Cに示すように、アセンブリ40が矩形であり、平面視でタブ32tがアセンブリ40を取り囲む枠の形状を有していてもよい。 The shape of the assembly 40 and the tabbed separator 32 is not particularly limited. As shown in FIG. 6A, the assembly 40 may be circular. Further, as shown in FIG. 6B, a circular tab 32t may be formed over the entire circumference of the assembly 40. Further, as shown in FIG. 6C, the assembly 40 may be rectangular, and the tab 32t may have a frame shape surrounding the assembly 40 in plan view.
 以下、実施例により本発明をさらに具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
 最初に、標準比重法によるPTFEの数平均分子量の算出方法、および作製したPTFE多孔質膜の諸特性の評価方法を説明する。 First, a method for calculating the number average molecular weight of PTFE by the standard specific gravity method and a method for evaluating various properties of the produced porous PTFE membrane will be described.
 [標準比重法によるPTFEの数平均分子量の算出]
 JIS K6935-2に準拠して求めたPTFEの標準比重(SSG)を、以下の式(1)に代入することにより、PTFEの数平均分子量Mnを算出した。なお、式(1)は、ふっ素樹脂ハンドブック(里川孝臣編、日刊工業新聞社、1990年発行)36頁に記載されている。
  SSG=-0.0579Mn+2.6113    (1)
[Calculation of number average molecular weight of PTFE by standard specific gravity method]
The number average molecular weight Mn of PTFE was calculated by substituting the standard specific gravity (SSG) of PTFE obtained according to JIS K6935-2 into the following formula (1). Formula (1) is described in page 36 of a fluororesin handbook (Takaomi Satokawa, published by Nikkan Kogyo Shimbun, 1990).
SSG = −0.0579Mn + 2.6113 (1)
 [平均孔径]
 PTFE多孔質膜を構成する各多孔質層の平均孔径は、上述したように、Porous Material Inc.製Perm-Porometerを用い、ASTM F316-86に準拠して求めた。測定には、フッ素系溶媒(スリーエム社製、FC-40、表面張力16mN/m)を用いた。
[Average pore size]
As described above, the average pore diameter of each porous layer constituting the PTFE porous membrane was determined according to ASTM F316-86 using a Perm-Porometer manufactured by Porous Material Inc. For the measurement, a fluorinated solvent (manufactured by 3M, FC-40, surface tension 16 mN / m) was used.
 [面密度]
 PTFE多孔質膜の面密度は、φ47mmのポンチで多孔質膜を打ち抜いた後、打ち抜いた部分の質量を測定し、1m2あたりの質量に換算して求めた。
[Area density]
The surface density of the PTFE porous membrane was determined by measuring the mass of the punched portion after punching the porous membrane with a φ47 mm punch and converting it to a mass per 1 m 2 .
 [引張強度]
 PTFE多孔質膜の引張強度は、JIS K7113に記載されている2号形試験片の形状に多孔質膜を打ち抜いた後、得られた試験片を引張試験機(エー・アンド・ディー社製、テンシロン万能試験機MODEL:RTC-1310A-PL)により、以下の条件で引張試験を行って求めた。引張強度は、PTFE多孔質膜の長手方向(MD)および幅方向(TD)のそれぞれに対して測定した。
 チャック間距離:95mm
 引張速度:200mm/分
 測定温度:25℃
[Tensile strength]
The tensile strength of the PTFE porous membrane was determined by punching the porous membrane into the shape of No. 2 type test piece described in JIS K7113, and then using the tensile tester (manufactured by A & D Corporation, Tensylon universal testing machine MODEL: RTC-1310A-PL) was obtained by performing a tensile test under the following conditions. The tensile strength was measured with respect to each of the longitudinal direction (MD) and the width direction (TD) of the PTFE porous membrane.
Distance between chucks: 95mm
Tensile speed: 200 mm / min Measurement temperature: 25 ° C.
 引張強度は、引張試験によってPTFE多孔質膜が破断したときの最大負荷加重(N)を、PTFE多孔質膜の引張試験前の断面積(mm2)で除した値とした。なお、試験片の幅は6mmであり、試験片の厚さは、試験片ごとにダイヤルゲージにより測定した。 The tensile strength was a value obtained by dividing the maximum load load (N) when the PTFE porous membrane was ruptured by the tensile test by the cross-sectional area (mm 2 ) of the PTFE porous membrane before the tensile test. In addition, the width | variety of the test piece was 6 mm, and the thickness of the test piece was measured for each test piece with the dial gauge.
 [突き刺し強度]
 PTFE多孔質膜の突き刺し強度は、以下のように求めた。
[Puncture strength]
The puncture strength of the PTFE porous membrane was determined as follows.
 最初に、両面テープ(30mm×30mmの正方形)の中央部をφ16mmで丸く打ち抜き、打ち抜いた部分に、測定対象であるPTFE多孔質膜を、当該膜にしわが入らないように貼り付けた。次に、圧縮試験機(カトーテック社製、KES-G5)を用いて、PTFE多孔質膜の露出部分に針(針径2.0mm)を突き刺し(突き刺し速度2cm/秒)、その際に測定された荷重変位曲線から最大荷重を読み取って、これを針径で除した値を突き刺し強度(kPa)とした。突き刺し試験は25℃で行った。 First, the center part of a double-sided tape (30 mm × 30 mm square) was punched out with a diameter of 16 mm, and a PTFE porous film to be measured was attached to the punched part so as not to wrinkle the film. Next, using a compression tester (Kato Tech Co., Ltd., KES-G5), the exposed part of the PTFE porous membrane was pierced with a needle (needle diameter of 2.0 mm) (the piercing speed was 2 cm / sec), and measurement was performed at that time The maximum load was read from the obtained load displacement curve, and the value obtained by dividing the maximum load by the needle diameter was defined as the piercing strength (kPa). The piercing test was performed at 25 ° C.
 [耐水圧]
 PTFE多孔質膜の耐水圧は、JIS L1092に記載されている耐水度試験機(高水圧法)を用いて求めた。ただし、JIS L1092に規定の面積では膜が著しく変形するため、ステンレスメッシュ(開口径2mm)を膜の加圧面の反対側に設置し、変形を抑制した状態で測定した。
[Water pressure resistance]
The water pressure resistance of the PTFE porous membrane was determined using a water resistance tester (high water pressure method) described in JIS L1092. However, since the film was remarkably deformed in the area defined in JIS L1092, a stainless steel mesh (opening diameter 2 mm) was placed on the opposite side of the pressure surface of the film, and measurement was performed in a state where deformation was suppressed.
 [耐水圧保持試験]
 PTFE多孔質膜の耐水圧保持試験は、耐水圧試験と同じく、JIS L1092に記載されている耐水度試験機を用いて行った。具体的には、150kPaの水圧(深度15mの水圧に相当する)をPTFE多孔質膜に印加し、1時間保持した後に水漏れの有無を観察し、良否判定を行った。ただし、JIS L1092に規定の面積では膜が著しく変形するため、ステンレスメッシュ(開口径3mm)を膜の加圧面の反対側に設置し、変形をある程度抑制した状態で測定した。良否の判定基準は次の通りである。
 1:水漏れ無し
 2:30分~1時間の間にごく僅かな水漏れが発生
 3:30分以内に水漏れが発生
 4:破裂
[Water pressure retention test]
The water pressure resistance holding test of the PTFE porous membrane was performed using a water resistance tester described in JIS L1092, similarly to the water pressure resistance test. Specifically, a water pressure of 150 kPa (corresponding to a water pressure of a depth of 15 m) was applied to the PTFE porous membrane, and after holding for 1 hour, the presence or absence of water leakage was observed to determine pass / fail. However, since the film was remarkably deformed in the area defined in JIS L1092, the measurement was performed with a stainless mesh (opening diameter: 3 mm) placed on the opposite side of the pressure surface of the film and the deformation was suppressed to some extent. The acceptance criteria are as follows.
1: No water leak 2: A slight water leak occurred between 30 minutes and 1 hour 3: A water leak occurred within 30 minutes 4: Burst
 (実施例1)
 PTFE微粉末(ダイキン工業社製 ポリフロンF101HE)100重量部と、液状潤滑剤(ナフサ)20重量部とを均一に混練し、PTFE微粉末とナフサとを含むペーストを準備した。このペーストを20kg/cm2の条件で円筒状に予備成形した。次に、得られた円筒状の予備成形体を押出成形し、シート状の成形体を得た。得られたシート状の成形体の引張強度を測定したところ(測定にあたっては、チャック間距離10mm、サンプル幅10mmとした)、長手方向(MD)、幅方向(TD)ともに、1.8MPaであった。
Example 1
PTFE fine powder (Daikin Kogyo Polyflon F101HE) 100 parts by weight and liquid lubricant (naphtha) 20 parts by weight were uniformly kneaded to prepare a paste containing PTFE fine powder and naphtha. This paste was preformed into a cylindrical shape under the condition of 20 kg / cm 2 . Next, the obtained cylindrical preform was extrusion molded to obtain a sheet-like molded body. When the tensile strength of the obtained sheet-like molded body was measured (in the measurement, the distance between chucks was 10 mm and the sample width was 10 mm), the longitudinal direction (MD) and the width direction (TD) were both 1.8 MPa. It was.
 次に、シート状の成形体を、液状潤滑剤を含んだ状態で1対の金属圧延ロールの間に通し、厚さ200μmの長尺シートを得た。この長尺シートを温度150℃の乾燥機内に5分間滞留するように連続的に通して液状潤滑剤を乾燥除去し、PTFEシートを作製した。 Next, the sheet-like formed body was passed between a pair of metal rolling rolls containing a liquid lubricant to obtain a long sheet having a thickness of 200 μm. The long sheet was continuously passed in a dryer at a temperature of 150 ° C. for 5 minutes so as to dry and remove the liquid lubricant, and a PTFE sheet was produced.
 用いたPTFE微粉末の数平均分子量を標準比重法により算出したところ、1.1×108であった。 It was 1.1 * 10 < 8 > when the number average molecular weight of the used PTFE fine powder was computed by the standard specific gravity method.
 上記のように作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に13倍延伸した。さらに、長手方向に延伸したPTFEシートを4枚重ね合わせ、テンター法により150℃の雰囲気温度で幅方向に45倍延伸した。その後、二軸延伸したPTFEシートを焼成し(焼成温度400℃、以降の実施例および比較例においても同じ)、4層構造を有するPTFE多孔質膜を得た。 The PTFE sheet produced as described above was stretched 13 times in the longitudinal direction in a dryer at an atmospheric temperature of 290 ° C. Further, four PTFE sheets stretched in the longitudinal direction were overlapped and stretched 45 times in the width direction at an atmospheric temperature of 150 ° C. by a tenter method. Thereafter, the biaxially stretched PTFE sheet was fired (firing temperature of 400 ° C., the same in the following examples and comparative examples) to obtain a PTFE porous membrane having a four-layer structure.
 (実施例2)
 実施例1で作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に8倍延伸した。さらに、長手方向に延伸したPTFEシートを2枚重ね合わせ、テンター法により150℃の雰囲気温度で幅方向に31.5倍延伸した。その後、二軸延伸したPTFEシートを焼成し、2層構造を有するPTFE多孔質膜を得た。
(Example 2)
The PTFE sheet produced in Example 1 was stretched 8 times in the longitudinal direction in a dryer having an atmospheric temperature of 290 ° C. Further, two PTFE sheets stretched in the longitudinal direction were superposed and stretched 31.5 times in the width direction at an ambient temperature of 150 ° C. by a tenter method. Thereafter, the biaxially stretched PTFE sheet was fired to obtain a PTFE porous membrane having a two-layer structure.
 (実施例3)
 実施例1で作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に10倍延伸し、さらに、テンター法により150℃の雰囲気温度で幅方向に60倍延伸した。その後、二軸延伸したPTFEシートを3枚重ね合わせて焼成し、3層構造を有するPTFE多孔質膜を得た。
(Example 3)
The PTFE sheet produced in Example 1 was stretched 10 times in the longitudinal direction in a dryer at an ambient temperature of 290 ° C., and further stretched 60 times in the width direction at an ambient temperature of 150 ° C. by a tenter method. Thereafter, three biaxially stretched PTFE sheets were stacked and fired to obtain a PTFE porous membrane having a three-layer structure.
 (実施例4)
 実施例1で作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に6.5倍延伸した。さらに、長手方向に延伸したPTFEシートを2枚重ね合わせ、テンター法により150℃の雰囲気温度で幅方向に45倍延伸した。その後、二軸延伸したPTFEシートを焼成し、2層構造を有するPTFE多孔質膜を得た。
Example 4
The PTFE sheet produced in Example 1 was stretched 6.5 times in the longitudinal direction in a dryer at an ambient temperature of 290 ° C. Further, two PTFE sheets stretched in the longitudinal direction were overlapped and stretched 45 times in the width direction at an ambient temperature of 150 ° C. by a tenter method. Thereafter, the biaxially stretched PTFE sheet was fired to obtain a PTFE porous membrane having a two-layer structure.
 (比較例1)
 実施例1で作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に6倍延伸し、さらに、テンター法により150℃の雰囲気温度で幅方向に20倍延伸した。その後、これを焼成して、単層のPTFE多孔質膜を得た。
(Comparative Example 1)
The PTFE sheet produced in Example 1 was stretched 6 times in the longitudinal direction in a dryer at an ambient temperature of 290 ° C., and further stretched 20 times in the width direction at an ambient temperature of 150 ° C. by a tenter method. Then, this was baked and the single layer PTFE porous membrane was obtained.
 (比較例2)
 実施例1で作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に4倍延伸し、さらに、テンター法により150℃の雰囲気温度で幅方向に20倍延伸した。その後、これを焼成して、単層のPTFE多孔質膜を得た。
(Comparative Example 2)
The PTFE sheet produced in Example 1 was stretched 4 times in the longitudinal direction in a dryer at an ambient temperature of 290 ° C., and further stretched 20 times in the width direction at an ambient temperature of 150 ° C. by a tenter method. Then, this was baked and the single layer PTFE porous membrane was obtained.
 (比較例3)
 PTFE微粉末(ダイキン工業社製 ポリフロンF101HE)の代わりに、別のPTFE微粉末(ダイキン工業社製 ポリフロンF104)を用いた以外は実施例1と同様にして、PTFEシートを作製した。用いたPTFE微粉末の数平均分子量を標準比重法により算出したところ、4.0×107であった。
(Comparative Example 3)
A PTFE sheet was produced in the same manner as in Example 1 except that another PTFE fine powder (Polyflon F104 made by Daikin Industries, Ltd.) was used instead of the PTFE fine powder (Polyflon F101HE made by Daikin Industries, Ltd.). It was 4.0 * 10 < 7 > when the number average molecular weight of the used PTFE fine powder was computed by the standard specific gravity method.
 上記のように作製したPTFEシートを、290℃の雰囲気温度の乾燥機中で長手方向に13倍延伸した。さらに、長手方向に延伸したPTFEシートを4枚重ね合わせ、テンター法により150℃の雰囲気温度で幅方向に45倍延伸した。その後、二軸延伸したPTFEシートを焼成し、4層構造を有するPTFE多孔質膜を得た。 The PTFE sheet produced as described above was stretched 13 times in the longitudinal direction in a dryer at an atmospheric temperature of 290 ° C. Further, four PTFE sheets stretched in the longitudinal direction were overlapped and stretched 45 times in the width direction at an atmospheric temperature of 150 ° C. by a tenter method. Thereafter, the biaxially stretched PTFE sheet was fired to obtain a PTFE porous membrane having a four-layer structure.
 実施例1~4および比較例1~3で作製したPTFE多孔質膜の延伸倍率、多孔質層積層数、膜厚、平均孔径および気孔率を表1に、その他の諸特性の評価結果を表2に示す。 Table 1 shows the stretching ratio, the number of porous layers laminated, the film thickness, the average pore diameter and the porosity of the PTFE porous membranes prepared in Examples 1 to 4 and Comparative Examples 1 to 3, and the evaluation results of other properties are shown in Table 1. It is shown in 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2に示すように、全てのPTFE多孔質膜における面密度はほぼ同等となり、全サンプルがほぼ同レベルの通音性を有していると考えられる。しかし、標準比重法により算出した数平均分子量が4.0×107のPTFEを用いた比較例3では、多層構造であるにもかかわらず、その防水性(耐水圧性)が大きく低下した。また、比較例1、2は、実施例と同じPTFEを用いているものの単層構造であるため、その防水性(耐水圧性)が低くなった。面密度が同程度であっても、多層構造を有する実施例の方が高い防水性を示すことがわかる。また、実施例の各多孔質膜を比較すると、積層数が増加するにつれて防水性が高くなる傾向を示した。 As shown in Tables 1 and 2, the surface densities of all the PTFE porous membranes are almost equal, and it is considered that all samples have substantially the same level of sound permeability. However, in Comparative Example 3 using PTFE having a number average molecular weight of 4.0 × 10 7 calculated by the standard specific gravity method, the waterproofness (water pressure resistance) was greatly reduced despite the multilayer structure. Moreover, since the comparative examples 1 and 2 used the same PTFE as an Example but are single layer structures, the waterproofness (water pressure resistance) became low. It can be seen that even if the surface density is similar, the example having the multilayer structure shows higher waterproofness. Moreover, when each porous membrane of an Example was compared, the tendency for waterproofness to become high was shown as the number of lamination | stacking increased.
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。 The present invention can be applied to other embodiments without departing from the intent and essential features thereof. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that fall within the meaning and scope equivalent to the claims are embraced therein.
 本発明の防水通音膜は、例えば、音声機能を備えた電気製品の通音性を確保したまま、当該製品に高い防水性を付与できる。本発明の防水通音膜は、その高い防水性から、海岸、森林など、近年、使用場所が通常の屋内外から大きく広がりつつある電気製品への使用に好適である。 The waterproof sound-permeable membrane of the present invention can give a high waterproof property to the product while ensuring the sound-permeable property of an electric product having a voice function, for example. The waterproof sound-permeable membrane of the present invention is suitable for use in electrical products such as beaches and forests, where the place of use is spreading widely from ordinary indoors and outdoors in recent years due to its high waterproofness.

Claims (6)

  1.  ポリテトラフルオロエチレン(PTFE)多孔質膜を含む防水通音膜であって、
     前記PTFE多孔質膜は、第1多孔質層と、PTFEのマトリクス間に働く結着力に基づいて前記第1多孔質層と積層および一体化された第2多孔質層と、を備え、
     前記第1および第2多孔質層は、標準比重法により算出した数平均分子量が5.0×107以上のPTFEにより構成され、
     前記第1および第2多孔質層から選ばれる少なくとも1つの層の平均孔径が1μm以下であり、
     前記防水通音膜の面密度が1~10g/m2であり、
     前記防水通音膜の引張強度が10~100MPaであり、
     前記防水通音膜の突き刺し強度を前記防水通音膜の面密度で除した値が、25~50kPa・m2/gである防水通音膜。
    A waterproof sound-permeable membrane comprising a polytetrafluoroethylene (PTFE) porous membrane,
    The PTFE porous membrane includes a first porous layer, and a second porous layer laminated and integrated with the first porous layer based on a binding force acting between the PTFE matrices,
    The first and second porous layers are composed of PTFE having a number average molecular weight calculated by a standard specific gravity method of 5.0 × 10 7 or more,
    An average pore diameter of at least one layer selected from the first and second porous layers is 1 μm or less;
    The surface density of the waterproof sound-permeable membrane is 1 to 10 g / m 2 ;
    The waterproof sound-permeable membrane has a tensile strength of 10 to 100 MPa,
    A waterproof sound-permeable membrane having a value obtained by dividing the puncture strength of the waterproof sound-permeable membrane by the surface density of the waterproof sound-permeable membrane is 25 to 50 kPa · m 2 / g.
  2.  前記第1および第2多孔質層は、それぞれ二軸延伸された層であり、
     前記第1および第2多孔質層の延伸倍率が互いに等しい、請求項1に記載の防水通音膜。
    The first and second porous layers are respectively biaxially stretched layers,
    The waterproof sound-permeable membrane according to claim 1, wherein the stretching ratios of the first and second porous layers are equal to each other.
  3.  前記第1および第2多孔質層の延伸方向が互いに一致するとともに、前記第1および第2多孔質層の延伸倍率が、各延伸方向に関して互いに等しい、請求項2に記載の防水通音膜。 The waterproof sound-permeable membrane according to claim 2, wherein the stretching directions of the first and second porous layers coincide with each other, and the stretching ratios of the first and second porous layers are equal to each other in each stretching direction.
  4.  請求項1に記載の防水通音膜の製造方法であって、
     標準比重法により算出した数平均分子量が5.0×107以上のポリテトラフルオロエチレン(PTFE)からなるPTFE微粉末と、加工助剤と、を含むペーストを押出成形する工程と、
     前記ペーストの成形体であるシートまたは前記ペーストの成形体を圧延して得られるシートを、PTFEの融点未満の温度で第1方向に延伸する工程と、
     前記第1方向への延伸後のシートを、複数枚重ね合わせる工程と、
     前記重ね合わせた複数枚のシートを、PTFEの融点未満の温度で前記第1方向と交差する第2方向に延伸する工程と、
     前記第2方向への延伸後の複数枚のシートを、PTFEの融点以上の温度で焼成して、PTFEのマトリクス間に働く結着力に基づいて一体化する工程と、を含む、防水通音膜の製造方法。
    A method for producing a waterproof sound-permeable membrane according to claim 1,
    A step of extruding a paste containing PTFE fine powder made of polytetrafluoroethylene (PTFE) having a number average molecular weight of 5.0 × 10 7 or more calculated by the standard specific gravity method, and a processing aid;
    Stretching a sheet that is a molded body of the paste or a sheet obtained by rolling the molded body of the paste in a first direction at a temperature lower than the melting point of PTFE;
    A step of superimposing a plurality of sheets stretched in the first direction;
    Stretching the superposed sheets in a second direction intersecting the first direction at a temperature lower than the melting point of PTFE;
    A step of firing the plurality of sheets after being stretched in the second direction at a temperature equal to or higher than the melting point of PTFE and integrating them based on the binding force acting between the PTFE matrices. Manufacturing method.
  5.  請求項1に記載の防水通音膜の製造方法であって、
     標準比重法により算出した数平均分子量が5.0×107以上のポリテトラフルオロエチレン(PTFE)からなるPTFE微粉末と、加工助剤と、を含むペーストを押出成形する工程と、
     前記ペーストの成形体であるシートまたは前記ペーストの成形体を圧延して得られるシートを、PTFEの融点未満の温度で二軸延伸する工程と、
     前記二軸延伸後のシートを、複数枚重ね合わせる工程と、
     前記重ね合わせた複数枚のシートを、PTFEの融点以上の温度で焼成して、PTFEのマトリクス間に働く結着力に基づいて一体化する工程と、を含む、防水通音膜の製造方法。
    A method for producing a waterproof sound-permeable membrane according to claim 1,
    A step of extruding a paste containing PTFE fine powder made of polytetrafluoroethylene (PTFE) having a number average molecular weight of 5.0 × 10 7 or more calculated by the standard specific gravity method, and a processing aid;
    Biaxially stretching a sheet that is a molded body of the paste or a sheet obtained by rolling the molded body of the paste at a temperature lower than the melting point of PTFE;
    A step of superimposing a plurality of sheets after biaxial stretching;
    A method of manufacturing a waterproof sound-permeable membrane, comprising: baking the plurality of stacked sheets at a temperature equal to or higher than the melting point of PTFE and integrating them based on a binding force acting between the PTFE matrices.
  6.  音声機能を備えた電気製品であって、
     音声を出力するための発音部および音声を入力するための受音部から選ばれる少なくとも1つと、前記発音部および/または受音部と外部との間で音声を伝達できるとともに、前記発音部および/または受音部への水の侵入を抑制する防水通音膜と、を備え、
     前記防水通音膜が請求項1に記載の防水通音膜である、電気製品。
    An electrical product with a voice function,
    Sound can be transmitted between the sound generation unit and / or the sound receiving unit and the outside, and at least one selected from a sound generation unit for outputting sound and a sound receiving unit for inputting sound, and the sound generation unit and And / or a waterproof sound-permeable membrane that suppresses the entry of water into the sound receiving unit,
    An electrical product, wherein the waterproof sound-permeable membrane is the waterproof sound-permeable membrane according to claim 1.
PCT/JP2010/050711 2009-01-21 2010-01-21 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same WO2010084912A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10733519.2A EP2351647B1 (en) 2009-01-21 2010-01-21 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
KR1020117007080A KR101249195B1 (en) 2009-01-21 2010-01-21 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
CN2010800023291A CN102123863B (en) 2009-01-21 2010-01-21 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
US13/009,510 US8272517B2 (en) 2009-01-21 2011-01-19 Water-proof sound-transmitting membrane, method for producing the water-proof sound-transmitting membrane, and electrical appliance including the water-proof sound-transmitting membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-011356 2009-01-21
JP2009011356 2009-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/009,510 Continuation US8272517B2 (en) 2009-01-21 2011-01-19 Water-proof sound-transmitting membrane, method for producing the water-proof sound-transmitting membrane, and electrical appliance including the water-proof sound-transmitting membrane

Publications (1)

Publication Number Publication Date
WO2010084912A1 true WO2010084912A1 (en) 2010-07-29

Family

ID=42355964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050711 WO2010084912A1 (en) 2009-01-21 2010-01-21 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same

Country Status (6)

Country Link
US (1) US8272517B2 (en)
EP (1) EP2351647B1 (en)
JP (1) JP4637965B2 (en)
KR (1) KR101249195B1 (en)
CN (1) CN102123863B (en)
WO (1) WO2010084912A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103202036A (en) * 2011-06-01 2013-07-10 日东电工株式会社 Water-resistant sound transmitting member, production method therefor, and water-resistant sound transmitting member carrier
WO2021060328A1 (en) * 2019-09-27 2021-04-01 三井・ケマーズフロロプロダクツ株式会社 Polytetrafluoroethylene porous film having high strength and small pore diameter
EP3613586B1 (en) * 2017-04-18 2022-12-07 Nitto Denko Corporation Laminate and wound body

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708134B2 (en) * 2005-09-14 2011-06-22 日東電工株式会社 Sound-permeable membrane, electronic component with sound-permeable membrane, and method for manufacturing circuit board mounted with the electronic component
WO2009011315A1 (en) 2007-07-18 2009-01-22 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
WO2010084912A1 (en) * 2009-01-21 2010-07-29 日東電工株式会社 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
CN104106255B (en) 2011-08-22 2019-04-30 卡达利国际有限公司 Compartment
US9795044B2 (en) 2011-08-22 2017-10-17 Catalyst Lifestyle Limited Waterproof case
TWI453114B (en) * 2012-05-11 2014-09-21 Entire Technology Co Ltd Manufacturing method for porous composite film
KR101460304B1 (en) * 2012-05-18 2014-11-21 주식회사 아모그린텍 Waterproof sound passing sheet, method for manufacturing the same and electronic device having the waterproof sound passing sheet
KR101460305B1 (en) * 2012-05-18 2014-11-21 주식회사 아모그린텍 Waterproof sound passing sheet, method for manufacturing the same and electronic device having the waterproof sound passing sheet
KR101460303B1 (en) * 2012-05-18 2014-11-14 주식회사 아모그린텍 Waterproof sound passing sheet, method for manufacturing the same and electronic device having the waterproof sound passing sheet
JP5854948B2 (en) * 2012-08-02 2016-02-09 日東電工株式会社 Polytetrafluoroethylene black porous membrane, method for producing the same, vent membrane and vent member using the same
JP5947655B2 (en) * 2012-08-02 2016-07-06 日東電工株式会社 Polytetrafluoroethylene porous membrane, and ventilation membrane and ventilation member using the same
US8724841B2 (en) 2012-08-30 2014-05-13 Apple Inc. Microphone with acoustic mesh to protect against sudden acoustic shock
US9317068B2 (en) 2012-09-24 2016-04-19 Donaldson Company, Inc. Venting assembly and microporous membrane composite
KR20140058812A (en) * 2012-11-07 2014-05-15 김현식 Surface protection film for mobile device and apparatus of manufacturing the film
US8939252B2 (en) 2012-11-11 2015-01-27 David Sanborn Protective material for acoustic transmission
US9510075B2 (en) 2012-12-11 2016-11-29 Amogreentech Co., Ltd. Waterproof sound transmitting sheet, and method for producing same
JP6030155B2 (en) 2012-12-11 2016-11-24 アモグリーンテック カンパニー リミテッド Waterproof sound-permeable sheet and manufacturing method thereof
JP6073925B2 (en) * 2012-12-11 2017-02-01 アモグリーンテック カンパニー リミテッド Waterproof sound-permeable sheet and manufacturing method thereof
JP2014184418A (en) * 2013-03-25 2014-10-02 Nitto Denko Corp Waterproof ventilation structure, waterproof ventilation member, and waterproof ventilation film
JP2015035801A (en) * 2013-07-11 2015-02-19 清水建設株式会社 Outdoor flat speaker
WO2015029302A1 (en) * 2013-08-30 2015-03-05 日東電工株式会社 Waterproof sound-transmitting film, waterproof sound-transmitting member provided with same, electronic equipment, electronic equipment case, and waterproof sound-transmitting structure
EP3053355B1 (en) 2013-09-30 2019-10-23 Apple Inc. Waterproof speaker module
WO2015057693A1 (en) 2013-10-15 2015-04-23 Donaldson Company, Inc. Microporous membrane laminate for acoustic venting
WO2015105052A1 (en) 2014-01-13 2015-07-16 セーレン株式会社 Sound-transmitting waterproof film and method for producing same
US9226076B2 (en) 2014-04-30 2015-12-29 Apple Inc. Evacuation of liquid from acoustic space
JP2016022415A (en) * 2014-07-18 2016-02-08 日本バルカー工業株式会社 Water-proof ventilation member having water-proof ventilation film made of nonwoven fabric layer containing polytetrafluoroethylene fiber and adhesive layer and usage of the same
US9363589B2 (en) 2014-07-31 2016-06-07 Apple Inc. Liquid resistant acoustic device
US9681210B1 (en) 2014-09-02 2017-06-13 Apple Inc. Liquid-tolerant acoustic device configurations
EP3209027B1 (en) * 2014-10-16 2019-07-03 Nitto Denko Corporation Sound-passing membrane, sound-passing membrane member having same, microphone, and electronic device
JP2016158222A (en) * 2015-02-26 2016-09-01 日東電工株式会社 Waterproof sound-transmitting structure, electronic apparatus with the same, and electronic apparatus case
US9811121B2 (en) 2015-06-23 2017-11-07 Apple Inc. Liquid-resistant acoustic device gasket and membrane assemblies
US10034073B2 (en) * 2015-08-04 2018-07-24 Apple Inc. Device having a composite acoustic membrane
US20180303655A1 (en) * 2015-10-30 2018-10-25 C.R. Bard, Inc. Vent adaptor assemblies, methods of making the same, methods of using the same, and urinary drainage bag systems using the same
JP6656110B2 (en) * 2016-07-27 2020-03-04 日本ゴア株式会社 Waterproof sound-permeable cover, waterproof sound-permeable cover member, and acoustic device
US10209123B2 (en) 2016-08-24 2019-02-19 Apple Inc. Liquid detection for an acoustic module
KR102512182B1 (en) * 2016-09-14 2023-03-21 더블유.엘.고어 앤드 어소시에이츠 게엠베하 Assemblies for sound device protection
CN108532109A (en) * 2017-03-03 2018-09-14 周子清 For realizing the bionical sound passing membrane and preparation method thereof of breast ultrasound normalized scans
JP7175106B2 (en) * 2017-05-31 2022-11-18 日東電工株式会社 Polytetrafluoroethylene porous membrane
CN107277701A (en) * 2017-08-12 2017-10-20 施柏德(厦门)科技有限公司 A kind of preparation method of the waterproof and breathable sound passing membrane compound by lamination
WO2019059896A1 (en) * 2017-09-19 2019-03-28 W. L. Gore & Associates, Inc. Acoustic protective cover including a curable support layer
CN110359182B (en) * 2018-04-09 2021-09-28 杭州科百特过滤器材有限公司 Polytetrafluoroethylene spinning fiber waterproof sound-transmitting membrane and preparation method thereof
USD984425S1 (en) 2018-09-11 2023-04-25 Catalyst Lifestyle Limited Mobile phone protection case
USD924863S1 (en) 2018-09-11 2021-07-13 Catalyst Lifestyle Limited Phone case
US11440290B2 (en) 2018-11-22 2022-09-13 Amogreentech Co., Ltd. Waterproof sound-transmitting sheet for facilitating vision inspection
USD903685S1 (en) 2019-03-29 2020-12-01 Catalyst Lifestyle Limited Electronic case
USD958146S1 (en) 2019-06-20 2022-07-19 Catalyst Lifestyle Limited Case for electronic device
USD933075S1 (en) 2019-06-26 2021-10-12 Catalyst Lifestyle Limited Case for a mobile communication device
USD974330S1 (en) 2019-06-26 2023-01-03 Catalyst Lifestyle Limited Case for electronic device
US11076028B2 (en) 2019-08-30 2021-07-27 Catalyst Lifestyle Limited Switch assembly for engaging a switch of an electronic device
USD932479S1 (en) 2020-02-11 2021-10-05 Catalyst Lifestyle Limited Case for electronic communications device
USD931845S1 (en) 2020-02-11 2021-09-28 Catalyst Lifestyle Limited Case for electronic communications device
USD984449S1 (en) 2020-02-28 2023-04-25 Catalyst Lifestyle Limited Case for electronic device
US11303980B2 (en) 2020-07-27 2022-04-12 Waymo Llc Microphone module
CN114071326B (en) * 2020-08-04 2024-02-23 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly
EP4250879A1 (en) * 2022-03-23 2023-09-27 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Inlay with exposed porous layer, component carrier and manufacture method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029950A1 (en) * 1994-04-28 1995-11-09 Daikin Industries, Ltd. Composite porous polytetrafluoroethylene membrane
JPH11501973A (en) * 1995-12-01 1999-02-16 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング PTFE article provided with microporous polytetrafluoroethylene containing filler and method for producing the same
JP2004083811A (en) 2002-08-28 2004-03-18 Nitto Denko Corp Waterproofing sound-passing membrane
JP2005329405A (en) * 2005-06-27 2005-12-02 Sumitomo Electric Fine Polymer Inc Production method of porous multi-layered hollow fiber
JP2006169497A (en) * 2004-11-19 2006-06-29 Tokyo Univ Of Agriculture & Technology Porous body and manufacturing method thereof
JP2008055407A (en) * 2006-08-01 2008-03-13 Nitto Denko Corp Method for manufacturing polytetrafluoroethylene porous film and air filter filtering medium
JP2008237949A (en) * 2007-03-23 2008-10-09 Nitto Denko Corp Waterproof ventilation filter, waterproof ventilation member, and housing
WO2009011315A1 (en) * 2007-07-18 2009-01-22 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497686A (en) 1978-01-19 1979-08-01 Sumitomo Electric Ind Ltd Porous multi-ply calcined material of polytetrafluoroethylene and its production
US4385093A (en) 1980-11-06 1983-05-24 W. L. Gore & Associates, Inc. Multi-component, highly porous, high strength PTFE article and method for manufacturing same
US4891423A (en) * 1989-03-20 1990-01-02 Stockel Richard F Polymeric biguanides
US5225131A (en) * 1989-12-07 1993-07-06 Daikin Industries, Ltd. Process for producing multilayer polytetrafluoroethylene porous membrane and semisintered polytetrafluoroethylene multilayer structure
US5401901A (en) 1991-09-19 1995-03-28 W. L. Gore & Associates, Inc. Weather-resistant electromagnetic interference shielding for electronic equipment enclosures
JPH05185506A (en) 1992-01-10 1993-07-27 Shin Etsu Chem Co Ltd Production of moisture-proof film
WO1996020040A1 (en) 1994-12-23 1996-07-04 Gore Hybrid Technologies, Inc. A strong water-permeable thin composite membrane
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US5828012A (en) * 1996-05-31 1998-10-27 W. L. Gore & Associates, Inc. Protective cover assembly having enhanced acoustical characteristics
TW371284B (en) * 1996-12-04 1999-10-01 Daikin Ind Ltd Filtration material of filter and air cleaning device using the filtration material
KR100264343B1 (en) * 1997-07-16 2000-08-16 윤덕용 A high-capability and high-performance hrdrogen storage alloy for secondary battery electrode which contains zirconium
JP2000225328A (en) * 1998-11-30 2000-08-15 Nitto Denko Corp Filter medium for filter
US6512834B1 (en) * 1999-07-07 2003-01-28 Gore Enterprise Holdings, Inc. Acoustic protective cover assembly
US7434305B2 (en) * 2000-11-28 2008-10-14 Knowles Electronics, Llc. Method of manufacturing a microphone
DE10112232A1 (en) * 2001-03-07 2002-09-19 Deutsch Zentr Luft & Raumfahrt Method for producing a multi-layer electrode or electrode composite unit and gas diffusion electrode
US6487977B1 (en) * 2001-07-18 2002-12-03 Steven Williams Beach/outdoor table with cork screw anchor and umbrella
JP2003053872A (en) * 2001-08-13 2003-02-26 Nitto Denko Corp Air-permeable sound passing film
JP3812892B2 (en) * 2002-02-25 2006-08-23 日東電工株式会社 Breathable sound-permeable membrane
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
JP2005334758A (en) * 2004-05-26 2005-12-08 Nitto Denko Corp Ventilation filter
JP4708134B2 (en) * 2005-09-14 2011-06-22 日東電工株式会社 Sound-permeable membrane, electronic component with sound-permeable membrane, and method for manufacturing circuit board mounted with the electronic component
JP5220369B2 (en) * 2007-09-04 2013-06-26 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
WO2010084912A1 (en) * 2009-01-21 2010-07-29 日東電工株式会社 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
CN102318367A (en) * 2009-09-04 2012-01-11 日东电工株式会社 Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029950A1 (en) * 1994-04-28 1995-11-09 Daikin Industries, Ltd. Composite porous polytetrafluoroethylene membrane
JPH11501973A (en) * 1995-12-01 1999-02-16 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング PTFE article provided with microporous polytetrafluoroethylene containing filler and method for producing the same
JP2004083811A (en) 2002-08-28 2004-03-18 Nitto Denko Corp Waterproofing sound-passing membrane
JP2006169497A (en) * 2004-11-19 2006-06-29 Tokyo Univ Of Agriculture & Technology Porous body and manufacturing method thereof
JP2005329405A (en) * 2005-06-27 2005-12-02 Sumitomo Electric Fine Polymer Inc Production method of porous multi-layered hollow fiber
JP2008055407A (en) * 2006-08-01 2008-03-13 Nitto Denko Corp Method for manufacturing polytetrafluoroethylene porous film and air filter filtering medium
JP2008237949A (en) * 2007-03-23 2008-10-09 Nitto Denko Corp Waterproof ventilation filter, waterproof ventilation member, and housing
WO2009011315A1 (en) * 2007-07-18 2009-01-22 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAOMI SATOKAWA: "Fluoroplastics Handbook", 1990, NIKKAN KOGYO SHIMBUN LTD., pages: 36

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103202036A (en) * 2011-06-01 2013-07-10 日东电工株式会社 Water-resistant sound transmitting member, production method therefor, and water-resistant sound transmitting member carrier
CN103202036B (en) * 2011-06-01 2016-09-28 日东电工株式会社 Water-proof sound-transmitting component and manufacture method thereof and water-proof sound-transmitting component load body
EP3613586B1 (en) * 2017-04-18 2022-12-07 Nitto Denko Corporation Laminate and wound body
WO2021060328A1 (en) * 2019-09-27 2021-04-01 三井・ケマーズフロロプロダクツ株式会社 Polytetrafluoroethylene porous film having high strength and small pore diameter
JP2021054892A (en) * 2019-09-27 2021-04-08 三井・ケマーズ フロロプロダクツ株式会社 Polytetrafluoroethylene porous film having high intensity small pore diameter
JP7316893B2 (en) 2019-09-27 2023-07-28 三井・ケマーズ フロロプロダクツ株式会社 Polytetrafluoroethylene porous membrane with high strength and small pore size

Also Published As

Publication number Publication date
KR20110063492A (en) 2011-06-10
EP2351647A1 (en) 2011-08-03
EP2351647A4 (en) 2016-06-01
US8272517B2 (en) 2012-09-25
EP2351647B1 (en) 2018-08-08
US20110143114A1 (en) 2011-06-16
CN102123863A (en) 2011-07-13
JP4637965B2 (en) 2011-02-23
KR101249195B1 (en) 2013-04-03
JP2010193439A (en) 2010-09-02
CN102123863B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP4637965B2 (en) Waterproof sound-permeable membrane, method for producing the same, and electrical product using the same
JP5160984B2 (en) Waterproof sound-permeable membrane, method for producing waterproof sound-permeable membrane, and electric product using the same
EP2683176B1 (en) Waterproof sound-transmitting film and electrical product
JP6178034B1 (en) Waterproof sound-permeable membrane, waterproof sound-permeable member and electronic device
JP4944864B2 (en) Polytetrafluoroethylene porous membrane, method for producing the same, and waterproof air-permeable filter
JP5947655B2 (en) Polytetrafluoroethylene porous membrane, and ventilation membrane and ventilation member using the same
US9578402B2 (en) Waterproof sound-transmitting membrane, sound-transmitting member, and electrical device
JP5155927B2 (en) Waterproof sound-permeable membrane, waterproof sound-permeable member and electrical product using the same
JP2014207590A (en) Waterproofing sound-transmitting membrane and method for producing the same, and waterproofing sound-transmitting member
WO2021112197A1 (en) Polytetrafluoroethylene oriented porous film, and air-permeable filtration medium and filter member using same
US20230019449A1 (en) Stretched porous polytetrafluoroethylene membrane, air-permeable medium using the same, and filter member using the same
WO2018194073A1 (en) Laminate and wound body
JP6324109B2 (en) Waterproof sound-permeable membrane manufacturing method, waterproof sound-permeable membrane and electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002329.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010733519

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE