WO2010084577A1 - Adsorption tower of dry gas treatment equipment - Google Patents

Adsorption tower of dry gas treatment equipment Download PDF

Info

Publication number
WO2010084577A1
WO2010084577A1 PCT/JP2009/050778 JP2009050778W WO2010084577A1 WO 2010084577 A1 WO2010084577 A1 WO 2010084577A1 JP 2009050778 W JP2009050778 W JP 2009050778W WO 2010084577 A1 WO2010084577 A1 WO 2010084577A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
adsorbent
adsorption tower
gas supply
passage
Prior art date
Application number
PCT/JP2009/050778
Other languages
French (fr)
Japanese (ja)
Inventor
亮 鈴木
Original Assignee
ジェイパワー・エンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェイパワー・エンテック株式会社 filed Critical ジェイパワー・エンテック株式会社
Priority to JP2010547338A priority Critical patent/JP5351902B2/en
Priority to PCT/JP2009/050778 priority patent/WO2010084577A1/en
Publication of WO2010084577A1 publication Critical patent/WO2010084577A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides

Definitions

  • the present invention relates to an adsorption tower for bringing an adsorbent into contact with exhaust gas in a dry exhaust gas treatment apparatus using a granular adsorbent.
  • adsorbents include carbonaceous adsorbents, alumina adsorbents, siliceous adsorbents, etc., but carbonaceous ones can be regenerated at a relatively low temperature and simultaneously remove various harmful substances. Excellent because it can.
  • Examples of the carbonaceous adsorbent include activated carbon, activated coke and the like, and in particular, a pelletized adsorbent of about 0.5 to 4 cm is preferable, and these adsorbents are publicly known.
  • the inside of the adsorption tower is composed of a moving bed filled with granular adsorbent, and harmful components in the exhaust gas can be removed by bringing the exhaust gas at 100 to 200 ° C. into contact with the adsorbent of the moving bed. Nitrogen oxides in the exhaust gas are decomposed into nitrogen and water by the catalytic action of the adsorbent by adding ammonia, urea or the like to the exhaust gas. Other harmful components are removed mainly by adsorption of the adsorbent.
  • FIG. 10 shows a typical configuration example of this type of dry exhaust gas treatment apparatus.
  • the illustrated processing apparatus includes an adsorption tower 1, a regeneration tower 2, an adsorbent storage tank 3, and a by-product recovery apparatus 4, and exhaust gas A generated from an exhaust gas generation source 5 is introduced into the adsorption tower 1. .
  • the adsorbent B is flowing downward.
  • An adsorbent cutout portion is provided at the lower end of the adsorption tower 1, and the adsorbent B that has adsorbed the extracted harmful substances is fed into the regeneration tower 2.
  • the regeneration tower 2 harmful substances are removed from the adsorbent B, the harmful substances are sent to the by-product recovery device 4, and the adsorbent B regenerated by removing the harmful substances is passed through the sieve equipment 6 to the adsorption tower. 1 is fed to the top. Further, a fresh adsorbent B is supplied from the adsorbent storage tank 3 to the adsorption tower 1. The exhaust gas A from which harmful substances have been removed after passing through the adsorption tower 1 is released from the chimney 7 to the atmosphere.
  • the details of the adsorption tower 1 of FIG. 10 are shown in FIG.
  • the adsorption tower 1 shown in the figure has a cylindrical main body 1a, an exhaust gas inlet hood 1b provided on the opposite side of the main body 1a, and an exhaust gas outlet hood 1c.
  • An adsorbent layer cartridge 1d through which B flows downward is provided.
  • inlet space portions 1e and outlet space portions 1f are alternately provided, the inlet space portions 1e communicate with the exhaust gas inlet hood 1b, and the outlet space portion 1f communicates with the exhaust gas outlet hood 1c. Communicate.
  • the exhaust gas A introduced from the inlet space portion 1e contacts the adsorbent B moving in the downward direction so as to be orthogonal from the side, passes through the outlet space portion 1f, and reaches the outlet hood 1c. .
  • an inlet louver 1g and an intermediate louver 1h are provided upstream of the adsorbent layer cartridge 1d through which the exhaust gas A circulates.
  • the cartridge 1d is prevented from being blocked by the adhering of the toner.
  • FIG. 12 is an example in which the outlet hood 1c is provided on the same side as the inlet hood 1b, and the substantial structure is the same as in the case of FIG.
  • an adsorbent layer in which the adsorbent B descends from the upper side to the lower side is formed in the region sandwiched between the inlet louver 1g and the outlet louver 1i.
  • the harmful substances in the exhaust gas A are adsorbed by the adsorbent B while the exhaust gas A passes through the adsorbent layer.
  • the adsorbent B that has adsorbed the harmful substances is quantitatively cut out by an adsorbent cutting device installed at the lower part of the adsorption tower, and discharged from the adsorbent discharge port to the adsorbent transfer equipment.
  • the adsorbent B on the exhaust gas downstream side above the adsorbent layer has a portion that does not contribute to the adsorption, and the amount of harmful substances carried in the horizontal plane at the lower end of the adsorbent layer is higher on the upstream side of the exhaust gas A. Many tend to decrease toward the downstream side of the exhaust gas A.
  • adsorption tower 1 shown in FIGS. 11 and 12 when a large amount of exhaust gas A is processed, a plurality of adsorbent layer cartridges 1d are provided. At that time, an inlet space 1e for distributing exhaust gas is required on the front surface of each adsorbent layer cartridge 1d, and an outlet space portion for collecting treated exhaust gas is disposed on the rear surface of each adsorbent layer cartridge 1d. If is required.
  • the total volume of the inlet space 1e and the outlet space 1f may reach twice the total volume of the adsorbent layer cartridge 1d, and there is a problem that the entire volume of the adsorption tower 1 becomes excessively large. It was. Further, as shown in FIG. 13, there is a problem that the loading amount of the harmful substance is greatly different between the upstream side and the downstream side of the exhaust gas A, and the utilization efficiency of the adsorbent B is poor.
  • the adsorption tower 10 of another conventional example shown in FIG. 14 has an adsorbent supply facility 10a, an adsorbent distribution funnel / exhaust gas extraction space 10b, an adsorbent layer 10c, an exhaust gas supply tank from the upper side to the lower side. 10d, an adsorbent extraction funnel 10f, and an adsorbent cutout device 10g, which constitute one unit as a whole.
  • the adsorption tower 10 having this structure has a two-stage structure in which the above-mentioned units are stacked upward in order to process a large amount of exhaust gas A.
  • the adsorbent B is supplied to each of the upper unit and the lower unit of the stacked structure, and the exhaust gas A is divided and supplied to each unit.
  • the adsorbent B is a so-called counter-current type in which the adsorbent B descends from above to below for each unit, and the exhaust gas A rises from below to above.
  • the distribution of the amount of harmful substances carried in the counter-current type adsorption tower 10 in the same horizontal plane can theoretically be made uniform.
  • the adsorbent B discharged from the adsorbent extraction funnel of each unit carries a toxic substance uniformly in the same plane as shown in FIG. 15, and the prior art shown in FIG. 11 and FIG.
  • this conventional example also has a technical problem described below.
  • the present invention has been made in view of the above-described conventional problems, and the object thereof is to maximally effectively adsorb (support) harmful substances in exhaust gas on an adsorbent while avoiding complication of the configuration. It is possible to provide an adsorption tower that minimizes the use of adsorbent and minimizes the volume.
  • the present invention provides a granular adsorbent supply port provided on the tower top side, a contact portion for contacting the exhaust gas supplied while moving the adsorbent downward, and a tower bottom side.
  • An adsorbent cut-out portion that has been disposed and adsorbed exhaust gas at the contact portion, and an exhaust port for the adsorbent, and an exhaust gas inlet hood portion that feeds the exhaust gas to be treated into the contact portion, and processed from the contact portion
  • an adsorption tower for use in a dry exhaust gas treatment apparatus that removes harmful components in exhaust gas by adsorbing and removing the harmful components in the exhaust gas with a particulate adsorbent, one end side communicates with the exhaust gas inlet hood portion, and the other end side
  • a plurality of exhaust gas supply passages extending in the horizontal direction in the contact portion and having an end portion closed with respect to the exhaust gas outlet hood portion, one end side communicates with the exhaust gas outlet hood portion, and the other end side is in contact with the exhaust gas outlet hood portion.
  • a plurality of exhaust gas discharge passages extending horizontally in the section and closed at the end portions with respect to the exhaust gas inlet hood section, and blocking the adsorbent permeation at the upper portion to push it sideways.
  • a saddle member that forms a gas flow path therein is installed so as to penetrate horizontally in the contact portion, and the gas passage is used as the exhaust gas supply path and the exhaust gas discharge path, and the plurality of exhaust gas supply paths and the The plurality of exhaust gas discharge paths are arranged at predetermined intervals on a horizontal plane with predetermined intervals in the vertical direction.
  • the plurality of exhaust gas supply paths have one end communicating with the exhaust gas inlet hood, the other end extending in the horizontal direction in the contact portion, and the end serving as the exhaust gas outlet hood.
  • the plurality of exhaust gas discharge passages are connected to the exhaust gas outlet hood part at one end side, are extended in the horizontal direction through the contact part at the other end side, and are closed to the exhaust gas inlet hood part at the other end side.
  • the exhaust gas supplied through the supply path passes through the contact portion and travels toward the exhaust gas discharge path.
  • the plurality of exhaust gas supply paths and the plurality of exhaust gas discharge paths are predetermined in the vertical direction. Therefore, the adsorbent that flows downward flows in a direction opposite to or parallel to the adsorbent that flows downward.
  • the exhaust gas supply path and exhaust gas discharge path having such a function are installed so as to penetrate the contact portion in the horizontal direction, prevent the adsorbent from permeating at the upper part and push it sideways, Since it is obtained by installing the saddle member that forms the flow passage so as to penetrate horizontally in the contact portion, the overall structure is not complicated.
  • the exhaust gas supply path and the exhaust gas discharge path are installed so that the adsorbent is prevented from permeating at the top and pushed sideways, and the saddle member that forms the gas flow path is penetrated horizontally in the contact portion. Therefore, since the substantial configuration of the exhaust gas supply path and the exhaust gas discharge path is the same, the flow direction of the gas passing through the adsorbent can be reversed.
  • a pair of the exhaust gas discharge passages are arranged at intervals in the vertical direction of the exhaust gas supply passage, and the flow direction of the adsorbent and the movement direction of the exhaust gas in contact therewith are opposed above the exhaust gas supply passage. And a parallel flow region in which the flow direction of the adsorbent and the movement direction of the exhaust gas in contact therewith are parallel to each other on the lower side of the exhaust gas supply path.
  • a plurality of the exhaust gas supply passages and the exhaust gas discharge passages can be disposed so as to be adjacent to each other at a predetermined interval in the horizontal direction within the same horizontal plane.
  • the exhaust gas supply path and the exhaust gas discharge path are arranged in a plurality of stages at a predetermined interval in the vertical direction in the vertical direction of the adsorption tower, and are adjacent to the gas supply path and the gas exhaust in the vertical direction. Roads can be arranged in a staggered pattern.
  • the volume of the adsorption contribution zone can be changed.
  • the exhaust gas supply passage and the exhaust gas discharge passage are movable with an adjustment plate for adjusting the amount of gas passing through either or both of the exhaust gas inlet hood part and the exhaust gas outlet hood part communicating with the exhaust gas outlet hood part. Can be arranged.
  • the exhaust gas supply path and the exhaust gas discharge path are in a steady state in which the exhaust gas permeates from the exhaust gas supply path to the exhaust gas discharge path by a switching operation of a switching valve disposed outside, and the exhaust gas from the exhaust gas discharge path. It can be set as the backflow state which permeate
  • the saddle member may be provided with a through-hole through which the exhaust gas can permeate.
  • the saddle member can be provided with a louver on the side that allows the exhaust gas to pass therethrough and prevents the adsorbent from passing therethrough.
  • the adsorption tower configured as described above minimizes the amount of adsorbent used by making it possible to adsorb (support) harmful substances in exhaust gas to the adsorbent as effectively as possible while avoiding complication of the configuration. It is possible to stop and minimize the volume, and to reverse the flow direction of the gas passing through the adsorbent, which is impossible in the conventional example.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of an adsorption tower according to the present invention.
  • FIG. 2 is a side view of FIG.
  • FIG. 3 is a graph showing the distribution of the amount of SO2 supported by the adsorption tower shown in FIG.
  • FIG. 4 is a longitudinal sectional view, a side view, and an enlarged view of an essential part showing a second embodiment of the adsorption tower according to the present invention.
  • FIG. 5 is a longitudinal sectional view, a side view, and an enlarged view of an essential part showing a third embodiment of the adsorption tower according to the present invention.
  • FIG. 6 is an enlarged view of a main part showing a fourth embodiment of the adsorption tower according to the present invention.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of an adsorption tower according to the present invention.
  • FIG. 2 is a side view of FIG.
  • FIG. 3 is a graph showing the distribution of the amount of SO
  • FIG. 7 is a longitudinal sectional view showing a fifth embodiment of the adsorption tower according to the present invention.
  • FIG. 8 is a cross-sectional explanatory view of a saddle member that can be used in the adsorption tower according to the present invention.
  • FIG. 9 is an explanatory cross-sectional view showing another example of a saddle member that can be used in the adsorption tower according to the present invention.
  • FIG. 10 is an overall configuration diagram of a dry exhaust gas treatment apparatus in which the adsorption tower of the present invention is used.
  • FIG. 11 is a longitudinal sectional view, a side view, a transverse sectional view, and a main part enlarged view showing a conventional adsorption tower.
  • FIG. 12 is a longitudinal sectional view showing another example of a conventional adsorption tower.
  • FIG. 13 is a graph showing the SO2 carrying amount distribution of the adsorption tower shown in FIG.
  • FIG. 14 is a longitudinal sectional view showing still another example of a conventional adsorption tower.
  • FIG. 15 is a diagram showing the SO2 carrying amount distribution of the adsorption tower shown in FIG.
  • FIG. 1 to 3 show a first embodiment of an adsorption tower according to the present invention.
  • the adsorption tower 100 shown in these figures is used in the dry exhaust gas treatment apparatus shown in FIG. 10 that adsorbs and removes harmful components in the exhaust gas A by the particulate adsorbent B.
  • Adsorption tower 100 is provided on the tower top side, supply port 101 that distributes and supplies granular adsorbent B, contact portion 102 that contacts exhaust gas A that is supplied while moving adsorbent B downward, It has the cut-out part 103 of the adsorbent B which was arrange
  • the contact portion 102 is a hollow cylindrical tower body 105 filled with the adsorbent B, and the adsorbent B flows downward in the contact portion 102.
  • the adsorption tower 100 includes an exhaust gas inlet hood part 106 that sends the processing target exhaust gas A to the contact part 102, and an exhaust gas outlet hood part 107 that takes out the treated exhaust gas from the contact part 102.
  • a plurality of exhaust gas supply passages 108 and a plurality of exhaust gas discharge passages 109 are provided that are arranged stepwise at predetermined intervals in the vertical direction.
  • One end side of the exhaust gas supply path 108 communicates with the exhaust gas inlet hood portion 106, the other end side extends in the horizontal direction in the contact portion 102, and the end portion is closed with respect to the exhaust gas outlet hood portion 107.
  • One end side of the exhaust gas discharge path 109 communicates with the exhaust gas outlet hood portion 107, the other end side extends horizontally in the contact portion 102, and the end portion is closed with respect to the exhaust gas inlet hood portion 106.
  • Each of the supply path 108 and the discharge path 109 is formed by disposing a saddle member 110 having substantially the same configuration.
  • the supply path 108 and the discharge path 109 do not necessarily need to use the saddle member 110 having the same shape, and it is possible to select different ones depending on the shapes in the saddle members shown in FIGS.
  • the saddle member 110 is composed of an inverted V-shaped member as shown in a cross-sectional shape in FIG. 2, and this is disposed in the contact portion 102.
  • the saddle member 110 is installed so as to penetrate the contact portion 102 in the horizontal direction, and prevents the adsorbent B flowing downward from passing through the upper portion formed in an inverted V-shape, thereby preventing the saddle member 110 from passing laterally.
  • the gas flow passage 111 is formed inside. At this time, since the lower part of the saddle member 110 is opened, the adsorbent B accumulates in the lower part in the angle of repose from the left and right direction, so that the gas flow passage 111 is formed in this embodiment. As shown in FIG.
  • the gas passage 111 is an exhaust gas supply path 108 and an exhaust gas discharge path 109, and the plurality of gas supply paths 108 are arranged at predetermined equal intervals on the same horizontal plane.
  • the plurality of exhaust gas discharge paths 109 are also arranged at predetermined equal intervals on the same horizontal plane.
  • the exhaust gas supply path 108 and the exhaust gas discharge path 109 are arranged in a plurality of stages at a predetermined interval in the vertical direction of the adsorption tower 100 and adjacent to each other in the vertical direction.
  • the gas supply path 108 and the gas discharge path 109 are arranged in a staggered pattern.
  • a pair of exhaust gas discharge passages 109 are arranged with a predetermined interval in the vertical direction with respect to one exhaust gas supply passage 108.
  • the exhaust gas A is introduced into the adsorption tower 100 having such a configuration.
  • the exhaust gas A flows into the exhaust gas supply passages 108 through the inlet hood portion 106 and moves while contacting the adsorbent B in the contact portion 102.
  • the exhaust gas A moves upward through the side of the saddle member 110 so as to circumvent this.
  • the saddle member 110 moves downward through the downward opening of the saddle member 110.
  • the adsorbent B constantly flows downward in the contact portion 102.
  • the adsorbent B flows on the upper side of the gas supply path 108.
  • a counter flow region is formed in which the direction and the moving direction of the exhaust gas A in contact with the direction are opposite to each other.
  • a parallel flow region is formed in which the flow direction of the adsorbent B and the movement direction of the exhaust gas A in contact therewith are parallel.
  • the exhaust gas A flows in a direction opposite to or parallel to the adsorbent B flowing downward, and as a result, as shown in FIG.
  • the harmful substances in the exhaust gas can be effectively used as an adsorbent. So that the amount of adsorbent used can be minimized and the volume of the adsorption tower can be minimized.
  • the exhaust gas supply passage 108 and the exhaust gas discharge passage 109 having such a function are installed so as to penetrate the contact portion 102 in the horizontal direction, and prevent the adsorbent B from permeating at the upper side to make it lateral. Since it is obtained by the saddle member 110 that pushes and forms the gas flow passage 111 inside, the entire structure is not complicated.
  • the exhaust gas supply passage 108 and the exhaust gas discharge passage 109 are installed so as to penetrate the contact portion 102 in the horizontal direction, prevent the adsorbent B from passing therethrough and push it sideways, and the gas flow passage inside.
  • a louver having different openings is used for the inlet louver and the outlet louver.
  • the interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 can be set at different intervals between the upper part and the lower part of the adsorption tower 100. That is, in the upper part of the adsorption tower 100 where the adsorbent B is close to fresh, the interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 is reduced, and conversely, this interval is increased in the lower part of the adsorption tower where the loading amount of harmful substances increases. To do.
  • the adsorption tower 100 may require a person to enter the inside for the purpose of maintenance or the like. In such a case, the interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 cannot be made too small in the upper part of the adsorption tower.
  • the exhaust gas A contains dust, and the dust is captured while the exhaust gas A passes through the adsorbent layer.
  • the amount of captured dust is still small, but at the lower part of the adsorption tower, the amount of captured dust has increased, so the pressure loss of the adsorbent layer at the lower part of the adsorption tower is lower than the pressure loss at the upper part.
  • the amount of exhaust gas passing tends to decrease. In the adsorption tower 100 of the present embodiment, such a request can be met.
  • FIG. 4 shows a second embodiment of the adsorption tower according to the present invention.
  • the same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
  • the adsorption tower 100a shown in these drawings includes a supply port 101a, a contact portion 102a that makes contact with the exhaust gas A that is supplied while moving the adsorbent B downward, and an exhaust gas A that is disposed on the bottom side of the tower and is in contact with the contact portion 102a.
  • the adsorbent B adsorbent B cut-out portion 103a and the adsorbent B discharge port 104a have an exhaust gas inlet hood portion 106a that feeds the exhaust gas A to be treated into the contact portion 102a, and the treated exhaust gas is taken out from the contact portion 102a.
  • an exhaust gas outlet hood 107a an exhaust gas outlet hood 107a.
  • the exhaust gas supply path 108a has one end communicating with the exhaust gas inlet hood portion 106a, the other end extending in the horizontal direction within the contact portion 102a, and the end portion closed with respect to the exhaust gas outlet hood portion 107a.
  • One end side of the discharge passage 109a communicates with the exhaust gas outlet hood portion 107a, the other end side extends in the horizontal direction in the contact portion 102a, and the end portion is closed with respect to the exhaust gas inlet hood portion 106a.
  • the exhaust gas outlet hood part 107a is arranged on the same side as the exhaust gas inlet hood part 106a.
  • Each supply path 108a and discharge path 109a are formed by disposing saddle members 110a having substantially the same configuration.
  • the saddle member 110a has a cross-sectional shape as shown in FIG. As shown, the house-shaped member whose lower part is opened is arranged in the contact portion 102a.
  • the saddle member 110a is installed so as to penetrate the contact portion 102a in the horizontal direction, and at the house-shaped roof portion (upper part), the permeation of the adsorbent B flowing downward is prevented and pushed sideways.
  • a gas flow passage 111a is formed in Since the lower part of the saddle member 110a is opened as in the above-described embodiment, the adsorbent B accumulates in the lower portion in the angle of repose from the left-right direction, so that the gas flow passage 111a is formed in this embodiment.
  • the exhaust gas supply passages 108a and the discharge passages 109a are arranged in a plurality of stages so as to be alternately arranged in the vertical direction, and are arranged in a staggered manner at adjacent portions in the vertical direction.
  • an intermediate partition plate 112a is provided in the contact portion 102a. The intermediate partition plate 112a is opened at a through portion of the exhaust gas supply path 108a and the exhaust gas discharge path 109a, and supports the long exhaust gas supply path 108a and the exhaust gas discharge path 109a in the middle without disturbing the flow of the exhaust gas. be able to.
  • the exhaust gas inlet hood portion 106a ′ (not shown) and the exhaust gas outlet hood (not shown) for taking out the treated exhaust gas from the contact portion 102a By providing the portion 107a ′ on the opposite side of 106a and 107a, the elongated exhaust gas supply path 108a and the exhaust gas discharge path 109a can be supported in the middle, and by supplying and discharging the exhaust gas from both sides, It becomes possible to reduce the flow velocity of the exhaust gas flowing through the exhaust gas supply path 108a and the exhaust gas discharge path 109a.
  • the adsorption tower 100a configured as described above can achieve the same operational effects as the above-described embodiment, and the hood portions 106a and 107a are arranged in the same direction, so that the compactness can be achieved. Moreover, since the supply path 108a and the discharge path 109a are arranged in a staggered manner, the contact state between the exhaust gas A and the adsorbent B is equalized, and harmful substances can be adsorbed efficiently.
  • FIG. 5 shows a third embodiment of the adsorption tower according to the present invention, where the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
  • the adsorption tower 100b shown in this figure includes a supply port 101b, a contact part 102b that makes contact with the exhaust gas A that is supplied while moving the adsorbent B downward, and an exhaust gas A that is disposed on the bottom side of the tower and is contacted with the contact part 102b.
  • An exhaust gas inlet hood portion 106b having a cut-out portion 103b of the adsorbed adsorbent B and an exhaust port 104b of the adsorbent B, and sending the processing target exhaust gas A to the contact portion 102b, and an exhaust gas for extracting the treated exhaust gas from the contact portion 102b And an outlet hood portion 107b.
  • a plurality of exhaust gas supply passages 108b and a plurality of exhaust gas discharge passages 109b arranged in a step shape with a predetermined interval in the vertical direction are provided.
  • the exhaust gas supply path 108b has one end communicating with the exhaust gas inlet hood portion 106b, the other end extending in the horizontal direction in the contact portion 102b, and the end portion closed with respect to the exhaust gas outlet hood portion 107b.
  • One end side of the discharge passage 109b communicates with the exhaust gas outlet hood portion 107b, the other end side extends horizontally in the contact portion 102b, and the end portion is closed with respect to the exhaust gas inlet hood portion 106b.
  • Each supply path 108b and discharge path 109b are formed by disposing saddle members 110b having substantially the same configuration.
  • the saddle member 110b has a cross-sectional shape as shown in FIG.
  • an inverted V-shaped member is disposed in the contact portion 102b.
  • the saddle member 110b is installed so as to penetrate the contact portion 102b in the horizontal direction.
  • the saddle member 110b pushes the adsorbent B flowing downward at the upper portion of the inverted V shape and pushes it to the side.
  • a flow passage 111b is formed.
  • the saddle members 110b are arranged such that those adjacent in the vertical direction are positioned on the same axis.
  • the adsorbent B Since the saddle member 110b is open at the bottom as in the above embodiment, the adsorbent B accumulates in the lower portion from the left-right direction in the angle of repose, so that the gas flow passage 111b is formed in this embodiment.
  • the cross-sectional shape shown in FIG. The adsorption tower 100b configured as described above can achieve the same operation and effect as the first embodiment.
  • FIG. 6 shows a fourth embodiment of the adsorption tower according to the present invention.
  • the same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
  • the exhaust gas supply passage 108c has a gas passing through a portion communicating with the exhaust gas supply hood portion 106c.
  • An adjustment plate 113c for adjusting the amount is movably disposed.
  • a plurality of through holes 114c having the same shape as the cross-sectional shape of the exhaust gas supply passage 108c are formed in the adjustment plate 113c in the same state as the pitch of the supply passages 108c, and a portion that closes the exhaust gas supply passage 108c with the through holes 114c is formed.
  • the adjustment plate 113c can be applied to the exhaust gas discharge path 109c instead of the exhaust gas supply path 108c, or can be installed in both of them.
  • FIG. 7 shows a fifth embodiment of the adsorption tower according to the present invention.
  • the same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
  • the adsorption tower 100d of this embodiment has a supply port 101d, a contact portion 102d that makes contact with the exhaust gas A supplied while moving the adsorbent B downward, and a tower bottom side.
  • An exhaust gas inlet hood portion 106d having a cut-out portion 103d of the adsorbent B and an exhaust port 104d of the adsorbent B, which is disposed and adsorbs the exhaust gas A by the contact portion 102d, and sends the processing target exhaust gas A to the contact portion 102d;
  • an exhaust gas outlet hood part 107d for taking out the treated exhaust gas from the exhaust gas.
  • a pair of switching valves 115d are connected to the exhaust gas inlet hood portion 106d and the exhaust gas outlet hood portion 107d, respectively.
  • the switching valve 115d is open on the white side and closed on the black side, as shown in FIG. 7A, and the exhaust gas A is supplied to the inlet hood portion 106d side.
  • the exhaust gas A may contain a substance with strong adhesion.
  • NH3 is injected into the exhaust gas containing SO2 or SO3, and in this case, both of them react with each other.
  • the produced ammonium sulfate or acidic ammonium sulfate may adhere to the inlet louver of the adsorption tower and hinder the inflow of exhaust gas.
  • the exhaust gas inlet saddle and the exhaust gas outlet saddle are alternately arranged in the vertical direction, and the exhaust gas inlet saddle and the exhaust gas outlet saddle have the same shape, so the flow of the exhaust gas freely in the adsorbent No problem occurs even if the direction is reversed.
  • the movable slit-equipped adjustment plate 113 c shown in FIG. 6 is replaced by both ends of the exhaust gas inlet saddle 106 and both ends of the exhaust gas outlet saddle 107. It becomes possible by opening and closing them. It is also possible to install switching means in the exhaust gas inlet duct connected to the adsorption tower, the exhaust gas outlet duct, and the connection duct of the exhaust gas inlet duct and the exhaust gas outlet duct, respectively.
  • FIG. 8 shows a modification of the saddle member that can be employed in the adsorption tower according to the present invention.
  • the saddle members 110e to 110k shown in these drawings only need to be able to form a gas flow passage inside by blocking the permeation of the adsorbent B at the upper part and pushing it sideways.
  • the shape may be a quadrangle 110e having an open portion at the bottom, a pentagon, a semicircle 110f, a half ellipse 110g, or the like.
  • the rectangular shape 110e there is an advantage that the adsorbent B is deposited on the upper portion and wear of the saddle member due to the flow of the adsorbent is reduced.
  • the pores 110h to k can be opened in the side surface or the entire surface such as a triangle, a quadrangle, a pentagon, a semicircle, and a semi-elliptical shape.
  • the saddle can be formed with a fine louver-like structure. This makes it possible to reduce pressure loss when the exhaust gas A flows out into the adsorbent layer or when the exhaust gas A flows into the inside.
  • the size of the pores and the opening of the louver are set so that the adsorbent particles do not flow into the saddle through the pores.
  • FIG. 9 shows a modification of the saddle member that can be employed in the adsorption tower according to the present invention.
  • the saddle members 110l to 110n shown in these figures only need to be able to form a gas flow passage inside by blocking the permeation of the adsorbent B at the top and pushing it sideways.
  • the cross-sectional shape is closed.
  • the saddle member 110l has a circular cross section and is provided with pores below.
  • the saddle member 110m is an elliptical cross section and has pores provided at the upper and lower ends.
  • the saddle member 110n has a combination of an inverted V shape and a circular arc.
  • the adsorbent particles when the exhaust gas that has passed through the adsorbent layer flows into the exhaust gas discharge path, the adsorbent particles receive a force in the upward direction.
  • the powdered adsorbent having a small particle diameter and the dust in the exhaust gas captured in the adsorbent may be accompanied by the exhaust gas flowing in the discharge path.
  • the cross-sectional area in which the exhaust gas flows inside the exhaust gas discharge path is made larger than the cross-sectional area in which the exhaust gas flows in the exhaust gas supply path. Since it is possible to reduce the gas flow rate inside and reduce entrainment of dust and the like, it is preferable to adopt such a configuration.
  • the adsorption tower according to the present invention can be effectively utilized in a dry exhaust gas treatment apparatus, because harmful substances in the exhaust gas can be adsorbed (supported) to the adsorbent as much as possible while avoiding complication of the configuration. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Disclosed is an adsorption tower of dry gas treatment equipment wherein toxic substances in waste gas are adsorbed to an adsorbent effectively to the maximum while avoiding complication of constitution. The adsorption tower (100) has a supply port (101) of a granular adsorbent (B), a section (102) for bringing the adsorbent (B) and waste gas (A) into contact with each other, and a delivery section (103) and a discharge section (104) of the adsorbent (B) which adsorbed the waste gas (A). A waste gas supply passage (108) and a waste gas discharge passage (109) are provided in the contact section (102) wherein the supply passage (108) has one end side communicating with a hood section (106), the other end side extending in the contact section (102) in the horizontal direction, and an end portion closed for a hood section (107). The discharge passage (109) has one end side communicating with the hood section (107), the other end side extending in the contact section (102) in the horizontal direction, and an end portion closed for a hood section (106). The supply passage (108) and the discharge passage (109) are formed by arranging saddle members (110) of identical structure. The saddle member (110) is a reverse V-shaped member arranged to penetrate the contact section (102) in the horizontal direction and forms an internal gas flow passage (111) by preventing permeation of the adsorbent (B) flowing downward at an upper part.

Description

乾式排ガス処理装置の吸着塔Adsorption tower of dry exhaust gas treatment equipment
 本発明は、粒状の吸着材を使用する乾式排ガス処理装置において、吸着材と排ガスを接触せしめる吸着塔に関するものである。 The present invention relates to an adsorption tower for bringing an adsorbent into contact with exhaust gas in a dry exhaust gas treatment apparatus using a granular adsorbent.
 ボイラー排ガス、焼却炉排ガス等の排ガス中に含まれる硫黄酸化物や窒素酸化物等を除去するために、粒状の吸着材が充填された吸着塔を用いる乾式排ガス処理装置が知られている。 In order to remove sulfur oxides, nitrogen oxides and the like contained in exhaust gas such as boiler exhaust gas and incinerator exhaust gas, a dry exhaust gas treatment apparatus using an adsorption tower filled with a granular adsorbent is known.
 吸着材としては、炭素質吸着材、アルミナ質吸着材、シリカ質吸着材等が例示されるが、炭素質のものが比較的低温での再生処理が可能であり、各種の有害物質を同時に除去できるので優れている。 Examples of adsorbents include carbonaceous adsorbents, alumina adsorbents, siliceous adsorbents, etc., but carbonaceous ones can be regenerated at a relatively low temperature and simultaneously remove various harmful substances. Excellent because it can.
 炭素質吸着材としては、活性炭、活性コークス等が例示され、特に、0.5~4cm程度のペレット化した吸着材が好ましく、これらの吸着材は、公知である。 吸着塔の内部は、粒状の吸着材を充填した移動層が構成され、100~200℃の排ガスを移動層の吸着材と接触させることにより、排ガス中の有害成分を除去することができる。排ガス中の窒素酸化物は、排ガス中にアンモニア、尿素等を添加することにより、吸着材の触媒作用によって窒素と水に分解される。その他の有害成分は、主に吸着材の吸着によって除去される。 Examples of the carbonaceous adsorbent include activated carbon, activated coke and the like, and in particular, a pelletized adsorbent of about 0.5 to 4 cm is preferable, and these adsorbents are publicly known. The inside of the adsorption tower is composed of a moving bed filled with granular adsorbent, and harmful components in the exhaust gas can be removed by bringing the exhaust gas at 100 to 200 ° C. into contact with the adsorbent of the moving bed. Nitrogen oxides in the exhaust gas are decomposed into nitrogen and water by the catalytic action of the adsorbent by adding ammonia, urea or the like to the exhaust gas. Other harmful components are removed mainly by adsorption of the adsorbent.
 図10は、この種の乾式排ガス処理装置の代表的な構成例を示している。同図示した処理装置は、吸着塔1と、再生塔2と、吸着材貯槽3と、副生品回収装置4とを備え、排ガス発生源5から発生した排ガスAが吸着塔1に導入される。吸着塔1には、内部に吸着材Bが下方向に向かって流動している。吸着塔1の下端には、吸着材切り出し部が設けられ、取り出された有害物質を吸着した吸着材Bは、再生塔2に送り込まれる。 FIG. 10 shows a typical configuration example of this type of dry exhaust gas treatment apparatus. The illustrated processing apparatus includes an adsorption tower 1, a regeneration tower 2, an adsorbent storage tank 3, and a by-product recovery apparatus 4, and exhaust gas A generated from an exhaust gas generation source 5 is introduced into the adsorption tower 1. . In the adsorption tower 1, the adsorbent B is flowing downward. An adsorbent cutout portion is provided at the lower end of the adsorption tower 1, and the adsorbent B that has adsorbed the extracted harmful substances is fed into the regeneration tower 2.
 再生塔2では、吸着材Bから有害物質を除去して、有害物質を副生回収装置4に送出するとともに、有害物質を除去して再生した吸着材Bを篩設備6を介して、吸着塔1の上部に供給する。また、吸着塔1には、吸着材貯槽3からフレッシュな吸着材Bが供給される。吸着塔1を通過して、有害物質が除去された排ガスAは、煙突7から大気に放出される。 In the regeneration tower 2, harmful substances are removed from the adsorbent B, the harmful substances are sent to the by-product recovery device 4, and the adsorbent B regenerated by removing the harmful substances is passed through the sieve equipment 6 to the adsorption tower. 1 is fed to the top. Further, a fresh adsorbent B is supplied from the adsorbent storage tank 3 to the adsorption tower 1. The exhaust gas A from which harmful substances have been removed after passing through the adsorption tower 1 is released from the chimney 7 to the atmosphere.
 図10の吸着塔1の詳細を図11に示している。同図に示した吸着塔1は、筒状の本体1aと、本体1aの対向する側方に設けられた排ガス入口フード1bと、排ガス出口フード1cを有し、本体1a内には、吸着材Bが下方向に流動する吸着材層カードリッジ1dが設けられている。吸着材層カードリッジ1dの両側には、入口空間部1eと出口空間部1fとが交互に設けられ、入口空間部1eが排ガス入口フード1bに連通し、出口空間部1fが排ガス出口フード1cに連通している。 The details of the adsorption tower 1 of FIG. 10 are shown in FIG. The adsorption tower 1 shown in the figure has a cylindrical main body 1a, an exhaust gas inlet hood 1b provided on the opposite side of the main body 1a, and an exhaust gas outlet hood 1c. An adsorbent layer cartridge 1d through which B flows downward is provided. On both sides of the adsorbent layer cartridge 1d, inlet space portions 1e and outlet space portions 1f are alternately provided, the inlet space portions 1e communicate with the exhaust gas inlet hood 1b, and the outlet space portion 1f communicates with the exhaust gas outlet hood 1c. Communicate.
 入口空間部1eから導入された排ガスAは、下方向に移動する吸着材Bに対して、側方から直交するように接触して、出口空間部1fに透過して、出口フード1cに到達する。 The exhaust gas A introduced from the inlet space portion 1e contacts the adsorbent B moving in the downward direction so as to be orthogonal from the side, passes through the outlet space portion 1f, and reaches the outlet hood 1c. .
 この際に、排ガスAの流通する吸着材層カートリッジ1dの上流側には、入口ルーバ1gと中間ルーバ1hが設けられ、この部分の吸着材の流動速度を速めることで、排ガスA中の有害物質が付着することによるカートリッジ1dの閉塞を防止している。 At this time, an inlet louver 1g and an intermediate louver 1h are provided upstream of the adsorbent layer cartridge 1d through which the exhaust gas A circulates. By increasing the flow rate of the adsorbent in this portion, harmful substances in the exhaust gas A are obtained. The cartridge 1d is prevented from being blocked by the adhering of the toner.
 カートリッジ1dの後流側には、吸着材Bの漏出を防止する出口ルーバ1iが設けられている。図12は、出口フード1cを入口フード1bと同じ側に設けた例であり、実質的な構造は、図11の場合と同じである。 An outlet louver 1i for preventing the adsorbent B from leaking is provided on the downstream side of the cartridge 1d. FIG. 12 is an example in which the outlet hood 1c is provided on the same side as the inlet hood 1b, and the substantial structure is the same as in the case of FIG.
 図11および図12に示した従来例の吸着塔1においては、入口ルーバ1gと出口ルーバ1iに挟まれた領域内を、吸着材Bが上方から下方に向かって降下する吸着材層を成し、排ガスAがこの吸着材層内を横切って通過する間に、排ガスA中の有害物質が吸着材Bに吸着される。有害物質を吸着した吸着材Bは、吸着塔下部に設置された吸着材切り出し装置によって定量的に切り出されて、吸着材排出口から吸着材移送設備へと排出される。 In the conventional adsorption tower 1 shown in FIGS. 11 and 12, an adsorbent layer in which the adsorbent B descends from the upper side to the lower side is formed in the region sandwiched between the inlet louver 1g and the outlet louver 1i. The harmful substances in the exhaust gas A are adsorbed by the adsorbent B while the exhaust gas A passes through the adsorbent layer. The adsorbent B that has adsorbed the harmful substances is quantitatively cut out by an adsorbent cutting device installed at the lower part of the adsorption tower, and discharged from the adsorbent discharge port to the adsorbent transfer equipment.
 従って、このような構造の吸着塔1においては、吸着材Bと排ガスAの流れ方向は直交しているので、排ガスA中の有害物質は、図13に示す如く、吸着材層の上方では、排ガスAの上流側にのみ担持されており、吸着材層の下方に向かうに従って、有害物質の担持領域は排ガスAの下流側へと広がっていく。 Therefore, in the adsorption tower 1 having such a structure, since the flow directions of the adsorbent B and the exhaust gas A are orthogonal to each other, harmful substances in the exhaust gas A are located above the adsorbent layer as shown in FIG. It is carried only on the upstream side of the exhaust gas A, and the hazardous substance carrying region spreads downstream of the exhaust gas A as it goes downward of the adsorbent layer.
 即ち、吸着材層上方の排ガス下流側の吸着材Bは、吸着には寄与していない部分があると共に、吸着材層下端部の水平面内における有害物質の担持量は、排ガスAの上流側ほど多く、排ガスAの下流側に向かうに従って減少する傾向を持っている。 That is, the adsorbent B on the exhaust gas downstream side above the adsorbent layer has a portion that does not contribute to the adsorption, and the amount of harmful substances carried in the horizontal plane at the lower end of the adsorbent layer is higher on the upstream side of the exhaust gas A. Many tend to decrease toward the downstream side of the exhaust gas A.
 この場合、排ガスAの下流側の吸着材Bにも有害物質を十分に担持させようとすると、吸着されずに通過した有害物質が、排ガス出口フード1cから排出されることとなり、吸着塔1の性能を低下させることになる。 In this case, if the adsorbent B on the downstream side of the exhaust gas A is sufficiently loaded with harmful substances, the harmful substances that have passed without being adsorbed will be discharged from the exhaust gas outlet hood 1c. The performance will be reduced.
 図11および図12に示した吸着塔1においては、大量の排ガスAを処理する場合には、複数の吸着材層カートリッジ1dを設けて対応する。その時、各吸着材層カートリッジ1dの前面には、排ガスを分配するための入口空間部1eが必要となり、各吸着材層カートリッジ1dの後面には、処理済みの排ガスを集合するための出口空間部1fが必要となる。 In the adsorption tower 1 shown in FIGS. 11 and 12, when a large amount of exhaust gas A is processed, a plurality of adsorbent layer cartridges 1d are provided. At that time, an inlet space 1e for distributing exhaust gas is required on the front surface of each adsorbent layer cartridge 1d, and an outlet space portion for collecting treated exhaust gas is disposed on the rear surface of each adsorbent layer cartridge 1d. If is required.
 この際に、入口空間部1eと出口空間部1fの合計容積は、吸着材層カートリッジ1dの合計容積の2倍に達することがあり、吸着塔1全体の容積が過剰に大きくなるという問題があった。また、図13に示したように、排ガスAの上流側と下流側とで、有害物質の担持量が大きく異なり、吸着材Bの利用効率が悪いという問題があった。 At this time, the total volume of the inlet space 1e and the outlet space 1f may reach twice the total volume of the adsorbent layer cartridge 1d, and there is a problem that the entire volume of the adsorption tower 1 becomes excessively large. It was. Further, as shown in FIG. 13, there is a problem that the loading amount of the harmful substance is greatly different between the upstream side and the downstream side of the exhaust gas A, and the utilization efficiency of the adsorbent B is poor.
 一方、図14に示した別の従来例の吸着塔10は、上方から下方に向かって、吸着材供給設備10a、吸着材分配ロート兼排ガス抜き出し空間部10b、吸着材層10c、排ガス供給用樋10d、吸着材抜き出し用ロート10f、吸着材切り出し装置10g、から構成されており、これらが全体で1ユニットになっている。 On the other hand, the adsorption tower 10 of another conventional example shown in FIG. 14 has an adsorbent supply facility 10a, an adsorbent distribution funnel / exhaust gas extraction space 10b, an adsorbent layer 10c, an exhaust gas supply tank from the upper side to the lower side. 10d, an adsorbent extraction funnel 10f, and an adsorbent cutout device 10g, which constitute one unit as a whole.
 この構造の吸着塔10では、大量の排ガスAを処理するためには、前述した前記ユニットを上方向に積み重ねる2段構造としている。積み重ね構造の上段ユニットと下段ユニットには、それぞれに吸着材Bが供給されており、かつ排ガスAはそれぞれのユニットに分割されて供給されている。 The adsorption tower 10 having this structure has a two-stage structure in which the above-mentioned units are stacked upward in order to process a large amount of exhaust gas A. The adsorbent B is supplied to each of the upper unit and the lower unit of the stacked structure, and the exhaust gas A is divided and supplied to each unit.
 即ち、上段ユニットに供給された吸着材Bが上段ユニットを通過後、下段ユニット内を通過することは無く、上段ユニットのガス供給樋10dから供給された排ガスAが下段ユニットの排ガス抜き出し空間部10bに達することは無い。逆に下段ユニットの排ガス供給樋から供給された排ガスが上段ユニットの排ガス抜き出し空間部に達することも無い。図14に示した従来例の構成は、以下の特許文献1,2に開示されている。 That is, the adsorbent B supplied to the upper unit does not pass through the lower unit after passing through the upper unit, and the exhaust gas A supplied from the gas supply rod 10d of the upper unit is exhaust gas extraction space 10b of the lower unit. Never reach. Conversely, the exhaust gas supplied from the exhaust gas supply tank of the lower unit does not reach the exhaust gas extraction space of the upper unit. The configuration of the conventional example shown in FIG. 14 is disclosed in Patent Documents 1 and 2 below.
特公平7-94010号公報Japanese Patent Publication No. 7-94010 特表2003-508212号公報Special table 2003-508212 gazette
 図14に示した従来例では、吸着材Bは各ユニット毎に、上方から下方に向かって降下し、排ガスAは、下方から上方に向かって上昇する、いわゆる向流型となっている。向流型の吸着塔10における同一水平面内の有害物質の担持量分布は、理論的には均一にすることが可能である。 In the conventional example shown in FIG. 14, the adsorbent B is a so-called counter-current type in which the adsorbent B descends from above to below for each unit, and the exhaust gas A rises from below to above. The distribution of the amount of harmful substances carried in the counter-current type adsorption tower 10 in the same horizontal plane can theoretically be made uniform.
 即ち、各ユニットの吸着材抜き出しロートから排出された吸着材Bには、第15図に示すように、有害物質が同一平面内で均一に担持されており、図11,図12に示した従来例よりも、吸着材Bの利用効率を高めることが可能であるが、この従来例にも以下に説明する技術的課題があった。 That is, the adsorbent B discharged from the adsorbent extraction funnel of each unit carries a toxic substance uniformly in the same plane as shown in FIG. 15, and the prior art shown in FIG. 11 and FIG. Although it is possible to increase the utilization efficiency of the adsorbent B as compared with the example, this conventional example also has a technical problem described below.
 すなわち、図14に示した従来例では、大量の排ガスAを処理するためには、複数のユニットを積み重ねる構造としているために、上段ユニットから抜き出された吸着材Bは、下段ユニットの内部を貫通して設けられた抜き出しシュートを通って、吸着材切り出し装置に到達できる構造となっている。そのため、吸着塔内部は、非常に複雑な構造になっており、上下2段のユニットが構造上の限界と考えられる。 That is, in the conventional example shown in FIG. 14, in order to treat a large amount of exhaust gas A, a plurality of units are stacked, so that the adsorbent B extracted from the upper unit is disposed inside the lower unit. It has a structure that can reach the adsorbent cutting device through the extraction chute provided therethrough. Therefore, the inside of the adsorption tower has a very complicated structure, and the upper and lower two-stage units are considered to be structural limitations.
 また、上段ユニットと下段ユニットの間には、上下方向に大きなスペースが必要になるばかりではなく、上下方向の積み重ね段数にも限界があるため、更に大量の排ガスAを処理する吸着塔では、2段ユニットを追設せねばならず、広い設置スペースが必要になるという問題がある。 Further, not only a large space in the vertical direction is required between the upper unit and the lower unit, but also the number of stacked stages in the vertical direction is limited. Therefore, in an adsorption tower for treating a larger amount of exhaust gas A, 2 There is a problem that a stepped unit must be added and a large installation space is required.
 本発明は、上述した従来の問題点に鑑みてなされたものであって、その目的は、構成の複雑化を回避しつつ、排ガス中の有害物質が吸着材に最大限有効に吸着(担持)可能なるようにして、吸着材の使用量を最小限に止め、かつ、容積を最小限に止めた吸着塔を提供することである。 The present invention has been made in view of the above-described conventional problems, and the object thereof is to maximally effectively adsorb (support) harmful substances in exhaust gas on an adsorbent while avoiding complication of the configuration. It is possible to provide an adsorption tower that minimizes the use of adsorbent and minimizes the volume.
 また、従来例では、不可能とされていた、吸着材中を通過するガスの流れ方向を逆転させることを可能にした吸着塔を提供することである。 Also, it is to provide an adsorption tower capable of reversing the flow direction of the gas passing through the adsorbent, which has been impossible in the conventional example.
 上記目的を達成するために、本発明は、塔頂側に設けられる粒状吸着材の供給口と、前記吸着材を下方に移動させながら供給される排ガスと接触させる接触部と、塔底側に配置され前記接触部で排ガスを吸着した吸着材の切り出し部、および、前記吸着材の排出口とを有し、前記接触部に処理対象排ガスを送り込む排ガス入口フード部と、前記接触部から処理済の排ガスを取り出す排ガス出口フード部とを備え、排ガス中の有害成分を粒状の吸着材で吸着除去する乾式排ガス処理装置に用いる吸着塔において、一端側が前記排ガス入口フード部に連通し、他端側が前記接触部内を水平方向に延設されて、端部が前記排ガス出口フード部に対して閉止される複数の排ガス供給路と、一端側が前記排ガス出口フード部に連通し、他端側が前記接触部内を水平方向に延設されて、端部が前記排ガス入口フード部に対して閉止される複数の排ガス排出路とを有し、上部で前記吸着材の透過を阻止して側方に押しやり、内部にガス流通路を形成するサドル部材を前記接触部内で水平方向に貫通するように設置して、当該ガス通過路を前記排ガス供給路および排ガス排出路とし、前記複数の排ガス供給路と前記複数の排ガス排出路は、上下方向に所定の間隔を隔てた水平面上に所定の間隔を隔てて配置するようにした。 In order to achieve the above-mentioned object, the present invention provides a granular adsorbent supply port provided on the tower top side, a contact portion for contacting the exhaust gas supplied while moving the adsorbent downward, and a tower bottom side. An adsorbent cut-out portion that has been disposed and adsorbed exhaust gas at the contact portion, and an exhaust port for the adsorbent, and an exhaust gas inlet hood portion that feeds the exhaust gas to be treated into the contact portion, and processed from the contact portion In an adsorption tower for use in a dry exhaust gas treatment apparatus that removes harmful components in exhaust gas by adsorbing and removing the harmful components in the exhaust gas with a particulate adsorbent, one end side communicates with the exhaust gas inlet hood portion, and the other end side A plurality of exhaust gas supply passages extending in the horizontal direction in the contact portion and having an end portion closed with respect to the exhaust gas outlet hood portion, one end side communicates with the exhaust gas outlet hood portion, and the other end side is in contact with the exhaust gas outlet hood portion. A plurality of exhaust gas discharge passages extending horizontally in the section and closed at the end portions with respect to the exhaust gas inlet hood section, and blocking the adsorbent permeation at the upper portion to push it sideways. A saddle member that forms a gas flow path therein is installed so as to penetrate horizontally in the contact portion, and the gas passage is used as the exhaust gas supply path and the exhaust gas discharge path, and the plurality of exhaust gas supply paths and the The plurality of exhaust gas discharge paths are arranged at predetermined intervals on a horizontal plane with predetermined intervals in the vertical direction.
 このように構成した吸着塔によれば、複数の排ガス供給路は、一端側が排ガス入口フード部に連通し、他端側が接触部内を水平方向に延設されて、端部が排ガス出口フード部に対して閉止され、複数の排ガス排出路は、一端側が排ガス出口フード部に連通し、他端側が接触部内を水平方向に延設されて、端部が排ガス入口フード部に対して閉止されており、供給路を介して供給された排ガスは、接触部内を透過して、排ガス排出路に向かうことになるが、この際に、複数の排ガス供給路と複数の排ガス排出路は、上下方向に所定の間隔を隔てた水平面上に所定の間隔を隔てて配置されているので、下方に流動する吸着材に対して、対向する方向か、並行する方向に流れることになる。 According to the adsorption tower configured as described above, the plurality of exhaust gas supply paths have one end communicating with the exhaust gas inlet hood, the other end extending in the horizontal direction in the contact portion, and the end serving as the exhaust gas outlet hood. The plurality of exhaust gas discharge passages are connected to the exhaust gas outlet hood part at one end side, are extended in the horizontal direction through the contact part at the other end side, and are closed to the exhaust gas inlet hood part at the other end side. The exhaust gas supplied through the supply path passes through the contact portion and travels toward the exhaust gas discharge path. At this time, the plurality of exhaust gas supply paths and the plurality of exhaust gas discharge paths are predetermined in the vertical direction. Therefore, the adsorbent that flows downward flows in a direction opposite to or parallel to the adsorbent that flows downward.
 このため、図14に示した従来例と同様に、排ガスの流れる方向に沿って、有害物質を同一平面内で均一に担持させることが可能になり、排ガス中の有害物質を吸着材に最大限有効に吸着させて、吸着材の使用量を最小限に止め、かつ、吸着塔の容積を最小限に止めることができる。 For this reason, similarly to the conventional example shown in FIG. 14, it becomes possible to uniformly carry harmful substances in the same plane along the flow direction of the exhaust gas, and to maximize the harmful substances in the exhaust gas to the adsorbent. It can be effectively adsorbed to minimize the amount of adsorbent used and to minimize the volume of the adsorption tower.
 また、このような機能を有する排ガス供給路と排ガス排出路は、接触部内を水平方向に貫通するように設置して、上部で吸着材の透過を阻止して側方に押しやり、内部にガス流通路を形成するサドル部材を接触部内で水平方向に貫通するように設置することにより得られるので、全体構造の複雑化を招くことがない。 In addition, the exhaust gas supply path and exhaust gas discharge path having such a function are installed so as to penetrate the contact portion in the horizontal direction, prevent the adsorbent from permeating at the upper part and push it sideways, Since it is obtained by installing the saddle member that forms the flow passage so as to penetrate horizontally in the contact portion, the overall structure is not complicated.
 さらに、排ガス供給路と排ガス排出路は、上部で吸着材の透過を阻止して側方に押しやり、内部にガス流通路を形成するサドル部材を接触部内で水平方向に貫通するように設置することにより得られるので、排ガス供給路と排ガス排出路の実質的な構成が同一になっているので、吸着材中を通過するガスの流れ方向を逆転させることが可能になる。 Further, the exhaust gas supply path and the exhaust gas discharge path are installed so that the adsorbent is prevented from permeating at the top and pushed sideways, and the saddle member that forms the gas flow path is penetrated horizontally in the contact portion. Therefore, since the substantial configuration of the exhaust gas supply path and the exhaust gas discharge path is the same, the flow direction of the gas passing through the adsorbent can be reversed.
 前記排ガス排出路は、前記排ガス供給路の上下方向に間隔をあけて一対配設され、前記排ガス供給路の上方側で、前記吸着材の流動方向とこれと接触する排ガスの移動方向とが対向する対向流領域と、前記排ガス供給路の下方側で、前記吸着材の流動方向とこれと接触する排ガスの移動方向とが並行する並行流領域とを設けることができる。  A pair of the exhaust gas discharge passages are arranged at intervals in the vertical direction of the exhaust gas supply passage, and the flow direction of the adsorbent and the movement direction of the exhaust gas in contact therewith are opposed above the exhaust gas supply passage. And a parallel flow region in which the flow direction of the adsorbent and the movement direction of the exhaust gas in contact therewith are parallel to each other on the lower side of the exhaust gas supply path. *
 前記排ガス供給路および排ガス排出路は、それぞれ同一水平面内で、水平方向に所定の間隔を隔てて相互に隣接するように複数配設することができる。 A plurality of the exhaust gas supply passages and the exhaust gas discharge passages can be disposed so as to be adjacent to each other at a predetermined interval in the horizontal direction within the same horizontal plane.
 前記排ガス供給路と前記排ガス排出路は、前記吸着塔の垂直方向で、上下方向に所定の間隔を隔てて複数段に配設し、かつ、上下方向に隣接する前記ガス供給路と前記ガス排出路とを千鳥状に配列することができる。 The exhaust gas supply path and the exhaust gas discharge path are arranged in a plurality of stages at a predetermined interval in the vertical direction in the vertical direction of the adsorption tower, and are adjacent to the gas supply path and the gas exhaust in the vertical direction. Roads can be arranged in a staggered pattern.
 前記対向流領域と前記並行流領域は、段状に配列した際に、吸着寄与ゾーンの容積の大きさを変更することができる。 When the counterflow region and the parallel flow region are arranged in a step shape, the volume of the adsorption contribution zone can be changed.
 前記排ガス供給路と前記排ガス排出路は、これらが前記排ガス入口フード部または前記排ガス出口フード部と連通する部分のいずれか一方、もしくは双方に、通過するガス量を調節する調整板を移動自在に配置することができる。 The exhaust gas supply passage and the exhaust gas discharge passage are movable with an adjustment plate for adjusting the amount of gas passing through either or both of the exhaust gas inlet hood part and the exhaust gas outlet hood part communicating with the exhaust gas outlet hood part. Can be arranged.
 前記排ガス供給路と前記排ガス排出路は、外部に配置される切り替えバルブの切り替え操作により、前記排ガスが前記排ガス供給路から前記排ガス排出路に透過する定常状態と、前記排ガスが前記排ガス排出路から前記排ガス供給路に透過する逆流状態とすることができる。前記サドル部材は、上部に前記排ガスの透過が可能な貫通孔を設けることができる。 The exhaust gas supply path and the exhaust gas discharge path are in a steady state in which the exhaust gas permeates from the exhaust gas supply path to the exhaust gas discharge path by a switching operation of a switching valve disposed outside, and the exhaust gas from the exhaust gas discharge path. It can be set as the backflow state which permeate | transmits to the said waste gas supply path. The saddle member may be provided with a through-hole through which the exhaust gas can permeate.
 前記サドル部材は、側部に前記排ガスの透過が可能で、かつ、前記吸着材の透過を阻止するルーバを設けることができる。 The saddle member can be provided with a louver on the side that allows the exhaust gas to pass therethrough and prevents the adsorbent from passing therethrough.
 上記構成の吸着塔によれば、構成の複雑化を回避しつつ、排ガス中の有害物質が吸着材に最大限有効に吸着(担持)可能なるようにして、吸着材の使用量を最小限に止め、かつ、容積を最小限に止めることが可能になり、しかも、従来例では、不可能とされていた、吸着材中を通過するガスの流れ方向を逆転させることが可能になる。 The adsorption tower configured as described above minimizes the amount of adsorbent used by making it possible to adsorb (support) harmful substances in exhaust gas to the adsorbent as effectively as possible while avoiding complication of the configuration. It is possible to stop and minimize the volume, and to reverse the flow direction of the gas passing through the adsorbent, which is impossible in the conventional example.
図1は、本発明に係る吸着塔の第1実施例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment of an adsorption tower according to the present invention. 図2は、図1の側面図である。FIG. 2 is a side view of FIG. 図3は、図1に示した吸着塔のSO2担持量分分布を示す図である。FIG. 3 is a graph showing the distribution of the amount of SO2 supported by the adsorption tower shown in FIG. 図4は、本発明に係る吸着塔の第2実施例を示す縦断面図、側面図、要部拡大図である。FIG. 4 is a longitudinal sectional view, a side view, and an enlarged view of an essential part showing a second embodiment of the adsorption tower according to the present invention. 図5は、本発明に係る吸着塔の第3実施例を示す縦断面図、側面図、要部拡大図である。FIG. 5 is a longitudinal sectional view, a side view, and an enlarged view of an essential part showing a third embodiment of the adsorption tower according to the present invention. 図6は、本発明に係る吸着塔の第4実施例を示す要部拡大図である。FIG. 6 is an enlarged view of a main part showing a fourth embodiment of the adsorption tower according to the present invention. 図7は、本発明に係る吸着塔の第5実施例を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a fifth embodiment of the adsorption tower according to the present invention. 図8は、本発明に係る吸着塔で用いることができるサドル部材の断面説明図である。FIG. 8 is a cross-sectional explanatory view of a saddle member that can be used in the adsorption tower according to the present invention. 図9は、本発明に係る吸着塔で用いることができるサドル部材の他の例を示す断面説明図である。FIG. 9 is an explanatory cross-sectional view showing another example of a saddle member that can be used in the adsorption tower according to the present invention. 図10は、本発明の吸着塔が用いられる乾式排ガス処理装置の全体構成図である。FIG. 10 is an overall configuration diagram of a dry exhaust gas treatment apparatus in which the adsorption tower of the present invention is used. 図11は、従来の吸着塔を示す縦断面図、側面図、横断面図、要部拡大図である。FIG. 11 is a longitudinal sectional view, a side view, a transverse sectional view, and a main part enlarged view showing a conventional adsorption tower. 図12は、従来の吸着塔の他の例を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing another example of a conventional adsorption tower. 図13は、図11に示した吸着塔のSO2担持量分分布を示す図である。FIG. 13 is a graph showing the SO2 carrying amount distribution of the adsorption tower shown in FIG. 図14は、従来の吸着塔のさらに別の例を示す縦断面図である。FIG. 14 is a longitudinal sectional view showing still another example of a conventional adsorption tower. 図15は、図14に示した吸着塔のSO2担持量分分布を示す図である。FIG. 15 is a diagram showing the SO2 carrying amount distribution of the adsorption tower shown in FIG.
符号の説明Explanation of symbols
100,100a~100d  吸着塔
101,101a~101d  供給部
102,102a~102d  接触部
103,103a~103d  切り出し部
104,104a~104d  排出口
106,106a~106d  排ガス入口フード部
107,107a~107d  排ガス出口フード部
108,108a~108d  排ガス供給路
109,109a~109d  排ガス排出路
110,110a~110d  サドル部材
111,111a~111d  ガス流通路
100, 100a to 100d Adsorption tower 101, 101a to 101d Supply part 102, 102a to 102d Contact part 103, 103a to 103d Cut part 104, 104a to 104d Exhaust port 106, 106a to 106d Exhaust gas inlet hood part 107, 107a to 107d Exhaust gas Outlet hood portion 108, 108a to 108d Exhaust gas supply path 109, 109a to 109d Exhaust gas discharge path 110, 110a to 110d Saddle member 111, 111a to 111d Gas flow path
 以下に、本発明の好適な実施例について、添付図面を参照して詳細に説明する。図1から図3は、本発明に係る吸着塔の第1実施例を示している。これらの図に示した吸着塔100は、第10図に示した、排ガスA中の有害成分を粒状の吸着材Bで吸着除去する乾式排ガス処理装置に用いられるものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 3 show a first embodiment of an adsorption tower according to the present invention. The adsorption tower 100 shown in these figures is used in the dry exhaust gas treatment apparatus shown in FIG. 10 that adsorbs and removes harmful components in the exhaust gas A by the particulate adsorbent B.
 吸着塔100は、塔頂側に設けられ、粒状吸着材Bを分配して供給する供給口101と、吸着材Bを下方に移動させながら供給される排ガスAと接触させる接触部102と、塔底側に配置され接触部102で排ガスAを吸着した吸着材Bの切り出し部103および吸着材Bの排出口104とを有している。 Adsorption tower 100 is provided on the tower top side, supply port 101 that distributes and supplies granular adsorbent B, contact portion 102 that contacts exhaust gas A that is supplied while moving adsorbent B downward, It has the cut-out part 103 of the adsorbent B which was arrange | positioned at the bottom side, and adsorb | sucked waste gas A with the contact part 102, and the discharge port 104 of adsorbent B.
 接触部102は、中空筒状の塔本体105内に吸着材Bを充填したものであり、吸着材Bは、接触部102内を下方に向けて流動する。吸着塔100は、接触部102に処理対象排ガスAを送り込む排ガス入口フード部106と、接触部102から処理済の排ガスを取り出す排ガス出口フード部107とを備えている。 The contact portion 102 is a hollow cylindrical tower body 105 filled with the adsorbent B, and the adsorbent B flows downward in the contact portion 102. The adsorption tower 100 includes an exhaust gas inlet hood part 106 that sends the processing target exhaust gas A to the contact part 102, and an exhaust gas outlet hood part 107 that takes out the treated exhaust gas from the contact part 102.
 接触部102内には、上下方向に所定の間隔を隔てて段状に配置された複数の排ガス供給路108と、複数の排ガス排出路109とが設けられている。排ガス供給路108は、一端側が排ガス入口フード部106に連通し、他端側が接触部102内を水平方向に延設されて、端部が排ガス出口フード部107に対して閉止されている。排ガス排出路109は、一端側が排ガス出口フード部107に連通し、他端側が接触部102内を水平方向に延設されて、端部が排ガス入口フード部106に対して閉止されている。 In the contact portion 102, a plurality of exhaust gas supply passages 108 and a plurality of exhaust gas discharge passages 109 are provided that are arranged stepwise at predetermined intervals in the vertical direction. One end side of the exhaust gas supply path 108 communicates with the exhaust gas inlet hood portion 106, the other end side extends in the horizontal direction in the contact portion 102, and the end portion is closed with respect to the exhaust gas outlet hood portion 107. One end side of the exhaust gas discharge path 109 communicates with the exhaust gas outlet hood portion 107, the other end side extends horizontally in the contact portion 102, and the end portion is closed with respect to the exhaust gas inlet hood portion 106.
 これらの各供給路108および排出路109は、実質的に同一構成のサドル部材110を配設することにより形成されている。なお、供給路108と排出路109は、必ずしも同一形状のサドル部材110を用いる必要はなく、後述する図8ないしは図9のサドル部材中の形状で異なったものを選択することもできる。本実施例の場合、サドル部材110は、図2に断面形状を示すように、逆V字型の部材から構成され、これを接触部102内に配置している。このサドル部材110は、接触部102内を水平方向に貫通するように設置され、逆V字型に形成された上部で、下方に流動する吸着材Bの透過を阻止して、これを側方に押しやり、内部にガス流通路111を形成する。
この際に、サドル部材110の下方が開放されているので、この下方部分には、吸着材Bが左右方向から安息角状態で堆積するので、ガス流通路111は、本実施例の場合には、図2に示すように、概略菱形断面になる。
Each of the supply path 108 and the discharge path 109 is formed by disposing a saddle member 110 having substantially the same configuration. Note that the supply path 108 and the discharge path 109 do not necessarily need to use the saddle member 110 having the same shape, and it is possible to select different ones depending on the shapes in the saddle members shown in FIGS. In the case of the present embodiment, the saddle member 110 is composed of an inverted V-shaped member as shown in a cross-sectional shape in FIG. 2, and this is disposed in the contact portion 102. The saddle member 110 is installed so as to penetrate the contact portion 102 in the horizontal direction, and prevents the adsorbent B flowing downward from passing through the upper portion formed in an inverted V-shape, thereby preventing the saddle member 110 from passing laterally. The gas flow passage 111 is formed inside.
At this time, since the lower part of the saddle member 110 is opened, the adsorbent B accumulates in the lower part in the angle of repose from the left and right direction, so that the gas flow passage 111 is formed in this embodiment. As shown in FIG.
 本実施例の場合には、このガス通過路111が、排ガス供給路108および排ガス排出路109となっており、複数のガス供給路108は、同じ水平面上において、所定の等間隔となるように配列され、複数の排ガス排出路109も、同じ水平面上において、所定の等間隔になるように配列されている。 In the case of the present embodiment, the gas passage 111 is an exhaust gas supply path 108 and an exhaust gas discharge path 109, and the plurality of gas supply paths 108 are arranged at predetermined equal intervals on the same horizontal plane. The plurality of exhaust gas discharge paths 109 are also arranged at predetermined equal intervals on the same horizontal plane.
 また、本実施例の場合、排ガス供給路108と排ガス排出路109は、吸着塔100の垂直方向で、上下方向に所定の間隔を隔てて複数段に配設され、かつ、上下方向に隣接するガス供給路108とガス排出路109とを千鳥状に配列している。 In the case of the present embodiment, the exhaust gas supply path 108 and the exhaust gas discharge path 109 are arranged in a plurality of stages at a predetermined interval in the vertical direction of the adsorption tower 100 and adjacent to each other in the vertical direction. The gas supply path 108 and the gas discharge path 109 are arranged in a staggered pattern.
 また、本実施例の場合には、1つの排ガス供給路108に対して、上下方向に所定の間隔を隔てて、一対の排ガス排出路109が配置されている。このような構成の吸着塔100に排ガスAを導入する。排ガスAは、入口フード部106を通って、各排ガス供給路108に流れ込み、接触部102内で吸着材Bと接触しながら移動する。 In the case of this embodiment, a pair of exhaust gas discharge passages 109 are arranged with a predetermined interval in the vertical direction with respect to one exhaust gas supply passage 108. The exhaust gas A is introduced into the adsorption tower 100 having such a configuration. The exhaust gas A flows into the exhaust gas supply passages 108 through the inlet hood portion 106 and moves while contacting the adsorbent B in the contact portion 102.
 この際の排ガスAの移動方向は、サドル部材110により直接上方に移動することが阻止されているので、これを迂回するようにして、サドル部材110の側方を通って、上方に向けて移動するとともに、サドル部材110の下方開放を介して、下方に向けて移動する。 Since the movement direction of the exhaust gas A at this time is prevented from moving directly upward by the saddle member 110, the exhaust gas A moves upward through the side of the saddle member 110 so as to circumvent this. In addition, the saddle member 110 moves downward through the downward opening of the saddle member 110.
 このような排ガスAの移動に対して、接触部102内にでは、吸着材Bが常時下方に向けて流動しているので、その結果、ガス供給路108の上方側で、吸着材Bの流動方向とこれと接触する排ガスAの移動方向とが対向となる対向流領域が形成されている。また、排ガス供給路108の下方側では、吸着材Bの流動方向とこれと接触する排ガスAの移動方向とが並行となる並行流領域が形成されている。 As the exhaust gas A moves, the adsorbent B constantly flows downward in the contact portion 102. As a result, the adsorbent B flows on the upper side of the gas supply path 108. A counter flow region is formed in which the direction and the moving direction of the exhaust gas A in contact with the direction are opposite to each other. Further, on the lower side of the exhaust gas supply path 108, a parallel flow region is formed in which the flow direction of the adsorbent B and the movement direction of the exhaust gas A in contact therewith are parallel.
 このように構成した吸着塔100によれば、排ガスAは、下方向に流動する吸着材Bに対して、対向する方向か、並行する方向に流れることになり、この結果、図3に示すように、図14に示した従来例と同様に、排ガスの流れる方向に沿って、有害物質を同一平面内で均一に担持させることが可能になり、排ガス中の有害物質を吸着材に最大限有効に吸着させて、吸着材の使用量を最小限に止め、かつ、吸着塔の容積を最小限に止めることができる。 According to the adsorption tower 100 configured as described above, the exhaust gas A flows in a direction opposite to or parallel to the adsorbent B flowing downward, and as a result, as shown in FIG. In addition, similarly to the conventional example shown in FIG. 14, it becomes possible to uniformly carry harmful substances in the same plane along the flow direction of the exhaust gas, and the harmful substances in the exhaust gas can be effectively used as an adsorbent. So that the amount of adsorbent used can be minimized and the volume of the adsorption tower can be minimized.
 また、このような機能を有する排ガス供給路108と排ガス排出路109は、接触部102内を水平方向に貫通するように設置して、上部で吸着材Bの透過を阻止しこれを側方に押しやり、内部にガス流通路111を形成するサドル部材110により得られるので、全体構造の複雑化を招くことがない。 Further, the exhaust gas supply passage 108 and the exhaust gas discharge passage 109 having such a function are installed so as to penetrate the contact portion 102 in the horizontal direction, and prevent the adsorbent B from permeating at the upper side to make it lateral. Since it is obtained by the saddle member 110 that pushes and forms the gas flow passage 111 inside, the entire structure is not complicated.
 さらに、排ガス供給路108と排ガス排出路109は、接触部102内を水平方向に貫通するように設置して、上部で吸着材Bの透過を阻止し側方に押しやり、内部にガス流通路111を形成するサドル部材110により得られ、供給路108と排出路109の実質的な構成が同一になっているので、例えば、従来例では、入口ルーバと出口ルーバで目開きの異なるルーバを用いる場合のように排ガスの流れ方向を逆転することが不可能であったのに対して、本実施例では、吸着材B中を通過する排ガスAの流れ方向を逆転させても、目詰まりや吸着材Bの漏出を招くことがない。 Further, the exhaust gas supply passage 108 and the exhaust gas discharge passage 109 are installed so as to penetrate the contact portion 102 in the horizontal direction, prevent the adsorbent B from passing therethrough and push it sideways, and the gas flow passage inside. For example, in the conventional example, a louver having different openings is used for the inlet louver and the outlet louver. Whereas it was impossible to reverse the flow direction of the exhaust gas as in the case, in this embodiment, even if the flow direction of the exhaust gas A passing through the adsorbent B is reversed, clogging or adsorption There will be no leakage of the material B.
 なお、本実施例の場合、吸着塔100においては、排ガス供給路108と排ガス排出路109の間隔を、吸着塔100の上部と下部で異なる間隔で設置することができる。すなわち、吸着材Bがフレッシュに近い吸着塔100の上部では、排ガス供給路108と排ガス排出路109の間隔を小さくし、逆に有害物質の担持量が増加する吸着塔下部では、この間隔を大きくする。 In the case of the present embodiment, in the adsorption tower 100, the interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 can be set at different intervals between the upper part and the lower part of the adsorption tower 100. That is, in the upper part of the adsorption tower 100 where the adsorbent B is close to fresh, the interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 is reduced, and conversely, this interval is increased in the lower part of the adsorption tower where the loading amount of harmful substances increases. To do.
 間隔を小さくした吸着塔上部では、間隔が大きい吸着塔下部よりも、排ガス供給路108と排ガス排出路109と間の圧力損失が小さくなるため、フレッシュに近い吸着塔上部では、多くの排ガスを処理し、有害物質の担持量が増加した吸着塔下部では処理する排ガス量を下げることが可能になる。 Since the pressure loss between the exhaust gas supply path 108 and the exhaust gas discharge path 109 is smaller in the upper part of the adsorption tower with a smaller interval than in the lower part of the adsorption tower, a larger amount of exhaust gas is processed in the upper part of the adsorption tower close to fresh. However, it is possible to reduce the amount of exhaust gas to be treated at the lower part of the adsorption tower where the loading amount of harmful substances is increased.
 排ガス供給路108と排ガス排出路109の上下方向の間隔を等間隔とした場合、吸着材Bがフレッシュに近い吸着塔上部では、吸着に寄与しない吸着材Bのゾーンが生ずる。この吸着に寄与しないゾーンを削減しても吸着塔の性能を低下させること無く、この結果、吸着塔100の高さを小さくすることが可能になる。 When the vertical interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 is equal, a zone of the adsorbent B that does not contribute to adsorption occurs in the upper part of the adsorption tower where the adsorbent B is close to fresh. As a result, it is possible to reduce the height of the adsorption tower 100 without reducing the performance of the adsorption tower even if the zones not contributing to the adsorption are reduced.
 一方、吸着塔100は、メンテナンス等の目的で内部に人が入らなければならないことがある。このような場合に、吸着塔上部において、排ガス供給路108と排ガス排出路109の間隔をあまり小さくすることはできない。また、一般に排ガスA中には、粉塵が含まれており、排ガスAが吸着材層を通過する間に粉塵は捕獲される。 On the other hand, the adsorption tower 100 may require a person to enter the inside for the purpose of maintenance or the like. In such a case, the interval between the exhaust gas supply path 108 and the exhaust gas discharge path 109 cannot be made too small in the upper part of the adsorption tower. In general, the exhaust gas A contains dust, and the dust is captured while the exhaust gas A passes through the adsorbent layer.
 吸着塔上部では、捕獲された粉塵量は、まだ少ないが、吸着塔下部では、捕獲された粉塵量が増加しているために、吸着塔下部の吸着材層の圧損が上部の圧損に比べて高くなり、排ガスの通過量は減少する傾向がある。本実施例の吸着塔100では、このような要請に対応することができる。 At the upper part of the adsorption tower, the amount of captured dust is still small, but at the lower part of the adsorption tower, the amount of captured dust has increased, so the pressure loss of the adsorbent layer at the lower part of the adsorption tower is lower than the pressure loss at the upper part. The amount of exhaust gas passing tends to decrease. In the adsorption tower 100 of the present embodiment, such a request can be met.
 図4は、本発明に係る吸着塔の第2実施例を示しており、上記実施例と同一もしくは相当する部分に同一符号を付してその説明を省略するとともに、以下のその特徴点についてのみ詳述する。 FIG. 4 shows a second embodiment of the adsorption tower according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
 これらの図に示した吸着塔100aは、供給口101aと、吸着材Bを下方に移動させながら供給される排ガスAと接触させる接触部102aと、塔底側に配置され接触部102aで排ガスAを吸着した吸着材Bの切り出し部103aおよび吸着材Bの排出口104aとを有し、接触部102aに処理対象排ガスAを送り込む排ガス入口フード部106aと、接触部102aから処理済の排ガスを取り出す排ガス出口フード部107aとを備えている。 The adsorption tower 100a shown in these drawings includes a supply port 101a, a contact portion 102a that makes contact with the exhaust gas A that is supplied while moving the adsorbent B downward, and an exhaust gas A that is disposed on the bottom side of the tower and is in contact with the contact portion 102a. The adsorbent B adsorbent B cut-out portion 103a and the adsorbent B discharge port 104a have an exhaust gas inlet hood portion 106a that feeds the exhaust gas A to be treated into the contact portion 102a, and the treated exhaust gas is taken out from the contact portion 102a. And an exhaust gas outlet hood 107a.
 接触部102a内には、上下方向に所定の間隔を隔てて段状に配置された複数の排ガス供給路108aと、複数の排ガス排出路109aとが設けられている。排ガス供給路108aは、一端側が排ガス入口フード部106aに連通し、他端側が接触部102a内を水平方向に延設されて、端部が排ガス出口フード部107aに対して閉止されている、排ガス排出路109aは、一端側が排ガス出口フード部107aに連通し、他端側が接触部102a内を水平方向に延設されて、端部が排ガス入口フード部106aに対して閉止されている。本実施例の場合、排ガス出口フード部107aは、排ガス入口フード部106aと同じ側に配置されている。 In the contact portion 102a, a plurality of exhaust gas supply passages 108a and a plurality of exhaust gas discharge passages 109a arranged in a step shape with a predetermined interval in the vertical direction are provided. The exhaust gas supply path 108a has one end communicating with the exhaust gas inlet hood portion 106a, the other end extending in the horizontal direction within the contact portion 102a, and the end portion closed with respect to the exhaust gas outlet hood portion 107a. One end side of the discharge passage 109a communicates with the exhaust gas outlet hood portion 107a, the other end side extends in the horizontal direction in the contact portion 102a, and the end portion is closed with respect to the exhaust gas inlet hood portion 106a. In the case of the present embodiment, the exhaust gas outlet hood part 107a is arranged on the same side as the exhaust gas inlet hood part 106a.
 各供給路108aおよび排出路109aは、実質的に同一構成のサドル部材110aを配設することにより形成されていて、本実施例の場合、サドル部材110aは、図4(c)に断面形状を示すように、下方が開放された家型部材を、接触部102a内に配置している。サドル部材110aは、接触部102a内を水平方向に貫通するように設置され、家型の屋根部(上部)で、下方に流動する吸着材Bの透過を阻止して側方に押しやり、内部にガス流通路111aを形成する。サドル部材110aは、上記実施例と同様に、下方が開放されているので、この下方部分には、吸着材Bが左右方向から安息角状態で堆積するので、ガス流通路111aは、本実施例の場合には、図4(c)に示した断面形状になる。 Each supply path 108a and discharge path 109a are formed by disposing saddle members 110a having substantially the same configuration. In this embodiment, the saddle member 110a has a cross-sectional shape as shown in FIG. As shown, the house-shaped member whose lower part is opened is arranged in the contact portion 102a. The saddle member 110a is installed so as to penetrate the contact portion 102a in the horizontal direction, and at the house-shaped roof portion (upper part), the permeation of the adsorbent B flowing downward is prevented and pushed sideways. A gas flow passage 111a is formed in Since the lower part of the saddle member 110a is opened as in the above-described embodiment, the adsorbent B accumulates in the lower portion in the angle of repose from the left-right direction, so that the gas flow passage 111a is formed in this embodiment. In this case, the cross-sectional shape shown in FIG.
 また、本実施例の場合には、排ガス供給路108aと排出路109aは、上下方向で交互になるように複数段状に配置され、かつ、上下に隣接する個所で千鳥状に配置されている。さらに、接触部102a内には、中間仕切り板112aが設けられている。
中間仕切り板112aは、排ガス供給路108a及び排ガス排出路109aの貫通部で開口しており、排ガスの流通を妨げることなく、長尺になった排ガス供給路108a及び排ガス排出路109aを中間で支えることができる。中間仕切り板112aを、排ガス供給路108a及び排ガス排出路109aの貫通部で閉止した場合には、図示しない排ガス入口フード部106a’と、接触部102aから処理済の排ガスを取り出す図示しない排ガス出口フード部107a’を106a及び107aの反対側に設けることにより、長尺になった排ガス供給路108a及び排ガス排出路109aを中間で支えることができるとともに、排ガスの供給と排出を両側から行うことにより、排ガス供給路108a内及び排ガス排出路109a内を流れる排ガスの流速を低減することが可能になる。
Further, in the case of the present embodiment, the exhaust gas supply passages 108a and the discharge passages 109a are arranged in a plurality of stages so as to be alternately arranged in the vertical direction, and are arranged in a staggered manner at adjacent portions in the vertical direction. . Further, an intermediate partition plate 112a is provided in the contact portion 102a.
The intermediate partition plate 112a is opened at a through portion of the exhaust gas supply path 108a and the exhaust gas discharge path 109a, and supports the long exhaust gas supply path 108a and the exhaust gas discharge path 109a in the middle without disturbing the flow of the exhaust gas. be able to. When the intermediate partition plate 112a is closed at the penetrating portions of the exhaust gas supply passage 108a and the exhaust gas discharge passage 109a, the exhaust gas inlet hood portion 106a ′ (not shown) and the exhaust gas outlet hood (not shown) for taking out the treated exhaust gas from the contact portion 102a By providing the portion 107a ′ on the opposite side of 106a and 107a, the elongated exhaust gas supply path 108a and the exhaust gas discharge path 109a can be supported in the middle, and by supplying and discharging the exhaust gas from both sides, It becomes possible to reduce the flow velocity of the exhaust gas flowing through the exhaust gas supply path 108a and the exhaust gas discharge path 109a.
 このように構成した吸着塔100aでも上記実施例と同等の作用効果が得られるとともに、フード部106a,107aを同じ方向に配置しているので、コンパクト化が図れる。また、供給路108aと排出路109aを千鳥状に配列しているので、排ガスAと吸着材Bとの接触状態が均等化され、有害物質を効率的に吸着することができる。 The adsorption tower 100a configured as described above can achieve the same operational effects as the above-described embodiment, and the hood portions 106a and 107a are arranged in the same direction, so that the compactness can be achieved. Moreover, since the supply path 108a and the discharge path 109a are arranged in a staggered manner, the contact state between the exhaust gas A and the adsorbent B is equalized, and harmful substances can be adsorbed efficiently.
 図5は、本発明に係る吸着塔の第3実施例を示しており、上記実施例と同一もしくは相当する部分に同一符号を付してその説明を省略するとともに、以下のその特徴点についてのみ詳述する。 FIG. 5 shows a third embodiment of the adsorption tower according to the present invention, where the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
 この図に示した吸着塔100bは、供給口101bと、吸着材Bを下方に移動させながら供給される排ガスAと接触させる接触部102bと、塔底側に配置され接触部102bで排ガスAを吸着した吸着材Bの切り出し部103bおよび吸着材Bの排出口104bとを有し、接触部102bに処理対象排ガスAを送り込む排ガス入口フード部106bと、接触部102bから処理済の排ガスを取り出す排ガス出口フード部107bとを備えている。 The adsorption tower 100b shown in this figure includes a supply port 101b, a contact part 102b that makes contact with the exhaust gas A that is supplied while moving the adsorbent B downward, and an exhaust gas A that is disposed on the bottom side of the tower and is contacted with the contact part 102b. An exhaust gas inlet hood portion 106b having a cut-out portion 103b of the adsorbed adsorbent B and an exhaust port 104b of the adsorbent B, and sending the processing target exhaust gas A to the contact portion 102b, and an exhaust gas for extracting the treated exhaust gas from the contact portion 102b And an outlet hood portion 107b.
 接触部102b内には、上下方向に所定の間隔を隔てて段状に配置された複数の排ガス供給路108bと、複数の排ガス排出路109bとが設けられている。排ガス供給路108bは、一端側が排ガス入口フード部106bに連通し、他端側が接触部102b内を水平方向に延設されて、端部が排ガス出口フード部107bに対して閉止されている、排ガス排出路109bは、一端側が排ガス出口フード部107bに連通し、他端側が接触部102b内を水平方向に延設されて、端部が排ガス入口フード部106bに対して閉止されている。 In the contact portion 102b, a plurality of exhaust gas supply passages 108b and a plurality of exhaust gas discharge passages 109b arranged in a step shape with a predetermined interval in the vertical direction are provided. The exhaust gas supply path 108b has one end communicating with the exhaust gas inlet hood portion 106b, the other end extending in the horizontal direction in the contact portion 102b, and the end portion closed with respect to the exhaust gas outlet hood portion 107b. One end side of the discharge passage 109b communicates with the exhaust gas outlet hood portion 107b, the other end side extends horizontally in the contact portion 102b, and the end portion is closed with respect to the exhaust gas inlet hood portion 106b.
 各供給路108bおよび排出路109bは、実質的に同一構成のサドル部材110bを配設することにより形成されていて、本実施例の場合、サドル部材110bは、図5(c)に断面形状を示すように、逆V字型の部材を、接触部102b内に配置している。 Each supply path 108b and discharge path 109b are formed by disposing saddle members 110b having substantially the same configuration. In this embodiment, the saddle member 110b has a cross-sectional shape as shown in FIG. As shown, an inverted V-shaped member is disposed in the contact portion 102b.
 サドル部材110bは、接触部102b内を水平方向に貫通するように設置され、逆V字型の上部で、下方に流動する吸着材Bの透過を阻止して側方に押しやり、内部にガス流通路111bを形成する。サドル部材110bは、本実施例の場合、上下方向に隣接するもの同士が同一軸線上に位置するように配置されている。 The saddle member 110b is installed so as to penetrate the contact portion 102b in the horizontal direction. The saddle member 110b pushes the adsorbent B flowing downward at the upper portion of the inverted V shape and pushes it to the side. A flow passage 111b is formed. In the case of the present embodiment, the saddle members 110b are arranged such that those adjacent in the vertical direction are positioned on the same axis.
 サドル部材110bは、上記実施例と同様に、下方が開放されているので、この下方部分には、吸着材Bが左右方向から安息角状態で堆積するので、ガス流通路111bは、本実施例の場合には、図5(c)に示した断面形状になる。このように構成した吸着塔100bでも上記第1実施例と同等の作用効果が得られる。 Since the saddle member 110b is open at the bottom as in the above embodiment, the adsorbent B accumulates in the lower portion from the left-right direction in the angle of repose, so that the gas flow passage 111b is formed in this embodiment. In this case, the cross-sectional shape shown in FIG. The adsorption tower 100b configured as described above can achieve the same operation and effect as the first embodiment.
 図6は、本発明に係る吸着塔の第4実施例を示しており、上記実施例と同一もしくは相当する部分に同一符号を付してその説明を省略するとともに、以下のその特徴点についてのみ詳述する。 FIG. 6 shows a fourth embodiment of the adsorption tower according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
 この図に示した実施例では、図4に示した第2実施例に付加要件を加えたものであり、排ガス供給路108cには、これが排ガス供給フード部106cと連通する部分に、通過するガス量を調節する調整板113cを移動自在に配置している。調整板113cには、排ガス供給路108cの断面形状と同じ形状の貫通孔114cが、供給路108cのピッチと同じ状態で複数形成されていて、この貫通孔114cで排ガス供給路108cを塞ぐ部分を変えることで、通過するガス量を調整する。 In the embodiment shown in this figure, additional requirements are added to the second embodiment shown in FIG. 4, and the exhaust gas supply passage 108c has a gas passing through a portion communicating with the exhaust gas supply hood portion 106c. An adjustment plate 113c for adjusting the amount is movably disposed. A plurality of through holes 114c having the same shape as the cross-sectional shape of the exhaust gas supply passage 108c are formed in the adjustment plate 113c in the same state as the pitch of the supply passages 108c, and a portion that closes the exhaust gas supply passage 108c with the through holes 114c is formed. By changing, adjust the amount of gas passing through.
 なお、調整板113cは、排ガス供給路108cに変えて、排ガス排出路109cに適用することもできるし、これらの双方に設置することもできる。 The adjustment plate 113c can be applied to the exhaust gas discharge path 109c instead of the exhaust gas supply path 108c, or can be installed in both of them.
 図11および図12に示した従来例では、吸着材層カートリッジのガス流入面積が大きいため、カートリッジの上部と下部で排ガス流量を調節する調節板を取り付けるのは困難であったが、本発明の場合には容易に取付けることができる。 In the conventional example shown in FIGS. 11 and 12, since the gas inflow area of the adsorbent layer cartridge is large, it is difficult to attach an adjustment plate for adjusting the exhaust gas flow rate at the upper and lower parts of the cartridge. In some cases it can be easily installed.
 図7は、本発明に係る吸着塔の第5実施例を示しており、上記実施例と同一もしくは相当する部分に同一符号を付してその説明を省略するとともに、以下のその特徴点についてのみ詳述する。 FIG. 7 shows a fifth embodiment of the adsorption tower according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted, and only the following characteristic points are shown. Detailed description.
 この実施例の吸着塔100dは、図7(A)に示すように、供給口101dと、吸着材Bを下方に移動させながら供給される排ガスAと接触させる接触部102dと、塔底側に配置され接触部102dで排ガスAを吸着した吸着材Bの切り出し部103dおよび吸着材Bの排出口104dを有し、接触部102dに処理対象排ガスAを送り込む排ガス入口フード部106dと、接触部102dから処理済の排ガスを取り出す排ガス出口フード部107dとを備えている。 As shown in FIG. 7A, the adsorption tower 100d of this embodiment has a supply port 101d, a contact portion 102d that makes contact with the exhaust gas A supplied while moving the adsorbent B downward, and a tower bottom side. An exhaust gas inlet hood portion 106d having a cut-out portion 103d of the adsorbent B and an exhaust port 104d of the adsorbent B, which is disposed and adsorbs the exhaust gas A by the contact portion 102d, and sends the processing target exhaust gas A to the contact portion 102d; And an exhaust gas outlet hood part 107d for taking out the treated exhaust gas from the exhaust gas.
 排ガス入口フード部106dと排ガス出口フード部107dには、一対ずつの切り替えバルブ115dがそれぞれ接続されている。切り替えバルブ115dは、定常状態では、図7(A)に示すように、白色側が開放され、黒色側が閉塞されていて、排ガスAは、入口フード部106d側に供給される。 A pair of switching valves 115d are connected to the exhaust gas inlet hood portion 106d and the exhaust gas outlet hood portion 107d, respectively. In the steady state, the switching valve 115d is open on the white side and closed on the black side, as shown in FIG. 7A, and the exhaust gas A is supplied to the inlet hood portion 106d side.
 一方、切り替えバルブ115dを操作して、白色側を閉塞して、黒色側が開放すると、排ガスAは、図7(B)に示すように、排ガス出口フード部107d側に供給される。 On the other hand, when the switching valve 115d is operated to close the white side and the black side is opened, the exhaust gas A is supplied to the exhaust gas outlet hood portion 107d side as shown in FIG.
 このような切り替え操作は、以下のような場合に有効になる。すなわち、排ガスA中には、付着性の強い物質が含まれていることがあり、例えばSO2又はSO3を含む排ガス中にNH3を注入して処理しているが、この場合、両者が反応して生成した硫安や酸性硫安は、吸着塔の入口ルーバに付着して、排ガスの流入を妨げることがある。 Such switching operation is effective in the following cases. That is, the exhaust gas A may contain a substance with strong adhesion. For example, NH3 is injected into the exhaust gas containing SO2 or SO3, and in this case, both of them react with each other. The produced ammonium sulfate or acidic ammonium sulfate may adhere to the inlet louver of the adsorption tower and hinder the inflow of exhaust gas.
 このような場合に、排ガスAの流れを逆転して、出口ルーバ側から入口ルーバ側に向かって排ガスを流せるように切替が可能であれば、入口ルーバ側の付着物を昇華させて除去し、排ガスの流れを回復することが可能である。 In such a case, if it is possible to reverse the flow of the exhaust gas A so that the exhaust gas can flow from the outlet louver side to the inlet louver side, the deposit on the inlet louver side is sublimated and removed, It is possible to recover the flow of exhaust gas.
 ところが、図11および図12に示した従来例では、出口ルーバに目開きの小さい多孔板等が使用されているため、排ガスの流れを逆転させると、出口ルーバ側も閉塞することとなり、このような操作が行えなかった。 However, in the conventional example shown in FIGS. 11 and 12, since a porous plate or the like having a small opening is used for the outlet louver, if the flow of exhaust gas is reversed, the outlet louver side is also blocked. Operation could not be performed.
 本発明の吸着塔では、排ガス入口サドルと排ガス出口サドルを上下方向に交互に配置すること、及び排ガス入口サドルと排ガス出口サドルを同様の形状にしているので、自由に吸着材中の排ガスの流れ方向を逆転させても問題が生じない。 In the adsorption tower of the present invention, the exhaust gas inlet saddle and the exhaust gas outlet saddle are alternately arranged in the vertical direction, and the exhaust gas inlet saddle and the exhaust gas outlet saddle have the same shape, so the flow of the exhaust gas freely in the adsorbent No problem occurs even if the direction is reversed.
 排ガスの流れ方向を逆転させる方法としては、図7に示した方法以外に、図6に示した移動可能なスリット付き調節板113cを、排ガス入口サドル106の両端部及び排ガス出口サドル107の両端部に設置することにより、それらを開閉することにより可能になる。また、吸着塔に接続される排ガス入口ダクト、及び排ガス出口ダクト、及び排ガス入口ダクトと排ガス出口ダクトの接続ダクトに、それぞれ切替手段を設置することによっても可能である。 As a method for reversing the flow direction of the exhaust gas, in addition to the method shown in FIG. 7, the movable slit-equipped adjustment plate 113 c shown in FIG. 6 is replaced by both ends of the exhaust gas inlet saddle 106 and both ends of the exhaust gas outlet saddle 107. It becomes possible by opening and closing them. It is also possible to install switching means in the exhaust gas inlet duct connected to the adsorption tower, the exhaust gas outlet duct, and the connection duct of the exhaust gas inlet duct and the exhaust gas outlet duct, respectively.
 排ガスの流れ方向を逆転させると、排ガス入口サドルには吸着材で処理された後の排ガスが流入するため、排ガス入口サドルの付着物は徐々に昇華され、除去される。 When the flow direction of the exhaust gas is reversed, the exhaust gas after being treated with the adsorbent flows into the exhaust gas inlet saddle, so that the deposit on the exhaust gas inlet saddle is gradually sublimated and removed.
 図8は、本発明に係る吸着塔で採用することができるサドル部材の変形例を示している。これらの図に示したサドル部材110e~kは、上部で吸着材Bの透過を阻止し、これを側方に押しやることで、内部にガス流通路を形成することができればよい。 FIG. 8 shows a modification of the saddle member that can be employed in the adsorption tower according to the present invention. The saddle members 110e to 110k shown in these drawings only need to be able to form a gas flow passage inside by blocking the permeation of the adsorbent B at the upper part and pushing it sideways.
 上記実施例で示した形状以外に、下部に開放部を有する四角形110e、五角形、半円形110f、半楕円110g等とすることができる。特に、四角形状110eの場合には、上部に吸着材Bが堆積して、吸着材の流動に伴うサドル部材の摩耗が少なくなるという利点もある。 Other than the shape shown in the above embodiment, the shape may be a quadrangle 110e having an open portion at the bottom, a pentagon, a semicircle 110f, a half ellipse 110g, or the like. In particular, in the case of the rectangular shape 110e, there is an advantage that the adsorbent B is deposited on the upper portion and wear of the saddle member due to the flow of the adsorbent is reduced.
 また、三角形、四角形、五角形、半円形、半楕円形等の側面部又は全面に、細孔110h~kを開けておくことができる。更に、サドルを細かいルーバ状の構造で形成することもできる。これによって、排ガスAが吸着材層中に流出する際、または、排ガスAが内部に流入する際の、圧力損失を低減することが可能になる。前記細孔の大きさやルーバの目開きは、吸着材粒子がその細孔を通ってサドル内に流入しないサイズとする。 Also, the pores 110h to k can be opened in the side surface or the entire surface such as a triangle, a quadrangle, a pentagon, a semicircle, and a semi-elliptical shape. Furthermore, the saddle can be formed with a fine louver-like structure. This makes it possible to reduce pressure loss when the exhaust gas A flows out into the adsorbent layer or when the exhaust gas A flows into the inside. The size of the pores and the opening of the louver are set so that the adsorbent particles do not flow into the saddle through the pores.
 図9は、本発明に係る吸着塔で採用することができるサドル部材の変形例を示している。これらの図に示したサドル部材110l~nは、上部で吸着材Bの透過を阻止し、これを側方に押しやることで、内部にガス流通路を形成することができればよいので、外部に対して閉塞された断面形状になっている。サドル部材110lは、円形断面で、下方に細孔が設けられている、サドル部材110mは、楕円系断面で、上下端に細孔が設けられている。サドル部材110nは、逆V字型と円弧を組合わせた形状になっている。 FIG. 9 shows a modification of the saddle member that can be employed in the adsorption tower according to the present invention. The saddle members 110l to 110n shown in these figures only need to be able to form a gas flow passage inside by blocking the permeation of the adsorbent B at the top and pushing it sideways. The cross-sectional shape is closed. The saddle member 110l has a circular cross section and is provided with pores below. The saddle member 110m is an elliptical cross section and has pores provided at the upper and lower ends. The saddle member 110n has a combination of an inverted V shape and a circular arc.
 なお、本発明の吸着塔では、吸着材層を通過してきた排ガスが排ガス排出路に流れ込む際には、吸着材粒子は、浮き上がる方向の力を受ける。この時、粉化した小粒径の吸着材や吸着材中に捕獲された排ガス中の粉塵が、排出路中を流れる排ガスに同伴されることがある。 In the adsorption tower of the present invention, when the exhaust gas that has passed through the adsorbent layer flows into the exhaust gas discharge path, the adsorbent particles receive a force in the upward direction. At this time, the powdered adsorbent having a small particle diameter and the dust in the exhaust gas captured in the adsorbent may be accompanied by the exhaust gas flowing in the discharge path.
 本発明の吸着塔では、この同伴現象を低減するために、排ガス排出路の内部で、排ガスが流れる断面積を、排ガス供給路の内部を排ガスが流れる断面積より大きくすることにより、排ガス排出路中のガス流速を下げ、粉塵等の同伴を低減することが可能となるので、このような構成にすることが好ましい。 In the adsorption tower of the present invention, in order to reduce this entrainment phenomenon, the cross-sectional area in which the exhaust gas flows inside the exhaust gas discharge path is made larger than the cross-sectional area in which the exhaust gas flows in the exhaust gas supply path. Since it is possible to reduce the gas flow rate inside and reduce entrainment of dust and the like, it is preferable to adopt such a configuration.
 本発明に係る吸着塔は、構成の複雑化を回避しつつ、排ガス中の有害物質が吸着材に最大限有効に吸着(担持)可能になるので、乾式排ガス処理装置において有効に活用することができる。 The adsorption tower according to the present invention can be effectively utilized in a dry exhaust gas treatment apparatus, because harmful substances in the exhaust gas can be adsorbed (supported) to the adsorbent as much as possible while avoiding complication of the configuration. it can.

Claims (9)

  1. 塔頂側に設けられる粒状吸着材の供給口と、前記吸着材を下方に移動させながら供給される排ガスと接触させる接触部と、塔底側に配置され前記接触部で排ガスを吸着した吸着材の切り出し部、および、前記吸着材の排出口とを有し、前記接触部に処理対象排ガスを送り込む排ガス入口フード部と、前記接触部から処理済の排ガスを取り出す排ガス出口フード部とを備え、排ガス中の有害成分を粒状の吸着材で吸着除去する乾式排ガス処理装置に用いる吸着塔において、
    一端側が前記排ガス入口フード部に連通し、他端側が前記接触部内を水平方向に延設されて、端部が前記排ガス出口フード部に対して閉止される複数の排ガス供給路と、
    一端側が前記排ガス出口フード部に連通し、他端側が前記接触部内を水平方向に延設されて、端部が前記排ガス入口フード部に対して閉止される複数の排ガス排出路とを有し、
    上部で前記吸着材の透過を阻止して側方に押しやり、内部にガス流通路を形成するサドル部材を前記接触部内で水平方向に貫通するように設置して、当該ガス通過路を前記排ガス供給路および排ガス排出路とし、
    前記複数の排ガス供給路と前記複数の排ガス排出路は、上下方向に所定の間隔を隔てた水平面上に所定の間隔を隔てて配置されることを特徴とする吸着塔。
    A granular adsorbent supply port provided on the tower top side, a contact part that contacts the exhaust gas supplied while moving the adsorbent downward, and an adsorbent that adsorbs the exhaust gas at the contact part disposed on the tower bottom side An exhaust gas inlet hood part that feeds the exhaust gas to be treated to the contact part, and an exhaust gas outlet hood part that takes out the treated exhaust gas from the contact part, In an adsorption tower used in a dry exhaust gas treatment device that adsorbs and removes harmful components in exhaust gas with a granular adsorbent,
    One end side communicates with the exhaust gas inlet hood portion, the other end side extends in the horizontal direction in the contact portion, and a plurality of exhaust gas supply paths whose ends are closed with respect to the exhaust gas outlet hood portion;
    One end side communicates with the exhaust gas outlet hood portion, the other end side extends in the horizontal direction in the contact portion, and has a plurality of exhaust gas discharge passages whose ends are closed with respect to the exhaust gas inlet hood portion,
    The adsorbent is prevented from permeating at the upper part and pushed sideways, and a saddle member that forms a gas flow passage is installed in the contact portion so as to penetrate horizontally, and the gas passage is disposed in the exhaust gas. As a supply channel and exhaust gas discharge channel,
    The adsorption tower, wherein the plurality of exhaust gas supply passages and the plurality of exhaust gas discharge passages are arranged at predetermined intervals on a horizontal plane at predetermined intervals in the vertical direction.
  2. 前記排ガス排出路は、前記排ガス供給路の上下方向に間隔をあけて一対配設され、前記ガス供給路の上方側で、前記吸着材の流動方向とこれと接触する排ガスの移動方向とが対向する対向流領域と、前記排ガス供給路の下方側で、前記吸着材の流動方向とこれと接触する排ガスの移動方向とが並行する並行流領域とを設けることを特徴とする請求項1記載の吸着塔。 A pair of the exhaust gas discharge passages are arranged at intervals in the vertical direction of the exhaust gas supply passage, and the flow direction of the adsorbent and the movement direction of the exhaust gas in contact therewith are opposed above the gas supply passage. The counterflow area | region which carries out, and the parallel flow area | region where the flow direction of the said adsorbent and the movement direction of the waste gas which contacts this are parallel are provided in the downward side of the said waste gas supply path. Adsorption tower.
  3. 前記排ガス供給路および排ガス排出路は、それぞれ同一水平面内で、水平方向に所定の間隔を隔てて相互に隣接するように複数配設することを特徴とする請求項1または2記載の吸着塔。 3. The adsorption tower according to claim 1, wherein a plurality of the exhaust gas supply passages and the exhaust gas discharge passages are disposed so as to be adjacent to each other at a predetermined interval in the horizontal direction within the same horizontal plane.
  4. 前記排ガス供給路と前記排ガス排出路は、前記吸着塔の垂直方向で、上下方向に所定の間隔を隔てて複数段に配設し、かつ、上下方向に隣接する前記ガス供給路と前記ガス排出路とを千鳥状に配列することを特徴とする請求項1から3のいずれか1項記載の吸着塔。 The exhaust gas supply path and the exhaust gas discharge path are arranged in a plurality of stages at a predetermined interval in the vertical direction in the vertical direction of the adsorption tower, and are adjacent to the gas supply path and the gas exhaust in the vertical direction. The adsorption tower according to any one of claims 1 to 3, wherein the paths are arranged in a staggered pattern.
  5. 前記対向流領域と前記並行流領域は、段状に配列した際に、吸着寄与ゾーンの容積の大きさを変更することを特徴とする請求項1から4のいずれか1項に記載の吸着塔。 The adsorption tower according to any one of claims 1 to 4, wherein when the counterflow region and the parallel flow region are arranged in a step shape, the volume of the adsorption contribution zone is changed. .
  6. 前記排ガス供給路と前記排ガス排出路は、これらが前記排ガス供給フード部または前記排ガス排出フード部と連通する部分のいずれか一方、もしくは双方に、通過するガス量を調節する調整板を移動自在に配置することを特徴とする請求項1から5のいずれか1項記載の吸着塔。 The exhaust gas supply passage and the exhaust gas discharge passage are movable in either or both of the exhaust gas supply hood portion and the portion communicating with the exhaust gas discharge hood portion, or an adjustment plate for adjusting the amount of gas passing therethrough. The adsorption tower according to claim 1, wherein the adsorption tower is arranged.
  7. 前記排ガス供給路と前記排ガス排出路は、外部に配置される切り替えバルブの切り替え操作により、前記排ガスが前記排ガス供給路から前記排ガス排出路に透過する定常状態と、前記排ガスが前記排ガス排出路から前記排ガス供給路に透過する逆流状態とすることを特徴とする請求項1から4のいずれか1項に記載の吸着塔。 The exhaust gas supply path and the exhaust gas discharge path are in a steady state in which the exhaust gas permeates from the exhaust gas supply path to the exhaust gas discharge path by a switching operation of a switching valve disposed outside, and the exhaust gas from the exhaust gas discharge path. The adsorption tower according to any one of claims 1 to 4, wherein the adsorption tower is in a reverse flow state that permeates through the exhaust gas supply path.
  8. 前記サドル部材は、上部に前記排ガスの透過が可能な貫通孔を設けることを特徴とする請求項1から7のいずれか1項記載の吸着塔。 The adsorption tower according to any one of claims 1 to 7, wherein the saddle member is provided with a through-hole through which the exhaust gas can permeate.
  9. 前記サドル部材は、側部に前記排ガスの透過が可能で、かつ、前記吸着材の透過を阻止するルーバを設けることを特徴とする請求項1から7のいずれか1項記載の吸着塔。 8. The adsorption tower according to claim 1, wherein the saddle member is provided with a louver on a side portion thereof that allows the exhaust gas to pass therethrough and prevents the adsorbent from passing therethrough.
PCT/JP2009/050778 2009-01-20 2009-01-20 Adsorption tower of dry gas treatment equipment WO2010084577A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010547338A JP5351902B2 (en) 2009-01-20 2009-01-20 Adsorption tower of dry exhaust gas treatment equipment
PCT/JP2009/050778 WO2010084577A1 (en) 2009-01-20 2009-01-20 Adsorption tower of dry gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050778 WO2010084577A1 (en) 2009-01-20 2009-01-20 Adsorption tower of dry gas treatment equipment

Publications (1)

Publication Number Publication Date
WO2010084577A1 true WO2010084577A1 (en) 2010-07-29

Family

ID=42355652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050778 WO2010084577A1 (en) 2009-01-20 2009-01-20 Adsorption tower of dry gas treatment equipment

Country Status (2)

Country Link
JP (1) JP5351902B2 (en)
WO (1) WO2010084577A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712667A3 (en) * 2012-09-27 2014-05-14 Societa' per Azioni Curti - Costruzioni Meccaniche Adsorption filter
CN108067084A (en) * 2018-02-07 2018-05-25 上海穗杉实业股份有限公司 A kind of pernicious gas adsorption tower and its processing method
CN113019068A (en) * 2021-05-24 2021-06-25 中国恩菲工程技术有限公司 Oxygen-making adsorption tower
CN117282227A (en) * 2023-11-23 2023-12-26 中国华能集团清洁能源技术研究院有限公司 Low-temperature flue gas adsorption tower with flue gas mixing function and low-temperature flue gas adsorption system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372774A (en) * 1976-12-10 1978-06-28 Unitika Ltd Gas treating apparatus
JPS5396968A (en) * 1977-02-04 1978-08-24 Unitika Ltd Treating apparatus for gas
JPS6064618A (en) * 1983-09-20 1985-04-13 Mitsubishi Heavy Ind Ltd Solid-gas catalytic reaction apparatus
JPH07194962A (en) * 1993-12-29 1995-08-01 Nippon Furnace Kogyo Kaisha Ltd Method for correcting distribution of amount of passing of liquid passing through fixed layer or movable layer and its apparatus
JP2006021096A (en) * 2004-07-07 2006-01-26 Fuji Silysia Chemical Ltd Packed-bed type heat-exchanging adsorption apparatus and method of obtaining gas of specified concentration adsorbate using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372774A (en) * 1976-12-10 1978-06-28 Unitika Ltd Gas treating apparatus
JPS5396968A (en) * 1977-02-04 1978-08-24 Unitika Ltd Treating apparatus for gas
JPS6064618A (en) * 1983-09-20 1985-04-13 Mitsubishi Heavy Ind Ltd Solid-gas catalytic reaction apparatus
JPH07194962A (en) * 1993-12-29 1995-08-01 Nippon Furnace Kogyo Kaisha Ltd Method for correcting distribution of amount of passing of liquid passing through fixed layer or movable layer and its apparatus
JP2006021096A (en) * 2004-07-07 2006-01-26 Fuji Silysia Chemical Ltd Packed-bed type heat-exchanging adsorption apparatus and method of obtaining gas of specified concentration adsorbate using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712667A3 (en) * 2012-09-27 2014-05-14 Societa' per Azioni Curti - Costruzioni Meccaniche Adsorption filter
CN108067084A (en) * 2018-02-07 2018-05-25 上海穗杉实业股份有限公司 A kind of pernicious gas adsorption tower and its processing method
CN113019068A (en) * 2021-05-24 2021-06-25 中国恩菲工程技术有限公司 Oxygen-making adsorption tower
CN113019068B (en) * 2021-05-24 2021-08-31 中国恩菲工程技术有限公司 Oxygen-making adsorption tower
CN117282227A (en) * 2023-11-23 2023-12-26 中国华能集团清洁能源技术研究院有限公司 Low-temperature flue gas adsorption tower with flue gas mixing function and low-temperature flue gas adsorption system
CN117282227B (en) * 2023-11-23 2024-02-13 中国华能集团清洁能源技术研究院有限公司 Low-temperature flue gas adsorption tower with flue gas mixing function and low-temperature flue gas adsorption system

Also Published As

Publication number Publication date
JP5351902B2 (en) 2013-11-27
JPWO2010084577A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
KR102003148B1 (en) Integrated desulfurization and denitration of flue gas into coke oven purification process and equipment
RU2697688C1 (en) Flue gas cleaning device with activated carbon and flue gas cleaning method
KR100941400B1 (en) Integrated multistage type apparatus for processing exhaust gas
CN105233673B (en) A kind of carbon base catalyst system for desulfuration and denitration and method
JP5351902B2 (en) Adsorption tower of dry exhaust gas treatment equipment
CZ443389A3 (en) Process for separating undesirable components from a liquid and apparatus for making the same
CN109603409B (en) Flue gas purification system and flue gas purification method
US20180001250A1 (en) Air cleaning system
CN113828110A (en) Moving bed adsorption tower and flue gas purification system with same
KR100941399B1 (en) Apparatus and method for processing exhaust gas
US8647418B2 (en) Adsorption tower of dry exhaust gas treatment device
JP2010188333A (en) Method of cleaning fluidized bed of diesel exhaust
CN109772097B (en) Activated carbon method flue gas purification device and flue gas purification method
CN113828109A (en) Flue gas purification system and moving bed adsorption tower with distributor thereof
US20110315017A1 (en) Regeneration tower and dry apparatus for exhaust-gas treatment
CN109569184B (en) Analytic tower, flue gas purification system and flue gas purification method
JP3225082B2 (en) Exhaust gas treatment method
KR102484059B1 (en) Fludized Bed Adsorption Unit
CN207342416U (en) A kind of adsorption tower system and system for desulfuration and denitration
CN217887543U (en) Active burnt SOx/NOx control material circulation system
CN220939885U (en) Denitration adsorbent regeneration and nitrogen oxide recovery system
CN209952522U (en) Analytic tower
CN209952521U (en) Flue gas purification system
CN217662567U (en) Two-stage double-bed cross-flow type active coke desulfurization and denitrification device
CN115105950A (en) Active burnt SOx/NOx control material circulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838769

Country of ref document: EP

Kind code of ref document: A1