WO2010084705A1 - 無線通信システムにおける通信装置およびその送信電力制御方法 - Google Patents

無線通信システムにおける通信装置およびその送信電力制御方法 Download PDF

Info

Publication number
WO2010084705A1
WO2010084705A1 PCT/JP2010/000080 JP2010000080W WO2010084705A1 WO 2010084705 A1 WO2010084705 A1 WO 2010084705A1 JP 2010000080 W JP2010000080 W JP 2010000080W WO 2010084705 A1 WO2010084705 A1 WO 2010084705A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
retransmissions
radio resource
change
radio
Prior art date
Application number
PCT/JP2010/000080
Other languages
English (en)
French (fr)
Inventor
石井直人
信清貴宏
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/146,345 priority Critical patent/US20120021798A1/en
Priority to JP2010547419A priority patent/JPWO2010084705A1/ja
Publication of WO2010084705A1 publication Critical patent/WO2010084705A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment

Definitions

  • the present invention relates to a radio communication system, and more particularly to a transmission power control method and a communication apparatus using the same.
  • the system band allocated to the base station is divided into small frequency bands called resource blocks, and resource blocks are scheduled. It is a unit of allocation.
  • the radio resources (resource block, transmission cycle, transmission power, etc.) used for each transmission can be changed according to the channel quality on the receiving side.
  • Dynamic scheduling DS Dynamic Scheduling
  • the dynamic scheduling DS needs to notify which radio resource is used for each transmission using a control channel different from the data channel.
  • Reservation-type scheduling is a scheduling method that reserves radio resources for initial transmission packets for subsequent packets by utilizing the fact that the data generation period such as VoIP is constant.
  • Persistent scheduling PS reserves radio resources for the initial transmission packet, so that notification using the control channel is not necessary. Therefore, radio resources allocated to the control channel can be reduced, and frequency use efficiency can be improved.
  • the transmission side reserves resources, it refers to the average channel quality of the system band, determines the coding rate of the frequency band and error correction code, and assigns them in order from resource blocks that are not yet reserved. It is generally considered to continue.
  • multi-level modulation such as QAM (Quadrature Amplitude Modulation) is applied in the downlink and information is also included in the amplitude. Therefore, it is possible to change the transmission power in a long cycle, but generally the power density in the system band is constant.
  • QAM Quadrature Amplitude Modulation
  • the initial transmission packet is transmitted at a constant period in accordance with the data generation period, and therefore, the temporal variation for each resource block used for transmission is sufficiently considered. Absent. It is assumed that the average channel quality of the system band will be reported because the channel quality in the downlink is reported to the terminal as an average value for each resource block, and the uplink resources are used extra. Yes.
  • the frequency of retransmission increases and the delay time increases.
  • the time until the completion of reception for each packet changes. As a result, the time until the packet is normally received varies on the receiving side even though the transmitting side transmits the packet at a constant period.
  • an object of the present invention is to provide a transmission power control method capable of avoiding an increase and fluctuation in reception delay time in reservation type scheduling, and a radio communication system and a communication apparatus using the same.
  • a transmission power control method is a transmission power control method in a wireless communication system that reserves radio resources and periodically communicates between communication apparatuses, and transmits the communication resources to a communication apparatus using the reserved radio resources.
  • the number of packet retransmissions is measured, and the transmission power of the radio resource is changed according to the number of retransmissions.
  • a communication apparatus is a communication apparatus in a radio communication system that reserves radio resources and periodically communicates with other communication apparatuses, and transmits to the other communication apparatuses using the reserved radio resources.
  • a retransmission number measuring unit that measures the number of retransmissions of the received packet, and a transmission power control unit that changes the transmission power of the radio resource according to the number of retransmissions.
  • a radio communication system is a radio communication system having at least one base station and at least one mobile terminal that perform radio communication by reserving radio resources, wherein the base station uses a reserved radio station.
  • a retransmission number measuring unit that measures the number of retransmissions of a packet transmitted to each mobile terminal using a resource
  • a transmission power control unit that changes the transmission power of the radio resource according to the number of retransmissions.
  • a computer program according to the present invention is a computer program for causing a program control processor to function as a communication device in a wireless communication system that reserves wireless resources and periodically communicates with other communication devices.
  • a function of measuring the number of retransmissions of a packet transmitted to a communication device using a resource and a function of changing transmission power of the radio resource according to the number of retransmissions are realized in the program control processor. .
  • FIG. 1 is a figure which shows the transmission power of each terminal before performing transmission reassignment control by 2nd Embodiment, and the frequency
  • (B) is the transmission power of each terminal after performing transmission reassignment control.
  • FIG. It is a flowchart which shows the transmission reallocation control method by a present Example.
  • FIG. 1 is a block diagram schematically showing a configuration related to transmission power control in a communication apparatus according to a first embodiment of the present invention.
  • the wireless communication unit 101 is a block in which a transmission unit, a reception unit, a channel control unit, and the like of a general wireless communication system are combined, such as a transmission power change function, a retransmission function such as hybrid ARQ (Automatic Repeat reQuest), etc. It shall have.
  • the reservation type scheduler 102 has a function of allocating radio resources to reservation type traffic packets.
  • the retransmission number management unit 103 manages the number of retransmissions for each packet transmitted by the wireless communication unit 101.
  • the transmission power control unit 104 changes the transmission power for each resource block according to the number of retransmissions.
  • the resource management unit 105 has a function of managing the reservation status and transmission power of resource blocks, which are radio band allocation units.
  • the control unit 106 controls the operation of the entire communication apparatus. Here, transmission power control will be described.
  • FIG. 2 is a flowchart showing a transmission power control method in the communication apparatus according to the present embodiment.
  • the control unit 106 causes the reservation type scheduler 102 to reserve a resource block (step S201).
  • the reservation type scheduler 102 confirms the resource reservation status of the resource management unit 105, reserves a resource block of a certain period, updates the reservation status of the resource management unit 105, and controls the allocation result of the resource block Notification to the unit 106. Since the resource block reservation method for the first packet is well known, the details of the reservation operation are omitted.
  • the control unit 106 determines whether there is a packet to be transmitted (step S202). If there is a packet to be transmitted (step S202: YES), the wireless communication is performed using the resource block reserved by the reservation type scheduler 102. The transmission packet is transmitted by the unit 101. At that time, the retransmission number management unit 103 counts the number of retransmissions when the transmission packet is retransmitted according to the control of the control unit 106 (step S203).
  • the control unit 106 executes control to change transmission power according to the number of retransmissions. Specifically, it is determined whether or not the number of retransmissions (C RETRANS ) exceeds a threshold value (C TH ) within a predetermined range (step S204). If it is equal to or less than the predetermined threshold value (step S204: NO) ), Without changing the transmission power, the process returns to step S202 for checking whether there is a packet to be transmitted next. When the number of retransmissions exceeds a predetermined threshold (step S204: YES), the control unit 106 causes the transmission power control unit 104 to calculate an increase in transmission power (step S205).
  • the transmission power control unit 104 reallocates transmission power based on the resource block reservation status managed by the resource management unit 105 and updates the reservation status of the resource management unit 105. Then, if there is a packet to be transmitted next under the control of the control unit 106 (step S202: YES), the wireless communication unit 101 transmits a packet in the reserved resource block with the increased transmission power. Execute (Step S203). The above processes S202 to S205 are repeated as long as there is transmission data in the reserved resource block.
  • control unit 106 updates the reservation status of the resource management unit 105 so as to release the reserved resource block (step S206).
  • the transmission power reallocation control function by the reservation type scheduler 102, the retransmission number management unit 103, the transmission power control unit 104, the resource management unit 105, and the control unit 106 as described above is performed on a program control processor such as a CPU. It can also be realized in the same way by executing the above.
  • the number of retransmissions is measured for each resource block reserved and allocated, and the transmission power is changed according to the number of retransmissions.
  • the transmission power of the reserved resource block is increased. Since the number of retransmissions is reduced by increasing the transmission power, it is possible to shorten the packet delay time and suppress fluctuations in the reservation type scheduling method. In addition, since the number of retransmissions is reduced, the number of radio resources that can be reserved increases, and the utilization efficiency of the radio resources is improved.
  • FIG. 3 is a block diagram showing a configuration of a mobile communication system including a base station to which a communication apparatus according to a second embodiment of the present invention is applied and a plurality of mobile stations.
  • a plurality of mobile terminals 20.1 to 20.4 are located in the cell of the base station 10, and the base station 10 is connected to the upper network apparatus 30.
  • FIG. 4 is a schematic block diagram showing an example of the configuration of a base station to which a communication apparatus according to the second embodiment of the present invention is applied.
  • the base station 10 includes a reservation type scheduler 302, a retransmission count management unit 303, a transmission power control unit 304, a resource management unit 305, and a control unit 306, in addition to a radio communication unit 301 that performs radio communication with a mobile terminal. Further, a reception processing unit 307 for processing the uplink signal received from each mobile terminal, the transfer data of the uplink signal is transmitted to the upper network apparatus (base station control apparatus), and the data from the upper network apparatus is transmitted. Has a communication unit 308 for receiving.
  • each function of the reservation type scheduler 302, the retransmission count management unit 303, the transmission power control unit 304, the resource management unit 305, the control unit 306, and the reception processing unit 307 corresponds to a corresponding computer program on a program control processor such as a CPU. It can also be realized by executing. Further, here, the parts related to the transmission power reallocation control according to the present invention are mainly shown, and the other components are omitted. Hereinafter, a downlink will be described as an example of the wireless communication system.
  • FIG. 5 is a resource configuration diagram showing the reservation status of resource blocks used in the reservation type scheduling in the second embodiment.
  • the horizontal axis represents the time direction indicated by the frame number, and the number of frames 20 is the packet transmission cycle.
  • the vertical axis represents the frequency indicated by the resource block number.
  • the system band allocated to the base station 10 is divided into small frequency bands called resource blocks, and the resource blocks are scheduling allocation units.
  • the resource management unit 305 manages the reservation status of the resource block and the transmission power of the resource block as shown in FIG. However, in FIG. 5, it is assumed that the transmission power is all the same. Note that the resource block is logical and may be different from the frequency used for transmission. This is because the logical resource block to be managed and the physical resource block used for transmission need only correspond one to one. FIG. 5 illustrates a case where the number of resource blocks is 10 and the number of transmission frames is 20 in each transmission frame, but the present invention is not limited to this.
  • the reservation type scheduler 302 determines whether there is an unallocated resource block with reference to the resource reservation status shown in FIG. 5 when a packet that has not been reserved arrives. Make a reservation according to the number of resource blocks that are not reserved. Once a reservation is made, a packet for the same communication that arrives after that can be transmitted using the reserved resource block and the transmission frame. When the transmitted packet is not received correctly, the control unit 306 controls to retransmit by dynamic scheduling DS using a resource block that is not reserved (or may be reserved for retransmission). ).
  • FIG. 6A is a diagram showing the transmission power and the number of retransmissions before each transmission power reallocation control according to the second embodiment.
  • FIG. It is a figure which shows the transmission power of each terminal after performing transmission reallocation control. Here, a certain transmission frame is shown, and it is assumed that six terminals # 1 to # 6 communicate simultaneously. Also, the number of retransmissions of terminals # 1 to # 6 is assumed to be 1, 2, 0, 2, 1, 0 as shown in FIG. Since the transmission power per resource block allocated to one terminal is the same, the number of resource blocks allocated to the terminal is not shown.
  • the transmission powers of mobile terminals # 2 and # 4 having a retransmission count of 2 or more are increased by ⁇ up, and the transmission powers of mobile terminals # 1 and # 5 having a retransmission count of 1 are unchanged.
  • the transmission power of mobile terminals # 3 and # 6 whose number of retransmissions is less than 1 is reduced by ⁇ down.
  • the transmission power allocation is changed so as not to exceed this range.
  • transmission power control will be described in detail.
  • the present embodiment since power allocation larger than the maximum power of the base station cannot be performed, firstly, it is examined whether or not the power of the terminal considered to be excessive quality can be lowered, and then the current surplus power. And two-stage transmission power reallocation control in which a sum of power reduced from an excessive quality terminal is given to a terminal with poor quality.
  • the power per resource block (RB) assigned to a terminal is different for each terminal, but the power of resource blocks assigned to the same terminal is the same. Therefore, even if the number of allocated resource blocks is the same, the power allocated to the terminal may be different, and conversely, the power allocated to the terminal is the same even though the number of allocated resource blocks is different. There is also a possibility.
  • FIG. 7 is a flowchart showing a transmission reassignment control method according to this embodiment.
  • predetermined thresholds N1 and N2 for the number of retransmissions are set in advance. Note that N1> N2.
  • the control unit 306 inputs the number of retransmissions of the mobile terminal located in the cell from the retransmission number management unit 303 (step S402), selects a terminal having the number of retransmissions of N1 or more as a candidate for increasing transmission power, A terminal whose number is less than N2 is selected as a candidate for reducing transmission power (step S403).
  • the number of power increase candidate terminals is a1
  • Candidate terminal (a2 2).
  • Pc corresponds to the sum of the power allocated to all resource blocks.
  • the transmission power control unit 304 confirms whether or not the power of the resource block can be reduced by ⁇ down for each power reduction candidate terminal (step S405).
  • ⁇ down represents a predetermined power reduction amount per resource block. Whether power can be reduced is determined as follows.
  • the sum of the resource blocks allocated to the terminal capable of reducing the power is calculated, and is set as K2.
  • the transmission power control unit 304 determines how to allocate it to the power increase candidate terminal. First, it is confirmed whether or not the power of the resource block can be increased by ⁇ up for each power increase candidate terminal (step S407).
  • ⁇ up represents a predetermined power increase amount per resource block. Whether or not the power can be increased is determined as follows.
  • transmission power control section 304 compares the increased required power P RQ increased electric power P EN (step S409). If increased electric power P EN increase the required power P RQ or more (step S409: NO), the power increase amount ⁇ up per resource block used as is, when increasing electric power P EN increase the required power P RQ smaller (Step S409: YES), the power increase amount ⁇ up per resource block is decreased to P RQ / K1 (step S410).
  • the transmission power control for the terminal capable of increasing power is executed using the power increase amount ⁇ up per resource block obtained in this way (step S411).
  • the following effects can be obtained in addition to the effects of the first embodiment described above. That is, the number of retransmissions is measured for each resource block that has been reserved and allocated, and a terminal whose retransmission number is a predetermined number N1 or more is a candidate terminal for increasing the transmission power, and a terminal whose retransmission number is less than the predetermined number N2 is a transmission power. Select as a candidate terminal to decrease. Then, by reducing the transmission power to terminals that do not fall below the minimum transmission power value among the power reduction candidates, the increaseable power allocated to the candidate terminal that increases the transmission power can be increased, which is efficient and Transmission power control can be realized.
  • the present invention is not only applied to the LTE system, but can also be applied to a radio communication system using a frequency division multiplexing (FDMA).
  • FDMA frequency division multiplexing
  • the present invention can be applied to a wireless communication system, for example, a wireless communication system using LTE or FDMA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 予約型スケジューリングにおける受信遅延時間の増大および変動を回避できる送信電力制御方法およびそれを用いた通信装置を提供する。無線リソースを予約して周期的に通信装置間の通信を行なう無線通信システムにおいて、予約された無線リソース(ステップS201)を用いて通信装置へ送信したパケットの再送回数を測定し(ステップS203)、再送回数に応じて当該無線リソースの送信電力を変更する(ステップS204、S205)。

Description

無線通信システムにおける通信装置およびその送信電力制御方法
 本発明は無線通信システムに係り、特に送信電力制御方法およびそれを用いた通信装置に関する。
 現在3GPP(3rd Generation Partnership Project)において標準化が進められているLTE(Long Term Evolution)システムにおいて、基地局に割り当てられているシステム帯域はリソースブロックとよばれる小さな周波数帯域に分割され、リソースブロックがスケジューリングの割り当て単位とされている。
 Webページ閲覧やファイル転送などデータ発生周期が一定ではないアプリケーションに対しては、受信側での通信路品質に応じて送信毎に用いる無線リソース(リソースブロック、送信周期、送信電力など)を変更できる動的スケジューリングDS(Dynamic Scheduling)が採用される。動的スケジューリングDSは、送信毎にどの無線リソースを使っているかをデータチャネルとは別の制御チャネルを用いて通知する必要がある。
 これに対して、周期的にデータが発生するVoIP(Voice over Internet Protocol)のようなトラヒックに対するスケジューリング方式としては、パーシステント・スケジューリングPS(Persistent Scheduling)と呼ばれる予約型スケジューリング方式が提案されている(例えば、非特許文献1参照)。予約型スケジューリングは、VoIPなどデータの発生周期が一定であることを利用し、初送のパケットに対する無線リソースをその後のパケットに対して予約しておくスケジューリング方式である。
 パーシステント・スケジューリングPSは、初送のパケットに対する無線リソースを予約するので、制御チャネルを用いた通知が不要となる。したがって、制御チャネルに割り当てる無線リソースを削減でき、周波数の利用効率を向上させることができる。また、送信側がリソースを予約する場合には、システム帯域の平均的な通信路品質を参照し、周波数帯域や誤り訂正符号の符号化率を決定し、まだ予約されていないリソースブロックから順番に割り当てていくことが一般に考えられる。
 パーシステント・スケジューリングPSにおける送信電力については、下り回線においてはQAM(Quadrature Amplitude Modulation)などの多値変調が適用され振幅にも情報が含まれる。したがって長い周期で送信電力を変更することは可能であるが、一般的にはシステム帯域での電力密度は一定である。
3GPP TS36.300 V8.5.0(2008-05), 3GPP E-UTRA and E-UTRAN Overall description, P.62-63
 しかしながら、パーシステント・スケジューリングPSのような予約型スケジューリングでは、初送のパケットをデータ発生周期に合わせて一定周期で送信するので、送信に使われるリソースブロック毎の時間的な変動が十分考慮されていない。下り回線における通信路品質をリソースブロック単位の平均値として端末に報告させることも上り回線のリソースを余分に使うことになるため、システム帯域の平均的な通信路品質を報告することが想定されている。
 このために、フェージングや隣接セルからの干渉により受信品質が劣化している場合には再送頻度が高くなり遅延時間が増大する。また、通信路品質の時間変動により再送回数が変化すると、パケット毎の受信完了までの時間が変化することになる。これにより、送信側ではパケットを一定周期で送信しているにもかかわらず、受信側ではパケットが正常受信されるまでの時間が変動する。
 そこで、本発明の目的は、予約型スケジューリングにおける受信遅延時間の増大および変動を回避できる送信電力制御方法、それを用いた無線通信システムおよび通信装置を提供することにある。
 本発明による送信電力制御方法は、無線リソースを予約して周期的に通信装置間の通信を行なう無線通信システムにおける送信電力制御方法であって、予約された無線リソースを用いて通信装置へ送信したパケットの再送回数を測定し、前記再送回数に応じて当該無線リソースの送信電力を変更する、ことを特徴とする。
 本発明による通信装置は、無線リソースを予約して周期的に他の通信装置との通信を行なう無線通信システムにおける通信装置であって、予約された無線リソースを用いて前記他の通信装置へ送信したパケットの再送回数を測定する再送回数測定手段と、前記再送回数に応じて当該無線リソースの送信電力を変更する送信電力制御手段と、を有することを特徴とする。
 本発明による無線通信システムは、無線リソースを予約して周期的に通信を行なう少なくとも1つの基地局と少なくとも1つの移動端末とを有する無線通信システムであって、前記基地局は、予約された無線リソースを用いて各移動端末へ送信したパケットの再送回数を測定する再送回数測定手段と、前記再送回数に応じて当該無線リソースの送信電力を変更する送信電力制御手段と、を有することを特徴とする。
 本発明によるコンピュータプログラムは、無線リソースを予約して周期的に他の通信装置との通信を行なう無線通信システムにおける通信装置としてプログラム制御プロセッサを機能させるためのコンピュータプログラムであって、予約された無線リソースを用いて通信装置へ送信したパケットの再送回数を測定する機能と、前記再送回数に応じて当該無線リソースの送信電力を変更する機能と、を前記プログラム制御プロセッサに実現することを特徴とする。
 本発明によれば予約型スケジューリングにおける受信遅延時間の増大および変動を回避できる。
本発明の第1実施形態による通信装置における送信電力制御に関係する構成を概略的に示すブロック図である。 本実施形態による通信装置における送信電力制御方法を示すフローチャートである。 本発明の第2実施形態による通信装置を適用した基地局と複数の移動局とからなる移動通信システムの構成を示すブロック図である。 本発明の第2実施形態による通信装置を適用した基地局の構成の一例を示す概略的ブロック図である。 第2実施形態における予約型スケジューリングで用いられるリソースブロックの予約状況を示すリソース構成図である。 (A)は第2実施形態による送信再割当制御を実行する前の各端末の送信電力および再送回数を示す図であり、(B)は送信再割当制御を実行した後の各端末の送信電力を示す図である。 本実施例による送信再割当制御方法を示すフローチャートである。
 1.第1実施形態
 1.1)構成
 図1は、本発明の第1実施形態による通信装置における送信電力制御に関係する構成を概略的に示すブロック図である。ここで、無線通信部101は、一般的な無線通信システムの送信部、受信部およびチャネル制御部などをまとめたブロックであり、送信電力変更機能、ハイブリッドARQ(Automatic Repeat reQuest)などの再送機能などを有するものとする。
 予約型スケジューラ102は、予約型トラフィックのパケットに無線リソースを割り当てる機能を有する。再送回数管理部103は無線通信部101が送信したパケット毎の再送回数を管理する。送信電力制御部104は、再送回数に応じてリソースブロック毎の送信電力を変更する。リソース管理部105は、無線帯域の割り当て単位であるリソースブロックの予約状況および送信電力を管理する機能を有する。制御部106は通信装置全体の動作を制御するが、ここでは送信電力制御について説明する。
 1.2)動作
 図2は本実施形態による通信装置における送信電力制御方法を示すフローチャートである。制御部106はVoIPのような定期的に発生するパケットが到着すると、予約型スケジューラ102によりリソースブロックの予約を実行させる(ステップS201)。具体的には、予約型スケジューラ102は、リソース管理部105のリソース予約状況を確認して一定周期のリソースブロックを予約し、リソース管理部105の予約状況を更新し、リソースブロックの割当結果を制御部106へ通知する。なお、最初のパケットのリソースブロック予約方法は周知であるから予約動作の詳細については省略する。
 制御部106は、送信すべきパケットがあるかどうかを判定し(ステップS202)、送信すべきパケットがあれば(ステップS202:YES)、予約型スケジューラ102により予約されたリソースブロックを用いて無線通信部101により当該送信パケットを送信する。その際、再送回数管理部103は、制御部106の制御に従って、当該送信パケットが再送された場合の再送回数をカウントする(ステップS203)。
 制御部106は再送回数に応じて送信電力を変更する制御を実行する。具体的には、再送回数(CRETRANS)が所定範囲内のしきい値(CTH)を上回ったか否かを判定し(ステップS204)、所定しきい値以下の場合には(ステップS204:NO)、送信電力の変更は行わず、次に送信すべきパケットの有無をチェックするステップS202へ戻る。再送回数が所定のしきい値を超えると(ステップS204:YES)、制御部106は送信電力制御部104に送信電力の増加量を計算させる(ステップS205)。送信電力制御部104は、リソース管理部105で管理しているリソースブロックの予約状況に基づいて送信電力の再割当を実行し、リソース管理部105の予約状況を更新する。そして、制御部106の制御の下で、次に送信すべきパケットがあれば(ステップS202:YES)、無線通信部101は、増加された送信電力で当該予約されたリソースブロックでのパケット送信を実行する(ステップS203)。以上の処理S202~S205は、当該予約されたリソースブロックでの送信データがある限り繰り返される。
 送信すべきパケットが存在しない場合には(ステップS202:NO)、制御部106は予約されたリソースブロックを開放するようにリソース管理部105の予約状況を更新する(ステップS206)。
 なお、上述したような予約型スケジューラ102、再送回数管理部103、送信電力制御部104、リソース管理部105および制御部106による送信電力再割当制御機能は、コンピュータプログラムをCPU等のプログラム制御プロセッサ上で実行することにより同様に実現することもできる。
 1.3)効果
 上述したように、本実施形態によれば、予約して割り当てたリソースブロック毎に再送回数を測定し、その再送回数に応じて送信電力を変更する。好ましくは、再送が頻繁に発生する場合(再送回数が所定の回数を超えた場合)に、予約したリソースブロックの送信電力を増加させる。送信電力が大きくなることで再送回数が減少するので、予約型スケジューリング方式におけるパケットの遅延時間の短縮および変動の抑制が可能である。また、再送回数が少なくなることで予約できる無線リソースが増え、無線リソースの利用効率が向上するという効果もある。
 2.第2実施形態
 図3は本発明の第2実施形態による通信装置を適用した基地局と複数の移動局とからなる移動通信システムの構成を示すブロック図である。ここでは、説明を複雑にしないために、基地局10のセル内に複数の移動端末20.1~20.4が位置しており、基地局10は上位のネットワーク装置30に接続されているものとする。
 2.1)構成
 図4は本発明の第2実施形態による通信装置を適用した基地局の構成の一例を示す概略的ブロック図である。
 基地局10には、移動端末との無線通信を行う無線通信部301の他に、予約型スケジューラ302、再送回数管理部303、送信電力制御部304、リソース管理部305および制御部306を有し、さらに、それぞれの移動端末から受信した上り信号を処理するための受信処理部307、それら上り信号のうちの転送データを上位ネットワーク装置(基地局制御装置)へ送信し、上位ネットワーク装置からのデータを受信する通信部308を有する。
 なお、予約型スケジューラ302、再送回数管理部303、送信電力制御部304、リソース管理部305、制御部306および受信処理部307の各機能は、CPU等のプログラム制御プロセッサ上でそれぞれ対応するコンピュータプログラムを実行することで実現することもできる。また、ここでは本発明による送信電力再割当制御に関連する部分を主に図示しており、その他の構成部分は省略されている。以下、無線通信システムとして、下りリンクを例に取って説明する。
 図5は第2実施形態における予約型スケジューリングで用いられるリソースブロックの予約状況を示すリソース構成図である。ここでは横軸がフレーム番号により示された時間方向を表し、フレーム数20がパケットの送信周期であるとする。また縦軸はリソースブロック番号で示された周波数を表す。基地局10に割り当てられているシステム帯域はリソースブロックとよばれる小さな周波数帯域に分割され、リソースブロックがスケジューリングの割り当て単位である。
 パーシステント・スケジューリングPSにおいて、リソース管理部305は、図5に示すようにリソースブロックの予約状況およびリソースブロックの送信電力を管理する。但し、図5では送信電力は全て同じであるとしている。なお、リソースブロックは論理的なものであり、送信する際に用いられる周波数とは異なってもよい。管理する論理的なリソースブロックと送信に用いる物理的なリソースブロックとが一対一に対応すればよいためである。また、図5は各送信フレームでリソースブロックの数が10、送信フレーム数が20の場合を例示しているが、これに限定されるものではない。
 上述したように、パーシステント・スケジューリングPSにおいて、予約型スケジューラ302は、予約を行なっていないパケットが到着した場合、図5に示すリソース予約状況を参照して未割り当てのリソースブロックがあるかどうかを判断し、予約されていないリソースブロック数に応じて予約を行なう。一度、予約を行なってしまえば、その後に到着する同一の通信に対するパケットについては予約したリソースブロックと送信フレームを用いて送信することができる。なお、送信したパケットが正しく受信されなかった場合には、制御部306は、予約されていないリソースブロックを用いて動的スケジューリングDSにより再送するように制御する(あるいは再送用に予約してもよい)。
 2.2)送信電力再割当制御
 図6(A)は第2実施形態による送信電力再割当制御を実行する前の各端末の送信電力および再送回数を示す図であり、図6(B)は送信再割当制御を実行した後の各端末の送信電力を示す図である。ここでは、ある送信フレームについて示しており、同時に6つの端末#1~#6が通信するものとする。また、端末#1~#6の再送回数は、図6(A)にそれぞれ示すように、1、2、0、2、1、0であるものとする。なお、1つの端末に割り当てるリソースブロックあたりの送信電力は同じであるため、端末に割り当てているリソースブロックの数は示していない。
 図6(B)に示す例では、再送回数が2以上の移動端末#2、#4の送信電力がΔupだけ増加、再送回数が1の移動端末#1、#5の送信電力が変更なし、再送回数が1未満の移動端末#3、#6の送信電力がΔdownだけ削減されている。後述するように、基地局10には最大送信電力量および最小送信電力量が決まっているので、この範囲を超えないように送信電力の割当変更が実行される。以下、送信電力制御について詳細に説明する。
 本実施形態によれば、基地局の最大電力より大きい電力割り当てはできないので、最初に、過剰品質と思われる端末の電力を下げることができるか否かを検討し、続いて、現在の剰余電力と過剰品質の端末から削減した電力との和を品質の悪い端末に与える、という2段構えの送信電力再割当制御を行う。
 なお、上述したように、端末に割り当てられているリソースブロック(RB)当りの電力は、端末ごとに異なるが、同一の端末に割り当てられているリソースブロックの電力は同一である。従って、割り当てられているリソースブロック数が同じでも端末に割り当てられている電力が異なる場合もあり、逆に、割り当てられているリソースブロック数が異なっていても端末に割り当てられている電力が同じ場合もあり得る。
 図7は本実施形態による送信再割当制御方法を示すフローチャートである。ここでは、ステップS401に示すように、再送回数の所定しきい値N1、N2が予め設定されている。なお、N1>N2である。
 制御部306は、セル内に在圏する移動端末の再送回数を再送回数管理部303から入力し(ステップS402)、再送回数がN1以上である端末を送信電力を増加させる候補として選択し、再送回数がN2未満である端末を送信電力を削減する候補として選択する(ステップS403)。ここでは、電力増加候補の端末数をa1、電力削減候補の端末数をa2とする。N1=2、N2=1とすれば、図6(A)において移動端末#2、#4が送信電力を増加させる候補端末(a1=2)、移動端末#3、#6が送信電力を削減する候補端末(a2=2)である。
 送信電力制御部304は、まず、送信電力を変更する前の現在の送信電力Pcと基地局の最大送信電力BSPmaxとの差分である剰余電力ΔPc=BSPmax-Pcを算出する(ステップS404)。ここでPcは全てのリソースブロックに割り当てられている電力の総和に相当する。
 続いて、送信電力制御部304は、電力削減候補の端末ごとに、リソースブロックの電力をΔdownだけ下げることができるか否かを確認する(ステップS405)。ここで、Δdownはリソースブロック当りの所定の電力削減量を表わす。電力削減可能か否かは次のように判定する。
 電力削減候補端末i(i=1~a2)に割り当てられているリソースブロックの現在の送信電力をPRB(i)とし、最小送信電力値をPminとすれば、
 PRB(i)-Δdown ≧ Pmin
であれば、 当該端末iの送信電力は削減可能であり、
 PRB(i)-Δdown < Pmin
であれば、当該端末iの送信電力は変更しない。
 こうして、送信電力の削減可能な端末が決まると、その電力削減可能端末に割り当てられているリソースブロックの総和を算出し、それをK2とする。
 したがって、電力削減可能端末の送信電力をリソースブロックあたりΔdownだけ削減することにより、Δdown×K2だけの電力を削減でき、現在の剰余電力ΔPcを加えて、全体として増加可能電力PEN=ΔPc+Δdown×K2を得る(ステップS406)。
 送信電力制御部304は、増加可能電力PENが求まると、それを電力増加候補端末へどのように割り当てるかを決定する。まず、電力増加候補の端末ごとに、リソースブロックの電力をΔupだけ上昇させることができるか否かを確認する(ステップS407)。ここで、Δupはリソースブロック当りの所定の電力増加量を表わす。電力増加可能か否かは次のように判定する。
 電力増加候補端末j(j=1~a1)に割り当てられているリソースブロックの現在の送信電力をPRB(j)とし、最大送信電力値をPmaxとすれば、
 PRB(j)+Δup ≦ Pmax
であれば、 当該端末jの送信電力は増加可能であり、
 PRB(j)+Δup > Pmax
であれば、当該端末jの送信電力は変更しない。
 こうして、送信電力の増加可能な端末が決まると、その電力増加可能端末に割り当てられているリソースブロックの総和を算出し、それをK1とする。したがって、電力増加可能端末が必要とする電力PRQは、PRQ=Δup×K1により算出される(ステップS408)。
 次に、送信電力制御部304は、増加可能電力PENと増加要求電力PRQとを比較する(ステップS409)。増加可能電力PENが増加要求電力PRQ以上であれば(ステップS409:NO)、リソースブロックあたりの電力増加量Δupをそのまま使用し、増加可能電力PENが増加要求電力PRQより小さい場合には(ステップS409:YES)、リソースブロックあたりの電力増加量ΔupをPRQ/K1に減少させる(ステップS410)。
 このようにして求めたリソースブロックあたりの電力増加量Δupを使って、電力増加可能端末に対する送信電力制御を実行する(ステップS411)。
 2.3)効果
 上述したように、本発明の第2実施形態によれば、上述した第1実施形態の効果に加えて次のような効果を得ることができる。すなわち、予約して割り当てたリソースブロック毎に再送回数を測定し、再送回数が所定の回数N1以上の端末は送信電力を増加させる候補端末に、再送回数を所定回数N2未満の端末は送信電力を減少させる候補端末として選択する。そして、電力減少候補のうち最小送信電力値を下回らない端末に対して送信電力を減少させることで、送信電力を増加させる候補端末に割り当てられる増加可能電力を大きくすることができ、効率的で効果的な送信電力制御を実現できる。
 なお、本発明は、LTEシステムにのみ適用されるものではなく、周波数分割多重方式(FDMA:Frequency Division Multiple Access)を用いる無線通信システムにも適用できる。
 本発明は無線通信システムに適用可能であり、たとえばLTEやFDMAを用いる無線通信システムに利用可能である。
10 基地局
20 移動端末
30 上位ネットワーク装置
101 無線通信部
102 予約型スケジューラ
103 再送回数管理部
104 送信電力制御部
105 リソース管理部
106 制御部
301 無線通信部
302 予約型スケジューラ
303 再送回数管理部
304 送信電力制御部
305 リソース管理部
306 制御部
307 受信処理部
308 通信部

Claims (33)

  1. 無線リソースを予約して周期的に通信装置間の通信を行なう無線通信システムにおける送信電力制御方法であって、
     予約された無線リソースを用いて通信装置へ送信したパケットの再送回数を測定し、
     前記再送回数に応じて当該無線リソースの送信電力を変更する、
     ことを特徴とする送信電力制御方法。
  2. 前記送信電力の変更は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させることを特徴とする請求項1に記載の送信電力割当方法。
  3. 前記送信電力の変更は、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させることを特徴とする請求項2に記載の送信電力制御方法。
  4. 前記送信電力の変更は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項2または3に記載の送信電力制御方法。
  5. 前記送信電力の変更は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項4に記載の送信電力制御方法。
  6. 前記送信電力の変更は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させ、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させ、前記送信電力の増加量の総和が利用可能な送信電力と前記送信電力の減少量の総和との合計以下になるように、前記送信電力の増加量の割当を変更することを特徴とする請求項1に記載の送信電力制御方法。
  7. 前記送信電力の変更は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項6に記載の送信電力制御方法。
  8. 前記送信電力の変更は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項7に記載の送信電力制御方法。
  9. 無線リソースを予約して周期的に他の通信装置との通信を行なう無線通信システムにおける通信装置であって、
     予約された無線リソースを用いて前記他の通信装置へ送信したパケットの再送回数を測定する再送回数測定手段と、
     前記再送回数に応じて当該無線リソースの送信電力を変更する送信電力制御手段と、
     を有することを特徴とする通信装置。
  10. 前記送信電力制御手段は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させることを特徴とする請求項9に記載の通信装置。
  11. 前記送信電力制御手段は、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させることを特徴とする請求項10に記載の通信装置。
  12. 前記送信電力制御手段は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項10または11に記載の通信装置。
  13. 前記送信電力制御手段は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項12に記載の通信装置。
  14. 前記送信電力制御手段は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させ、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させ、前記送信電力の増加量の総和が利用可能な送信電力と前記送信電力の減少量の総和との合計以下になるように、前記送信電力の増加量の割当を変更することを特徴とする請求項9に記載の通信装置。
  15. 前記送信電力制御手段は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項14に記載の通信装置。
  16. 前記送信電力制御手段は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項15に記載の通信装置。
  17. 請求項9-14のいずれか1項に記載の通信装置を備えた、前記無線通信システムの基地局。
  18. 無線リソースを予約して周期的に通信を行なう少なくとも1つの基地局と少なくとも1つの移動端末とを有する無線通信システムであって、
     前記基地局は、
     予約された無線リソースを用いて各移動端末へ送信したパケットの再送回数を測定する再送回数測定手段と、
     前記再送回数に応じて当該無線リソースの送信電力を変更する送信電力制御手段と、
     を有することを特徴とする無線通信システム。
  19. 前記送信電力制御手段は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させることを特徴とする請求項18に記載の無線通信システム。
  20. 前記送信電力制御手段は、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させることを特徴とする請求項19に記載の無線通信システム。
  21. 前記送信電力制御手段は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項19または20に記載の無線通信システム。
  22. 前記送信電力制御手段は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項21に記載の無線通信システム。
  23. 前記送信電力制御手段は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させ、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させ、前記送信電力の増加量の総和が利用可能な送信電力と前記送信電力の減少量の総和との合計以下になるように、前記送信電力の増加量の割当を変更することを特徴とする請求項18に記載の無線通信システム。
  24. 前記送信電力制御手段は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項23に記載の無線通信システム。
  25. 前記送信電力制御手段は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項24に記載の無線通信システム。
  26. 無線リソースを予約して周期的に他の通信装置との通信を行なう無線通信システムにおける通信装置としてプログラム制御プロセッサを機能させるためのコンピュータプログラムであって、
     予約された無線リソースを用いて通信装置へ送信したパケットの再送回数を測定する機能と、
     前記再送回数に応じて当該無線リソースの送信電力を変更する機能と、
     を前記プログラム制御プロセッサに実現することを特徴とするコンピュータプログラム。
  27. 前記送信電力の変更は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させることを特徴とする請求項26に記載のコンピュータプログラム。
  28. 前記送信電力の変更は、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させることを特徴とする請求項27に記載のコンピュータプログラム。
  29. 前記送信電力の変更は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項27または28に記載のコンピュータプログラム。
  30. 前記送信電力の変更は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項29に記載のコンピュータプログラム。
  31. 前記送信電力の変更は、再送回数が第1所定回数以上である無線リソースの送信電力を増加させ、再送回数が前記第1所定回数より少ない第2所定回数未満である無線リソースの送信電力を減少させ、前記送信電力の増加量の総和が利用可能な送信電力と前記送信電力の減少量の総和との合計以下になるように、前記送信電力の増加量の割当を変更することを特徴とする請求項26に記載のコンピュータプログラム。
  32. 前記送信電力の変更は、増加後の送信電力が第1送信電力より大きくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項31に記載のコンピュータプログラム。
  33. 前記送信電力の変更は、減少後の送信電力が前記第1送信電力より小さい第2送信電力より小さくなる場合には当該無線リソースの送信電力を変更しないことを特徴とする請求項32に記載のコンピュータプログラム。
PCT/JP2010/000080 2009-01-26 2010-01-08 無線通信システムにおける通信装置およびその送信電力制御方法 WO2010084705A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/146,345 US20120021798A1 (en) 2009-01-26 2010-01-08 Communication device and its transmission power control method in radio communications system
JP2010547419A JPWO2010084705A1 (ja) 2009-01-26 2010-01-08 無線通信システムにおける通信装置およびその送信電力制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-013779 2009-01-26
JP2009013779 2009-01-26

Publications (1)

Publication Number Publication Date
WO2010084705A1 true WO2010084705A1 (ja) 2010-07-29

Family

ID=42355765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000080 WO2010084705A1 (ja) 2009-01-26 2010-01-08 無線通信システムにおける通信装置およびその送信電力制御方法

Country Status (3)

Country Link
US (1) US20120021798A1 (ja)
JP (1) JPWO2010084705A1 (ja)
WO (1) WO2010084705A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010264A (ja) * 2018-07-11 2020-01-16 Kddi株式会社 端末装置の送信電力を制御する基地局装置、その制御方法、及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553680B1 (en) 2012-04-02 2017-01-24 Sprint Communications Company L.P. Uplink interference mitigation
US10039116B1 (en) 2012-04-02 2018-07-31 Sprint Communications Company L.P. Long term evolution scheduler to mitigate interference
CN108513724B (zh) * 2018-01-12 2022-09-09 北京小米移动软件有限公司 数据传输方法、装置及数据发送端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186014A (ja) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd 無線基地局装置及び通信端末装置
JP2003348013A (ja) * 2002-05-23 2003-12-05 Ntt Docomo Inc 基地局、送信電力制御方法、及び移動通信システム
JP2004328394A (ja) * 2003-04-24 2004-11-18 Matsushita Electric Ind Co Ltd 基地局装置及び送信電力制御方法
JP2008118514A (ja) * 2006-11-07 2008-05-22 Nec Corp 無線通信システム、無線制御装置、無線基地局装置および電力制御方法
JP2008306416A (ja) * 2007-06-07 2008-12-18 Nec Corp 無線通信システム及びその方法と、それらに用いられる装置及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164654B2 (en) * 2001-03-09 2007-01-16 Denso Corporation ARQ parameter retransmission control for variable data rate channels
JP2004128993A (ja) * 2002-10-03 2004-04-22 Ntt Docomo Inc 送信電力制御方法、基地局、移動局及び無線通信システム
JP2008131601A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Ind Co Ltd 通信端末装置、通信システム、通信方法及びプログラム
WO2008084623A1 (ja) * 2007-01-12 2008-07-17 Ntt Docomo, Inc. 基地局装置及び通信制御方法
JP5069296B2 (ja) * 2007-06-19 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186014A (ja) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd 無線基地局装置及び通信端末装置
JP2003348013A (ja) * 2002-05-23 2003-12-05 Ntt Docomo Inc 基地局、送信電力制御方法、及び移動通信システム
JP2004328394A (ja) * 2003-04-24 2004-11-18 Matsushita Electric Ind Co Ltd 基地局装置及び送信電力制御方法
JP2008118514A (ja) * 2006-11-07 2008-05-22 Nec Corp 無線通信システム、無線制御装置、無線基地局装置および電力制御方法
JP2008306416A (ja) * 2007-06-07 2008-12-18 Nec Corp 無線通信システム及びその方法と、それらに用いられる装置及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010264A (ja) * 2018-07-11 2020-01-16 Kddi株式会社 端末装置の送信電力を制御する基地局装置、その制御方法、及びプログラム
WO2020013196A1 (ja) * 2018-07-11 2020-01-16 Kddi株式会社 端末装置の送信電力を制御する基地局装置、その制御方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2010084705A1 (ja) 2012-07-12
US20120021798A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US11678299B2 (en) Method and user equipment for multi-carrier data transmission
US9326290B2 (en) Resource scheduling method, apparatus and base station
JP5314022B2 (ja) リソース、ネットワーク・エレメントおよびユーザ機器をスケジューリングする方法
US20100284364A1 (en) Semi-persistent scheduling method and apparatus based on statistically multiplexing in time and frequency resources
EP2391045B1 (en) Radio base station and radio resource allocation method
US20100128614A1 (en) Resource allocation in communications system
JP5173786B2 (ja) 無線基地局装置および無線通信システム
JP2012502545A (ja) 通信帯域を割当てるための方法及び関連する装置
US8208433B2 (en) Method and apparatus for allocating resources in wireless communication system
WO2010084705A1 (ja) 無線通信システムにおける通信装置およびその送信電力制御方法
CN107431901B (zh) 在蜂窝网络的无线电接口上分配资源的设备和方法
JP5459518B2 (ja) 無線通信システムにおける通信装置およびリソース再割当方法
JP4901567B2 (ja) 無線通信制御装置及び無線通信制御方法
CN108886463B (zh) 用于使网络节点能够在电信网络中执行无线电操作任务的方法、系统和装置
CN107820216B (zh) 基于sc-mtch的调度方法及装置
JP5576433B2 (ja) 無線基地局及び無線リソース割り当て方法
KR100862614B1 (ko) 패킷 이동통신 시스템에서 스트리밍 서비스를 위한상향링크 시그널링 방법과, 이를 위한 기지국 장치 및 이동단말기
US20150282173A1 (en) Frequency resource allocation for semi-persistent scheduling
EP3420770B1 (en) Passive intermodulation shaping
JP4506139B2 (ja) 移動通信システム、無線基地局、スケジューリング装置及びそれに用いるスケジューリング方法
KR101070323B1 (ko) 주파수 도메인 패킷 스케쥴링 방법 및 장치
KR101422578B1 (ko) 셀간 간섭 분리 기법을 이용한 자원 할당 방법 및 장치
JP5438841B2 (ja) ダウンリンクサービスアドミッション制御方法及び装置
JP2013207565A (ja) 無線通信システム、基地局、および無線通信方法
KR20110013039A (ko) 무선 통신 시스템에 있어서 자원 할당 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547419

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13146345

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10733313

Country of ref document: EP

Kind code of ref document: A1