WO2010083643A1 - 节能换气装置 - Google Patents

节能换气装置 Download PDF

Info

Publication number
WO2010083643A1
WO2010083643A1 PCT/CN2009/070240 CN2009070240W WO2010083643A1 WO 2010083643 A1 WO2010083643 A1 WO 2010083643A1 CN 2009070240 W CN2009070240 W CN 2009070240W WO 2010083643 A1 WO2010083643 A1 WO 2010083643A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fresh air
sewage
core
channels
Prior art date
Application number
PCT/CN2009/070240
Other languages
English (en)
French (fr)
Inventor
曾国辉
Original Assignee
Zeng Guohui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeng Guohui filed Critical Zeng Guohui
Priority to PCT/CN2009/070240 priority Critical patent/WO2010083643A1/zh
Publication of WO2010083643A1 publication Critical patent/WO2010083643A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to an energy-saving ventilating structure, and more particularly to an energy-saving ventilating device for indoor and outdoor air heat exchange and ventilation.
  • FIG. 1 is a schematic diagram of a heat exchange device of a ventilation system, which comprises a casing and is installed in the casing.
  • Heat exchange core The heat exchange core 1 includes a flow path 2 and a flow path 3 which are isolated from each other and perpendicular to each other. Installation and use ⁇ , the left side of the heat exchange unit in Figure 1 can be installed indoors, and the right side can be installed outdoors.
  • the indoor sewage enters the heat exchange core from the air inlet of the flow channel 2; and the outside air enters the heat exchange core from the air inlet of the flow channel 3; the gas of different temperatures is respectively in the isolated flow channel 2 and The flow path 3 flows and exchanges heat.
  • the heat exchange core of this structure has obvious drawbacks:
  • the heat exchange runner 11 is densely covered with a small flow passage 12, so that the runner has a large heat exchange area.
  • the runner is driven by a drive unit 13.
  • a partition structure 14 divides the runner into upper and lower portions, respectively Exhaust passage 15 and intake passage 16.
  • Working ⁇ the runner rotates at a lower speed.
  • the dirty air in the room and the fresh air in the outside flow through the runner 11 in a reverse flow manner, and respectively transmit heat to the upper and lower portions of the runner 11 respectively.
  • the upper and lower parts of the runner are interchanged, and heat exchange is performed with the intake passage 16 and the exhaust passage 15, respectively, to achieve heat recovery.
  • heat exchange devices utilizing such heat exchange wheels have the following disadvantages:
  • the heat exchange runner has a short flow path, and the heat dissipation (or heat absorption) of the airflow in the heat exchange core is short, and the heat dissipation (or heat absorption) is insufficient, which reduces the heat recovery efficiency.
  • the technical problem to be solved by the present invention is to provide a ventilating device with high heat exchange efficiency and reasonable structure in view of the defects of the heat exchange efficiency of the above-mentioned heat exchange device of the prior art.
  • an energy-saving ventilating device comprising a casing, a heat exchanger installed in the casing, a sewage fan that discharges the dirty air to the outside, and a direction a fresh air fan for supplying fresh air indoors;
  • the casing is provided with a separate sewage inlet, a sewage outlet, a fresh air inlet and a fresh air outlet;
  • the heat exchanger includes at least one heat exchange core, the heat exchange core And comprising two sets of mutually independent and alternately adjacent heat exchange channels, each set of said heat exchange channels comprising two ports, said two sets of said ports of said heat exchange channels being separately disposed in said heat exchange Four different parts of the core body to achieve mutual isolation and concentrated inflow and outflow, and respectively correspond to the sewage inlet, the sewage outlet, the fresh air inlet and the fresh air outlet;
  • the sewage and the fresh air are respectively introduced into the two heat exchange channels by the sewage inlet and the fresh air inlet by the sewage fan and the fresh air fan, and are reversely flowed for heat exchange. And discharging from the sewage outlet and the fresh air outlet respectively; the heat exchange passage is flat and elongated, and the total flow of the sewage or fresh air in the respective heat exchange passages is at least the cross section of the heat exchange passage is the largest The diameter of the circumscribed circle is 3 times.
  • the ports of the heat exchange channels of the heat exchange core are respectively located on two mutually perpendicular sides of the heat exchange core, and the heat exchange The ports of the other set of heat exchange channels of the core are respectively located on the other two mutually perpendicular sides of the heat exchange core.
  • the heat exchanger has two or more heat exchange cores in accordance with the heat exchange flow path of each adjacent two heat exchange cores
  • the symmetrical faces are connected side by side.
  • the two sets of heat exchange channels of the one heat exchange core are directly connected to the two heat exchange channels of the adjacent one of the heat exchange cores. Or it can be connected through the air guiding box.
  • the energy-saving heat exchange device further includes a baffle or a duct separating the sewage inlet and the fresh air outlet; and/or further comprising separating the fresh air The baffle or duct of the inlet and the sewage outlet.
  • the present invention has the following beneficial effects: the inhaled sewage and fresh air respectively flow in two mutually isolated heat exchange channels of the heat exchange core, and perform heat exchange, and the two heat exchange channels are mutually Parallel isolation, and the direction of the airflow is reversed; and, the total flow of the dirty or fresh air in the respective heat exchange channels is at least three times the diameter of the largest circumscribed circle of the cross section of the heat exchange channel; thereby increasing the exchange of sewage and fresh air During the heat, the heat exchange between the dirty wind and the fresh air is uniform, which will not cause a large temperature difference and improve the heat exchange efficiency.
  • a plurality of heat exchange cores can be used in combination to increase the length of the heat exchange channels, thereby further increasing the exchange between the dirty air and the fresh air. Heat, further improve the heat exchange efficiency, so that the temperature of the fresh air entering the room is very close to the temperature of the discharged sewage, reducing the temperature difference, thereby reducing energy consumption, and being more environmentally friendly and energy-saving.
  • Figure 1 is a schematic view of a prior art core and wind
  • FIG. 2 is a schematic structural view of a prior art rotary heat exchanger core
  • Figure 3 is a schematic view of a first embodiment of the energy-saving ventilation system of the present invention.
  • FIG. 4 is a perspective view of the heat exchange core of the present invention
  • Figure 5 is a schematic view showing a structural form of the heat exchange core of the present invention.
  • FIG. 6 is a schematic view showing another structural form of the heat exchange core of the present invention.
  • Figure 7 is a schematic view showing another structural form of the heat exchange core of the present invention.
  • Figure 8 is a schematic view showing a second embodiment of the energy-saving ventilation system of the present invention.
  • FIG. 9 is a schematic view showing another structural form of a second embodiment of the energy-saving ventilation system of the present invention.
  • Figure 10 is a schematic view showing another structural form of the second embodiment of the energy-saving ventilation system of the present invention.
  • Figure 11 is a schematic view showing a third embodiment of the energy-saving ventilation system of the present invention.
  • Figure 12 is a schematic view of a fourth embodiment of the energy saving ventilation system of the present invention.
  • FIG. 3 it is a first embodiment of the energy-saving ventilating system of the present invention, including a ventilating chamber 110, a fresh air source 120, and a new air source 120 and a ventilating chamber 110.
  • Ventilation device 130 The required ventilation room 110 can be various indoor spaces that need to be ventilated, such as a restaurant, a movie theater, a meeting place, a hot pot restaurant, and the like.
  • the new source 120 can be used in any outdoor space or in other places where fresh air can be provided to provide fresh air to the room for ventilation.
  • indoor air (turbidity) can also be discharged directly into the outdoor space, as long as it is avoided.
  • the ventilating device 130 includes a housing 131, a dirty fan and a fresh air fan 132, and a heat exchanger installed in the housing 131.
  • the casing 131 includes a dirty air inlet 1311 that communicates with the ventilating chamber 110, a fresh air outlet 1314 that communicates with the ventilating chamber 110, a fresh air inlet 1313 that communicates with the fresh air source 120, and a new air inlet 1313 that draws in fresh air. Stained wind to the outside of the dirty air outlet 1312.
  • the fresh air fan and the dirty air fan 132 are installed in the casing 131, and are installed at the positions of the fresh air inlet 1313 and the dirty air inlet 1311, respectively, to provide power for the flow of the dirty air and the fresh air.
  • the dirty fan and the fresh air fan 132 can also be mounted outside the housing 131 or mounted to other locations as long as the airflow can be carried into the heat exchanger.
  • the heat exchanger uses a heat exchange core 133, and the heat exchange core 133 includes two sets of heat exchange passages that are parallel to each other, and the heat exchange passages include a dirty air flow passage and a fresh air flow passage.
  • Each set of heat exchange channels includes two ports, and the ports of the two heat exchange channels are separately disposed at four different parts of the heat exchange core to achieve mutual isolation and concentrated inflow and outflow, and respectively, and the sewage inlet, Sewage outlets, fresh air imports and fresh air outlets correspond.
  • the dirty air and the fresh air enter the two heat exchange channels respectively from the sewage inlet and the fresh air inlet, and carry out heat exchange in the reverse flow, and are respectively discharged from the sewage outlet and the fresh air outlet.
  • the heat exchange flow path is flat and long, and the total flow of the dirty air or fresh air in the respective heat exchange flow paths is at least three times the maximum circumscribed circle diameter (ie, the heat exchange flow path width) of the heat exchange flow path section.
  • the heat exchange core of the present embodiment is composed of a plurality of separators 25 having a heat exchange function and a casing 26 as shown in FIG. 4.
  • each adjacent layer can be formed to be isolated from each other.
  • the gas chambers whose respective open faces are symmetric along the center form two sets of heat exchange passages which are separated from each other in parallel.
  • Each set of heat exchange channels includes two ports, and the ports of the two heat exchange channels are separately disposed at four different parts of the heat exchange core to achieve mutual isolation and concentrated inflow and outflow, and respectively, and the sewage inlet, Sewage outlets, fresh air imports and fresh air outlets correspond.
  • the dirty air flow passage is provided with a dirty air flow port 1331 and a dirty air flow port 1332 respectively communicating with the dirty air inlet 1311 and the dirty air outlet 1312 of the casing 131; the fresh air flow channel is provided separately from the casing 131 The fresh air inlet 1313 and the fresh air outlet 1313 are connected to the fresh air flow port 1333 and the fresh air flow port 1334; thereby introducing the dirty air requiring the ventilation chamber 110 into the dirty air flow passage, introducing fresh air into the fresh air flow passage, and performing heat exchange. After that, the sewage is discharged, and the fresh air enters the ventilation chamber 110 to realize the indoor ventilation.
  • the dirty air flow port 1331 and the dirty air flow port 1332 of the heat exchange core 133 are respectively located on two mutually perpendicular sides of the heat exchange core 133; and the fresh air flow port 1333 and The fresh air flow port 13 34 is respectively located on the other two mutually perpendicular sides of the heat exchange core 133, that is, the two heat exchange channels are L-shaped and inverted L-shaped, so that the layout can be conveniently combined with the plurality of heat exchange cores 133 The combination used.
  • the layout of the tuyere of the heat exchange core 133 can also be adjusted as needed: As shown in FIG. 6, the dirty air flow port 1331 and the dirty air flow port 1332 of the heat exchange core 133 are located in the heat exchange core 133. On the same side, the fresh air flow port 1333 and the fresh air flow port 1334 are respectively located on two mutually perpendicular sides of the heat exchange core 133, and are not on the same side as the dirty flow port 1331 and the dirty flow port 1332. .
  • FIG. 6 the dirty air flow port 1331 and the dirty air flow port 1332 of the heat exchange core 133 are located in the heat exchange core 133.
  • the fresh air flow port 1333 and the fresh air flow port 1334 are respectively located on two mutually perpendicular sides of the heat exchange core 133, and are not on the same side as the dirty flow port 1331 and the dirty flow port 1332.
  • the dirty air flow port 1331 and the dirty air flow port 1332 of the heat exchange core 133 are located on the same side of the heat exchange core 133, and the fresh air flow port 1333 and the fresh air flow port 1334 are located.
  • the other side of the hot core 133 is on the same side.
  • the ventilating device 130 is installed on the wall of the ventilating chamber 110, the dirty air inlet 1311 is disposed at the upper portion, and the dirty air fan 132 is installed inside the dirty air inlet 1311 to smear the indoor air.
  • the position of the fresh air fan and the dirty air fan 132 can be arbitrarily adjusted as needed.
  • the dirty wind exchanges heat with the fresh air in the fresh air flow passage in the turbid wind passage, thereby avoiding the loss of the energy of the discharged dirty air.
  • the heat is transferred to the fresh air, and the temperature of the fresh air is raised, so that the temperature of the fresh air entering the room from the fresh air flow port 1334 can basically reach the indoor temperature; or, when the indoor air temperature is At lower temperatures, the fresh air can be cooled by the dirty wind, which avoids the excessive temperature of the fresh air entering the room and reduces the energy consumption.
  • the dirty air that has been exchanged by the dirty air flow passage is directly discharged through the dirty air flow port 1332 provided outside; and the fresh air passing through the fresh air flow passage enters the indoor air through the fresh air flow port 1334 installed in the room to realize the air exchange to the indoor. And has the effect of energy saving.
  • the heat exchanger comprises two heat exchange cores 233 arranged side by side in parallel, according to each adjacent two
  • the heat exchange channels of the heat exchange cores are formed side by side in a symmetrical manner along the intersecting faces.
  • the dirty air flow port 2331 and the dirty air flow port 2332 of the heat exchange core 233 are respectively located on two mutually perpendicular sides of the heat exchange core 233, and the fresh air flow port 23 33 and the fresh air flow port 2334 are respectively located in the heat exchange.
  • the other two sides of the core 233 are perpendicular to each other.
  • the dirty air flow port 2332 of one heat exchange core 233 is connected to the dirty air flow port 2331 of the other heat exchange core 233 to form a series of dirty air flow paths; and the fresh air flow port 2334 of one heat exchange core 233 It is connected to the fresh air flow port 2333 of the other heat exchange core 233 to form a new air flow path in series.
  • the casing 231 is provided with an air guiding sleeve 234 for connecting the fresh air passages of the two heat exchange cores 233.
  • the fresh air flow passage can also be connected by other means, for example, through a wind duct or the like.
  • the dirty air outlet 2312 is disposed on the upper side of the casing 231, and a dirty air fan 232 is installed inside the dirty air outlet 2312 to be connected to the dirty air flow path outlet 2332 of the heat exchange core 233 to discharge the dirty air.
  • FIG. 9 is a schematic view of three heat exchange cores 233 side by side; as shown in FIG. 10, is a schematic view of four heat exchange cores 233 side by side, the working principle is the same as that of FIG. 6, so Praise.
  • a third embodiment of the present invention is different from the second embodiment in that the heat exchanger includes two heat exchange cores 333 arranged side by side in the upper and lower rows. And the dirty air flow port 333 of the heat exchange core 333 1 and the dirty air flow port 3332 are respectively located on two mutually perpendicular sides of the heat exchange core 333, and the fresh air flow port 3333 and the fresh air flow port 3334 are respectively located on the other two mutually perpendicular sides of the heat exchange core 333 on.
  • the dirty air flow port 3332 of one heat exchange core 333 is connected to the dirty air flow port 3331 of the other heat exchange core 333 to form a series of dirty air flow paths; a fresh air flow port 33 3 of the heat exchange core 333 4 is connected to the fresh air flow port 3333 of the other heat exchange core 333 to form a new air flow path in series.
  • a new air flow of a heat exchange core 333 In the present embodiment, in order to connect the dirty air flow port 3332 of one heat exchange core 333 with the dirty air flow port 3331 of the other heat exchange core 3 33; a new air flow of a heat exchange core 333
  • the track port 3334 is in communication with the fresh air flow port 3333 of the other heat exchange core 333, and an air guiding sleeve 334 is respectively disposed at the contact position of the two heat exchange cores 333 to achieve communication.
  • other methods can also be used for communication.
  • FIG. 12 it is a fourth embodiment of the present invention, in which the heat exchanger is provided with two heat exchange cores 433 arranged side by side.
  • the flow port ports of the two heat exchange cores 433 are arranged differently, wherein the dirty air flow port 4331 and the dirty air flow port 4332 of the first heat exchange core 433 are respectively located on two mutually perpendicular sides of the heat exchange core 433.
  • the fresh air flow port 4333 and the fresh air flow port 4334 are respectively located on the other two mutually perpendicular sides of the heat exchange core 4 33 .
  • the dirty air flow port 4331 and the dirty air flow port 4332 of the other heat exchange core 433 are respectively located at upper and lower positions on the same side of the heat exchange core 433; and the fresh air flow port 4333 and the fresh air flow port 4334 are respectively located.
  • the two heat exchange cores 433 are directly butted up and down, and the fresh air flow port 4334 of the lower heat exchange core 433 is docked with the fresh air flow port 4333 of the upper heat exchange core 433; and the upper heat exchange core
  • the dirty air flow port 4332 of 433 is docked with the dirty air flow port 4331 of the lower heat exchange core 433 through the air guiding sleeve 434; thereby forming a series of fresh air flow channels and dirty air flow paths.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

技术领域
本发明涉及节能换气结构, 更具体地说, 涉及一种室内外空气热交换及通风换 气的节能换气装置。
背景技术
[2] 在一些室内的场合 (例如一些餐饮店、 电影院、 会场等) 需要进行通风换气, 以保持室内的空气清新。 一些常规的做法是直接引入新风, 并排出室内的污风 。 在室内的污风被排出吋, 往往会带走室内的热量或冷气, 造成室内温度升高 或降低, 从而增加室内的空调的负荷, 消耗能量。
[3] 为此, 出现了一些应用于室内的节能通风换气的装置, 如图 1所示, 是一种换 气系统的换热装置的示意图, 该换热装置包括外壳以及安装在外壳内的换热芯 体。 其中, 换热芯体 1内包括相互隔绝、 并相互垂直的流道 2和流道 3。 安装使用 吋, 可以将图 1中的换热装置的左侧安装到室内, 而右侧安装到室外。 室内的污 风从流道 2的进风口进入到换热芯体中; 而外界的空气从流道 3的进风口进入到 换热芯体中; 不同温度的气体分别在隔绝的流道 2和流道 3内流动并进行热交换 。 然而, 这种结构的换热芯体具有很明显的缺陷:
[4] (1) 靠近流道 2进风口和流道 3进风口交界处的温差极大, 而靠近流道 2出风口 和流道 3出风口交界处的温差极小, 造成芯体各部位的散热效率不均匀, 热交换 效率较低。
[5] (2) 换热芯体的流道通常较短, 气流在换热芯体内的换热吋间较短, 换热不 充分, 降低了热回收效率。
[6] (3) 由于芯体的结构形式限制, 若要增加流道长度来进行更充分的换热, 则 需要增加换热芯两个方向上的尺寸, 极大的增加了换热芯体积。
[7] 另一类是转轮式热回收新风机, 如图 2所示, 是一种热交换转轮的构造示意图
, 该热交换转轮 11上密布了微小的流道 12, 使转轮具有较大的热交换面积。 转 轮通过驱动装置 13驱动。 一个分隔结构 14将转轮分隔成上下两个部分, 分别为 排气通道 15和进气通道 16。 工作吋, 该转轮以一较低速旋转, 理想状况下, 室 内的污浊空气与室外的新鲜空气以逆向流动的方式流过转轮 11, 分别与转轮 11 的上下两部分进行热传递, 转轮转动半圏后, 转轮的上下两个部分互换, 并分 别与进气通道 16和排气通道 15进行热交换, 实现热回收目的。 但是, 利用这种 热交换转轮的热交换装置具有以下几个缺点:
[8] ( 1) 热交换转轮的流道短, 气流在换热芯体内的散热 (或吸热) 吋间较短, 散热 (或吸热) 不充分, 降低了热回收效率。
[9] (2) 热交换转轮需要一个驱动装置, 自身需要消耗能量。
[10] (3) 因转轮是在旋转过程中换热, 因此上半部分是吸热 (或散热) 后才转到 下半部分进气通道里与新鲜空气进行热交换, 并不是即吋交换, 因此降低了换 热效率。
[11] (4) 其结构和工作原理决定了热交换转轮进气通道和排气通道间的气体会相 互渗漏, 无法完全避免交叉污染。
发明内容
[12] 本发明要解决的技术问题在于, 针对现有技术的上述换热装置的换热效率较低 的缺陷, 提供一种换热效率高、 结构合理的换气装置。
[13] 本发明解决其技术问题所釆用的技术方案是: 一种节能换气装置, 包括壳体、 安装在所述壳体内的热交换器、 向室外排出污风的污风风扇以及向室内供应新 风的新风风扇; 所述壳体上设有分开设置的污风进口、 污风出口、 新风进口和 新风出口; 所述热交换器包括至少一个换热芯体, 所述换热芯体包括两组相互 隔绝且交替相邻的换热流道, 每一组所述换热流道包括两个端口, 两组所述换 热流道的所述端口被分开集中设置在所述换热芯体的四个不同部位以实现相互 隔绝和集中进出风, 并分别与所述污风进口、 污风出口、 新风进口和新风出口 相对应;
[14] 污风和新风在所述污风风扇和所述新风风扇的作用下, 分别由所述污风进口和 所述新风进口进入所述两组换热流道内, 并逆向流动进行热交换, 并分别由所 述污风出口和所述新风出口排出; 所述换热流道为扁长形, 污风或新风在各自 换热流道内的总流程至少是所述换热流道截面最大外接圆直径的 3倍。 [15] 在本发明的节能换气装置中, 所述换热芯体的一组换热流道的端口分别位于所 述换热芯体的两个互相垂直的侧面上, 而所述换热芯体的另一组换热流道的端 口分别位于所述换热芯体的另外两个相互垂直的侧面上。
[16] 在本发明的节能换气装置中, 所述热交换器由两个或两个以上所述换热芯体按 照每相邻两个所述换热芯体的换热流道沿相接面对称的方式并排串连而成。
[17] 在本发明的节能换气装置中, 所述一个所述换热芯体的两组换热流道与相邻一 个所述换热芯体的两组换热流道直接对接接通或者通过导风盒相接通。
[18] 在本发明的节能换气装置中, 所述节能换热装置还包括隔开所述污风进口与所 述新风出口的档板或风管; 和 /或还包括隔开所述新风进口和所述污风出口的档 板或风管。
[19] 实施本发明具有以下有益效果: 吸入的污风和新风分别在换热芯体的两个相互 隔绝的两组换热流道内流动, 并进行热交换, 并且两组换热流道相互平行隔绝 、 并气流方向相逆; 并且, 污风或新风在各自换热流道内的总流程至少是所述 换热流道截面最大外接圆直径的 3倍; 从而增加了污风和新风的换热吋间, 并且 污风和新风的换热均匀, 不会造成较大的温差, 提高了换热效率。
[20] 另外, 由于两组换热流道的气流方向相逆, 因而, 可以将多个换热芯体组合使 用, 增加换热流道的长度, 从而进一步增加污风和新风之间的换热, 进一步的 提高换热效率, 使得进入室内的新风的温度非常接近于排出的污风的温度, 降 低温差, 从而降低能耗, 更加的环保、 节能。
附图说明
[21] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[22] 图 1是现有技术的芯体和走风示意图;
[23] 图 2是现有技术的转轮式换热芯体的构造示意图;
[24] 图 3是本发明的节能换气系统的第一实施例的示意图;
[25] 图 4是本发明的换热芯体的立体示意图
[26] 图 5是本发明的换热芯体的一种结构形式的示意图;
[27] 图 6是本发明的换热芯体的另一种结构形式的示意图;
[28] 图 7是本发明的换热芯体的另一种结构形式的示意图; [29] 图 8是本发明的节能换气系统的第二实施例的示意图;
[30] 图 9是本发明的节能换气系统的第二实施例的另一种结构形式的示意图;
[31] 图 10是本发明的节能换气系统的第二实施例的另一种结构形式的示意图;
[32] 图 11是本发明的节能换气系统的第三实施例的示意图;
[33] 图 12是本发明的节能换气系统的第四实施例的示意图。
具体实施方式
[34] 如图 3所示, 是本发明的节能换气系统的第一个实施例, 包括需换气室 110、 新 风源 120、 以及安装在新风源 120和需换气室 110之间的换气装置 130。 该需换气 室 110可以是各种需要换气的室内空间, 例如餐饮店、 电影院、 会场、 火锅店等 等。 而新风源 120可以为室外的任意空间或者其他能够提供新风场合, 为室内提 供新鲜空气, 实现对室内的换气。 当然, 室内的污风 (浊气) 也可以直接排放 到室外空间中, 只要避免被重新吸入即可。
[35] 该换气装置 130包括壳体 131、 污风风扇和新风风扇 132以及安装在壳体 131内的 热交换器。 该壳体 131包括与需换气室 110相通吸入污风的污风进口 1311、 与需 换气室 110相通送入新风的新风出口 1314、 与新风源 120相通吸入新风的新风进 口 1313、 以及排出污风到外界的污风出口 1312。 在本实施例中, 新风风扇和污 风风扇 132安装在壳体 131内, 分别安装在新风进口 1313和污风进口 1311的位置 , 为污风和新风的流动提供动力。 当然, 污风风扇和新风风扇 132也可以安装到 壳体 131外侧, 或者安装到其他位置, 只要能够带动气流进入到热交换器内即可
[36] 该热交换器釆用一个换热芯体 133, 该换热芯体 133包括两组相互平行隔绝的换 热流道, 该换热流道包括污风流道和新风流道。 每一组换热流道包括两个端口 , 两组换热流道的端口被分开集中设置在换热芯体的四个不同部位以实现相互 隔绝和集中进出风, 并分别与污风进口、 污风出口、 新风进口和新风出口相对 应。 污风和新风在污风风扇和新风风扇的作用下, 分别由污风进口和新风进口 进入两组换热流道内, 并逆向流动进行热交换, 并分别由污风出口和新风出口 排出。 该换热流道为扁长形, 污风或新风在各自换热流道内的总流程至少是换 热流道截面最大外接圆直径 (即换热流道宽度) 的 3倍。 大大增加了气流在污风 流道和新风流道内的流动行程和吋间, 使得两股气流能够充分的进行热交换, 提高换热效率。
[37] 本实施例的换热芯如图 4所示, 是由多层具有换热功能的隔片 25和外壳 26组成 , 将隔片 25叠放起来后可形成每相邻层相互隔绝且各自开口面沿中心对称的气 室, 形成相互平行隔绝的两组换热流道。 每一组换热流道包括两个端口, 两组 换热流道的端口被分开集中设置在换热芯体的四个不同部位以实现相互隔绝和 集中进出风, 并分别与污风进口、 污风出口、 新风进口和新风出口相对应。
[38] 该污风流道设有分别与壳体 131的污风进口 1311和污风出口 1312相连通的污风 流道端口 1331和污风流道端口 1332; 该新风流道设有分别与壳体 131的新风进口 1313和新风出口 1314相连通的新风流道端口 1333和新风流道端口 1334; 从而将 需换气室 110的污风引入到污风流道内, 将新风引入到新风流道内, 经过热交换 后, 将污风排出, 而新风进入到需换气室 110, 实现室内的换气。
[39] 如图 5所示, 该换热芯体 133的污风流道端口 1331与污风流道端口 1332分别位于 换热芯体 133的两个互相垂直的侧面上; 而新风流道端口 1333和新风流道端口 13 34分别位于换热芯体 133的另外两个互相垂直的侧面上, 即两组换热流道呈 L形 和倒 L形, 如此布局可以方便与多个换热芯体 133的组合使用。
[40] 当然, 换热芯体 133的风口的布局还可以根据需要进行调整: 如图 6所示, 换热 芯体 133的污风流道端口 1331与污风流道端口 1332位于换热芯体 133的同一侧面 上, 而新风流道端口 1333和新风流道端口 1334分别位于换热芯体 133的两个相互 垂直的侧面上, 并且与污风流道端口 1331与污风流道端口 1332不在同一侧面上 。 或者, 如图 7所示, 换热芯体 133的污风流道端口 1331与污风流道端口 1332位 于换热芯体 133的同一侧面上, 而新风流道端口 1333和新风流道端口 1334位于换 热芯体 133的另一个同一侧面上。 当然, 也可以根据需要调整成其他形式的布局
[41] 如图 3所示, 换气装置 130安装在需换气室 110的墙壁上, 污风进口 1311设置在 上部, 在污风进口 1311的内侧安装污风风扇 132, 将室内的污风抽入, 并通过换 热芯体 133的污风流道端口 1331进入到污风流道; 而新风进口 1313设置在室外, 利用室外空气作为新风源 120, 并且在新风进口 1313的内侧安装新风风扇 132, 将室外的新风抽入, 并通过换热芯体 133的新风流道端口 1333进入到新风流道。 当然, 新风风扇和污风风扇 132的位置可以根据需要进行任意调整。
[42] 污风在浊风流道内与新风流道内的新风进行热交换, 从而避免了排出的污风的 能量的损失。 例如, 当室内的污风温度较高吋, 将热量传递给新风, 提高新风 的温度, 使得从新风流道端口 1334进入室内的新风的温度基本能够达到室内的 温度; 或者, 当室内的污风温度较低吋, 可通过污风对新风进行冷却, 避免了 进入室内的新风的温度过高, 降低了能耗。 经过污风流道换热的污风直接通过 设在室外的污风流道端口 1332排出; 而经过新风流道的新风通过设在室内的新 风流道端口 1334进入到室内, 实现对室内的换气, 并具有节能的效果。
[43] 如图 8所示, 是本发明的第二实施例, 其与第一实施例的区别在于, 其热交换 器包括两个左右并排排列的换热芯体 233, 按照每相邻两个换热芯体的换热流道 沿相接面对称的方式并排串连而成。 换热芯体 233的污风流道端口 2331与污风流 道端口 2332分别位于换热芯体 233的两个互相垂直的侧面上, 而新风流道端口 23 33和新风流道端口 2334分别位于换热芯体 233的另外两个相互垂直的侧面上。 一 个换热芯体 233的污风流道端口 2332与另一个换热芯体 233的污风流道端口 2331 相接通, 组成串联的污风流道; 而一个换热芯体 233的新风流道端口 2334与另一 个换热芯体 233的新风流道端口 2333相接通, 组成串联的新风流道。
[44] 在本实施例中, 壳体 231上设有导风套 234, 用于连接两个换热芯体 233的新风 流道。 当然, 也可以通过其它方式将新风流道连通, 例如通过导风管等。 而污 风出口 2312设置在壳体 231的上侧, 并在污风出口 2312内侧安装污风风扇 232, 与换热芯体 233的污风流道出口 2332相接通, 排出污风。
[45] 当然, 还可以将多个换热芯体 233并排排列, 并将每一换热芯体 233的污风流道 串联起来, 同吋将每一换热芯体 233的新风流道串联起来, 形成较长的换热路径 , 使得污风和新风能够充分的换热。 如图 9所示, 是将三个换热芯体 233左右并 排的示意图; 如图 10所示, 是将四个换热芯体 233左右并排的示意图, 其工作原 理与图 6相同, 故不赞述。
[46] 如图 11所示, 是本发明的第三实施例, 其与第二实施例的区别在于, 热交换器 包括上下并排排列的两个的换热芯体 333。 并且换热芯体 333的污风流道端口 333 1与污风流道端口 3332分别位于换热芯体 333的两个互相垂直的侧面上, 而新风 流道端口 3333和新风流道端口 3334分别位于换热芯体 333的另外两个相互垂直的 侧面上。 一个换热芯体 333的污风流道端口 3332与另一个换热芯体 333的污风流 道端口 3331相接通, 组成串联的污风流道; 一个换热芯体 333的新风流道端口 33 34与另一个换热芯体 333的新风流道端口 3333相接通, 组成串联的新风流道。 从 而可以增加污风流道和新风流道的长度, 增加污风和新风之间的换热吋间和面 积, 使得热交换更加的充分。
[47] 在本实施例中, 为了将一个换热芯体 333的污风流道端口 3332与另一换热芯体 3 33的污风流道端口 3331连通; 将一个换热芯体 333的新风流道端口 3334与另一个 换热芯体 333的新风流道端口 3333连通, 在两个换热芯体 333的相接位置处分别 设有导风套 334, 从而实现连通。 当然, 也可以通过其他的方法进行连通。
[48] 如图 12所示, 是本发明的第四实施例, 其中, 热交换器釆用两个上下并排排列 的换热芯体 433。 该两个换热芯体 433的流道端口排列不同, 其中第一个换热芯 体 433的污风流道端口 4331与污风流道端口 4332分别位于换热芯体 433的两个互 相垂直的侧面上; 而新风流道端口 4333和新风流道端口 4334分别位于换热芯体 4 33的另外两个相互垂直的侧面上。 另一个换热芯体 433的污风流道端口 4331与污 风流道端口 4332分别位于换热芯体 433的同一侧面的上下两个位置上; 而新风流 道端口 4333和新风流道端口 4334分别位于换热芯体 433的另外两个相互垂直的侧 面上。
[49] 两个换热芯体 433上下直接对接, 下方的换热芯体 433的新风流道端口 4334与上 方的换热芯体 433的新风流道端口 4333对接; 而上方的换热芯体 433的污风流道 端口 4332通过导风套 434与下方的换热芯体 433的污风流道端口 4331对接; 从而 组成串联的新风流道和污风流道。
[50] 当以上实施例应用于低噪音要求的场合吋, 如卧室、 办公室、 会议室等, 还可 利用其狭长的新风流道和污风流道来极大的降低由外界传入室内的噪音。

Claims

权利要求书
[1] 一种节能换气装置, 包括壳体、 安装在所述壳体内的热交换器、 向室外排 出污风的污风风扇以及向室内供应新风的新风风扇; 所述壳体上设有分开 设置的污风进口、 污风出口、 新风进口和新风出口; 所述热交换器包括至 少一个换热芯体, 所述换热芯体包括两组相互隔绝且交替相邻的换热流道 , 每一组所述换热流道包括两个端口, 两组所述换热流道的所述端口被分 别集中设置在所述换热芯体的四个不同部位以实现相互隔绝和集中进出风 , 并分别与所述污风进口、 污风出口、 新风进口和新风出口相对应; 其特 征在于:
污风和新风在所述污风风扇和所述新风风扇的作用下, 分别由所述污风进 口和所述新风进口进入所述两组换热流道内, 逆向流动并进行热交换, 再 分别由所述污风出口和所述新风出口排出; 所述换热流道为扁长形, 污风 或新风在各自换热流道内的总流程是所述换热流道截面最大外接圆直径的 3 倍以上。
[2] 根据权利要求 1所述的节能换气装置, 其特征在于, 所述换热芯体的一组换 热流道的端口分别位于所述换热芯体的两个互相垂直的侧面上, 而所述换 热芯体的另一组换热流道的端口分别位于所述换热芯体的另外两个相互垂 直的侧面上。
[3] 根据权利要求 1所述的节能换气装置, 其特征在于, 所述热交换器由两个或 两个以上所述换热芯体按照每相邻两个所述换热芯体的换热流道沿相接面 对称的方式并排串连而成。
[4] 根据权利要求 3所述的节能换气装置, 其特征在于, 一个所述换热芯体的两 组换热流道与相邻一个所述换热芯体的两组换热流道直接对接接通或者通 过导风盒相接通。
PCT/CN2009/070240 2009-01-21 2009-01-21 节能换气装置 WO2010083643A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070240 WO2010083643A1 (zh) 2009-01-21 2009-01-21 节能换气装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070240 WO2010083643A1 (zh) 2009-01-21 2009-01-21 节能换气装置

Publications (1)

Publication Number Publication Date
WO2010083643A1 true WO2010083643A1 (zh) 2010-07-29

Family

ID=42355485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070240 WO2010083643A1 (zh) 2009-01-21 2009-01-21 节能换气装置

Country Status (1)

Country Link
WO (1) WO2010083643A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481225A (en) * 2010-06-16 2011-12-21 Steven Thomas Barson Heat exchanger particularly for use in the ventilation of buildings
CN109268958A (zh) * 2018-10-29 2019-01-25 广东艾尔斯派科技有限公司 一种交换芯及采用该交换芯的恒湿设备
CN109588030A (zh) * 2019-01-23 2019-04-05 山东省邮电工程有限公司 一种户外机柜热交换器
CN110044000A (zh) * 2019-05-17 2019-07-23 宁波东大空调设备有限公司 新型空气能量湿量回收换气装置传热风道结构
CN110319491A (zh) * 2018-03-30 2019-10-11 珠海格力电器股份有限公司 空调室内机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2133797Y (zh) * 1992-10-20 1993-05-19 潘云钢 节能换气机
CN2154981Y (zh) * 1993-04-21 1994-02-02 韩素霞 室温节能换气机
GB2373849A (en) * 2001-03-26 2002-10-02 Christopher John Martin Ventilation heat exchanger
CN2670811Y (zh) * 2003-12-23 2005-01-12 王俊峰 室内换风装置
CN1629553A (zh) * 2003-12-19 2005-06-22 张传征 空气保温交换装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2133797Y (zh) * 1992-10-20 1993-05-19 潘云钢 节能换气机
CN2154981Y (zh) * 1993-04-21 1994-02-02 韩素霞 室温节能换气机
GB2373849A (en) * 2001-03-26 2002-10-02 Christopher John Martin Ventilation heat exchanger
CN1629553A (zh) * 2003-12-19 2005-06-22 张传征 空气保温交换装置
CN2670811Y (zh) * 2003-12-23 2005-01-12 王俊峰 室内换风装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481225A (en) * 2010-06-16 2011-12-21 Steven Thomas Barson Heat exchanger particularly for use in the ventilation of buildings
CN110319491A (zh) * 2018-03-30 2019-10-11 珠海格力电器股份有限公司 空调室内机
CN109268958A (zh) * 2018-10-29 2019-01-25 广东艾尔斯派科技有限公司 一种交换芯及采用该交换芯的恒湿设备
CN109588030A (zh) * 2019-01-23 2019-04-05 山东省邮电工程有限公司 一种户外机柜热交换器
CN109588030B (zh) * 2019-01-23 2024-02-20 山东省邮电工程有限公司 一种户外机柜热交换器
CN110044000A (zh) * 2019-05-17 2019-07-23 宁波东大空调设备有限公司 新型空气能量湿量回收换气装置传热风道结构
CN110044000B (zh) * 2019-05-17 2023-12-08 宁波东大空调设备有限公司 空气能量湿量回收换气装置传热风道结构

Similar Documents

Publication Publication Date Title
KR100651879B1 (ko) 환기시스템
CN102840657B (zh) 改变流道提高效率的空气全热交换器
WO2010083643A1 (zh) 节能换气装置
JP2006125826A (ja) 換気装置
CN203224023U (zh) 改变流道提高效率的空气全热交换器
CN206430313U (zh) 分体式新风换气机
CN108488986A (zh) 一种余热回收型空气处理机组
CN106642498B (zh) 全热交换装置
CN201344610Y (zh) 节能换气装置
WO2017162044A1 (zh) 热交换器
CN100498090C (zh) 具有温湿度双重交换的通风装置
WO2020237742A1 (zh) 基于新风及蒸发制冷的紧凑化叠加数据中心及其组合结构
TWI263020B (en) Ventilation apparatus for exchange of heat and humidity
CN205825327U (zh) 一种带空气净化器的新风主机
WO2011072463A1 (zh) 一种垂直结构的隔离式逆流空气换热装置
KR101459218B1 (ko) 대향류형 열교환기를 장착한 열회수 환기시스템
CN206522892U (zh) 一种用于办公建筑空调系统的温控系统
CN106642640B (zh) 全热交换装置
CN210089079U (zh) 一种空气换热器芯体
CN106642499B (zh) 全热交换装置
CN112097317A (zh) 一种换热芯板、全热交换模块、换气装置和空调
KR101431211B1 (ko) 전열소자를 이용한 대향류 환기장치
TW200622161A (en) Total heat exchanger
JP3092909U (ja) 全熱換気機
CN106642500B (zh) 全热交换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838610

Country of ref document: EP

Kind code of ref document: A1