JP2004083811A - Waterproofing sound-passing membrane - Google Patents

Waterproofing sound-passing membrane Download PDF

Info

Publication number
JP2004083811A
JP2004083811A JP2002249544A JP2002249544A JP2004083811A JP 2004083811 A JP2004083811 A JP 2004083811A JP 2002249544 A JP2002249544 A JP 2002249544A JP 2002249544 A JP2002249544 A JP 2002249544A JP 2004083811 A JP2004083811 A JP 2004083811A
Authority
JP
Japan
Prior art keywords
sound
membrane
permeable membrane
waterproof sound
waterproof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249544A
Other languages
Japanese (ja)
Inventor
Fuyuki Eriguchi
江里口 冬樹
Ei Sawa
佐波 映
Yuki Kagehisa
陰久 裕毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002249544A priority Critical patent/JP2004083811A/en
Publication of JP2004083811A publication Critical patent/JP2004083811A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waterproofing sound-passing membrane having high sound-passing property and waterproofness and provide a portable information communication instrument having the waterproofing sound-passing membrane attached to the sound generating part or the sound receiving part. <P>SOLUTION: The waterproofing sound-passing membrane contains a porous plastic membrane 1 free from pores or having an average pore diameter of ≤2.0μm and having an areal density of 2-20 g/m<SP>2</SP>. The portable information communication instrument has the waterproofing sound-passing membrane attached to at least one element selected from sound-receiving part and sound generation part. The porous plastic membrane is preferably e.g. a porous polytetrafluoroethylene membrane or a porous ultra-high-molecular weight polyethylene membrane. The plastic membrane is preferably laminated with a supporting member. The supporting member preferably has e.g. a net or a ring frame form. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、携帯情報通信機器などの筐体に使用されるに防水通音膜に関するものである。
【0001】
【従来の技術】
近年、携帯電話をはじめとする携帯情報通信機器は、急速な発展を遂げている。携帯電話、ノートパソコン、電子手帳などの携帯情報通信機器は広範囲に普及し、その使用場所も通常の屋内外から、海岸、森林地帯など多岐に渡っている。その結果、携帯情報通信機器が、日常の生活用水、雨水、海水などに接触する危険が増大している。
【0002】
携帯情報通信機器に防水機能を付加する場合、最も困難な部位はスピーカー、マイク、ブザーなどの発音部および受音部である。発音部および受音部は、その機能上、高度な通音性を有する必要があり、必然的に、発音部および受音部がこの種の機器で最も大きな開口部となる。この種の機器においては、表示画面、操作キーなどの部分も開口部となっているが、これらの部分は密閉構造にすることが可能であるので、防水することが容易である。これに対し、発音部および受音部を完全な密閉構造にすると通音性は著しく低下してしまうため好ましくない。このような通音性の低下は、音質の低下や発音時および受音時の電力増大に繋がるため、機器の設計に多大な負荷を強いることとなる。それゆえ、防水機能を有した携帯情報通信機器はいまだ品種が少なく、かつ高価である。
【0003】
この種の機器の発音部および受音部に対して容易に防水性を付加する部材として、防水通音膜がある。通音膜とは、音の透過を阻害しにくい材料でできた薄膜であり、防水通音膜を発音部および受音部に設けることによって、これらの開口部の通音性を阻害することなく防水性を付加することができる。このような防水通音膜には、プラスチックフィルム、撥水性不織布、および撥水性ネットなどがある。
【0004】
防水通音膜に特に好適な材料として、例えば、特開平3−41182号公報に記載された材料が挙げられる。この防水通音膜は、微細透孔が多数分散して形成されたシート状物であり、特に好適な材料として、ポリテトラフルオロエチレン(以下、PTFEと記す。)フィルム、または超高分子量ポリエチレン(以下、UHMWPEと記す。)フィルムを多孔化したものが挙げられている。これらの撥水性を有するプラスチック多孔質膜は、上記した公報に記載の通り、一定の通音性と防水性を併せ持っている。このうち、通音性は多孔質膜がもっている高い通気性によるものであり、防水性は素材がもっている撥水性によるものである。
【0005】
【発明が解決しようとする課題】
上記した撥水性不織布や撥水性ネットは、通気度が大きいため通音性が高いという好適な特性を有する一方で、防水性については、水滴が付着する程度には対応できるが、水中に浸漬する場合には筐体内に浸水が生じる。一方、上記したプラスチックフィルムは高い防水特性を有するが、通音性が著しく低いという問題があった。
【0006】
上記したプラスチック多孔質膜においては、通音性と防水性とを両立させることが容易ではない。一般に、通音性を向上させるには、その通気性を向上させるべきであると考えられている。しかし、通気性と防水性はトレードオフの関係にあり、通気性を向上させると防水性は低下する。
【0007】
防水通音膜の通音性は一般に音響透過損失(TL)を用いて示される。音響透過損失(TL)は防水通音膜を音が透過する前後の音圧の差であり、以下の式で示される。
TL=(防水通音膜透過前の音圧)―(防水通音膜透過後の音圧)
上式は、TLが小さいほど通音性が高いことを示している。
【0008】
従来のプラスチック多孔質膜からなる防水通音膜では、可聴領域での音響透過損失(TL)を十分に小さく抑えた場合、防水性が低下し、筐体を水中に浸漬した場合に筐体内に浸水が生じる。また、膜の補強および作業性の向上のためにプラスチック多孔質膜に補強基材をラミネートする場合があるが、この場合、ラミネートされた補強基材が防水通音膜の振動を阻害し、通音性の劣化を生じることがわかっている。これらの事が、携帯電話などに代表される携帯情報通信機器の設計を困難にしている。
【0009】
【課題を解決するための手段】
本発明の防水通音膜は、無孔または平均孔径が2.0μm以下である多孔のプラスチック膜を含み、面密度が2〜20g/mであることを特徴とする。
【0010】
本発明の携帯情報通信機器は、本発明の防水通音膜が、発音部および受音部から選ばれる少なくとも一方に固着されたことを特徴とする。
【0011】
【発明の実施の形態】
本発明者らは、鋭意研究を重ねた結果、防水通音膜の防水性と通音性は、それぞれ異なる要因に依存していることを発見した。即ち、防水性は膜の孔の状態に依存し、一方、通音性は膜の面密度に依存する。防水通音膜の音の伝播は、主に防水通音膜そのものの振動によって行われるため、膜の面密度の大小が音の減衰に大きく影響しているものと考えられる。
【0012】
そこで本発明者らは、上記した発見に基き試行錯誤を重ねた結果、防水性を高め、かつ通音性の低下を抑えるためには、膜の平均孔径と面密度とを所定範囲とすれば良いことに到達した。
【0013】
すなわち、本実施の形態の防水通音膜は、無孔または平均孔径が2.0μm以下である多孔のプラスチック膜を含み、面密度が2〜20g/mであることを特徴とする。このような防水通音膜によれば、防水通音膜の振動に消費されるエネルギーが少なくなるため、音響透過損失を小さくすることができる。さらに、本発明の防水通音膜が固着された筐体を水中に浸漬しても、筐体内に浸水が生じない程度(以下「筐体内に浸水が生じない程度」と略する)に防水性を高めることができる。
【0014】
以下に、本発明の防水通音膜の一例を、図面を参照しながら説明する。
図1に示すように、本実施の形態の防水通音膜は、円板状のプラスチック膜1からなる。プラスチック膜は、音響透過損失が、充分に小さければ、その形態および材質について特に限定されず、例えば、多孔のプラスチック多孔質膜(以下「プラスチック多孔質膜」と称する)、無孔のプラスチック膜などを用いることができる。特に、気孔率の高さを利用して低面密度の膜を得ることができる、プラスチック多孔質膜が好適である。プラスチック多孔質膜としては、小孔径かつ低面密度であり、かつ低価格などの諸条件を考慮すると、PTFEフィルムを一軸または二軸延伸することにより作製した、PTFE多孔質膜が好ましい。また、UHMWPEを原料とし、焼結、キャスティング、押出後、乾式ないし湿式延伸する事により作製した、UHMWPE多孔質膜を用いることもできる。ここで、UHMWPEとは、重量平均分子量が100万以上であるポリエチレンを指す。
【0015】
プラスチック膜1の厚みは、面密度が2〜20g/mであり、かつ、筐体内に浸漬が生じない程度の防水性能を有するかぎりにおいて、特に限定されず、2〜1000μmの範囲で任意に定めることができるが、特に、5〜100μmであることが好ましい。
【0016】
尚、プラスチック膜1には、さらに耐水性を付加するために、含フッ素ポリマーなどにより撥水処理を行ってもよい。
【0017】
図2に示すように、防水通音膜は、プラスチック膜1に積層された支持体2をさらに含んでいてもよい。プラスチック膜は、単体では強度が低く加工が困難であるが、支持体2と積層することによって適当な強度と加工性を得ることができる。
【0018】
防水通音膜の面密度は、2〜20g/mであることを要する。2g/mより小さいと、膜の物理的強度が不十分であり、20g/mより大きいと、音響透過損失が充分に小さい値より大きくなるからである。
【0019】
防水通音膜が、プラスチック膜と支持体とからなる積層物である場合は、支持体の面密度は、5〜18g/mであることが好ましい。5g/mより小さいと支持体の物理的強度が不十分であり、18g/mより大きいとプラスチック膜の面密度との和が20g/mを超え、防水通音膜の音響透過損失が充分に低い値より大きくなるからである。この場合、プラスチック膜と支持体とからなる防水性通音膜の面密度は、各部材の面密度の合計である7〜20g/mである。
【0020】
支持体2としては、ネット、フォームラバー、スポンジシートなどの多孔体、不織布、織布などを用いることができるが、特に、ネットが好ましい。ネット形状の素材はメッシュとも呼ばれ、フィラメント(繊維)が組み合わさってできた網目の間がほぼ均一に開口しているため、プラスチック膜の通音性が阻害されにくいからである。ネットの材質としては、コストと加工性とを考慮すると、ポリオレフィン、ポリエステルなどの熱可塑性樹脂が好適である。それ以外には、金属メッシュを用いることも可能である。金属メッシュは、マイクやスピーカーが電磁的なノイズを拾うことを抑制する電磁遮蔽材をしても機能する。
【0021】
プラスチック膜と支持体との接着方法は、特に限定されないが、支持体2がネツトである場合、ネットにプラスチック膜より低融点の材料を用い、熱ラミネートによってネットの表面を融解させ、プラスチック膜に部分的に含浸させる方法が好ましい。このように接着剤を用いずに両者を接着するので、余分な重量増加がなく、かつ、接着剤がメッシュの開口を閉塞することによる通気性の低下も最小限に抑えることができる。
【0022】
また、支持体は、プラスチック膜の周縁に固着された枠であってもよい。図3には、プラスチック膜1の周縁に、リング形状の支持体3を固着した防水通音膜を示している。このように、リング形状の枠を支持体3として設けた形態によれば、図2に示した防水通音膜と同様、プラスチック膜を補強することができ、取り扱いが容易となる。また、この支持体3が筐体への固着しろとなるため、筐体への取り付け作業が容易となる。また、リング形状の支持体3とプラスチック膜とからなる防水通音膜においては、通音部分がプラスチック膜単体であることから、プラスチック膜の全面に支持体としてネットなどを貼り合わせた形態よりも、通音性の高い防水通音膜を容易に提供することができる。尚、図3に示した例では、支持体3は、プラスチック膜単体の周縁に固着されているが、プラスチック膜とシート状の支持体2とからなる積層物の周縁に固着してもよい。
【0023】
支持材3の材質は、特に限定されないが、熱可塑性樹脂、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)などのポリエステル、ポリイミドなど、あるいはこれらの複合材、または金属などが用いられる。リング形状の支持体3の厚みは、好ましくは5〜500μmであり、より好ましくは、25〜200μmである。また、リング幅(外径と内径の差)は0.5〜2mmであることが、筐体への固着しろとして適当である。また、リング形状の支持体3には、上記した樹脂からなる発砲体を用いることもできる。
【0024】
プラスチック膜1とリング形状の支持体3の接着方法は、特に限定されず、例えば、加熱溶着、超音波溶着、接着剤による接着、両面テープによる接着などの方法により行うことができるが、特に、プラスチック膜1とリング形状の支持体3との接着、および筐体への取り付けが容易な両面テープを用いることが好ましい。
【0025】
プラスチック膜1がプラスチック多孔質膜である場合、その平均孔径は、筐体内に浸水が生じない程度の耐水圧を得ることができるよう制御されている。一般的な電気機械の防水性に関する規格として、JIS C 0920に「電気機械器具の防水試験および固形物の侵入に対する保護等級」が定められている。この規格では、電気機械器具の防水の種類を保護等級0から8の9段階で示している。ここで、保護等級7(防浸形)は、水深1mに30分間浸漬して機器の内部に浸水の形跡がない性能を有することを示す。携帯情報通信機器を誤って水中に落とした場合でも故障しないようにするためには、保護等級7に相当する防水性が必要となる。防水保護等級7を達成するためには、一般には、深さ1mの水圧に相当する9.8kPaの耐水圧があれば良い。しかし、多孔質膜に特有の孔径のバラツキを考慮すると、9.8kPaという耐水圧では十分とはいえない。本発明者らの検討によれば、防水保護等級7を完全に達成するためには、深さ1m相当の耐水圧の10倍に達する、約100kPaの耐水圧が必要である。これを満たすための平均孔径は2.0μm以下である。また、平均孔径の下限は特に限定されないが、0.05μm以上であることが好ましい。
【0026】
平均孔径の測定方法は、ASTM F316−86に記載されている測定法が一般的に普及しており、自動化された測定装置が市販されている。この方式は、既知の表面張力を持つ液体に浸積したプラスチック多孔質膜をホルダーに固定し、一方から加圧する事によって膜から液体を追い出し、その圧力から孔径を求めるものである。この方式は簡便かつ再現性が高いだけでなく、測定装置を完全に自動化できるという点で優れている。本実施の形態の防水通音膜の平均孔径を測定するに際しても、ASTM F316−86に従い、測定には米国Porous Material Inc.製のPerm−Porometerを用いた。
【0027】
本実施の形態の防水通音膜は、作製後、筐体へ固着される前において、剥離可能なシート状物上に複数個貼り付けて保管または輸送することが好ましい。このように、複数個の防水通音膜を剥離可能なシート状物の上に配列すれば、防水通音膜の取り扱いが容易であり、また、防水通音膜を筐体へ固着するに際して、自動化が容易となる。例えば、筐体への固着手段としてリング状の両面テープが周縁に貼り付けられた防水通音膜においては、図4(a)に示すように、表面にシリコンが塗布されたセパレターシート18上に、図1に示した防水通音膜を多数個貼り付けて保管する。また、周縁に両面テープが貼り付けられていない防水通音膜においては、図4(b)に示すように、上記したセパレータシート18と粘着性シート19との間に多数個の防水通音膜を挟んで保管することができる。尚、図4(a),図4(b)に示したシート状物は長尺であってもよく、このような場合、ロール状に巻いて保管または輸送してもよい。
【0028】
図5に、本実施の形態の防水通音膜が固着された筐体の一例を示している。図5に示した筐体は、携帯電話5であり、そのスピーカー6、マイク7、ブザー8などの発音部および受音部に、図1に示したプラスチック膜1からなる防水通音膜が固着されている。しかしながら、本実施の形態の防水通音膜が固着される筐体はこれに限定されるものではなく、ノートパソコン、電子手帳などの携帯情報通信機器、その他の通音部を備えた筐体に取り付けてもよい。防水通音膜の取り付けは、筐体との接合部から水が浸入することのないように、例えば、両面テープを用いた貼付、熱溶着、高周波溶着、超音波溶着などの方法により行われる。
【0029】
【実施例】
次に、本発明の防水通音膜の一例について、具体的に説明する。
【0030】
PTFEファインパウダー(旭・ICIフロロポリマーズ社製、フルオンCD−123)100重量部に対して液状潤滑剤(ナフサ)18重量部を均一に混合し、この配合物を20kg/cmの条件で円筒状に予備成形し、次いでこれをロッド状に押出成形する。このロッド状成形体を、液状潤滑剤を含んだままの状態で1対の金属圧延ロールの間に通し、厚さ250μmの長尺シートを得た。この長尺シートを温度150℃の乾燥機内に5分間滞留するように連続的に通して液状潤滑剤を乾燥除去し、PTFEシートAを作製した。
【0031】
PTFEファインパウダー(旭・ICIフロロポリマーズ社製、フルオンCD−123)100重量部に対して液状潤滑剤(ナフサ)22重量部を均一に混合し、この混合物を20kg/cmの条件で円筒状に予備成形し、次いでこれをロッド状に押出成形する。このロッド状成形体を,液状潤滑剤を含んだままの状態で1対の金属圧延ロール間に通し、厚さ250μmの長尺シートを得た。この長尺シートを温度150℃の乾燥機内に5分間滞留するように連続的に通して液状潤滑剤を乾燥除去し、PTFEシートBを作製した。
【0032】
(実施例1)
上記したシートAを290℃の雰囲気温度の乾燥機中で長手方向に7倍延伸し、さらにテンター法により80℃の雰囲気温度で幅方向に20倍延伸し、未焼成PTFE多孔質膜を得た。この未焼成PTFE多孔質膜を、寸法を固定した状態で400℃、10秒間熱処理し、外径17mmに打抜いて、焼成されたPTFE多孔質膜単体からなる防水通音膜(面密度2.8g/m、厚み6μm、平均孔径0.7μm)を得た。
【0033】
(実施例2)
上記したシートAを380℃雰囲気温度の乾燥機中で長手方向に13倍延伸し、さらにテンター法により80℃の延伸温度で幅方向に15倍延伸し、焼成されたPTFE多孔質膜を得た。この焼成されたPTFE多孔質膜を、寸法を固定した状態で400℃、10秒間熱処理し、外径17mmに打抜いて、焼成されたPTFE多孔質膜単体からなる防水通音膜(面密度2.8g/m、厚み6μm、平均孔径1.6μm)を得た。
【0034】
(実施例3)
実施例1に記載の条件で延伸、熱処理されたシートA(面密度2.8g/m、厚み6μm、平均孔径0.7μm)に、ポリエチレンネット(米国Applied Extrusion Technologies Inc.製、DELNET X550、面密度13g/m)を重ね、これらをPTFE多孔質膜側から160℃で加熱して接着し、外径17mmに打抜いて、支持体がPTFE多孔質膜に積層された防水通音膜(面密度15.8g/m)を得た。
【0035】
(実施例4)
実施例1で作製された防水通音膜に、外径17mm、内径14.2mm、厚み50μmのリング形状の支持体(PP製)を両面テープを用いて張り合わせ、リング形状の支持体が固着された防水通音膜(面密度2.8g/m)を得た。
【0036】
(実施例5)
ポリエチレンフィルム(厚み50μm)を、80℃の温度雰囲気中で長手方向に2倍、幅方向に2倍延伸し、無孔の防水通音膜(面密度16.0g/m、厚み12μm)を得た。
【0037】
(実施例6)
上記したシートBを290℃の延伸温度で長手方向に3倍延伸し、さらにテンター法により80℃の延伸温度で幅方向に15倍延伸し、未焼成PTFE多孔質膜を得た。この未焼成PTFE多孔質膜を、寸法を固定した状態で400℃、10秒間熱処理し、外径17mmに打抜いて、焼成されたPTFE多孔質膜単体からなる防水通音膜(面密度5.0g/m、厚み12μm、平均孔径0.5μm)を得た。
【0038】
(実施例7)
上記したシートBを290℃の延伸温度で長手方向に5倍延伸し、さらにテンタ一法により80℃の延伸温度で幅方向に15倍延伸し、未焼成PTFE多孔質膜を得た。この未焼成PTFE多孔質膜を、寸法を固定した状態で400℃、10秒間熱処理し、外径17mmに打抜いて、焼成されたPTFE多孔質膜単体からなる防水通音膜(面密度4.0g/m、厚み10μm、平均孔径0.6μm)を得た。
【0039】
(実施例8)
実施例6に記載の条件で延伸、熱処理されたシートB(面密度5.0g/m、厚みが12μm、平均孔径が0.5μm)に、ポリエチレンネット(米国Applied Extrusion Technologies Inc.製、DELNET X550、厚さ120μm、面密度14g/m)を重ね、これらをPTFE多孔質膜側から160℃で加熱して接着し、外径17mmに打抜いて、PTFE多孔質膜に支持体が積層された防水通音膜(面密度 19g/m)を得た。
【0040】
(比較例1)
実施例2に記載の条件で延伸、熱処理されたシートA(面密度2.8g/m、厚み6μm、平均孔径1.6μm)に、ポリエチレンネット(米国Applied Extrusion Technologies Inc.製、DELNET XN3133 面密度55g/m)を重ね、これらをPTFE多孔質膜側から160℃で加熱して接着し、外径17mmに打抜いて、PTFE多孔質膜に支持材が積層された防水通音膜(面密度 57.8g/m2 )を得た。
【0041】
(比較例2)
実施例2に記載の条件で延伸、熱処理されたシートA(面密度2.8g/m、厚み6μm、平均孔径1.6μ)に、ポリエチレンネット(米国Applied Extrusion Technologies Inc.製、DELNET XN6065、面密度110g/m)を重ね、これらをPTFE多孔質膜側から160℃で加熱して接着し、外径17mmに打抜いて、PTFE多孔質膜に支持体が積層された防水通音膜(面密度112.8g/m)を得た。
【0042】
(比較例3)
市販のポリエチレンフィルムを、外径17mmに打抜いて、無孔の防水通音膜(面密度46.7g/cm、厚み35μm)として用意した。
【0043】
(比較例4)
上記したシートBを290℃の延伸温度で長手方向に13倍延伸し、さらにテンタ一法により80℃の延伸温度で幅方向に15倍延伸し、未焼成PTFE多孔質膜を得た。この未焼成PTFE多孔質膜を、寸法を固定した状態で400℃、10秒間熱処理し、外径17mmに打抜いて、焼成されたPTFE多孔質膜単体からなる防水通音膜(面密度3.0g/m、厚み5μm、平均孔径2.2μm)を得た。
【0044】
(比較例5)
上記したシートBをPTFEの融点以上となる380℃の延伸温度で長手方向に5倍延伸し、さらにテンタ一法により80℃の延伸温度で幅方向に5倍延伸し、焼成されたPTFE多孔質膜を得た。この焼成PTFE多孔質膜を、寸法を固定した状態で400℃、10秒間熱処理し、外径17mmに打抜いて、焼成されたPTFE多孔質膜単体からなる防水通音膜(面密度6.0g/m、厚み15μm、平均孔径3.0μm)を得た。
【0045】
(比較例6)
実施例6に記載の条件で延伸、熱処理されたシートB(面密度5.0g/m、厚み12μm、平均孔径0.5μm)に、支持体としてポリエチレンネット(米国Applied Extrusion Technologies Inc.製、DELNET X220、厚さ270μm、面密度34g/m)を重ね、これらをPTFE多孔質膜側から160℃で加熱して接着し、外径17mmに打抜いて、PTFE多孔質膜に支持体が積層された防水通音膜(面密度39g/m)を得た。
【0046】
尚、面密度は、単位面積当りの質量であり、上記した実施例1〜8、比較例1〜6について、プラスチック膜および支持材のそれぞれの面密度は、プラスチック膜および支持材のそれぞれを所定の寸法に切り抜き、その質量を測定し、1m2 当りの質量に換算して求めた。また、プラスチック膜に支持材が積層された防水通音膜の面密度は、プラスチック膜と支持体とからなる積層物を、所定の寸法に切り抜き、その質量を測定し、1m2 当りの質量に換算して求めた。
【0047】
平均孔径は、ASTM F316−86に従い、(米)Porous Material Inc.製、Perm−Porometerを用いて測定した。測定試薬には、フッ素系溶媒((米)スリーエム社製、FC−40、表面張力16mN/m)を用いた。
【0048】
実施例1〜8、比較例1〜6の防水通音膜について、通音性(音響透過損失)、耐水圧、経時耐水性を測定し、その結果を表1に示した。
【0049】
【表1】

Figure 2004083811
【0050】
通音性の測定には、図6に示した通音性測定装置11を用いた。図6において、12は無響室、10はスピーカー、13はマイクロフォン、15はプリアンプ、16はコンディショニングアンプ、17はアナライザおよびジェネレータ、14は音響評価システム(B&K製 PULSE)が内蔵されたコンピュータである。
【0051】
通音性は、以下に示す手順で測定した。まず、図7に示すような、防水通音膜4(直径17mm)がスペーサー9を介して取り付けられたスピーカー10(音の漏洩を防止するため、側面と背面側(ペーサー9が取り付けられた面の反対面側)は木板によって覆われているが、図示していない)を用意した。次に、図6に示すように、無響室12において、防水通音膜がスペーサーを介して取り付けられたのスピーカー10に音信号として、20Hz〜20kHzのピンクノイズを入力し、スピーカー10から出てくる音をスピーカー10の前方50mmの位置に固定されたマイクロフォン13によって測定した。測定された音から、音響評価システム(B&K製 PULSE)が内蔵されたコンピュータ14によって騒音レベル(聴感特性による周波数補正(A特性)をかけた音圧レベル)が計算され、その値から音響透過損失(TL)を求めた。音響透過損失(TL)は以下の式から求まる。
TL=(防水通音膜がスピーカー取り付けられていない場合の騒音レベル)一(防水通音膜がスピーカーに取り付けられた場合の騒音レベル)
上式において、音響透過損失(TL)が小さいほど防水通音膜の通音性能が高いことを意味する。
【0052】
耐水圧は、JIS L 1092に記載されている耐水度試験機(高水圧法)に準じて測定した。ただし、JIS L 1092に規定の面積では、防水通音膜が著しく変形するため、ステンレスメッシュ(開口径2mm)を防水通音膜の加圧面の反対側に設け、変形を抑制した状態で測定した。
【0053】
経時耐水性は、ステンレスホルダーにセットされた防水通音膜に98kPaの水圧(深度1mの水圧の10倍に相当する)をかけ、水漏れが発生する時間を測定した。ただし、水漏れが2時間発生しない場合は、水漏れなしと判断した。
【0054】
表1に示した結果より、面密度が通音性に大きな影響を及ぼしており、面密度が2〜20g/mであると、音響透過損失が、例えば、2dB以下の良好な通音性を有する防水通音膜を実現できることが確認できた。また、平均孔径が2.0μmより大きい防水通音膜(比較例4、5)では30分以内で水漏れが発生した。平均孔径が防水性に大きな影響を及ぼしており、2.0μm以下であれば、水中に浸漬する場合でも浸水が抑制された通音膜を実現できることが確認できた。
【0055】
【発明の効果】
以上説明したとおり、本発明によれば、通音性および防水性の高い防水通音膜および、本発明の防水通音膜が発音部および受音部から選ばれる少なくとも一方に取り付けられた携帯情報通信機器を提供することができる。
【図面の簡単な説明】
【図1】本発明の防水通音膜の一例を示す斜視図
【図2】本発明の防水通音膜の他の例を示す斜視図
【図3】本発明の防水通音膜の他の例を示す斜視図
【図4】複数個の図1に示した防水通音膜が剥離可能なシート状物上に配列された状態を説明する図
【図5】(a)本発明の防水通音膜の一例が固着された携帯電話の正面図  (b)本発明の防水通音膜の一例が固着された携帯電話の背面図
【図6】本発明の実施例において、防水通音膜の通音性を測定する方法を模式的に説明する図。
【図7】本発明の実施例において、防水通音膜の通音性の測定に用いられる、防水通音膜がスペーサを介して取り付けられたスピーカーを示す図
【符号の説明】
1            プラスチック膜
2            支持体
3            支持体
4            防水通音膜
5            携帯電話
6            スピーカー
7            マイク
8            ブザー
9            スペーサー
10          スピーカー
11          通音性測定装置
12          無響室
13          マイク
14          音響評価システムが格納されたコンピュータ
15          プリアンプ
16          コンディショニングアンプ
17          アナライザおよびジェネレータ
18          セパレータシート
19          粘着性シートThe present invention relates to a waterproof sound-permeable membrane used for a housing of a portable information communication device or the like.
[0001]
[Prior art]
2. Description of the Related Art In recent years, mobile information communication devices such as mobile phones have been rapidly developing. 2. Description of the Related Art Portable information communication devices such as mobile phones, notebook computers, and electronic organizers have become widespread, and their use locations have been wide ranging from ordinary indoors and outdoors, to shores and forest areas. As a result, the danger of the portable information communication device coming into contact with daily living water, rainwater, seawater, and the like is increasing.
[0002]
When a waterproof function is added to a portable information communication device, the most difficult parts are a sound generator and a sound receiver such as a speaker, a microphone, and a buzzer. The sounding section and the sound receiving section need to have a high degree of sound transmission in terms of their functions, and the sounding section and the sound receiving section are inevitably the largest openings in this type of equipment. In this type of device, portions such as a display screen and operation keys also have openings, but since these portions can be formed in a closed structure, they can be easily waterproofed. On the other hand, if the sounding part and the sound receiving part are completely sealed, the sound permeability is unpreferably reduced. Such a decrease in sound permeability leads to a decrease in sound quality and an increase in power at the time of sound generation and sound reception, so that a great load is imposed on the design of the device. Therefore, portable information communication devices having a waterproof function are still few and expensive.
[0003]
As a member for easily adding waterproofness to a sound-producing portion and a sound-receiving portion of such a device, there is a waterproof sound-permeable membrane. A sound-permeable membrane is a thin film made of a material that is unlikely to impede sound transmission.By providing a waterproof sound-permeable membrane in the sound-generating part and the sound-receiving part, it does not impair the sound permeability of these openings. Waterproofness can be added. Such a waterproof sound-permeable membrane includes a plastic film, a water-repellent nonwoven fabric, and a water-repellent net.
[0004]
Particularly suitable materials for the waterproof sound-permeable membrane include, for example, the materials described in JP-A-3-41182. This waterproof sound-permeable membrane is a sheet-like material formed by dispersing a large number of fine pores. As a particularly suitable material, a polytetrafluoroethylene (hereinafter, referred to as PTFE) film or an ultra-high molecular weight polyethylene ( Hereinafter, it is referred to as UHMWPE). As described in the above-mentioned publication, these plastic porous membranes having water repellency have both a certain sound permeability and a waterproof property. Of these, sound permeability is due to the high air permeability of the porous membrane, and waterproofness is due to the water repellency of the material.
[0005]
[Problems to be solved by the invention]
The above-described water-repellent nonwoven fabric or water-repellent net has a preferable property that sound permeability is high due to high air permeability, while water resistance can correspond to a degree to which water droplets adhere, but is immersed in water. In such a case, flooding occurs in the housing. On the other hand, the above-mentioned plastic film has a high waterproof property, but has a problem that the sound permeability is extremely low.
[0006]
In the above-mentioned plastic porous membrane, it is not easy to achieve both sound permeability and waterproofness. It is generally considered that the sound permeability should be improved in order to improve the sound permeability. However, there is a trade-off between the air permeability and the waterproofness. When the air permeability is improved, the waterproofness decreases.
[0007]
The sound permeability of a waterproof sound-permeable membrane is generally indicated using sound transmission loss (TL). Sound transmission loss (TL) is the difference in sound pressure before and after sound permeates through a waterproof sound-permeable membrane, and is expressed by the following equation.
TL = (sound pressure before transmission through the waterproof sound-permeable membrane)-(sound pressure after transmission through the waterproof sound-permeable membrane)
The above equation indicates that the smaller the TL, the higher the sound permeability.
[0008]
In a conventional waterproof sound-permeable membrane made of a plastic porous membrane, when the sound transmission loss (TL) in the audible region is sufficiently suppressed, the waterproofness is reduced. Inundation occurs. In some cases, a reinforcing substrate is laminated on a plastic porous membrane to reinforce the membrane and improve workability. In this case, the laminated reinforcing substrate impedes the vibration of the waterproof sound-permeable membrane, and It has been found that the sound quality deteriorates. These facts make it difficult to design portable information communication devices such as mobile phones.
[0009]
[Means for Solving the Problems]
The waterproof sound-permeable membrane of the present invention includes a non-porous or porous plastic membrane having an average pore diameter of 2.0 μm or less, and has a surface density of 2 to 20 g / m 2. 2 It is characterized by being.
[0010]
The portable information communication device of the present invention is characterized in that the waterproof sound-permeable membrane of the present invention is fixed to at least one selected from a sound-producing portion and a sound-receiving portion.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted intensive studies and found that the waterproofness and the sound permeability of the waterproof sound-permeable membrane depend on different factors. That is, waterproofness depends on the state of the pores of the membrane, while sound permeability depends on the surface density of the membrane. Since the sound transmission of the waterproof sound-permeable membrane is mainly performed by the vibration of the waterproof sound-permeable membrane itself, it is considered that the magnitude of the surface density of the membrane greatly affects the sound attenuation.
[0012]
Therefore, the present inventors have repeated trial and error based on the above findings, and as a result, in order to increase the waterproofness and suppress the decrease in sound permeability, the average pore diameter and the surface density of the membrane should be within a predetermined range. Reached a good thing.
[0013]
That is, the waterproof sound-permeable membrane of the present embodiment includes a non-porous or porous plastic membrane having an average pore diameter of 2.0 μm or less, and has a surface density of 2 to 20 g / m 2. 2 It is characterized by being. According to such a waterproof sound-permeable membrane, the energy consumed for the vibration of the waterproof sound-permeable membrane is reduced, so that the sound transmission loss can be reduced. Furthermore, even if the housing to which the waterproof sound-permeable membrane of the present invention is fixed is immersed in water, the housing is waterproof to such an extent that no water is generated in the housing (hereinafter, referred to as “a degree to which no water is generated in the housing”). Can be increased.
[0014]
Hereinafter, an example of the waterproof sound-permeable membrane of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the waterproof sound-permeable membrane of the present embodiment is formed of a disc-shaped plastic membrane 1. The plastic film is not particularly limited in its form and material as long as the sound transmission loss is sufficiently small, and examples thereof include a porous plastic porous film (hereinafter, referred to as a “plastic porous film”) and a non-porous plastic film. Can be used. In particular, a plastic porous film that can obtain a film having a low areal density by utilizing a high porosity is preferable. Considering various conditions such as small pore size, low areal density, and low cost, the plastic porous membrane is preferably a PTFE porous membrane produced by uniaxially or biaxially stretching a PTFE film. Further, a UHMWPE porous film produced by sintering, casting, extruding, and then performing dry or wet stretching using UHMWPE as a raw material can also be used. Here, UHMWPE refers to polyethylene having a weight average molecular weight of 1,000,000 or more.
[0015]
The thickness of the plastic film 1 is 2 to 20 g / m2 in areal density. 2 Is not particularly limited as long as it has a waterproof property that does not cause immersion in the housing, and can be arbitrarily determined in a range of 2 to 1000 μm, and particularly preferably 5 to 100 μm. .
[0016]
The plastic film 1 may be subjected to a water-repellent treatment with a fluorine-containing polymer or the like in order to further impart water resistance.
[0017]
As shown in FIG. 2, the waterproof sound-permeable membrane may further include a support 2 laminated on the plastic membrane 1. The plastic film alone has low strength and is difficult to process. However, by laminating the plastic film on the support 2, appropriate strength and workability can be obtained.
[0018]
The surface density of the waterproof sound-permeable membrane is 2 to 20 g / m. 2 It is necessary to be. 2g / m 2 If it is smaller, the physical strength of the membrane is insufficient, and 20 g / m 2 If it is larger, the sound transmission loss becomes larger than a sufficiently small value.
[0019]
When the waterproof sound-permeable membrane is a laminate composed of a plastic membrane and a support, the surface density of the support is 5 to 18 g / m. 2 It is preferable that 5g / m 2 If it is smaller, the physical strength of the support is insufficient, and 18 g / m 2 If it is larger, the sum with the surface density of the plastic film is 20 g / m. 2 This is because the sound transmission loss of the waterproof sound-permeable membrane becomes larger than a sufficiently low value. In this case, the areal density of the waterproof sound-permeable membrane composed of the plastic membrane and the support is 7 to 20 g / m, which is the sum of the areal densities of the respective members. 2 It is.
[0020]
As the support 2, a porous body such as a net, foam rubber, and sponge sheet, a nonwoven fabric, a woven fabric, and the like can be used, and a net is particularly preferable. This is because the net-shaped material is also called a mesh, and since the openings formed by combining the filaments (fibers) are almost uniformly opened, the sound permeability of the plastic film is hardly hindered. As the material of the net, a thermoplastic resin such as polyolefin or polyester is preferable in consideration of cost and workability. Otherwise, a metal mesh can be used. The metal mesh also functions as an electromagnetic shielding material to prevent microphones and speakers from picking up electromagnetic noise.
[0021]
The method of bonding the plastic film to the support is not particularly limited, but when the support 2 is a net, a material having a lower melting point than the plastic film is used for the net, and the surface of the net is melted by heat lamination to form a plastic film. The method of partially impregnating is preferred. Since the two members are bonded together without using an adhesive in this manner, there is no extra weight increase, and a decrease in air permeability due to the adhesive closing the opening of the mesh can be minimized.
[0022]
Further, the support may be a frame fixed to the periphery of the plastic film. FIG. 3 shows a waterproof sound-permeable membrane in which a ring-shaped support 3 is fixed to the periphery of the plastic membrane 1. As described above, according to the embodiment in which the ring-shaped frame is provided as the support 3, the plastic film can be reinforced similarly to the waterproof sound-permeable film shown in FIG. 2, and the handling becomes easy. In addition, since the support body 3 serves as a margin for fixing to the housing, the work of attaching to the housing becomes easy. Further, in the waterproof sound-permeable membrane composed of the ring-shaped support 3 and the plastic film, since the sound-transmitting portion is a single plastic film, the waterproof sound-permeable membrane has a structure that is smaller than that in which a net or the like is attached to the entire surface of the plastic film. Thus, a waterproof and sound-permeable membrane having high sound permeability can be easily provided. In the example shown in FIG. 3, the support 3 is fixed to the periphery of the plastic film alone, but may be fixed to the periphery of a laminate composed of the plastic film and the sheet-like support 2.
[0023]
The material of the support member 3 is not particularly limited, but may be a thermoplastic resin, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP), a polyester such as polyethylene terephthalate (PET) or polycarbonate (PC), a polyimide, or the like. Or a metal or the like. The thickness of the ring-shaped support 3 is preferably 5 to 500 μm, and more preferably 25 to 200 μm. A ring width (difference between the outer diameter and the inner diameter) of 0.5 to 2 mm is suitable as a margin for fixing to the housing. Further, as the ring-shaped support 3, a foam made of the above-mentioned resin may be used.
[0024]
The method of bonding the plastic film 1 and the ring-shaped support 3 is not particularly limited, and can be performed by, for example, a method such as heat welding, ultrasonic welding, bonding with an adhesive, or bonding with a double-sided tape. It is preferable to use a double-sided tape that is easy to bond the plastic film 1 to the ring-shaped support 3 and to attach it to the housing.
[0025]
When the plastic film 1 is a plastic porous film, the average pore diameter is controlled so as to obtain a water resistant pressure that does not cause water in the housing. As a standard relating to waterproofness of general electric machines, JIS C0920 defines "waterproof test for electric machines and the degree of protection against intrusion of solid matter". In this standard, the types of waterproofing of electric machinery and appliances are indicated by nine levels of protection levels 0 to 8. Here, a protection class of 7 (immersion-proof type) indicates that the device has a performance in which the device is immersed in a water depth of 1 m for 30 minutes and has no trace of water intrusion inside the device. In order to prevent failure even when the portable information communication device is accidentally dropped into water, waterproofness equivalent to protection class 7 is required. In order to achieve a waterproof protection class of 7, a water pressure of 9.8 kPa generally corresponds to a water pressure of 1 m depth. However, considering the variation in the pore diameter peculiar to the porous membrane, the water pressure of 9.8 kPa is not sufficient. According to the study of the present inventors, a water pressure of about 100 kPa, which is 10 times the water pressure equivalent to a depth of 1 m, is required to completely achieve the waterproof protection class 7. The average pore size for satisfying this is 2.0 μm or less. The lower limit of the average pore size is not particularly limited, but is preferably 0.05 μm or more.
[0026]
As a method for measuring the average pore diameter, a measurement method described in ASTM F316-86 is widely used, and an automated measuring device is commercially available. In this method, a plastic porous membrane immersed in a liquid having a known surface tension is fixed to a holder, and the liquid is expelled from the membrane by applying pressure from one side, and the pore size is determined from the pressure. This method is excellent not only in that it is simple and has high reproducibility, but also in that the measuring device can be completely automated. When measuring the average pore size of the waterproof sound-permeable membrane of the present embodiment, the measurement is performed in accordance with ASTM F316-86 by Porous Material Inc. of the United States. Perm-Porometer manufactured by the company was used.
[0027]
It is preferable that a plurality of the waterproof sound-permeable membranes of the present embodiment be attached to a peelable sheet-like material and then stored or transported after being manufactured and before being fixed to the housing. In this manner, if the plurality of waterproof sound-permeable membranes are arranged on a peelable sheet, the handling of the waterproof sound-permeable membrane is easy, and when the waterproof sound-permeable membrane is fixed to the housing, Automation becomes easy. For example, in the case of a waterproof sound-permeable membrane in which a ring-shaped double-sided tape is adhered to the periphery as a fixing means to the housing, as shown in FIG. Then, a number of waterproof sound-permeable membranes shown in FIG. 1 are attached and stored. In the case of a waterproof sound-permeable membrane having no double-sided tape attached to the periphery, as shown in FIG. 4B, a large number of waterproof sound-permeable membranes are provided between the separator sheet 18 and the adhesive sheet 19. Can be stored. The sheet-like material shown in FIGS. 4A and 4B may be long, and in such a case, the sheet-like material may be stored in a roll and stored or transported.
[0028]
FIG. 5 shows an example of a housing to which the waterproof sound-permeable membrane of the present embodiment is fixed. The housing shown in FIG. 5 is a mobile phone 5, and a waterproof sound-permeable membrane made of the plastic film 1 shown in FIG. 1 is fixed to a sound-generating part and a sound-receiving part such as a speaker 6, a microphone 7 and a buzzer 8. Have been. However, the housing to which the waterproof sound-permeable membrane according to the present embodiment is fixed is not limited to this, and may be a notebook personal computer, a portable information communication device such as an electronic notebook, or another housing provided with a sound-transmitting portion. May be attached. The waterproof sound-permeable membrane is attached by, for example, a method using a double-sided tape, heat welding, high-frequency welding, ultrasonic welding, or the like so that water does not intrude from the joint with the housing.
[0029]
【Example】
Next, an example of the waterproof sound-permeable membrane of the present invention will be specifically described.
[0030]
18 parts by weight of a liquid lubricant (naphtha) is uniformly mixed with 100 parts by weight of PTFE fine powder (Fluon CD-123, manufactured by Asahi ICI Fluoropolymers Co., Ltd.), and this mixture is mixed at 20 kg / cm. 2 And then extruded into a rod. The rod-shaped formed body was passed between a pair of metal rolling rolls while containing the liquid lubricant to obtain a long sheet having a thickness of 250 μm. This long sheet was continuously passed through a dryer at a temperature of 150 ° C. for 5 minutes so as to stay therein for drying and removing the liquid lubricant, thereby producing a PTFE sheet A.
[0031]
22 parts by weight of a liquid lubricant (naphtha) is uniformly mixed with 100 parts by weight of PTFE fine powder (Fluon CD-123, manufactured by Asahi ICI Fluoropolymers Co., Ltd.), and the mixture is mixed at 20 kg / cm. 2 And then extruded into a rod. The rod-shaped formed body was passed between a pair of metal rolling rolls while containing the liquid lubricant to obtain a long sheet having a thickness of 250 μm. This long sheet was continuously passed through a dryer at a temperature of 150 ° C. so as to stay for 5 minutes to dry and remove the liquid lubricant, thereby producing a PTFE sheet B.
[0032]
(Example 1)
The sheet A described above was stretched 7 times in the longitudinal direction in a dryer at an atmosphere temperature of 290 ° C., and further stretched 20 times in the width direction at an atmosphere temperature of 80 ° C. by a tenter method to obtain an unfired PTFE porous membrane. . This unfired PTFE porous membrane is heat-treated at 400 ° C. for 10 seconds with the dimensions fixed, punched out to an outer diameter of 17 mm, and formed of a fired PTFE porous membrane alone as a waterproof sound-permeable membrane (area density 2. 8g / m 2 , A thickness of 6 μm and an average pore diameter of 0.7 μm).
[0033]
(Example 2)
The above-mentioned sheet A was stretched 13 times in the longitudinal direction in a dryer at an atmosphere temperature of 380 ° C., and further stretched 15 times in the width direction at a stretching temperature of 80 ° C. by a tenter method to obtain a fired porous PTFE membrane. . The fired porous PTFE membrane was heat-treated at 400 ° C. for 10 seconds in a fixed size, punched out to an outer diameter of 17 mm, and formed of a fired PTFE porous membrane alone as a waterproof sound-permeable membrane (area density 2). 0.8 g / m 2 , A thickness of 6 µm, and an average pore diameter of 1.6 µm).
[0034]
(Example 3)
Sheet A stretched and heat-treated under the conditions described in Example 1 (area density 2.8 g / m 2 , A thickness of 6 μm, an average pore diameter of 0.7 μm) and a polyethylene net (manufactured by Applied Extrusion Technologies Inc., DELNET X550, area density 13 g / m) 2 ), And these are heated and bonded at 160 ° C. from the PTFE porous membrane side, punched out to an outer diameter of 17 mm, and a waterproof sound-permeable membrane having a support laminated on the PTFE porous membrane (area density: 15.8 g) / M 2 ) Got.
[0035]
(Example 4)
A ring-shaped support (made of PP) having an outer diameter of 17 mm, an inner diameter of 14.2 mm, and a thickness of 50 μm is attached to the waterproof sound-permeable membrane produced in Example 1 using a double-sided tape, and the ring-shaped support is fixed. Waterproof sound-permeable membrane (area density 2.8 g / m 2 ) Got.
[0036]
(Example 5)
A polyethylene film (thickness: 50 μm) is stretched twice in the longitudinal direction and twice in the width direction in an atmosphere at a temperature of 80 ° C. to obtain a nonporous waterproof sound-permeable membrane (area density of 16.0 g / m2). 2 And a thickness of 12 μm).
[0037]
(Example 6)
The above-mentioned sheet B was stretched three times in the longitudinal direction at a stretching temperature of 290 ° C., and further stretched 15 times in the width direction at a stretching temperature of 80 ° C. by a tenter method to obtain an unfired PTFE porous membrane. This unfired PTFE porous film is heat-treated at 400 ° C. for 10 seconds in a state where the dimensions are fixed, punched out to an outer diameter of 17 mm, and formed of a fired PTFE porous film alone as a waterproof sound-permeable film (having a surface density of 5. 0 g / m 2 , A thickness of 12 µm and an average pore diameter of 0.5 µm).
[0038]
(Example 7)
The sheet B was stretched 5 times in the longitudinal direction at a stretching temperature of 290 ° C., and further stretched 15 times in the width direction at a stretching temperature of 80 ° C. by a tenter method to obtain an unfired PTFE porous film. This unfired PTFE porous membrane is heat-treated at 400 ° C. for 10 seconds with the dimensions fixed, punched out to an outer diameter of 17 mm, and formed of a fired PTFE porous membrane alone as a waterproof sound-permeable membrane (area density 4. 0 g / m 2 , A thickness of 10 µm and an average pore diameter of 0.6 µm).
[0039]
(Example 8)
Sheet B stretched and heat-treated under the conditions described in Example 6 (area density 5.0 g / m 2 , A thickness of 12 μm and an average pore diameter of 0.5 μm), a polyethylene net (DELNET X550, manufactured by Applied Extrusion Technologies Inc., USA), a thickness of 120 μm, and a surface density of 14 g / m. 2 ), And these are adhered by heating at 160 ° C. from the PTFE porous membrane side, punched out to an outer diameter of 17 mm, and a waterproof permeable membrane in which a support is laminated on the PTFE porous membrane (area density 19 g / m 2). 2 ) Got.
[0040]
(Comparative Example 1)
Sheet A stretched and heat-treated under the conditions described in Example 2 (area density 2.8 g / m 2 , A thickness of 6 μm, an average pore diameter of 1.6 μm), and a polyethylene net (DELNET XN3133, manufactured by Applied Extrusion Technologies Inc., USA) with an area density of 55 g / m 2 ), And they are bonded by heating at 160 ° C. from the side of the PTFE porous membrane, punched out to an outer diameter of 17 mm, and a waterproof permeable membrane in which a support material is laminated on the PTFE porous membrane (57.8 g in area density). / M 2 ) Got.
[0041]
(Comparative Example 2)
Sheet A stretched and heat-treated under the conditions described in Example 2 (area density 2.8 g / m 2 , A thickness of 6 μm, an average pore diameter of 1.6 μ) and a polyethylene net (manufactured by Applied Extrusion Technologies Inc., DELNET XN6065, area density of 110 g / m). 2 ) Are adhered by heating at 160 ° C. from the side of the PTFE porous membrane, punched out to an outer diameter of 17 mm, and a waterproof permeable membrane (area density of 112.8 g) in which a support is laminated on the PTFE porous membrane. / M 2 ) Got.
[0042]
(Comparative Example 3)
A commercially available polyethylene film was punched into an outer diameter of 17 mm, and a non-porous waterproof sound-permeable membrane (area density: 46.7 g / cm) 2 , Thickness 35 μm).
[0043]
(Comparative Example 4)
The sheet B was stretched 13 times in the longitudinal direction at a stretching temperature of 290 ° C., and further stretched 15 times in the width direction at a stretching temperature of 80 ° C. by a tenter method to obtain an unfired PTFE porous film. This unfired PTFE porous film is heat-treated at 400 ° C. for 10 seconds in a fixed size, punched out to an outer diameter of 17 mm, and formed of a fired PTFE porous film alone as a waterproof sound-permeable membrane (having a surface density of 3. 0 g / m 2 , A thickness of 5 µm, and an average pore size of 2.2 µm).
[0044]
(Comparative Example 5)
The above sheet B is stretched 5 times in the longitudinal direction at a stretching temperature of 380 ° C. which is equal to or higher than the melting point of PTFE, and further stretched 5 times in the width direction at a stretching temperature of 80 ° C. by a tenter method. A membrane was obtained. This fired PTFE porous membrane was heat-treated at 400 ° C. for 10 seconds with the dimensions fixed, punched out to an outer diameter of 17 mm, and formed of a fired PTFE porous membrane alone as a waterproof sound-permeable membrane (area density 6.0 g). / M 2 , A thickness of 15 µm, and an average pore diameter of 3.0 µm).
[0045]
(Comparative Example 6)
Sheet B stretched and heat-treated under the conditions described in Example 6 (area density 5.0 g / m 2 , A thickness of 12 μm, an average pore diameter of 0.5 μm), and a polyethylene net (DELNET X220, manufactured by Applied Extrusion Technologies Inc., USA) having a thickness of 270 μm and a surface density of 34 g / m as a support. 2 ), And these are heated and bonded at 160 ° C. from the PTFE porous membrane side, punched into an outer diameter of 17 mm, and a waterproof sound-permeable membrane in which a support is laminated on the PTFE porous membrane (area density 39 g / m 2). 2 ) Got.
[0046]
The areal density is the mass per unit area, and in Examples 1 to 8 and Comparative Examples 1 to 6 above, the areal densities of the plastic film and the support were determined by setting the plastic film and the support to a predetermined value. Cut out to the dimensions of, measure the mass, 1m 2 Per mass. The surface density of the waterproof sound-permeable membrane in which the support material is laminated on the plastic film is determined by cutting out a laminate composed of the plastic film and the support to a predetermined size, measuring the mass, and measuring 1 m 2 Per mass.
[0047]
The average pore size is in accordance with ASTM F316-86, (US) Porous Material Inc. Was measured using a Perm-Porometer. As a measurement reagent, a fluorine-based solvent (FC-40, manufactured by 3M (US), surface tension 16 mN / m) was used.
[0048]
With respect to the waterproof sound-permeable membranes of Examples 1 to 8 and Comparative Examples 1 to 6, sound permeability (sound transmission loss), water pressure resistance, and water resistance over time were measured, and the results are shown in Table 1.
[0049]
[Table 1]
Figure 2004083811
[0050]
For the measurement of sound permeability, the sound permeability measuring device 11 shown in FIG. 6 was used. In FIG. 6, 12 is an anechoic room, 10 is a speaker, 13 is a microphone, 15 is a preamplifier, 16 is a conditioning amplifier, 17 is an analyzer and a generator, and 14 is a computer having a built-in acoustic evaluation system (PULSE manufactured by B & K). .
[0051]
Sound permeability was measured by the following procedure. First, as shown in FIG. 7, a speaker 10 to which a waterproof sound-permeable membrane 4 (diameter 17 mm) is attached via a spacer 9 (to prevent sound leakage, a side surface and a back side (a surface on which the pacer 9 is attached) , Which is covered by a wooden board, not shown). Next, as shown in FIG. 6, in an anechoic room 12, pink noise of 20 Hz to 20 kHz is input as a sound signal to a speaker 10 having a waterproof sound-permeable membrane attached via a spacer, and output from the speaker 10. The incoming sound was measured by a microphone 13 fixed at a position 50 mm in front of the speaker 10. From the measured sound, a computer 14 having a built-in acoustic evaluation system (PULSE manufactured by B & K) calculates a noise level (sound pressure level subjected to frequency correction (A characteristic) based on auditory characteristics), and from that value, a sound transmission loss. (TL) was determined. The sound transmission loss (TL) is obtained from the following equation.
TL = (noise level when waterproof sound-permeable membrane is not attached to speaker)-1 (noise level when waterproof sound-permeable membrane is attached to speaker)
In the above equation, the smaller the sound transmission loss (TL), the higher the sound transmission performance of the waterproof sound-permeable membrane.
[0052]
The water resistance was measured according to a water resistance tester (high water pressure method) described in JIS L 1092. However, in the area specified in JIS L 1092, since the waterproof sound-permeable membrane is significantly deformed, a stainless steel mesh (opening diameter: 2 mm) was provided on the opposite side of the pressurized surface of the waterproof sound-permeable membrane, and the measurement was performed with the deformation suppressed. .
[0053]
The water resistance over time was measured by applying a water pressure of 98 kPa (corresponding to 10 times the water pressure at a depth of 1 m) to the waterproof sound-permeable membrane set in the stainless steel holder, and measuring the time during which water leakage occurs. However, when no water leakage occurred for 2 hours, it was determined that there was no water leakage.
[0054]
From the results shown in Table 1, the areal density has a great effect on the sound permeability, and the areal density is 2 to 20 g / m2. 2 Thus, it was confirmed that a waterproof sound-permeable membrane having good sound-permeability with a sound transmission loss of, for example, 2 dB or less can be realized. In the case of the waterproof sound-permeable membrane having an average pore diameter of more than 2.0 μm (Comparative Examples 4 and 5), water leakage occurred within 30 minutes. It has been confirmed that the average pore size has a significant effect on the waterproofness, and that if the average pore size is 2.0 μm or less, a sound-permeable membrane with reduced water penetration can be realized even when immersed in water.
[0055]
【The invention's effect】
As described above, according to the present invention, the waterproof sound-permeable membrane having high sound-permeability and waterproofness, and the portable information in which the waterproof sound-permeable membrane of the present invention is attached to at least one selected from a sound generator and a sound receiver. A communication device can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a waterproof sound-permeable membrane of the present invention.
FIG. 2 is a perspective view showing another example of the waterproof sound-permeable membrane of the present invention.
FIG. 3 is a perspective view showing another example of the waterproof sound-permeable membrane of the present invention.
4 is a view for explaining a state in which a plurality of waterproof sound-permeable membranes shown in FIG. 1 are arranged on a peelable sheet-like material.
5A is a front view of a mobile phone to which an example of the waterproof sound-permeable membrane of the present invention is fixed. FIG. 5B is a rear view of the mobile phone to which an example of the waterproof sound-permeable membrane of the present invention is fixed.
FIG. 6 is a diagram schematically illustrating a method for measuring the sound permeability of the waterproof sound-permeable membrane in the example of the present invention.
FIG. 7 is a diagram showing a speaker to which a waterproof sound-permeable membrane is attached via a spacer, which is used for measuring the sound permeability of the waterproof sound-permeable membrane in the embodiment of the present invention.
[Explanation of symbols]
1 plastic membrane
2 Support
3 support
4 Waterproof sound-permeable membrane
5 mobile phones
6 speakers
7 Microphone
8 Buzzer
9 Spacer
10 speakers
11 Sound permeability measuring device
12 Anechoic room
13 microphone
14 Computer in which acoustic evaluation system is stored
15 Preamplifier
16 Conditioning amplifier
17 Analyzer and generator
18 Separator sheet
19 Adhesive sheet

Claims (9)

無孔または平均孔径が2.0μm以下である多孔のプラスチック膜を含み、面密度が2〜20g/mであることを特徴とする防水通音膜。A waterproof sound-permeable membrane comprising a non-porous or porous plastic membrane having an average pore diameter of 2.0 μm or less and an areal density of 2 to 20 g / m 2 . 前記多孔のプラスチック膜が、ポリテトラフルオロエチレン多孔質膜または超高分子量ポリエチレン多孔質膜である請求項1に記載の防水通音膜。The waterproof sound-permeable membrane according to claim 1, wherein the porous plastic membrane is a polytetrafluoroethylene porous membrane or an ultra-high molecular weight polyethylene porous membrane. 前記防水通音膜が、前記プラスチック膜に積層された支持体をさらに含む請求項1に記載の防水通音膜。The waterproof sound-permeable membrane according to claim 1, wherein the waterproof sound-permeable membrane further includes a support laminated on the plastic membrane. 前記支持体の面密度が、5〜18g/mである請求項3に記載の防水通音膜。The surface density of the support, the waterproof sound-permeable membrane of claim 3 wherein 5~18g / m 2. 前記支持体が、ネットである請求項3に記載の防水通音膜。The waterproof sound-permeable membrane according to claim 3, wherein the support is a net. 前記ネットの融点が、前記プラスチック膜の融点よりも低いことを特徴とする請求項5に記載の防水通音膜。The waterproof sound-permeable membrane according to claim 5, wherein the melting point of the net is lower than the melting point of the plastic membrane. 前記支持体が、前記プラスチック膜の周縁に固着された枠である請求項3に記載の防水通音膜。The waterproof sound-permeable membrane according to claim 3, wherein the support is a frame fixed to a peripheral edge of the plastic membrane. 前記枠が、リング形状をしている請求項7に記載の防水通音膜。The waterproof sound-permeable membrane according to claim 7, wherein the frame has a ring shape. 請求項1〜8のいずれかの項に記載の防水通音膜が、発音部および受音部から選ばれる少なくとも一方に固着された携帯情報通信機器。A portable information communication device, wherein the waterproof sound-permeable membrane according to any one of claims 1 to 8 is fixed to at least one selected from a sound generator and a sound receiver.
JP2002249544A 2002-08-28 2002-08-28 Waterproofing sound-passing membrane Pending JP2004083811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249544A JP2004083811A (en) 2002-08-28 2002-08-28 Waterproofing sound-passing membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249544A JP2004083811A (en) 2002-08-28 2002-08-28 Waterproofing sound-passing membrane

Publications (1)

Publication Number Publication Date
JP2004083811A true JP2004083811A (en) 2004-03-18

Family

ID=32056629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249544A Pending JP2004083811A (en) 2002-08-28 2002-08-28 Waterproofing sound-passing membrane

Country Status (1)

Country Link
JP (1) JP2004083811A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050577A1 (en) * 2006-10-19 2008-05-02 Nitto Denko Corporation Process for producing resin porous membrane with adhesive layer, resin porous membrane with adhesive layer, and filter member
WO2009011315A1 (en) 2007-07-18 2009-01-22 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
WO2009048062A1 (en) 2007-10-09 2009-04-16 Nitto Denko Corporation Sound passing member utilizing waterproof sound passing membrane and process for manufacturing the same
JP2010070874A (en) * 2008-09-17 2010-04-02 Japan Gore Tex Inc Waterproof, sound-conducting hood
WO2010084912A1 (en) 2009-01-21 2010-07-29 日東電工株式会社 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
JP2010241047A (en) * 2009-04-08 2010-10-28 Nitto Denko Corp Waterproof sound-transmitting film, and waterproof sound-transmitting member and electric appliance using the same
CN102318367A (en) * 2009-09-04 2012-01-11 日东电工株式会社 Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
JP2012029081A (en) * 2010-07-23 2012-02-09 Nec Corp Electronic apparatus and oscillation device
JP5244257B1 (en) * 2012-11-21 2013-07-24 日東電工株式会社 Sound-permeable membrane and electronic device provided with sound-permeable membrane
WO2014020812A1 (en) 2012-08-02 2014-02-06 日東電工株式会社 Polytetrafluoroethylene black porous membrane, method for producing same, and breathable membrane and breathable material using same
WO2014020882A1 (en) 2012-08-02 2014-02-06 日東電工株式会社 Polytetrafluoroethylene porous membrane, method for producing same, and breathable membrane and breathable material using same
JP2014043592A (en) * 2010-07-23 2014-03-13 Ef-Materials Industries Inc Waterproof and dustproof thin film, manufacturing method thereof and device using the same
WO2014073725A1 (en) * 2012-11-07 2014-05-15 Kim Hyun Sik Protective film for mobile device and manufacturing device therefor
WO2014080574A1 (en) 2012-11-21 2014-05-30 日東電工株式会社 Sound-transmitting structure, sound-transmitting film, and water-proof case
US8739926B1 (en) 2012-11-21 2014-06-03 Nitto Denko Corporation Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane
WO2014128799A1 (en) * 2013-02-25 2014-08-28 日東電工株式会社 Waterproof sound-passing membrane, sound-passing member and electrical apparatus
EP2779693A1 (en) 2013-03-11 2014-09-17 Nitto Denko Corporation Waterproof sound transmitting member
JP2014207590A (en) * 2013-04-15 2014-10-30 日東電工株式会社 Waterproofing sound-transmitting membrane and method for producing the same, and waterproofing sound-transmitting member
WO2015068357A1 (en) 2013-11-07 2015-05-14 日東電工株式会社 Waterproof sound-transmitting film and electronic apparatus
WO2015129156A1 (en) * 2014-02-26 2015-09-03 日東電工株式会社 Method for manufacturing waterproof sound-transmitting film, waterproof sound-transmitting film, and electronic device
KR20160072144A (en) * 2013-10-15 2016-06-22 도널드선 컴파니 인코포레이티드 Microporous membrane laminate for acoustic venting
WO2016174834A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Electronic device with built-in acoustic electronic component
US9529391B2 (en) 2013-09-27 2016-12-27 Apple Inc. Button retention, assembly, and water sealing
US9573165B2 (en) 2014-08-22 2017-02-21 Apple Inc. Hydrophobic mesh cover
US9627797B2 (en) 2015-07-21 2017-04-18 Apple Inc. Ejection assembly with plug feature
US9625944B2 (en) 2013-09-29 2017-04-18 Apple Inc. Waterproof port for electronic devices
US9693134B2 (en) 2015-07-20 2017-06-27 Nitto Denko Corporation Waterproof sound-transmitting member
US9716934B2 (en) 2015-04-24 2017-07-25 Apple Inc. Liquid ingress-redirecting acoustic device reservoir
US9780554B2 (en) 2015-07-31 2017-10-03 Apple Inc. Moisture sensors
US9980026B2 (en) 2013-09-30 2018-05-22 Apple Inc. Method for clearing water from acoustic port and membrane
US10149396B2 (en) 2015-09-30 2018-12-04 Apple Inc. Circuit assembly for an electronic device
US10165694B1 (en) 2017-09-11 2018-12-25 Apple Inc. Concealed barometric vent for an electronic device
US10219054B2 (en) 2012-05-31 2019-02-26 Nitto Denko Corporation Protective member for acoustic component and waterproof case
KR20190137144A (en) * 2017-04-18 2019-12-10 닛토덴코 가부시키가이샤 Laminated body and wound body
US10784062B2 (en) 2016-09-08 2020-09-22 Apple Inc. Ingress prevention for keyboards
CN112929798A (en) * 2021-01-29 2021-06-08 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) provided with same
WO2023034730A1 (en) * 2021-08-30 2023-03-09 W.L. Gore & Associates, Inc. Polyethylene membrane acoustic assembly
US11614716B2 (en) 2019-09-23 2023-03-28 Apple Inc. Pressure-sensing system for a wearable electronic device
US11860585B2 (en) 2020-06-17 2024-01-02 Apple Inc. Wearable electronic device with a compressible air-permeable seal

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187511B2 (en) 2006-10-19 2012-05-29 Nitto Denko Corporation Method for producing resin porous membrane with adhesive layer, resin porous membrane with adhesive layer, and filter member
WO2008050577A1 (en) * 2006-10-19 2008-05-02 Nitto Denko Corporation Process for producing resin porous membrane with adhesive layer, resin porous membrane with adhesive layer, and filter member
US8828227B2 (en) 2006-10-19 2014-09-09 Nitto Denko Corporation Method for producing resin porous membrane with adhesive layer, resin porous membrane with adhesive layer, and filter member
CN107089046B (en) * 2007-07-18 2021-02-05 日东电工株式会社 Waterproof sound-transmitting membrane, method for producing waterproof sound-transmitting membrane, and electric appliance using same
WO2009011315A1 (en) 2007-07-18 2009-01-22 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
JP2009044731A (en) * 2007-07-18 2009-02-26 Nitto Denko Corp Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
TWI485192B (en) * 2007-07-18 2015-05-21 Nitto Denko Corp A waterproof sound-permeable film, a method for manufacturing a waterproof sound-permeable film, and an electrical product using the same
CN101795858A (en) * 2007-07-18 2010-08-04 日东电工株式会社 Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
US20100206660A1 (en) * 2007-07-18 2010-08-19 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for producing water-proof sound-transmitting membrane, and electrical appliance using the membrane
US8663530B2 (en) 2007-07-18 2014-03-04 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for producing water-proof sound-transmitting membrane, and electrical appliance using the membrane
CN107089046A (en) * 2007-07-18 2017-08-25 日东电工株式会社 Waterproof sound passing membrane, the manufacture method of waterproof sound passing membrane and use its electrical equipment
US8695812B2 (en) 2007-07-18 2014-04-15 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for producing water-proof sound-transmitting membrane, and electrical appliance using the membrane
WO2009048062A1 (en) 2007-10-09 2009-04-16 Nitto Denko Corporation Sound passing member utilizing waterproof sound passing membrane and process for manufacturing the same
JP2015122766A (en) * 2007-10-09 2015-07-02 日東電工株式会社 Method for manufacturing sound passing member using waterproof sound passing film
JP2013017226A (en) * 2007-10-09 2013-01-24 Nitto Denko Corp Method for manufacturing sound passing member using waterproof sound passing film
JP2010070874A (en) * 2008-09-17 2010-04-02 Japan Gore Tex Inc Waterproof, sound-conducting hood
CN102186368A (en) * 2008-09-17 2011-09-14 日本奥亚特克斯股份有限公司 Waterproof, sound-conducting hood
JP2010193439A (en) * 2009-01-21 2010-09-02 Nitto Denko Corp Waterproofing sound-transmitting film, method for manufacturing the same and electric product using the same
CN102123863A (en) * 2009-01-21 2011-07-13 日东电工株式会社 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
WO2010084912A1 (en) 2009-01-21 2010-07-29 日東電工株式会社 Waterproofing sound-transmitting film, process for producing same, and electrical product employing same
US8272517B2 (en) 2009-01-21 2012-09-25 Nitto Denko Corporation Water-proof sound-transmitting membrane, method for producing the water-proof sound-transmitting membrane, and electrical appliance including the water-proof sound-transmitting membrane
JP4637965B2 (en) * 2009-01-21 2011-02-23 日東電工株式会社 Waterproof sound-permeable membrane, method for producing the same, and electrical product using the same
JP2010241047A (en) * 2009-04-08 2010-10-28 Nitto Denko Corp Waterproof sound-transmitting film, and waterproof sound-transmitting member and electric appliance using the same
CN105307064A (en) * 2009-09-04 2016-02-03 日东电工株式会社 Sound-transmitting membrane for microphone, sound-transmitting membrane member for microphone provided with the membrane, microphone, and electronic device provided with microphone
CN102318367A (en) * 2009-09-04 2012-01-11 日东电工株式会社 Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
CN106954106A (en) * 2009-09-04 2017-07-14 日东电工株式会社 Microphone sound passing membrane and microphone entrant sound membrane element, microphone and the electronic equipment for possessing microphone for possessing it
KR101721278B1 (en) * 2009-09-04 2017-03-29 닛토덴코 가부시키가이샤 Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
US9253297B2 (en) 2009-09-04 2016-02-02 Nitto Denko Corporation Sound-transmitting membrane for microphone, sound-transmitting membrane member for microphone provided with the membrane, microphone, and electronic device provided with microphone
KR20120060836A (en) * 2009-09-04 2012-06-12 닛토덴코 가부시키가이샤 Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
EP2475186A1 (en) * 2009-09-04 2012-07-11 Nitto Denko Corporation Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
EP2475186A4 (en) * 2009-09-04 2014-11-05 Nitto Denko Corp Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
JP2014043592A (en) * 2010-07-23 2014-03-13 Ef-Materials Industries Inc Waterproof and dustproof thin film, manufacturing method thereof and device using the same
JP2012029081A (en) * 2010-07-23 2012-02-09 Nec Corp Electronic apparatus and oscillation device
US10219054B2 (en) 2012-05-31 2019-02-26 Nitto Denko Corporation Protective member for acoustic component and waterproof case
TWI672048B (en) * 2012-05-31 2019-09-11 日商日東電工股份有限公司 Protective member and waterproof case for audio parts
WO2014020882A1 (en) 2012-08-02 2014-02-06 日東電工株式会社 Polytetrafluoroethylene porous membrane, method for producing same, and breathable membrane and breathable material using same
WO2014020812A1 (en) 2012-08-02 2014-02-06 日東電工株式会社 Polytetrafluoroethylene black porous membrane, method for producing same, and breathable membrane and breathable material using same
US9616391B2 (en) 2012-08-02 2017-04-11 Nitto Denko Corporation Black porous polytetrafluoroethylene membrane, method for producing same, gas-permeable membrane and ventilation member using same
KR20150038309A (en) 2012-08-02 2015-04-08 닛토덴코 가부시키가이샤 Polytetrafluoroethylene porous membrane, method for producing same, and breathable membrane and breathable material using same
KR20150039787A (en) 2012-08-02 2015-04-13 닛토덴코 가부시키가이샤 Polytetrafluoroethylene black porous membrane, method for producing same, and breathable membrane and breathable material using same
JP2014031412A (en) * 2012-08-02 2014-02-20 Nitto Denko Corp Polytetrafluoroethylene porous film, and ventilation film and ventilation member using the same
US9630150B2 (en) 2012-08-02 2017-04-25 Nitto Denko Corporation Porous polytetrafluoroethylene membrane, method for producing the same, gas-permeable membrane and ventilation member using the same
WO2014073725A1 (en) * 2012-11-07 2014-05-15 Kim Hyun Sik Protective film for mobile device and manufacturing device therefor
CN104798380A (en) * 2012-11-21 2015-07-22 日东电工株式会社 Sound-transmitting structure, sound-transmitting film, and water-proof case
US9924250B2 (en) 2012-11-21 2018-03-20 Nitto Denko Corporation Sound-transmitting structure, sound-transmitting membrane, and waterproof case
KR20150088251A (en) 2012-11-21 2015-07-31 닛토덴코 가부시키가이샤 Sound-transmitting structure, sound-transmitting film, and water-proof case
JP2014123935A (en) * 2012-11-21 2014-07-03 Nitto Denko Corp Sound transmission film, sound transmission member, and electronic apparatus
JP5244257B1 (en) * 2012-11-21 2013-07-24 日東電工株式会社 Sound-permeable membrane and electronic device provided with sound-permeable membrane
WO2014080446A1 (en) 2012-11-21 2014-05-30 日東電工株式会社 Sound-transmitting film and electronic device comprising sound-transmitting film
JP2014123937A (en) * 2012-11-21 2014-07-03 Nitto Denko Corp Sound transmission structure, sound transmission film, and waterproof case
US8739926B1 (en) 2012-11-21 2014-06-03 Nitto Denko Corporation Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane
WO2014080574A1 (en) 2012-11-21 2014-05-30 日東電工株式会社 Sound-transmitting structure, sound-transmitting film, and water-proof case
WO2014128799A1 (en) * 2013-02-25 2014-08-28 日東電工株式会社 Waterproof sound-passing membrane, sound-passing member and electrical apparatus
CN105009603A (en) * 2013-02-25 2015-10-28 日东电工株式会社 Waterproof sound-passing membrane, sound-passing member and electrical apparatus
US9578402B2 (en) 2013-02-25 2017-02-21 Nitto Denko Corporation Waterproof sound-transmitting membrane, sound-transmitting member, and electrical device
JP2014165672A (en) * 2013-02-25 2014-09-08 Nitto Denko Corp Waterproof sound-passing membrane, sound-passing member and electrical apparatus
US9271070B2 (en) 2013-03-11 2016-02-23 Nitto Denko Corporation Waterproof sound transmitting member
EP2779693A1 (en) 2013-03-11 2014-09-17 Nitto Denko Corporation Waterproof sound transmitting member
JP2014207590A (en) * 2013-04-15 2014-10-30 日東電工株式会社 Waterproofing sound-transmitting membrane and method for producing the same, and waterproofing sound-transmitting member
US10078350B2 (en) 2013-09-27 2018-09-18 Apple Inc. Button retention, assembly, and water sealing
US9529391B2 (en) 2013-09-27 2016-12-27 Apple Inc. Button retention, assembly, and water sealing
US9625944B2 (en) 2013-09-29 2017-04-18 Apple Inc. Waterproof port for electronic devices
US9980026B2 (en) 2013-09-30 2018-05-22 Apple Inc. Method for clearing water from acoustic port and membrane
JP2017500767A (en) * 2013-10-15 2017-01-05 ドナルドソン カンパニー,インコーポレイティド Microporous membrane laminate for acoustic vents
KR102283372B1 (en) * 2013-10-15 2021-07-30 도널드선 컴파니 인코포레이티드 Microporous membrane laminate for acoustic venting
KR20160072144A (en) * 2013-10-15 2016-06-22 도널드선 컴파니 인코포레이티드 Microporous membrane laminate for acoustic venting
WO2015068357A1 (en) 2013-11-07 2015-05-14 日東電工株式会社 Waterproof sound-transmitting film and electronic apparatus
US9877094B2 (en) 2013-11-07 2018-01-23 Nitto Denko Corporation Waterproof sound-permeable membrane and electronic device
KR20160083028A (en) 2013-11-07 2016-07-11 닛토덴코 가부시키가이샤 Waterproof sound-transmitting film and electronic apparatus
WO2015129156A1 (en) * 2014-02-26 2015-09-03 日東電工株式会社 Method for manufacturing waterproof sound-transmitting film, waterproof sound-transmitting film, and electronic device
JP2015160856A (en) * 2014-02-26 2015-09-07 日東電工株式会社 Method for producing waterproof sound-transmitting film, waterproof sound-transmitting film, and electronic device
US9573165B2 (en) 2014-08-22 2017-02-21 Apple Inc. Hydrophobic mesh cover
US9716934B2 (en) 2015-04-24 2017-07-25 Apple Inc. Liquid ingress-redirecting acoustic device reservoir
JPWO2016174834A1 (en) * 2015-04-28 2017-10-26 シャープ株式会社 Electronic equipment with built-in acoustic electronic components
WO2016174834A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Electronic device with built-in acoustic electronic component
US9693134B2 (en) 2015-07-20 2017-06-27 Nitto Denko Corporation Waterproof sound-transmitting member
US9627797B2 (en) 2015-07-21 2017-04-18 Apple Inc. Ejection assembly with plug feature
US9780554B2 (en) 2015-07-31 2017-10-03 Apple Inc. Moisture sensors
US10149396B2 (en) 2015-09-30 2018-12-04 Apple Inc. Circuit assembly for an electronic device
US10784062B2 (en) 2016-09-08 2020-09-22 Apple Inc. Ingress prevention for keyboards
KR20190137144A (en) * 2017-04-18 2019-12-10 닛토덴코 가부시키가이샤 Laminated body and wound body
KR102520977B1 (en) * 2017-04-18 2023-04-11 닛토덴코 가부시키가이샤 Laminate and winding body
US10765019B2 (en) 2017-09-11 2020-09-01 Apple Inc. Concealed barometric vent for an electronic device
US10165694B1 (en) 2017-09-11 2018-12-25 Apple Inc. Concealed barometric vent for an electronic device
US11614716B2 (en) 2019-09-23 2023-03-28 Apple Inc. Pressure-sensing system for a wearable electronic device
US11860585B2 (en) 2020-06-17 2024-01-02 Apple Inc. Wearable electronic device with a compressible air-permeable seal
CN112929798A (en) * 2021-01-29 2021-06-08 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) provided with same
WO2023034730A1 (en) * 2021-08-30 2023-03-09 W.L. Gore & Associates, Inc. Polyethylene membrane acoustic assembly

Similar Documents

Publication Publication Date Title
JP2004083811A (en) Waterproofing sound-passing membrane
JP5947926B2 (en) Manufacturing method of sound-permeable member using waterproof sound-permeable membrane
EP2914015B1 (en) Waterproof sound-transmitting film, waterproof sound-transmitting member provided with same, electronic equipment, electronic equipment case, and waterproof sound-transmitting structure
CN109716784B (en) Waterproof sound-transmitting cover, waterproof sound-transmitting cover member, and acoustic device
KR101721278B1 (en) Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
JP5513057B2 (en) Acoustic protective cover assembly
US8739926B1 (en) Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane
JP2003053872A (en) Air-permeable sound passing film
CN111543065B (en) Waterproof member and electronic device
JP5859475B2 (en) Sound-permeable membrane, sound-permeable member, and electronic device
CN114979850A (en) Waterproof sound-transmitting membrane, waterproof sound-transmitting member, and electronic device
JP5155927B2 (en) Waterproof sound-permeable membrane, waterproof sound-permeable member and electrical product using the same
JP2005334758A (en) Ventilation filter
JP3812892B2 (en) Breathable sound-permeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313