JP2014207590A - Waterproofing sound-transmitting membrane and method for producing the same, and waterproofing sound-transmitting member - Google Patents

Waterproofing sound-transmitting membrane and method for producing the same, and waterproofing sound-transmitting member Download PDF

Info

Publication number
JP2014207590A
JP2014207590A JP2013084506A JP2013084506A JP2014207590A JP 2014207590 A JP2014207590 A JP 2014207590A JP 2013084506 A JP2013084506 A JP 2013084506A JP 2013084506 A JP2013084506 A JP 2013084506A JP 2014207590 A JP2014207590 A JP 2014207590A
Authority
JP
Japan
Prior art keywords
porous membrane
sound
polytetrafluoroethylene
membrane
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013084506A
Other languages
Japanese (ja)
Other versions
JP6069078B2 (en
Inventor
悠一 阿部
Yuichi Abe
悠一 阿部
勇希 輕部
Yuki Karube
勇希 輕部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2013084506A priority Critical patent/JP6069078B2/en
Publication of JP2014207590A publication Critical patent/JP2014207590A/en
Application granted granted Critical
Publication of JP6069078B2 publication Critical patent/JP6069078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve a waterproofing sound-transmitting membrane while sound-transmitting properties and waterproofness when water pressure is applied repeatedly thereon are taken into consideration.SOLUTION: A waterproofing sound-transmitting membrane 10 has a sound transmission region 13c comprising a single layered polytetrafluoroethylene (PTFE) porous membrane 11. The porous membrane 11 has an area density of 10-40 g/m, a permeability in the thickness direction thereof of 9-30 s/100 mL, and a burning degree of 85-100. The permeability is a value given by the B method (Gurley method) in the permeability measuring methods regulated in the JIS L1096. The burning degree is a value given by {(ΔH-ΔH)/(ΔH-ΔH)}×100, where ΔHis a heat of fusion of a polytetrafluoroethylene unfired product, ΔHis a heat of fusion of a polytetrafluoroethylene fired product, and ΔHis a heat of fusion of the polytetrafluoroethylene porous membrane 11.

Description

本発明は、防水通音膜およびその製造方法、ならびに防水通音部材に関する。   The present invention relates to a waterproof sound-permeable membrane, a manufacturing method thereof, and a waterproof sound-permeable member.

携帯電話、デジタルビデオカメラ等の電子機器では、音響装置が筐体に収容されている。これらの筐体は、音の通過を許容するための開口を有する。水が筐体内に入り込むことを防ぐために、この開口に音の通過を許容しつつ水の通過を阻止する防水通音膜を取り付けることが行われている。特許文献1では、防水通音膜としてポリテトラフルオロエチレン(PTFE)多孔質膜が挙げられている。   In an electronic device such as a mobile phone or a digital video camera, an acoustic device is housed in a casing. These housings have openings for allowing the passage of sound. In order to prevent water from entering the housing, a waterproof sound-permeable membrane that prevents passage of water while allowing passage of sound is attached to the opening. In Patent Document 1, a polytetrafluoroethylene (PTFE) porous membrane is cited as a waterproof sound-permeable membrane.

特開2009−044731号公報JP 2009-047331 A

筐体にPTFE多孔質膜が取り付けられた電子機器を水中で繰り返し用いると、PTFE多孔質膜が水圧により不可逆に変形し、PTFE多孔質膜による防水性に影響が及ぶことがある。本発明者の検討によると、このような変形は、1回のみ水圧を加えて測定される耐水圧が高いPTFE多孔質膜を用いたときにも観察される。PTFE多孔質膜の変形を抑えるためには、PTFE多孔質膜の強度を高めればよい。しかし、PTFE多孔質膜の通音性を維持しつつ、繰り返し水圧を加えたときのPTFE多孔質膜による防水性を向上させることは容易でない。例えば、単にPTFE多孔質膜の面密度を高めて強度の向上を図ったのでは、膜の通音性が低下する。   When an electronic device having a PTFE porous membrane attached to a casing is repeatedly used in water, the PTFE porous membrane may be irreversibly deformed by water pressure, and the waterproofness of the PTFE porous membrane may be affected. According to the study of the present inventor, such deformation is also observed when a PTFE porous membrane having a high water pressure resistance measured by applying a water pressure only once is used. In order to suppress deformation of the PTFE porous membrane, the strength of the PTFE porous membrane may be increased. However, it is not easy to improve the waterproofness of the PTFE porous membrane when the water pressure is repeatedly applied while maintaining the sound permeability of the PTFE porous membrane. For example, if the surface density of the PTFE porous membrane is simply increased to improve the strength, the sound permeability of the membrane is lowered.

このような事情に鑑み、本発明は、防水通音膜を改良することを目的とする。   In view of such circumstances, an object of the present invention is to improve a waterproof sound-permeable membrane.

本発明は、
単層のポリテトラフルオロエチレン多孔質膜からなる通音領域を有し、
前記多孔質膜の面密度が10〜40g/m2であり、
前記多孔質膜の厚さ方向の通気度が9〜30秒/100mLであり、
前記多孔質膜の焼成度が85〜100である、防水通音膜を提供する。
ただし、前記通気度は、JIS L1096に規定されている通気性測定法のB法(ガーレー法)により与えられる値であり、前記焼成度は、ポリテトラフルオロエチレン未焼成体の融解熱をΔH1、ポリテトラフルオロエチレン焼成体の融解熱をΔH2、前記ポリテトラフルオロエチレン多孔質膜の融解熱をΔH3としたときに、{(ΔH1−ΔH3)/(ΔH1−ΔH2)}×100で与えられる値である。
The present invention
It has a sound transmission area consisting of a single layer polytetrafluoroethylene porous membrane,
The surface density of the porous membrane is 10 to 40 g / m 2 ;
The air permeability in the thickness direction of the porous membrane is 9 to 30 seconds / 100 mL,
Provided is a waterproof sound-permeable membrane having a degree of firing of the porous membrane of 85 to 100.
However, the air permeability is a value given by the B method (Gurley method) of the air permeability measurement method defined in JIS L1096, and the degree of calcination is the heat of fusion of the unsintered polytetrafluoroethylene by ΔH 1 When the heat of fusion of the polytetrafluoroethylene fired body is ΔH 2 and the heat of fusion of the polytetrafluoroethylene porous membrane is ΔH 3 , {(ΔH 1 −ΔH 3 ) / (ΔH 1 −ΔH 2 )} It is a value given by x100.

また、本発明は、
開口を有する筐体部と、
前記開口を塞ぐように前記筐体部に取り付けられた、上記の防水通音膜と、を備える防水通音部材を提供する。
The present invention also provides:
A casing having an opening;
Provided is a waterproof sound-permeable member provided with the above-mentioned waterproof sound-permeable film, which is attached to the casing so as to close the opening.

また、本発明は、
単層のポリテトラフルオロエチレン多孔質膜からなる通音領域を有する防水通音膜の製造方法であって、
ポリテトラフルオロエチレン未焼成体を、327℃以上の温度で第1方向に延伸し、次いで前記第1方向と直交する第2方向に延伸してポリテトラフルオロエチレン多孔質膜を得る工程(a)と、
前記通音領域を囲むように前記多孔質膜の表面に粘着層を配置する工程(b)と、を含み、
前記工程(a)において、
前記多孔質膜の焼成度が85〜100となるように、前記温度を定めると共に、
前記多孔質膜の面密度が10〜40g/m2、厚さ方向の通気度が9〜30秒/100mlとなるように、前記第1方向への延伸倍率及び前記第2方向への延伸倍率を定める、
防水通音膜の製造方法を提供する。
ただし、前記焼成度は、ポリテトラフルオロエチレン未焼成体の融解熱をΔH1、ポリテトラフルオロエチレン焼成体の融解熱をΔH2、前記ポリテトラフルオロエチレン多孔質膜の融解熱をΔH3としたときに、{(ΔH1−ΔH3)/(ΔH1−ΔH2)}×100で与えられる値であり、前記通気度は、JIS L1096に規定されている通気性測定法のB法(ガーレー法)により与えられる値である。
The present invention also provides:
A method for producing a waterproof sound-permeable membrane having a sound-permeable region comprising a single-layer polytetrafluoroethylene porous membrane,
Step (a) in which a polytetrafluoroethylene green body is stretched in a first direction at a temperature of 327 ° C. or higher and then stretched in a second direction orthogonal to the first direction to obtain a polytetrafluoroethylene porous membrane When,
And (b) arranging an adhesive layer on the surface of the porous membrane so as to surround the sound transmission region,
In the step (a),
The temperature is set so that the degree of firing of the porous membrane is 85 to 100
The draw ratio in the first direction and the draw ratio in the second direction so that the surface density of the porous film is 10 to 40 g / m 2 and the air permeability in the thickness direction is 9 to 30 seconds / 100 ml. Determine
A method for producing a waterproof sound-permeable membrane is provided.
However, the degree of firing was defined as ΔH 1 for the heat of fusion of the non-fired polytetrafluoroethylene, ΔH 2 for the heat of fusion of the fired polytetrafluoroethylene, and ΔH 3 for the heat of fusion of the polytetrafluoroethylene porous membrane. Sometimes, {(ΔH 1 −ΔH 3 ) / (ΔH 1 −ΔH 2 )} × 100, and the air permeability is the B method (Gurley of the air permeability measurement method defined in JIS L1096). This is the value given by

本発明の防水通音膜は、音を良好に通過させる通音性と、繰り返し水圧がかかっても変形し難い耐水性とを兼ね備えている。本発明の防水通音膜は、水中での使用が想定される、音響装置が収容されている電子機器に、好適に使用できる。   The waterproof sound-permeable membrane of the present invention combines sound permeability that allows sound to pass well and water resistance that is difficult to deform even when repeated water pressure is applied. The waterproof sound-permeable membrane of the present invention can be suitably used for an electronic device in which an acoustic device is accommodated, which is assumed to be used in water.

本発明の防水通音膜の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the waterproof sound-permeable membrane of this invention. 本発明の防水通音膜の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the waterproof sound-permeable membrane of this invention. 本発明の防水通音部材の一例を模式的に示す拡大断面図である。It is an expanded sectional view showing typically an example of the waterproof sound-permeable member of the present invention. 本発明の防水通音膜が適用された電子機器の一例を模式的に示す拡大断面図である。It is an expanded sectional view showing typically an example of electronic equipment to which the waterproof sound-permeable membrane of the present invention was applied. 実施例で用いた、防水通音膜の評価方法を説明するための模式図である。It is a schematic diagram for demonstrating the evaluation method of a waterproof sound-permeable membrane used in the Example.

以下、添付の図面を参照しつつ本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本実施形態の防水通音膜10の断面図であり、図2は防水通音膜10の斜視図である。防水通音膜10は、音の通過を許容する通音領域13cと、通音領域13cを囲む周縁領域13pとを有している。通音領域13cは、単層のポリテトラフルオロエチレン(PTFE)多孔質膜11により構成されている。周縁領域13pは、PTFE多孔質膜11と粘着層12とを備えている。粘着層は、粘着剤のみにより構成されていてもよいが、両面テープであってもよい。   FIG. 1 is a cross-sectional view of the waterproof sound-permeable membrane 10 of this embodiment, and FIG. 2 is a perspective view of the waterproof sound-permeable membrane 10. The waterproof sound-permeable membrane 10 has a sound-permeable region 13c that allows passage of sound and a peripheral region 13p that surrounds the sound-permeable region 13c. The sound conduction region 13 c is configured by a single-layer polytetrafluoroethylene (PTFE) porous film 11. The peripheral region 13p includes a PTFE porous membrane 11 and an adhesive layer 12. The adhesive layer may be composed only of an adhesive, but may be a double-sided tape.

PTFE多孔質膜11の面密度は、10〜40g/m2である。PTFE多孔質膜11の厚さ方向の通気度は、JIS L1096に規定されている通気性測定法のB法(ガーレー法)により与えられる値にして、9〜30秒/100mLである。PTFE多孔質膜11の焼成度は、85〜100である。面密度、通気度および焼成度の範囲が上記のように設定されているため、防水通音膜10では、通音領域13cにおける変形が抑制されつつ、通音領域13cを通過する際の音の損失が抑制される。PTFE多孔質膜11の面密度は、好ましくは15〜35g/m2である。PTFE多孔質膜11の通気度は、好ましくは12〜28秒/100mLである。PTFE多孔質膜11の焼成度は、好ましくは88〜100である。焼成度は、PTFE多孔質膜11の処理温度、例えば延伸温度、によって制御できる。焼成度は、高温に曝されたときの膜の微多孔構造にも影響を受ける。このため、焼成度は、延伸倍率にも左右される。 The surface density of the PTFE porous membrane 11 is 10 to 40 g / m 2 . The air permeability in the thickness direction of the porous PTFE membrane 11 is 9 to 30 seconds / 100 mL as a value given by the air permeability measurement method B (Gurley method) defined in JIS L1096. The degree of firing of the PTFE porous membrane 11 is 85-100. Since the ranges of the surface density, the air permeability, and the firing degree are set as described above, the waterproof sound-permeable membrane 10 suppresses the deformation of the sound-transmitting region 13c and the sound when passing through the sound-transmitting region 13c. Loss is suppressed. The surface density of the PTFE porous membrane 11 is preferably 15 to 35 g / m 2 . The air permeability of the PTFE porous membrane 11 is preferably 12 to 28 seconds / 100 mL. The degree of firing of the PTFE porous membrane 11 is preferably 88-100. The degree of firing can be controlled by the processing temperature of the PTFE porous membrane 11, for example, the stretching temperature. The degree of firing is also affected by the microporous structure of the film when exposed to high temperatures. For this reason, the degree of firing also depends on the draw ratio.

通音性を確保する観点からは、面密度は小さく、通気度は大きいほうが望ましい。しかし、防水性との両立のためには、面密度および通気度は上記範囲にあることが好ましい。   From the viewpoint of ensuring sound transmission, it is desirable that the surface density is small and the air permeability is large. However, for compatibility with waterproofness, the surface density and the air permeability are preferably within the above ranges.

焼成度は85〜95の範囲内としてもよい。防水性向上の観点からは焼成度は高ければ高いほうがよい。他方、高い焼成度を達成するために延伸温度を高く設定することは製造コスト削減の観点からは避けたほうがよい。本発明者の検討によると(後述する実施例)、85以上の焼成度があれば実用的な防水性は実現できる。したがって、防水通音膜の量産を考慮すると、焼成度は85〜95程度が適切である。   The degree of firing may be in the range of 85-95. From the viewpoint of improving waterproofness, the higher the degree of firing, the better. On the other hand, in order to achieve a high degree of firing, setting the stretching temperature high should be avoided from the viewpoint of reducing manufacturing costs. According to the study of the present inventor (examples described later), practical waterproofness can be realized if the degree of firing is 85 or more. Therefore, considering the mass production of the waterproof sound-permeable membrane, the firing degree is appropriately about 85 to 95.

焼成度は、PTFE未焼成体の融解熱をΔH1、PTFE焼成体の融解熱をΔH2、PTFE多孔質膜11の融解熱をΔH3としたときに、{(ΔH1−ΔH3)/(ΔH1−ΔH2)}×100で与えられる値である。焼成度は、具体的には、示差走査熱量計(DSC)を用い、後述の実施例における[焼成度]の項目に記載の手順で吸熱ピークの面積を求めることにより測定することができる。PTFE焼成体(完全焼成体、焼成度100)のDSCによる吸熱ピークは、320〜330℃に頂部を有し、PTFE未焼成体(完全未焼成体、焼成度0)のDSCによる吸熱ピークは、330〜350℃に頂部を有する。これらの吸熱ピークよりも、焼成度が100未満のPTFE不完全焼成体の吸熱ピークはブロードな形状となり、例えば320〜330℃および330〜350℃に2つのピークを有し、また例えば320〜330℃に存在する1つのピークおよび330〜350℃に存在する1つのショルダーを有する。融解熱ΔH3を測定するためにPTFE多孔質膜を400℃程度まで加熱すると、PTFE多孔質膜は完全焼成体となる。融解熱ΔH2はこの完全焼成体について再度融解熱を測定することにより算出できる。ただし、PTFE未焼成体を焼成して得た焼成体の融解熱を測定することによっても算出できる。 The degree of firing is {(ΔH 1 −ΔH 3 ) / when the heat of fusion of the PTFE green body is ΔH 1 , the heat of fusion of the PTFE fired body is ΔH 2 , and the heat of fusion of the PTFE porous membrane 11 is ΔH 3. (ΔH 1 −ΔH 2 )} × 100. Specifically, the degree of calcination can be measured by using a differential scanning calorimeter (DSC) and determining the area of the endothermic peak in accordance with the procedure described in the item [Baking degree] in the examples described later. The endothermic peak by DSC of the PTFE fired body (completely fired body, firing degree 100) has a top at 320 to 330 ° C., and the endothermic peak by DSC of the PTFE unfired body (completely fired body, firing degree 0) is: It has a top at 330-350 ° C. The endothermic peak of the PTFE incompletely fired body having a firing degree of less than 100 has a broader shape than these endothermic peaks, and has two peaks at 320 to 330 ° C and 330 to 350 ° C, for example, 320 to 330 It has one peak that exists at 0C and one shoulder that exists at 330-350C. When the PTFE porous membrane is heated to about 400 ° C. in order to measure the heat of fusion ΔH 3 , the PTFE porous membrane becomes a completely fired body. The heat of fusion ΔH 2 can be calculated by measuring the heat of fusion again for this completely fired body. However, it can also be calculated by measuring the heat of fusion of the fired body obtained by firing the PTFE green body.

本実施形態のPTFE多孔質膜11は、この膜11の厚さ方向に垂直な面内方向であり、JIS K7113に準拠して測定した引張強度が13N以上、例えば14N以上23N以下、であって面内方向において最大となる第1方向と、厚さ方向および第1方向に垂直であり、JIS K7113に準拠して測定した引張強度が5N以上、例えば5.2N以上15N以下、である第2方向と、を有している。二軸延伸により多孔化されたPTFE多孔質膜は、通常、ノードとフィブリルとにより構成された多孔構造を有し、フィブリルが発達して延びる方向の引張強度が最大となる。本実施形態のPTFE多孔質膜11は、面内方向の最大強度のみならず、最大強度が得られる方向と直交する方向における強度も高いため、高い通気度と高い耐水圧との両立に適している。後述する製造方法により得たPTFE多孔質膜では、第1方向は第1延伸工程における延伸方向(長手方向)に、第2方向は第2延伸工程における延伸方向(幅方向)にそれぞれ対応して現れる。   The PTFE porous membrane 11 of the present embodiment is an in-plane direction perpendicular to the thickness direction of the membrane 11, and has a tensile strength measured in accordance with JIS K7113 of 13N or more, for example, 14N or more and 23N or less. A first direction that is maximum in the in-plane direction, a thickness direction and a direction perpendicular to the first direction, and a tensile strength measured in accordance with JIS K7113 is 5N or more, for example, 5.2N or more and 15N or less. Direction. A PTFE porous membrane made porous by biaxial stretching usually has a porous structure composed of nodes and fibrils, and has the maximum tensile strength in the direction in which the fibrils develop and extend. The PTFE porous membrane 11 of the present embodiment is suitable not only for the maximum strength in the in-plane direction but also for the strength in the direction orthogonal to the direction in which the maximum strength is obtained. Yes. In the PTFE porous membrane obtained by the manufacturing method described later, the first direction corresponds to the stretching direction (longitudinal direction) in the first stretching step, and the second direction corresponds to the stretching direction (width direction) in the second stretching step. appear.

本実施形態の防水通音膜10は、防水通音膜10を相手材(筐体等)に接着するための粘着層12として両面テープを備えている。両面テープは、PTFE多孔質膜11の周縁部11pの表面11fに貼り付けられている。両面テープ等の粘着層は、通音領域13cを囲むようにPTFE多孔質膜11の表面に配置される。なお、粘着層12は、裏面11bに形成されていてもよく、表面11fおよび裏面11bの両方に形成されていてもよい。   The waterproof sound-permeable membrane 10 of the present embodiment includes a double-sided tape as the adhesive layer 12 for bonding the waterproof sound-permeable membrane 10 to a counterpart material (housing or the like). The double-sided tape is affixed to the surface 11 f of the peripheral edge portion 11 p of the PTFE porous membrane 11. An adhesive layer such as a double-sided tape is disposed on the surface of the PTFE porous membrane 11 so as to surround the sound passing region 13c. In addition, the adhesion layer 12 may be formed in the back surface 11b, and may be formed in both the surface 11f and the back surface 11b.

PTFE多孔質膜11の表面11fおよび/または裏面11bは、撥水処理または撥油処理が施されていてもよい。撥水処理または撥油処理は、例えば、表面11fおよび/または裏面11bに、PTFEよりも表面張力が低い材料を含浸させることにより実施できる。   The front surface 11f and / or the back surface 11b of the PTFE porous membrane 11 may be subjected to water repellent treatment or oil repellent treatment. The water repellent treatment or the oil repellent treatment can be carried out, for example, by impregnating the surface 11f and / or the back surface 11b with a material having a surface tension lower than that of PTFE.

PTFE多孔質膜11は、顔料、染料等の着色剤を含有していてもよい。染料としては、アゾ系染料、油溶性染料等が挙げられる。好ましい着色剤の一例は、カーボンブラックである。   The PTFE porous membrane 11 may contain colorants such as pigments and dyes. Examples of the dye include azo dyes and oil-soluble dyes. An example of a preferred colorant is carbon black.

図3に、防水通音膜10が配置された防水通音部材20を示す。防水通音部材20は、開口22を有する筐体部21と、開口22を塞ぐように筐体部21に取り付けられた、防水通音膜10と、を備えている。防水通音膜10は、粘着層12の粘着力により筐体部21に固定されている。なお、粘着層12を省略して、熱ラミネート等により、PTFE多孔質膜11を筐体部21に直接固定することもできる。この場合、防水通音膜10は、周縁領域13pにおいても単層のPTFE多孔質膜11により構成されている。   FIG. 3 shows a waterproof sound-permeable member 20 in which the waterproof sound-permeable membrane 10 is disposed. The waterproof sound-permeable member 20 includes a housing part 21 having an opening 22 and a waterproof sound-permeable membrane 10 attached to the housing part 21 so as to close the opening 22. The waterproof sound-permeable membrane 10 is fixed to the housing portion 21 by the adhesive force of the adhesive layer 12. The adhesive layer 12 may be omitted, and the PTFE porous membrane 11 may be directly fixed to the housing portion 21 by heat lamination or the like. In this case, the waterproof sound-permeable membrane 10 is composed of the single-layer PTFE porous membrane 11 also in the peripheral region 13p.

PTFE多孔質膜11を備える防水通音膜が適用された電子機器の例として、図4に携帯電話30を示す。なお、携帯電話30中の防水通音膜110は、PTFE多孔質膜11の裏面11bにも粘着層12として両面テープが貼り付けられている点を除いて、防水通音膜10と同様である。   As an example of an electronic device to which a waterproof sound-permeable membrane including the PTFE porous membrane 11 is applied, a mobile phone 30 is shown in FIG. The waterproof sound-permeable membrane 110 in the mobile phone 30 is the same as the waterproof sound-permeable membrane 10 except that a double-sided tape is attached to the back surface 11b of the PTFE porous film 11 as the adhesive layer 12. .

携帯電話30の筐体38内には、マイクロフォン33が収容されている。筐体38には、外部からの音声をマイクロフォン33に導く集音口39が設けられている。マイクロフォン33のパッケージ35内には、音声を電気信号に変換する集音部34が収容されている。パッケージ35は内部が空洞の直方体であり、パッケージ35の一つの面には、筐体38の集音口39から導入された音声を、マイクロフォン33の集音部34に導く集音口36が設けられている。それぞれの集音口36、39は、防水通音膜110により塞がれつつ、防水通音膜110を介して接合されている。マイクロフォン33は、パッケージ35の底面に設けられた端子(図示せず)によって、携帯電話30の回路基板31と電気的に接続されており、集音部34によって音声から変換された電気信号が、端子を介して回路基板31に出力される。携帯電話30では、集音口36、39を塞ぐように配置された防水通音膜110によって、集音口36、39からマイクロフォン33の集音部34への塵芥や水等の異物の侵入を防ぎながら、集音部34へ音声を通過させることができ、マイクロフォン33における雑音の発生やその故障を少なくしながら、マイクロフォン33の性能を確保できる。   A microphone 33 is accommodated in the housing 38 of the mobile phone 30. The housing 38 is provided with a sound collection port 39 for guiding sound from the outside to the microphone 33. In the package 35 of the microphone 33, a sound collecting unit 34 for converting sound into an electric signal is accommodated. The package 35 is a rectangular parallelepiped with a hollow inside, and a sound collection port 36 for guiding the sound introduced from the sound collection port 39 of the housing 38 to the sound collection unit 34 of the microphone 33 is provided on one surface of the package 35. It has been. The respective sound collection ports 36 and 39 are joined via the waterproof sound-permeable membrane 110 while being closed by the waterproof sound-permeable membrane 110. The microphone 33 is electrically connected to the circuit board 31 of the mobile phone 30 through a terminal (not shown) provided on the bottom surface of the package 35, and an electric signal converted from sound by the sound collecting unit 34 is The signal is output to the circuit board 31 via the terminal. In the mobile phone 30, foreign matter such as dust and water enters the sound collection unit 34 of the microphone 33 from the sound collection ports 36 and 39 by the waterproof sound-permeable membrane 110 arranged so as to block the sound collection ports 36 and 39. While preventing the sound, the sound can be passed to the sound collection unit 34, and the performance of the microphone 33 can be ensured while reducing the occurrence of noise and the failure in the microphone 33.

次に、上述のような、通音領域が単層のPTFE多孔質膜からなる防水通音膜の製造に適した製造方法の一例を説明する。   Next, an example of a manufacturing method suitable for manufacturing a waterproof sound-permeable membrane having a sound-permeable region made of a single layer PTFE porous membrane as described above will be described.

この製造方法は、PTFE多孔質膜の製造方法として、ポリテトラフルオロエチレン未焼成体を得る成形工程と、ポリテトラフルオロエチレン未焼成体を加熱しながら延伸する第1延伸工程および第2延伸工程とを備える。   This production method includes, as a method for producing a PTFE porous membrane, a molding step for obtaining a polytetrafluoroethylene green body, a first stretching step and a second stretching step for stretching the polytetrafluoroethylene green body while heating. Is provided.

成形工程では、PTFE微粉末に液状潤滑剤を加えた混合物を、押出法および圧延法の少なくとも1つの方法により押出または圧延して、所定方向に延びるシート状に成形してポリテトラフルオロエチレン未焼成体を得る。   In the molding process, a mixture obtained by adding a liquid lubricant to PTFE fine powder is extruded or rolled by at least one of an extrusion method and a rolling method, and is formed into a sheet extending in a predetermined direction, so that polytetrafluoroethylene is not fired Get the body.

成形工程で用いるPTFE微粉末は、特に制限されるものではなく、種々の市販のものを使用できる。ただし、耐水性が高いPTFE多孔質膜を得る観点からは、成形工程において高分子量のPTFE微粉末を用いることが好ましい。好ましいPTFE微粉末としては、ポリフロンF−101HE(ダイキン工業社製)、フルオンCD−123(旭硝子社製)、テフロン6J(三井・デュポンフロロケミカル社製)等が例示される。   The PTFE fine powder used in the molding step is not particularly limited, and various commercially available products can be used. However, from the viewpoint of obtaining a porous PTFE membrane having high water resistance, it is preferable to use high molecular weight PTFE fine powder in the molding step. Examples of preferable PTFE fine powder include Polyflon F-101HE (manufactured by Daikin Industries), Fullon CD-123 (manufactured by Asahi Glass Co., Ltd.), Teflon 6J (manufactured by Mitsui / DuPont Fluorochemical Co., Ltd.) and the like.

成形工程で用いる液状潤滑剤は、PTFE微粉末を濡らすことができ、蒸発や抽出等の方法によって除去できるものであれば特に制限されるものではない。このような液状潤滑剤としては、炭化水素類の流動パラフィン、ナフサ、トルエン、キシレン等が挙げられ、他にもアルコール類、ケトン類、エステル類、フッ素系溶剤が例示される。また、これらの例の2種類以上の混合物を用いてもよい。潤滑剤の添加量は、シート状成形体の成形方法によって異なるが、通常、PTFE微粉末100重量部に対して約5〜50重量部である。   The liquid lubricant used in the molding step is not particularly limited as long as it can wet the PTFE fine powder and can be removed by a method such as evaporation or extraction. Examples of such liquid lubricants include hydrocarbons such as liquid paraffin, naphtha, toluene, xylene, and the like, and alcohols, ketones, esters, and fluorinated solvents. Also, a mixture of two or more of these examples may be used. The addition amount of the lubricant varies depending on the molding method of the sheet-like molded body, but is usually about 5 to 50 parts by weight with respect to 100 parts by weight of the PTFE fine powder.

具体的な一例では、液状潤滑剤で濡れたPTFE微粉末を、シリンダーにより圧縮し、ラム押出し機から押出してシート状に成形する。このシートを、対になったロール間で適当な厚み(通常は0.05〜0.50mm)に圧延する。その後、液状潤滑剤を、加熱法もしくは抽出法によって追い出す。このようにして、ポリテトラフルオロエチレン未焼成体を得る。   In a specific example, PTFE fine powder wet with a liquid lubricant is compressed by a cylinder and extruded from a ram extruder to form a sheet. This sheet is rolled to an appropriate thickness (usually 0.05 to 0.50 mm) between a pair of rolls. Thereafter, the liquid lubricant is driven off by a heating method or an extraction method. In this way, an unbaked polytetrafluoroethylene is obtained.

第1延伸工程では、成形工程で得られたポリテトラフルオロエチレン未焼成体を、第1延伸温度で、ポリテトラフルオロエチレン未焼成体の厚さ方向に垂直な長手方向に第1延伸倍率で延伸して中間体を得る。   In the first stretching step, the polytetrafluoroethylene green body obtained in the molding step is stretched at the first stretching temperature at the first stretching ratio in the longitudinal direction perpendicular to the thickness direction of the polytetrafluoroethylene green body. To obtain an intermediate.

第1延伸温度は、327℃(ポリテトラフルオロエチレンの融点)以上、例えば327〜400℃である。第1延伸温度をこの程度に高く設定することは、焼成度が85〜100であり、外力による変形の小さいPTFE多孔質膜を得る上で有利である。第1延伸温度は、好ましくは350〜390℃である。   The first stretching temperature is 327 ° C. (melting point of polytetrafluoroethylene) or more, for example, 327 to 400 ° C. Setting the first stretching temperature as high as this is advantageous in obtaining a PTFE porous membrane having a firing degree of 85 to 100 and small deformation due to external force. The first stretching temperature is preferably 350 to 390 ° C.

第1延伸倍率は、例えば、2〜10倍である。第1延伸倍率の上限を上記のように設定することは、PTFE多孔質膜の孔が過大となることに伴う防水通音膜の耐水性の低下(PTFE多孔質膜の孔からの水漏れ)を抑制できる点で有利である。また、第1延伸倍率が過度に低い場合には、低い第1延伸倍率により、または後述の第2延伸工程において採用し得る第2延伸倍率が小さい値に制限されることによりPTFE多孔質膜の面密度が過大となることがあるが、第1延伸倍率の下限を上記のように設定すると、そのような問題は生じ難い。第1延伸倍率は、好ましくは2.2〜7倍である。好ましい別例では、第1延伸倍率は2〜5倍である。   The first draw ratio is, for example, 2 to 10 times. Setting the upper limit of the first draw ratio as described above means that the water resistance of the waterproof sound-permeable membrane decreases due to excessive pores in the PTFE porous membrane (water leakage from the pores of the PTFE porous membrane). This is advantageous in that it can be suppressed. Further, when the first draw ratio is excessively low, the PTFE porous membrane may be reduced by a low first draw ratio or by limiting the second draw ratio that can be employed in the second drawing step described later to a small value. Although the surface density may be excessive, such a problem is unlikely to occur when the lower limit of the first draw ratio is set as described above. The first draw ratio is preferably 2.2 to 7 times. In another preferable example, the first draw ratio is 2 to 5 times.

第2延伸工程では、中間体を、第2延伸温度で、上記の厚さ方向および長手方向に垂直な幅方向に第2延伸倍率で延伸する。   In the second stretching step, the intermediate is stretched at the second stretching temperature at the second stretching temperature in the width direction perpendicular to the thickness direction and the longitudinal direction.

第2延伸温度は、例えば、40〜400℃である。第2延伸倍率は、例えば、3〜20倍である。第2延伸温度および第2延伸倍率をこの範囲とすることは、高い耐水性を有する多孔質膜を得ることと、延伸時における中間体の破断を防止することとを両立させる観点から有利である。第2延伸温度は、好ましくは100〜300℃である。第2延伸倍率は、好ましくは4〜10倍である。本実施形態では、PTFE多孔質膜の面密度が10〜40g/m2、厚さ方向の通気度が9〜30秒/100mLとなるように、第1延伸倍率および第2延伸倍率を定める。 The second stretching temperature is, for example, 40 to 400 ° C. The second draw ratio is, for example, 3 to 20 times. Setting the second stretching temperature and the second stretching ratio in this range is advantageous from the viewpoint of obtaining both a porous film having high water resistance and preventing breakage of the intermediate during stretching. . The second stretching temperature is preferably 100 to 300 ° C. The second draw ratio is preferably 4 to 10 times. In the present embodiment, the first stretching ratio and the second stretching ratio are determined so that the surface density of the PTFE porous membrane is 10 to 40 g / m 2 and the air permeability in the thickness direction is 9 to 30 seconds / 100 mL.

上述の例では、成形工程と、第1延伸工程と、第2延伸工程とによりPTFE多孔質膜を製造するが、撥水処理または撥油処理が施されたPTFE多孔質膜を得るべき場合には、第2延伸工程の後に撥水処理または撥油処理を実施すればよい。撥水処理または撥油処理用の材料(処理剤)は、例えば、撥水剤または撥油剤を溶剤と配合することにより得られる。このような撥水剤または撥油剤の具体例としては、パーフルオロアルキルアクリレート、パーフルオロアルキルメタクリレート等が挙げられる。   In the above example, the PTFE porous membrane is manufactured by the molding step, the first stretching step, and the second stretching step. However, when a PTFE porous membrane subjected to water-repellent treatment or oil-repellent treatment should be obtained. The water repellent treatment or the oil repellent treatment may be performed after the second stretching step. The material for water repellent treatment or oil repellent treatment (treatment agent) can be obtained, for example, by blending a water repellent or an oil repellent with a solvent. Specific examples of such a water repellent or oil repellent include perfluoroalkyl acrylate and perfluoroalkyl methacrylate.

また、着色されたPTFE多孔質膜を得るべき場合には、染料または顔料を溶剤に溶かして得た溶液を、キスコーター等を用いてPTFE多孔質膜に塗布し、乾燥させればよい。また、成形工程における混合物にカーボンを含ませることにより、黒色のPTFE多孔質膜を得ることもできる。   Further, when a colored PTFE porous membrane is to be obtained, a solution obtained by dissolving a dye or a pigment in a solvent may be applied to the PTFE porous membrane using a kiss coater or the like and dried. Moreover, a black PTFE porous membrane can also be obtained by including carbon in the mixture in the molding step.

また、粘着層を設ける場合には、通音領域を囲むようにPTFE多孔質膜の表面に粘着層を配置すればよい。   In the case where an adhesive layer is provided, the adhesive layer may be disposed on the surface of the PTFE porous membrane so as to surround the sound transmission region.

(実施例1)
PTFEファインパウダー(F101HE、ダイキン工業社製)100重量部に対して、液状潤滑剤(n-ドデカン、ジャパンエナジー社製)20重量部を均一に混合した。得られた混合物を、シリンダーで圧縮し、その後ラム押出してシートを得た。得られたシートを、液状潤滑剤を含んだ状態で、金属製圧延ロール間に通して厚さ0.2mmに圧縮し、150℃での加熱により乾燥させて液状潤滑剤を除去した。これにより、未焼成のシート状成形体を得た。このシート状成形体を370℃で長手方向に2.5倍の倍率で延伸し、次いで、150℃で幅方向に6倍の倍率で延伸した。このようにしてPTFE多孔質膜E1を得た。
Example 1
20 parts by weight of a liquid lubricant (n-dodecane, manufactured by Japan Energy) was uniformly mixed with 100 parts by weight of PTFE fine powder (F101HE, manufactured by Daikin Industries). The resulting mixture was compressed with a cylinder and then ram extruded to obtain a sheet. The obtained sheet was passed through a metal rolling roll in a state containing a liquid lubricant, compressed to a thickness of 0.2 mm, and dried by heating at 150 ° C. to remove the liquid lubricant. This obtained the unbaking sheet-like molded object. This sheet-like molded body was stretched at a magnification of 2.5 times in the longitudinal direction at 370 ° C., and then stretched at a magnification of 6 times in the width direction at 150 ° C. In this way, a PTFE porous membrane E1 was obtained.

(実施例2)
シート状成形体を長手方向に延伸する際に、長手方向に3倍に延伸したこと以外は、実施例1と同様の手順により、PTFE多孔質膜E2を得た。
(Example 2)
A PTFE porous membrane E2 was obtained by the same procedure as in Example 1 except that when the sheet-shaped molded body was stretched in the longitudinal direction, it was stretched 3 times in the longitudinal direction.

(実施例3)
シート状成形体を長手方向に延伸する際に、長手方向に5倍に延伸したこと以外は、実施例1と同様の手順により、PTFE多孔質膜E3を得た。
Example 3
A PTFE porous membrane E3 was obtained by the same procedure as in Example 1 except that when the sheet-shaped molded body was stretched in the longitudinal direction, it was stretched 5 times in the longitudinal direction.

(比較例1)
250℃で長手方向に8倍に延伸したこと、150℃で幅方向に45倍に延伸したこと以外は実施例1と同様にしてPTFE多孔質膜を得た。このPTFE多孔質膜を2枚準備し、2枚のPTFE多孔質膜を、それらの長手方向が一致するように積層した。得られた積層体を、400℃の炉の中で、3分間加熱した。このようにして積層されたPTFE多孔質膜C1を得た。
(Comparative Example 1)
A PTFE porous membrane was obtained in the same manner as in Example 1 except that the film was stretched 8 times in the longitudinal direction at 250 ° C. and 45 times in the width direction at 150 ° C. Two PTFE porous membranes were prepared, and the two PTFE porous membranes were laminated so that their longitudinal directions coincided. The resulting laminate was heated in a 400 ° C. oven for 3 minutes. Thus, a PTFE porous membrane C1 laminated was obtained.

(比較例2)
2枚のPTFE多孔質膜のそれぞれを得る際に、幅方向に10倍に延伸したこと以外は比較例1と同様の手順により、積層されたPTFE多孔質膜C2を得た。
(Comparative Example 2)
When obtaining each of the two porous PTFE membranes, a laminated PTFE porous membrane C2 was obtained by the same procedure as in Comparative Example 1 except that the two porous PTFE membranes were stretched 10 times in the width direction.

(比較例3)
長手方向に1.8倍に延伸したこと以外は実施例1と同様の手順により、PTFE多孔質膜C3を得た。
(Comparative Example 3)
A PTFE porous membrane C3 was obtained by the same procedure as in Example 1 except that the film was stretched 1.8 times in the longitudinal direction.

PTFE多孔質膜E1〜E3、C1〜C3につき、次のようにして面密度、通気度、耐水圧、繰り返し耐水圧、音の損失、引張強度および焼成度を調べた。   The PTFE porous membranes E1 to E3 and C1 to C3 were examined for surface density, air permeability, water pressure resistance, repeated water pressure resistance, sound loss, tensile strength, and firing degree as follows.

[面密度]
PTFE多孔質膜の面密度は、φ47mmのポンチで多孔質膜を打ち抜いた後、打ち抜いた部分の質量を測定し、1m2あたりの質量に換算して求めた。
[Area density]
The surface density of the PTFE porous membrane was determined by measuring the mass of the punched portion after punching the porous membrane with a φ47 mm punch and converting it to a mass per 1 m 2 .

[通気度]
PTFE多孔質膜の通気度は、JIS L1096に規定されているB法(ガーレー試験法)に準拠して、ガーレー数(所定の圧力を加えた時に、体積100mLの空気が多孔質膜を透過するのに必要な時間)により求めた。
[Air permeability]
The air permeability of the PTFE porous membrane is based on the B method (Gurley test method) defined in JIS L1096. When a predetermined pressure is applied, 100 mL of air passes through the porous membrane. Required time).

[引張強度]
PTFE多孔質膜の引張強度は、JIS K7113に記載のダンベル2号の形状に多孔質膜を切り出した後、得られた試験片を引張試験機(エー・アンド・ディー社製、テンシロン万能試験機MODELテンRTC−1310A−PL)により、以下の条件で引張試験を行うことで求めた。引張強度は、PTFE多孔質膜の長手方向および幅方向のそれぞれに対して測定した。
チャック間距離:95mm
引張速度:200mm/分
測定温度:25℃
[Tensile strength]
The tensile strength of the PTFE porous membrane was determined by cutting the porous membrane into the shape of dumbbell No. 2 described in JIS K7113, and then using the tensile tester (A & D Co., Tensilon Universal Testing Machine). The tensile test was carried out under the following conditions using MODEL Ten RTC-1310A-PL). The tensile strength was measured with respect to each of the longitudinal direction and the width direction of the PTFE porous membrane.
Distance between chucks: 95mm
Tensile speed: 200 mm / min Measurement temperature: 25 ° C.

引張強度は、引張試験によってPTFE多孔質膜が破断したときの最大負荷加重(N)を、PTFE多孔質膜の引張試験前の断面積(mm2)で除した値となる。なお、試験片の幅は6mmであり、試験片の厚さは、試験片ごとにダイヤルゲージにより測定した。また、表1に示す引張強度は、3回の測定の平均値である。 The tensile strength is a value obtained by dividing the maximum load load (N) when the PTFE porous membrane is ruptured by the tensile test by the cross-sectional area (mm 2 ) of the PTFE porous membrane before the tensile test. In addition, the width | variety of the test piece was 6 mm, and the thickness of the test piece was measured for each test piece with the dial gauge. Moreover, the tensile strength shown in Table 1 is an average value of three measurements.

[耐水圧]
耐水圧は、JIS L1092に記載されている耐水度試験機(B法:高水圧法)を用いて求めた。ただし、JIS L1092に規定の面積では膜が著しく変形するため、開口径が2mmまたは10mmのステンレスメッシュを膜の加圧面の反対側に設置し、変形を抑制した状態で耐水圧を測定した。
[Water pressure resistance]
The water pressure resistance was determined using a water resistance tester (Method B: high water pressure method) described in JIS L1092. However, since the film was remarkably deformed in the area defined in JIS L1092, a stainless steel mesh having an opening diameter of 2 mm or 10 mm was installed on the opposite side of the pressure surface of the film, and the water pressure resistance was measured in a state where deformation was suppressed.

[繰り返し耐水圧]
繰り返し耐水圧は、耐水圧試験と同じく、JIS L1092に記載されている耐水度試験機を用いて行った。具体的には、150kPaの水圧(深度15mの水圧に相当する)をPTFE多孔質膜に印加し、30分保持する試験を5回繰り返した。その後に水漏れの有無を観察し、良否判定を行った。良否の判定基準は次の通りである。
A:水漏れ無し
B:水漏れ有り
[Repeated water pressure]
Repeated water pressure resistance was performed using a water resistance tester described in JIS L1092, similarly to the water pressure resistance test. Specifically, a test in which a water pressure of 150 kPa (corresponding to a water pressure of 15 m in depth) was applied to the PTFE porous membrane and held for 30 minutes was repeated 5 times. Thereafter, the presence or absence of water leakage was observed, and the quality was judged. The acceptance criteria are as follows.
A: No water leak B: Water leak

なお、この試験において水漏れがないサンプルは、JIS C0920に定められたIPX8に相当する防水性を有すると考えることができる。   In addition, it can be considered that the sample having no water leakage in this test has waterproofness corresponding to IPX8 defined in JIS C0920.

[音の損失]
サンプルにおける音の損失は、以下のように評価した。
[Sound loss]
The sound loss in the samples was evaluated as follows.

最初に、図5に示すような、携帯電話の筐体を模した模擬筐体41(アクリル製、長さ70×幅50×高さ15mm)を準備した。この模擬筐体41は2つの部分41a、41bからなり、部分41aおよび41bは互いに嵌め合わせることができる。部分41aには、取付穴42(φ=13mm)が設けられている。部分41a、41bを互いに嵌め合わせることによって、模擬筐体41内に、取付穴42およびリード線44の導通口43以外の開口がない空間が形成される。   First, as shown in FIG. 5, a simulated housing 41 (made of acrylic, length 70 × width 50 × height 15 mm) imitating the housing of a mobile phone was prepared. The simulated housing 41 includes two parts 41a and 41b, and the parts 41a and 41b can be fitted together. A mounting hole 42 (φ = 13 mm) is provided in the portion 41a. By fitting the portions 41 a and 41 b to each other, a space in which no opening other than the attachment hole 42 and the conduction port 43 of the lead wire 44 is formed in the simulated housing 41 is formed.

これとは別に、各実施例および比較例において作製したPTFE多孔質膜(図5では、PTFE多孔質膜に符号211を付している)を、トムソン型を用いて直径16mmの円形に打ち抜いた。次に、打ち抜いたPTFE多孔質膜の双方の主面の周縁部に、外形16mm、内径13mmのリング状に打ち抜いた両面テープ212をそれぞれ貼り付けた。その後、一方の両面テープ212を介してPTFE多孔質膜を音源となるスピーカー45(スター精密社製、SCC−16A、φ=16mm)に貼り付けた。   Separately, the PTFE porous membranes produced in each of the examples and comparative examples (in FIG. 5, the reference numeral 211 is attached to the PTFE porous membrane) was punched into a circle having a diameter of 16 mm using a Thomson mold. . Next, double-sided tape 212 punched into a ring shape having an outer diameter of 16 mm and an inner diameter of 13 mm was attached to the peripheral portions of both main surfaces of the punched PTFE porous membrane. After that, the PTFE porous membrane was attached to the speaker 45 (Star Precision Co., Ltd., SCC-16A, φ = 16 mm) serving as a sound source via one double-sided tape 212.

次に、PTFE多孔質膜を貼り付けたスピーカー45を、模擬筐体41の部分41aにおける取付穴42に、PTFE多孔質膜が取付穴42に面するとともにPTFE多孔質膜が取付穴42を塞ぐように、部分41bと嵌め合わせたときに内側となる面から固定した。スピーカー45の部分41aへの固定は、PTFE多孔質膜におけるスピーカー45側とは反対側の面に貼り付けられた両面テープ212により行い、その際に、両面テープ212が取付穴42にかからないようにするとともに、取付穴42がPTFE多孔質膜によって完全に塞がれるように注意した。   Next, the speaker 45 to which the PTFE porous film is attached is attached to the attachment hole 42 in the portion 41 a of the simulated housing 41, the PTFE porous film faces the attachment hole 42, and the PTFE porous film closes the attachment hole 42. Thus, it fixed from the surface which becomes an inner side when it fits with the part 41b. The speaker 45 is fixed to the portion 41a by a double-sided tape 212 attached to the surface of the PTFE porous film opposite to the speaker 45, and at this time, the double-sided tape 212 does not cover the mounting hole 42. At the same time, care was taken that the mounting hole 42 was completely blocked by the PTFE porous membrane.

次に、スピーカー45のリード線44を、導通口43を通して模擬筐体41の外部に導き出しながら、部分41aと41bとを嵌め合わせ、PTFE多孔質膜の音の損失を測定するための模擬筐体41を形成した。導通口43は、リード線44を導き出した後、パテで塞いだ。   Next, the lead wire 44 of the speaker 45 is led to the outside of the simulated housing 41 through the conduction port 43, and the portions 41a and 41b are fitted together to measure the sound loss of the PTFE porous membrane. 41 was formed. The conduction port 43 was closed with putty after the lead wire 44 was led out.

次に、リード線44とマイク(Bruel & Kjar社製のType2669とType4192とを組み合わせたもの)とを通音性評価装置(Bruel & Kjar社製、3560−B−030)に接続し、スピーカー45から50mm離れた位置にマイクを配置した。   Next, the lead wire 44 and a microphone (a combination of Type 2669 and Type 4192 manufactured by Bruel & Kjar) and a sound transmission evaluation device (3560-B-030 manufactured by Bruel & Kjar) are connected to the speaker 45. A microphone was placed at a position 50 mm away from the center.

このような状態でマイクが受音した音量と、PTFE多孔質膜を省略したこと以外は同様の状態でマイクが受音した音量とを測定し、これらの差から音の損失(dB)を評価した。測定に用いた音の周波数は1000Hzとした。音の損失が小さくなるほど、原音をよく再現していることとなる。損失が5dB以下であれば、通音性が高いといえる。   The sound volume received by the microphone in such a state and the sound volume received by the microphone in the same state except that the porous PTFE membrane was omitted were measured, and the sound loss (dB) was evaluated from the difference between them. did. The frequency of the sound used for the measurement was 1000 Hz. The smaller the sound loss, the better the original sound is reproduced. If the loss is 5 dB or less, it can be said that sound transmission is high.

[焼成度]
延伸前の未焼成のシート状成形体の融解熱ΔH1と、シート状成形体を完全に焼成させて得た焼成体の融解熱ΔH2と、PTFE多孔質膜の融解熱ΔH3とを測定した。融解熱ΔH1、ΔH2およびΔH3は示差走査熱量計(DSC:ブルカー・エイエックスエス株式会社製DSC 200 F3 Maia)を用いて測定した。融解熱は、融解熱曲線のベースラインと、吸熱カーブとにより囲まれた部分の面積に基づいて求めることができる。
[Baking degree]
Measure the heat of fusion ΔH 1 of an unfired sheet-shaped molded body before stretching, the heat of fusion ΔH 2 of a fired body obtained by completely firing the sheet-shaped molded body, and the heat of fusion ΔH 3 of a porous PTFE membrane. did. Heats of fusion ΔH 1 , ΔH 2 and ΔH 3 were measured using a differential scanning calorimeter (DSC: DSC 200 F3 Mia, manufactured by Bruker AXS Co., Ltd.). The heat of fusion can be determined based on the area of the portion surrounded by the baseline of the heat of fusion curve and the endothermic curve.

融解熱ΔH1の測定においては、まず、シート状成形体から15±5mgの試料を秤量した。次に、秤量した試料を、DSCのアルミニウムパンに仕込み、10℃/minの昇温速度で室温から400℃まで加熱した。PTFEの未焼成体であるシート状成形体の吸熱ピークのピーク位置は、330〜350℃に存在した。 In measuring the heat of fusion ΔH 1 , first, a sample of 15 ± 5 mg was weighed from the sheet-like molded body. Next, the weighed sample was placed in an aluminum pan of DSC and heated from room temperature to 400 ° C. at a temperature rising rate of 10 ° C./min. The peak position of the endothermic peak of the sheet-like molded body that was an unsintered body of PTFE was at 330 to 350 ° C.

融解熱ΔH2の測定においては、融解熱ΔH1の測定時の加熱で得た焼成体を利用した。まず、得られた焼成体を、10℃/minの冷却速度で400℃から250℃まで冷却し、その後、10℃/minの昇温速度で400℃まで再加熱し、融解熱ΔH2を測定した。PTFEの各焼成体の吸熱ピークのピーク位置は、320〜340℃の範囲に存在した。 In the measurement of the heat of fusion ΔH 2 , a fired body obtained by heating at the time of measuring the heat of fusion ΔH 1 was used. First, the fired body obtained was cooled from 400 ° C. to 250 ° C. at a cooling rate of 10 ° C./min, and then reheated to 400 ° C. at a temperature rising rate of 10 ° C./min, and the heat of fusion ΔH 2 was measured. did. The peak position of the endothermic peak of each sintered body of PTFE was in the range of 320 to 340 ° C.

融解熱ΔH3の測定においては、各実施例および比較例から得たPTFE多孔質膜から15±5mgの試料を秤量した。次に、秤量した試料を、DSCのアルミニウムパンに仕込み、10℃/minの昇温速度で室温から400℃まで加熱し、融解熱ΔH3を測定した。各PTFE多孔質膜の吸熱ピークのピーク位置は、320〜350℃の範囲に存在した。 In the measurement of heat of fusion ΔH 3 , a sample of 15 ± 5 mg was weighed from the PTFE porous membrane obtained from each example and comparative example. Next, the weighed sample was placed in an aluminum pan of DSC and heated from room temperature to 400 ° C. at a heating rate of 10 ° C./min, and the heat of fusion ΔH 3 was measured. The peak position of the endothermic peak of each PTFE porous membrane was in the range of 320 to 350 ° C.

得られた融解熱ΔH1、ΔH2およびΔH3から焼成度Sを、下記式に基づいて算出した。
S={(ΔH1−ΔH3)/(ΔH1−ΔH2)}×100
The degree of firing S was calculated based on the following equation from the obtained heats of fusion ΔH 1 , ΔH 2 and ΔH 3 .
S = {(ΔH 1 −ΔH 3 ) / (ΔH 1 −ΔH 2 )} × 100

PTFE多孔質膜E1〜E3、C1〜C3につき、上記のようにして面密度、通気度、耐水圧、繰り返し耐水圧、音の損失、引張強度および焼成度を測定した結果を表1に示す。   Table 1 shows the results of measuring the surface density, air permeability, water pressure resistance, water pressure resistance, repeated water pressure resistance, sound loss, tensile strength and degree of firing for the PTFE porous membranes E1 to E3 and C1 to C3.

Figure 2014207590
Figure 2014207590

面密度が10〜40g/m2の範囲にあり、通気度が9〜30秒/100mLの範囲にあり、かつ焼成度が85〜100の範囲にある実施例1〜3では、繰り返し耐水圧はAと判定された。従って、実施例1〜3のPTFE多孔質膜E1〜E3は、水深15m程度の水圧がかかる筐体(電子機器)に配置されて繰り返し水圧が加えられても、変形による水漏れを生じさせ難いといえる。また、実施例1〜3では、音の損失は5dB以下であった。従って、PTFE多孔質膜E1〜E3は、通音性を要する筐体にも好適に使用できるといえる。 In Examples 1 to 3, in which the surface density is in the range of 10 to 40 g / m 2 , the air permeability is in the range of 9 to 30 seconds / 100 mL, and the firing degree is in the range of 85 to 100, the repeated water pressure resistance is A was determined. Therefore, even if PTFE porous membranes E1 to E3 of Examples 1 to 3 are placed in a casing (electronic device) to which a water pressure of about 15 m is applied and water pressure is repeatedly applied, it is difficult to cause water leakage due to deformation. It can be said. In Examples 1 to 3, the sound loss was 5 dB or less. Therefore, it can be said that the PTFE porous membranes E1 to E3 can be suitably used for a housing that requires sound permeability.

本発明の防水通音膜は、水中での使用が想定される、音響装置が収容されている電子機器に、好適に使用できる。具体的には、携帯電話、デジタルビデオカメラ等に好適に使用できる。   The waterproof sound-permeable membrane of the present invention can be suitably used for an electronic device in which an acoustic device is accommodated, which is assumed to be used in water. Specifically, it can be suitably used for a mobile phone, a digital video camera, and the like.

10,110 防水通音膜
11,211 PTFE多孔質膜
11b 裏面
11f 表面
11p 周縁部
12,212 粘着層(両面テープ)
13c 通音領域
13p 周縁領域
20 防水通音部材
21 筐体部
22 開口
30 携帯電話
31 回路基板
33 マイクロフォン
34 集音部
35 パッケージ
36 集音口
38 筐体
39 集音口
41 模擬筐体
41a,41b 部分
42 取付穴
43 導通口
44 リード線
45 スピーカー
DESCRIPTION OF SYMBOLS 10,110 Waterproof sound-permeable membrane 11, 211 PTFE porous membrane 11b Back surface 11f Front surface 11p Peripheral part 12,212 Adhesive layer (double-sided tape)
13c Sound-transmitting area 13p Peripheral area 20 Waterproof sound-transmitting member 21 Housing part 22 Opening 30 Mobile phone 31 Circuit board 33 Microphone 34 Sound collecting part 35 Package 36 Sound collecting port 38 Housing 39 Sound collecting port 41 Simulated housing 41a, 41b Part 42 Mounting hole 43 Conduction port 44 Lead wire 45 Speaker

Claims (6)

単層のポリテトラフルオロエチレン多孔質膜からなる通音領域を有し、
前記多孔質膜の面密度が10〜40g/m2であり、
前記多孔質膜の厚さ方向の通気度が9〜30秒/100mLであり、
前記多孔質膜の焼成度が85〜100である、防水通音膜。
ただし、前記通気度は、JIS L1096に規定されている通気性測定法のB法(ガーレー法)により与えられる値であり、前記焼成度は、ポリテトラフルオロエチレン未焼成体の融解熱をΔH1、ポリテトラフルオロエチレン焼成体の融解熱をΔH2、前記ポリテトラフルオロエチレン多孔質膜の融解熱をΔH3としたときに、{(ΔH1−ΔH3)/(ΔH1−ΔH2)}×100で与えられる値である。
It has a sound transmission area consisting of a single layer polytetrafluoroethylene porous membrane,
The surface density of the porous membrane is 10 to 40 g / m 2 ;
The air permeability in the thickness direction of the porous membrane is 9 to 30 seconds / 100 mL,
A waterproof sound-permeable membrane, wherein the porous membrane has a firing degree of 85 to 100.
However, the air permeability is a value given by the B method (Gurley method) of the air permeability measurement method defined in JIS L1096, and the degree of calcination is the heat of fusion of the unsintered polytetrafluoroethylene by ΔH 1 When the heat of fusion of the polytetrafluoroethylene fired body is ΔH 2 and the heat of fusion of the polytetrafluoroethylene porous membrane is ΔH 3 , {(ΔH 1 −ΔH 3 ) / (ΔH 1 −ΔH 2 )} It is a value given by x100.
前記多孔質膜の焼成度が85〜95である、請求項1に記載の防水通音膜。   The waterproof sound-permeable membrane according to claim 1, wherein the degree of firing of the porous membrane is 85 to 95. 前記ポリテトラフルオロエチレン多孔質膜は、JIS K7113に準拠して測定した引張強度が13N以上であって前記多孔質膜の厚さ方向に垂直な面内方向において最大となる第1方向と、前記厚さ方向および前記第1方向に垂直であり、JIS K7113に準拠して測定した引張強度が5N以上である第2方向と、を有する、請求項1または2に記載の防水通音膜。   The polytetrafluoroethylene porous membrane has a first direction having a tensile strength measured in accordance with JIS K7113 of 13 N or more and a maximum in an in-plane direction perpendicular to the thickness direction of the porous membrane, The waterproof sound-permeable membrane according to claim 1 or 2, comprising a second direction perpendicular to the thickness direction and the first direction and having a tensile strength measured in accordance with JIS K7113 of 5 N or more. 前記通音領域を囲むように、前記多孔質膜の表面に配置された粘着層をさらに含む、請求項1〜3のいずれか1項に記載の防水通音膜。   The waterproof sound-permeable membrane according to any one of claims 1 to 3, further comprising an adhesive layer disposed on a surface of the porous membrane so as to surround the sound-permeable region. 開口を有する筐体部と、
前記開口を塞ぐように前記筐体部に取り付けられた、請求項1〜4のいずれか1項に記載の防水通音膜と、を備える防水通音部材。
A casing having an opening;
A waterproof sound-permeable member comprising the waterproof sound-permeable membrane according to any one of claims 1 to 4, which is attached to the housing portion so as to close the opening.
単層のポリテトラフルオロエチレン多孔質膜からなる通音領域を有する防水通音膜の製造方法であって、
ポリテトラフルオロエチレン未焼成体を、327℃以上の温度で第1方向に延伸し、次いで前記第1方向と直交する第2方向に延伸してポリテトラフルオロエチレン多孔質膜を得る工程(a)と、
前記通音領域を囲むように前記多孔質膜の表面に粘着層を配置する工程(b)と、を含み、
前記工程(a)において、
前記多孔質膜の焼成度が85〜100となるように、前記温度を定めると共に、
前記多孔質膜の面密度が10〜40g/m2、厚さ方向の通気度が9〜30秒/100mlとなるように、前記第1方向への延伸倍率及び前記第2方向への延伸倍率を定める、
防水通音膜の製造方法。
ただし、前記焼成度は、ポリテトラフルオロエチレン未焼成体の融解熱をΔH1、ポリテトラフルオロエチレン焼成体の融解熱をΔH2、前記ポリテトラフルオロエチレン多孔質膜の融解熱をΔH3としたときに、{(ΔH1−ΔH3)/(ΔH1−ΔH2)}×100で与えられる値であり、前記通気度は、JIS L1096に規定されている通気性測定法のB法(ガーレー法)により与えられる値である。
A method for producing a waterproof sound-permeable membrane having a sound-permeable region comprising a single-layer polytetrafluoroethylene porous membrane,
Step (a) in which a polytetrafluoroethylene green body is stretched in a first direction at a temperature of 327 ° C. or higher and then stretched in a second direction orthogonal to the first direction to obtain a polytetrafluoroethylene porous membrane When,
And (b) arranging an adhesive layer on the surface of the porous membrane so as to surround the sound transmission region,
In the step (a),
The temperature is set so that the degree of firing of the porous film is 85 to 100,
The draw ratio in the first direction and the draw ratio in the second direction so that the surface density of the porous film is 10 to 40 g / m 2 and the air permeability in the thickness direction is 9 to 30 seconds / 100 ml. Determine
A method for producing a waterproof sound-permeable membrane.
However, the degree of firing was defined as ΔH 1 for the heat of fusion of the non-fired polytetrafluoroethylene, ΔH 2 for the heat of fusion of the fired polytetrafluoroethylene, and ΔH 3 for the heat of fusion of the polytetrafluoroethylene porous membrane. Sometimes, {(ΔH 1 −ΔH 3 ) / (ΔH 1 −ΔH 2 )} × 100, and the air permeability is the B method (Gurley of the air permeability measurement method defined in JIS L1096). This is the value given by
JP2013084506A 2013-04-15 2013-04-15 Waterproof sound-permeable membrane, manufacturing method thereof, and waterproof sound-permeable member Active JP6069078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084506A JP6069078B2 (en) 2013-04-15 2013-04-15 Waterproof sound-permeable membrane, manufacturing method thereof, and waterproof sound-permeable member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084506A JP6069078B2 (en) 2013-04-15 2013-04-15 Waterproof sound-permeable membrane, manufacturing method thereof, and waterproof sound-permeable member

Publications (2)

Publication Number Publication Date
JP2014207590A true JP2014207590A (en) 2014-10-30
JP6069078B2 JP6069078B2 (en) 2017-01-25

Family

ID=52120821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084506A Active JP6069078B2 (en) 2013-04-15 2013-04-15 Waterproof sound-permeable membrane, manufacturing method thereof, and waterproof sound-permeable member

Country Status (1)

Country Link
JP (1) JP6069078B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034224A1 (en) * 2015-08-21 2017-03-02 주식회사 아모그린텍 Sound device
WO2017090246A1 (en) * 2015-11-24 2017-06-01 日東電工株式会社 Waterproof sound-passing film, waterproof sound-passing member, and electronic apparatus
CN107277701A (en) * 2017-08-12 2017-10-20 施柏德(厦门)科技有限公司 A kind of preparation method of the waterproof and breathable sound passing membrane compound by lamination
JP2018019222A (en) * 2016-07-27 2018-02-01 日本ゴア株式会社 Waterproof sound passing cover, waterproof sound passing cover member and acoustic device
JP2018019391A (en) * 2016-07-13 2018-02-01 株式会社デンソーウェーブ Mobile terminal
WO2021060328A1 (en) * 2019-09-27 2021-04-01 三井・ケマーズフロロプロダクツ株式会社 Polytetrafluoroethylene porous film having high strength and small pore diameter
CN112929798A (en) * 2021-01-29 2021-06-08 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) provided with same
US11376554B2 (en) 2016-12-19 2022-07-05 Nitto Denko Corporation Porous polytetrafluoroethylene membrane, and waterproof air-permeable membrane and waterproof air-permeable member including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503991A (en) * 1999-07-07 2003-01-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Acoustic protective cover assembly
JP2004083811A (en) * 2002-08-28 2004-03-18 Nitto Denko Corp Waterproofing sound-passing membrane
JP2007081881A (en) * 2005-09-14 2007-03-29 Nitto Denko Corp Sound-passing membrane, electronic component with sound-passing membrane, and manufacturing method of circuit board mounted with the electronic component
JP2009111993A (en) * 2007-10-09 2009-05-21 Nitto Denko Corp Sound passing member uzing waterproof sound passing membrane, and method for manufacturing the same
JP2010058026A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
JP2012001591A (en) * 2010-06-15 2012-01-05 Nitto Denko Corp Polytetrafluoroethylene porous membrane with small elongation anisotropy and process for production thereof
JP2012195928A (en) * 2011-03-03 2012-10-11 Nitto Denko Corp Waterproof sound-transmitting film and electrical product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503991A (en) * 1999-07-07 2003-01-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Acoustic protective cover assembly
JP2004083811A (en) * 2002-08-28 2004-03-18 Nitto Denko Corp Waterproofing sound-passing membrane
JP2007081881A (en) * 2005-09-14 2007-03-29 Nitto Denko Corp Sound-passing membrane, electronic component with sound-passing membrane, and manufacturing method of circuit board mounted with the electronic component
JP2009111993A (en) * 2007-10-09 2009-05-21 Nitto Denko Corp Sound passing member uzing waterproof sound passing membrane, and method for manufacturing the same
JP2010058026A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
JP2012001591A (en) * 2010-06-15 2012-01-05 Nitto Denko Corp Polytetrafluoroethylene porous membrane with small elongation anisotropy and process for production thereof
JP2012195928A (en) * 2011-03-03 2012-10-11 Nitto Denko Corp Waterproof sound-transmitting film and electrical product

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10477306B2 (en) 2015-08-21 2019-11-12 Amogreentech Co., Ltd. Sound device
WO2017034224A1 (en) * 2015-08-21 2017-03-02 주식회사 아모그린텍 Sound device
EP3337180A4 (en) * 2015-11-24 2019-03-13 Nitto Denko Corporation Waterproof sound-passing film, waterproof sound-passing member, and electronic apparatus
WO2017090246A1 (en) * 2015-11-24 2017-06-01 日東電工株式会社 Waterproof sound-passing film, waterproof sound-passing member, and electronic apparatus
JP2017103764A (en) * 2015-11-24 2017-06-08 日東電工株式会社 Waterproof sound-permeable membrane, waterproof sound-permeable member and electronic apparatus
JP2017184269A (en) * 2015-11-24 2017-10-05 日東電工株式会社 Waterproof sound-permeable membrane, waterproof sound-permeable member and electronic apparatus
JP2017184270A (en) * 2015-11-24 2017-10-05 日東電工株式会社 Waterproof sound-permeable membrane, waterproof sound-permeable member and electronic apparatus
US10028043B2 (en) 2015-11-24 2018-07-17 Nitto Denko Corporation Waterproof sound-permeable membrane, waterproof sound-permeable member, and electronic device
CN109151625A (en) * 2015-11-24 2019-01-04 日东电工株式会社 Waterproof sound passing membrane, water-proof sound-transmitting component and electronic equipment
JP2018019391A (en) * 2016-07-13 2018-02-01 株式会社デンソーウェーブ Mobile terminal
CN109716784A (en) * 2016-07-27 2019-05-03 日本戈尔有限公司 Water-proof sound-transmitting cover, water-proof sound-transmitting cover member and acoustic apparatus
KR102320057B1 (en) * 2016-07-27 2021-10-29 니뽄 고아 고도가이샤 Waterproof sound-permeable cover, waterproof sound-permeable cover member and sound device
JP2018019222A (en) * 2016-07-27 2018-02-01 日本ゴア株式会社 Waterproof sound passing cover, waterproof sound passing cover member and acoustic device
KR20190034243A (en) * 2016-07-27 2019-04-01 니뽄 고아 가부시끼가이샤 Waterproof soundproof cover, waterproof soundproof cover member and sound device
US10798474B2 (en) 2016-07-27 2020-10-06 W. L. Gore & Associates, Co., Ltd. Waterproof sound-transmissive cover, waterproof sound-transmissive cover member and acoustic device
CN109716784B (en) * 2016-07-27 2021-01-01 日本戈尔合同会社 Waterproof sound-transmitting cover, waterproof sound-transmitting cover member, and acoustic device
US11376554B2 (en) 2016-12-19 2022-07-05 Nitto Denko Corporation Porous polytetrafluoroethylene membrane, and waterproof air-permeable membrane and waterproof air-permeable member including the same
US11439958B2 (en) 2016-12-19 2022-09-13 Nitto Denko Corporation Porous polytetrafluoroethylene membrane, and waterproof air-permeable membrane and waterproof air-permeable member including the same
CN107277701A (en) * 2017-08-12 2017-10-20 施柏德(厦门)科技有限公司 A kind of preparation method of the waterproof and breathable sound passing membrane compound by lamination
JP2021054892A (en) * 2019-09-27 2021-04-08 三井・ケマーズ フロロプロダクツ株式会社 Polytetrafluoroethylene porous film having high intensity small pore diameter
WO2021060328A1 (en) * 2019-09-27 2021-04-01 三井・ケマーズフロロプロダクツ株式会社 Polytetrafluoroethylene porous film having high strength and small pore diameter
CN114729146A (en) * 2019-09-27 2022-07-08 科慕·三井氟产品株式会社 High-strength small-pore-size polytetrafluoroethylene porous membrane
JP7316893B2 (en) 2019-09-27 2023-07-28 三井・ケマーズ フロロプロダクツ株式会社 Polytetrafluoroethylene porous membrane with high strength and small pore size
CN112929798A (en) * 2021-01-29 2021-06-08 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) provided with same
CN112929798B (en) * 2021-01-29 2022-11-01 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) with same

Also Published As

Publication number Publication date
JP6069078B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6069078B2 (en) Waterproof sound-permeable membrane, manufacturing method thereof, and waterproof sound-permeable member
JP7061828B2 (en) Waterproof sound-permeable membrane and waterproof sound-permeable structure using it
TWI624498B (en) Polytetrafluoroethylene porous membrane, its manufacturing method, and ventilation membrane and ventilation member using the same
US10491993B2 (en) Waterproof sound-transmitting membrane, waterproof sound-transmitting member including same, electronic device, electronic device case, and waterproof sound-transmitting structure
JP6178034B1 (en) Waterproof sound-permeable membrane, waterproof sound-permeable member and electronic device
US9578402B2 (en) Waterproof sound-transmitting membrane, sound-transmitting member, and electrical device
JP4637965B2 (en) Waterproof sound-permeable membrane, method for producing the same, and electrical product using the same
JP6438733B2 (en) Waterproof sound-permeable membrane and electronic equipment
JP5854948B2 (en) Polytetrafluoroethylene black porous membrane, method for producing the same, vent membrane and vent member using the same
JP6324109B2 (en) Waterproof sound-permeable membrane manufacturing method, waterproof sound-permeable membrane and electronic device
JP5579905B2 (en) Polytetrafluoroethylene black porous membrane, and ventilation membrane, ventilation member and waterproof sound-permeable membrane using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6069078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250