WO2010083351A2 - Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped - Google Patents

Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped Download PDF

Info

Publication number
WO2010083351A2
WO2010083351A2 PCT/US2010/021097 US2010021097W WO2010083351A2 WO 2010083351 A2 WO2010083351 A2 WO 2010083351A2 US 2010021097 W US2010021097 W US 2010021097W WO 2010083351 A2 WO2010083351 A2 WO 2010083351A2
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline diamond
catalyst
diamond compact
binder material
diamond
Prior art date
Application number
PCT/US2010/021097
Other languages
French (fr)
Other versions
WO2010083351A3 (en
Inventor
Dan E. Scott
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Priority to MX2011007251A priority Critical patent/MX2011007251A/en
Priority to BRPI1007389A priority patent/BRPI1007389A2/en
Priority to CN201080004577XA priority patent/CN102281974A/en
Priority to EP10732116.8A priority patent/EP2379256B1/en
Priority to RU2011133949/02A priority patent/RU2539639C2/en
Priority to EP20169742.2A priority patent/EP3698903A1/en
Priority to CA2749776A priority patent/CA2749776C/en
Publication of WO2010083351A2 publication Critical patent/WO2010083351A2/en
Publication of WO2010083351A3 publication Critical patent/WO2010083351A3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
    • E21B10/55Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/573Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
    • E21B10/5735Interface between the substrate and the cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond

Definitions

  • Embodiments of the invention relate to methods of forming polycrystalline diamond cutting elements having at least a portion of a diamond table substantially free of catalytic material, and to cutting elements so formed.
  • PDC cutting elements in the form of Polycrystalline Diamond Compact (PDC) structures have been commercially available for almost four decades, and PDC cutting elements having a polycrystalline diamond table formed on the end of a supporting substrate for a period in excess of twenty years.
  • the latter type of PDC cutting elements commonly comprises a thin, substantially circular disc (although other configurations are available), commonly termed a “table,” including a layer of superabrasive material formed of diamond crystals mutually bonded under ultrahigh temperatures and pressures and defining a substantially planar front cutting face, a rear face and a peripheral or circumferential edge, at least a portion of which is employed as a cutting edge to cut the subterranean formation being drilled by a drill bit on which the PDC cutting element is mounted.
  • PDC cutting elements are generally bonded over their rear face during formation of the superabrasive table to a backing layer or substrate formed of tungsten carbide, although self-supporting PDC cutting elements are also known, particularly those stable at higher temperatures, which are known as Thermally Stable Polycrystalline Diamond, or "TSPs.”
  • TSPs Thermally Stable Polycrystalline Diamond
  • Such cutting elements are widely used on rotary fixed cutter, or "drag,” bits, as well as on other bits and tools used to drill and ream subterranean formations, such other bits and tools including without limitation core bits, bi-center bits, eccentric bits, hybrid (e.g., rolling components in combination with fixed cutting elements), roller cone bits, reamer wings, expandable reamers, and casing milling tools.
  • the term "drill bit” encompasses all of the foregoing, and equivalent structures.
  • a catalyst is usually employed to stimulate diamond-to-diamond bonding of the diamond crystals.
  • CTEs coefficients of thermal expansion
  • Such temperatures may be reached by the cutting edge of a PDC cutting element during drilling of a formation, despite the use of drilling fluid as a cooling agent and despite relatively rapid heat transfer into the diamond table, the substrate and the body of the drill bit on which the cutting element is mounted. It has been recognized in the art that removal of the catalyst used in the original synthesis manufacturing of the diamond table from the cutting surface of the diamond table, particularly at the cutting edge thereof and along the side of the diamond table proximate the cutting edge and extending toward the substrate, reduces the tendency of those portions of the diamond table to degrade due to thermal effects. Consequently, provided the depth of removal of the catalyst is sufficient, the life of the diamond table is extended.
  • Embodiments of the present invention relate to methods of forming polycrystalline diamond elements, such as cutting elements suitable for subterranean drilling, exhibiting enhanced thermal stability, and resulting cutting elements.
  • a polycrystalline diamond compact comprising a diamond table is formed in a high pressure, high temperature process using a catalyst, and the catalyst is then substantially removed from the entirety of the diamond table.
  • the diamond table is then attached to a supporting substrate in a subsequent high pressure, high temperature process using a binder material differing at least in part from a material of the catalyst.
  • the subsequent high temperature, high pressure process may be conducted at a pressure comparable to that used to form the diamond table, or may conducted at a higher pressure or a lower pressure. Different temperatures may also be employed, respectively, to form the diamond table and during attachment of the diamond table to a supporting substrate.
  • the binder material is permitted to penetrate substantially completely throughout the diamond table from an interface with the substrate to a cutting surface and side of the diamond table, and the binder material is selectively removed from a desired region or regions of the diamond table by a conventional technique.
  • Drill bits employing cutting elements formed and exhibiting structures according to embodiments of the present invention are also disclosed and encompassed within the scope of the invention.
  • FIG. 1 is a flow chart of an embodiment of a method to form a polycrystalline diamond compact cutting element according to the present invention
  • FIGS. 2A-2D depict the formation of a polycrystalline diamond compact cutting element according to the embodiment of FIG.1
  • FIG. 3 depicts one example of a rotary drag bit having cutting elements according to an embodiment of the present invention mounted thereto.
  • MODE(S) FOR CARRYING OUT THE INVENTION Process flow of an embodiment of a method of the present invention is illustrated in FIG. 1, and the associated structures formed during the process are illustrated in FIGS. 2A-2D.
  • a polycrystalline diamond compact 200 in act 100, is formed from a mass of diamond particles (e.g., grit) in the presence of a catalyst 204 in a high pressure, high temperature process.
  • the terms diamond “particles” or diamond “grit” each include not only individual particles of diamond, but aggregrates of individual diamond particles having diamond-to-diamond bonds therebetween.
  • the diamond table 202 may be formed on a supporting substrate 206 (as shown) of cemented tungsten carbide or other suitable material as known in the art in a conventional process of the type described, by way of non-limiting example, in U.S. Patent 3,745,623 or may be formed as a freestanding polycrystalline diamond compact (e.g., without supporting substrate) in a similar conventional process as described, by way of non-limiting example, in U.S. Patent 5,127,923.
  • the diamond grit may comprise natural diamond, synthetic diamond, or a mixture, and may comprise diamond grit of different sizes, or diamond grit in layers or other specific regions of different grain sizes or different average grain sizes, and the diamond table or one or more regions thereof may comprise a gradient of different grain sizes.
  • the catalyst may be supplied in a supporting substrate 206, if employed, or may be admixed with the diamond grit.
  • the supporting substrate 206 which is to be removed as described below, may be thin, on the order of a few millimeters, to permit simultaneous fabrication of relatively more diamond tables 202 in a given diamond press cell volume.
  • the supporting substrate 206 (if present) is removed from diamond table 202 by leaching the material of the supporting substrate 206 from the diamond table 202 while simultaneously substantially removing the catalyst 204 from the diamond table 202.
  • the supporting substrate 206 is removed from diamond table 202 by leaching the material of the supporting substrate 206 from the diamond table 202 while simultaneously substantially removing the catalyst 204 from the diamond table 202.
  • aqua regia a mixture of concentrated nitric acid (HNO 3 ) and concentrated hydrochloric acid (HCl)
  • HNO 3 concentrated nitric acid
  • HCl concentrated hydrochloric acid
  • the substrate 206 may be removed from the diamond table 202 prior to removing catalyst 204 from interstitial voids between the diamond crystals of the diamond table 202, or the substrate 206 may be removed from the diamond table 202 after removing catalyst 204 from interstitial voids between the diamond crystals of the diamond table 202.
  • methods other than acid leaching may be used to remove the substrate 206 from the diamond table 204. Such methods may include, for example, one or more of grinding, cutting, and laser ablation.
  • the resulting structure is diamond table 202' with substantially no catalyst 204 present.
  • a diamond table or polycrystalline diamond compact having "substantially no catalyst” therein, or being “substantially free of catalyst” does not require complete removal of catalyst, as there may be some residual catalyst on the surfaces of diamond grit particles, as well as in some substantially closed voids between particles wherein the leaching agent has not penetrated fully.
  • another supporting substrate 208 is placed adjacent diamond table 202' and secured thereto in another conventional high temperature, high pressure process in the presence of a binder material differing at least in part from a material of the catalyst 204.
  • Supporting substrate 208 may comprise a cemented tungsten carbide or other suitable material as known to those of ordinary skill in the art.
  • binder material 210 may be present at the commencement of act 104 in (for example) powder form or in the form of a thin disc 210a in a layer disposed between diamond table 202' and supporting substrate 208, as an integral portion 210b of the material of supporting substrate 208, or both.
  • polycrystalline diamond compact 200' having diamond table 202" including binder material 210 therein results due to migration of the binder material 210 from the source or sources thereof into interstitial voids between the diamond crystals in the polycrystalline diamond compact 200' that were vacated upon removal of the catalyst 204 therefrom in act 102.
  • the another conventional high temperature, high pressure process conducted in the presence of a binder material 210 may be at a temperature and pressure comparable to that used to form the diamond table 202 or may be at a lower pressure and temperature.
  • the diamond table 202 may be formed at a pressure of at least about 5 GPa and a temperature of about 1500° C, while the another high temperature, high pressure process may be conducted at a substantially different, higher pressure, such as in the range of about 6 to about 7 GPa, or even as much as about 8 GPa or more, and at a temperature in the range of about 1650° C to about
  • the pressure used to form the diamond table may be in the range of about 6 to about 7 GPa, or even about 8 GPa or more, and the temperature may be in the range of about 1650° C to about 2200° C, and the another high temperature, high pressure process conducted in the presence of a binder material may be conducted at a substantially different, lower pressure, for example at least about 5 GPa, and at a temperature of about 1500° C to stay within the diamond stable region and prevent back-graphitization of the diamond table 202' during act 104.
  • Such back-graphitization tendencies of the diamond table 202' may be of particular concern in light of catalytic properties of the binder employed.
  • temperatures employed to respectively form diamond table 202 and attach diamond table 202' to supporting substrate 208 may be substantially the same.
  • temperatures may also be varied in the two respective acts 100 and 104.
  • the times at temperature and pressure for each of the processes may vary in a range extending from about twenty seconds to about twenty minutes or more.
  • the diamond table 202 may be formed at a relatively lower temperature and pressure to produce a diamond-to- diamond bonded structure of lesser density and greater porosity to facilitate removal of catalyst 204 using an acid leaching or other conventional, invasive process.
  • attachment of diamond table 202' to supporting substrate 208 may be conducted at a significantly higher (e.g., by about an additional ten percent or more) pressure and temperature to enhance the density and strength of the resulting diamond table 202".
  • the relatively higher pressure and temperature used to form diamond table 202 will provide a diamond structure of high density and strength, while the relatively lower pressure and temperature used to attach diamond table 202' to supporting substrate 208 will not compromise the density and strength of the resulting diamond table 202" while reducing cycle time for addition of binder material 210 and attachment of substrate 208.
  • a region or regions 212a, 212b of the diamond table 202" (being, respectively and by way of non-limiting example, a region adjacent a cutting face and a region adjacent a side surface 214 of diamond table 202") have the binder material 210 substantially and selectively removed therefrom while precluding contact with the supporting substrate 208 and, by way of non-limiting example, a portion of the side surface 214 of diamond table 202" with a leaching agent.
  • the binder material may be removed from diamond table 202" to any substantial extent, or depth, desired. Suitable depths may range from, by way of non-limiting example, about .04 mm to about .5 mm.
  • leaching agents Any of the abovementioned leaching agents may be employed, and one particularly suitable leaching agent is hydrochloric acid (HCl) at a temperature of above 110° C for a period of about 3 to about 60 hours, depending upon the depth of desired removal of the binder material 210 from a surface of diamond table 202" exposed to the leaching agent, as depicted in FIG. 2D.
  • HCl hydrochloric acid
  • the inventor herein has noted, surprisingly and contrary to conventional thought in the industry, that the strength of the resulting diamond table having a binder introduced therein after the initial removal of catalyst therefrom, is substantially the same as that of a diamond table having catalyst therein used to form the diamond table, for diamond tables of equal diamond density.
  • materials suitable for use as catalysts and binder materials in implementation of embodiments of the invention include Group VIII elements and alloys thereof, such as Co, Ni, Fe and alloys thereof.
  • Co may be used as a catalyst in formation of a polycrystalline diamond compact which is then leached of the catalyst and the supporting substrate removed.
  • Ni may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate.
  • a Fe alloy is used as a catalyst in formation of a polycrystalline diamond compact, which is then leached of the catalyst and the supporting substrate removed.
  • Co may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate.
  • Co may be used as a catalyst in formation of a polycrystalline diamond compact, which is then leached of the catalyst and the supporting substrate removed.
  • a Co/Ni alloy may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate.
  • Co may be used as a catalyst in formation of a polycrystalline diamond compact, which is then leached of the catalyst and the supporting substrate removed.
  • An Fe/Ni alloy may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate.
  • the binder material may be incorporated into a cemented tungsten carbide or other suitable substrate, may be applied to an interface between the leached diamond table and the another supporting substrate, or both.
  • binder material 210 may be placed adjacent a surface or surfaces (for example, a surface of diamond table 202' opposite substrate 210) to facilitate introduction of binder material 210 into diamond table 202' in act 104.
  • drill bit 10 in the form of a rotary drag bit is shown.
  • the drill bit 10 includes bit body 11.
  • the bit 10 includes conventional male threads 12 on a shank thereof configured to API standards and adapted for connection to a component of a drill string, not shown.
  • the face 14 of the bit body 11 has mounted thereon a plurality of cutting elements 16, at least some of which exhibit structure according to an embodiment of a cutting element of the present invention, each cutting element 16 comprising polycrystalline diamond compact (PDC) table 18 formed on a supporting carbide substrate.
  • PDC polycrystalline diamond compact
  • the cutting elements 16 are positioned to cut a subterranean formation being drilled while the drill bit 10 is rotated under weight on bit (WOB) in a bore hole about centerline 20.
  • WPC polycrystalline diamond compact
  • the bit body 11 may include gage trimmers 23, at least some of which may exhibit structure according to an embodiment of a cutting element of the present invention, each gage trimmer 23 including one of the aforementioned PDC tables 18, such tables 18 being configured with an edge (not shown) to trim and hold the gage diameter of the bore hole, and pads 22 on the gage which contact the walls of the bore hole and stabilize the bit in the hole.
  • gage trimmers 23 including one of the aforementioned PDC tables 18, such tables 18 being configured with an edge (not shown) to trim and hold the gage diameter of the bore hole, and pads 22 on the gage which contact the walls of the bore hole and stabilize the bit in the hole.
  • the term "drill bit” includes and encompasses drag bits, roller cone bits, hybrid bits, reamers, mills and other subterranean tools for drilling and enlarging well bores.
  • drilling fluid is discharged through nozzle assemblies 30 located in nozzle ports 28 in fluid communication with the face 14 of bit body 11 for cooling the PDC tables 18 of cutting elements 16 and removing formation cuttings from the face 14 of drill bit 10 into passages 15 and junk slots 17.
  • the apertures 24 of nozzle assemblies 30 may be sized for different fluid flow rates depending upon the desired flushing required at each group of cutting elements 16 to which a particular nozzle assembly 30 directs drilling fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Earth Drilling (AREA)

Abstract

A polycrystalline diamond compact comprising a diamond table is formed in a high pressure, high temperature process using a catalyst, the catalyst being substantially removed from the entirety of the diamond table, and the diamond table attached to a supporting substrate in a subsequent high pressure, high temperature process using a binder material differing at least in part from a material of the catalyst. The binder material is permitted to penetrate substantially completely throughout the diamond table from an interface with the substrate to and including a cutting surface, and the binder material is selectively removed from a region or regions of the diamond table by a conventional technique (e.g., acid leaching). Cutting elements so formed and drill bits equipped with such cutting elements are also disclosed.

Description

- i ^
METHODS OF FORMING POLYCRYSTALLINE DIAMOND CUTTING ELEMENTS, CUTTING ELEMENTS SO FORMED AND DRILL BITS SO
EQUIPPED
PRIORITY CLAIM
This application claims the benefit of the filing date of United States Provisional Patent Application Serial No. 61/145,155, filed January 16, 2009, for "METHODS OF FORMING POLYCRYSTALLINE DIAMOND CUTTING ELEMENTS, CUTTING ELEMENTS SO FORMED AND DRILL BITS SO EQUIPPED."
TECHNICAL FIELD
Embodiments of the invention relate to methods of forming polycrystalline diamond cutting elements having at least a portion of a diamond table substantially free of catalytic material, and to cutting elements so formed.
BACKGROUND
Superabrasive cutting elements in the form of Polycrystalline Diamond Compact (PDC) structures have been commercially available for almost four decades, and PDC cutting elements having a polycrystalline diamond table formed on the end of a supporting substrate for a period in excess of twenty years. The latter type of PDC cutting elements commonly comprises a thin, substantially circular disc (although other configurations are available), commonly termed a "table," including a layer of superabrasive material formed of diamond crystals mutually bonded under ultrahigh temperatures and pressures and defining a substantially planar front cutting face, a rear face and a peripheral or circumferential edge, at least a portion of which is employed as a cutting edge to cut the subterranean formation being drilled by a drill bit on which the PDC cutting element is mounted. PDC cutting elements are generally bonded over their rear face during formation of the superabrasive table to a backing layer or substrate formed of tungsten carbide, although self-supporting PDC cutting elements are also known, particularly those stable at higher temperatures, which are known as Thermally Stable Polycrystalline Diamond, or "TSPs." Such cutting elements are widely used on rotary fixed cutter, or "drag," bits, as well as on other bits and tools used to drill and ream subterranean formations, such other bits and tools including without limitation core bits, bi-center bits, eccentric bits, hybrid (e.g., rolling components in combination with fixed cutting elements), roller cone bits, reamer wings, expandable reamers, and casing milling tools. As used herein, the term "drill bit" encompasses all of the foregoing, and equivalent structures. In the formation of either type of cutting element, a catalyst is usually employed to stimulate diamond-to-diamond bonding of the diamond crystals. Unfortunately, the presence of a catalyst in the diamond table may lead to thermal degradation commencing at about 400° C due to differences in the coefficients of thermal expansion (CTEs) of the diamond and the catalyst, and commencing around 700-750° C due to stimulation of back-graphitization of the diamond to carbon by the catalyst. Such temperatures may be reached by the cutting edge of a PDC cutting element during drilling of a formation, despite the use of drilling fluid as a cooling agent and despite relatively rapid heat transfer into the diamond table, the substrate and the body of the drill bit on which the cutting element is mounted. It has been recognized in the art that removal of the catalyst used in the original synthesis manufacturing of the diamond table from the cutting surface of the diamond table, particularly at the cutting edge thereof and along the side of the diamond table proximate the cutting edge and extending toward the substrate, reduces the tendency of those portions of the diamond table to degrade due to thermal effects. Consequently, provided the depth of removal of the catalyst is sufficient, the life of the diamond table is extended. The recognition of the aforementioned thermal degradation effects and how and from what portion of the diamond table the catalyst may be beneficially removed is disclosed in, among many other documents, Japanese Patent JP59-219500, as well as in U.S. Patents 4,224,380, 5,127,923, 6,544,308 and 6,601,662, U.S. Patent Publications Nos. 2006/0060390, 2006/0060391, 2006/0060392, 2006/0086540, 2008/0223623, 2009/0152018 and PCT International Publication Nos. WO 2004/106003, WO 2004/106004 and WO 2005/110648.
DISCLOSURE OF THE INVENTION Embodiments of the present invention relate to methods of forming polycrystalline diamond elements, such as cutting elements suitable for subterranean drilling, exhibiting enhanced thermal stability, and resulting cutting elements. In one embodiment of the invention, a polycrystalline diamond compact comprising a diamond table is formed in a high pressure, high temperature process using a catalyst, and the catalyst is then substantially removed from the entirety of the diamond table. The diamond table is then attached to a supporting substrate in a subsequent high pressure, high temperature process using a binder material differing at least in part from a material of the catalyst. The subsequent high temperature, high pressure process may be conducted at a pressure comparable to that used to form the diamond table, or may conducted at a higher pressure or a lower pressure. Different temperatures may also be employed, respectively, to form the diamond table and during attachment of the diamond table to a supporting substrate.
In one specific embodiment, the binder material is permitted to penetrate substantially completely throughout the diamond table from an interface with the substrate to a cutting surface and side of the diamond table, and the binder material is selectively removed from a desired region or regions of the diamond table by a conventional technique.
Cutting elements formed and exhibiting structures according to embodiments of the methods of the present invention are also disclosed, and encompassed within the scope of the invention.
Drill bits employing cutting elements formed and exhibiting structures according to embodiments of the present invention are also disclosed and encompassed within the scope of the invention.
Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow chart of an embodiment of a method to form a polycrystalline diamond compact cutting element according to the present invention;
FIGS. 2A-2D depict the formation of a polycrystalline diamond compact cutting element according to the embodiment of FIG.1
FIG. 3 depicts one example of a rotary drag bit having cutting elements according to an embodiment of the present invention mounted thereto. MODE(S) FOR CARRYING OUT THE INVENTION Process flow of an embodiment of a method of the present invention is illustrated in FIG. 1, and the associated structures formed during the process are illustrated in FIGS. 2A-2D. Referring to the foregoing drawing figures, in act 100, a polycrystalline diamond compact 200 (FIG. 2A) in the form of diamond table 202 is formed from a mass of diamond particles (e.g., grit) in the presence of a catalyst 204 in a high pressure, high temperature process. As used herein, the terms diamond "particles" or diamond "grit" each include not only individual particles of diamond, but aggregrates of individual diamond particles having diamond-to-diamond bonds therebetween. The diamond table 202 may be formed on a supporting substrate 206 (as shown) of cemented tungsten carbide or other suitable material as known in the art in a conventional process of the type described, by way of non-limiting example, in U.S. Patent 3,745,623 or may be formed as a freestanding polycrystalline diamond compact (e.g., without supporting substrate) in a similar conventional process as described, by way of non-limiting example, in U.S. Patent 5,127,923. The diamond grit may comprise natural diamond, synthetic diamond, or a mixture, and may comprise diamond grit of different sizes, or diamond grit in layers or other specific regions of different grain sizes or different average grain sizes, and the diamond table or one or more regions thereof may comprise a gradient of different grain sizes. The catalyst may be supplied in a supporting substrate 206, if employed, or may be admixed with the diamond grit. The supporting substrate 206, which is to be removed as described below, may be thin, on the order of a few millimeters, to permit simultaneous fabrication of relatively more diamond tables 202 in a given diamond press cell volume. In act 102, the supporting substrate 206 (if present) is removed from diamond table 202 by leaching the material of the supporting substrate 206 from the diamond table 202 while simultaneously substantially removing the catalyst 204 from the diamond table 202. Specifically, as known in the art and described more fully in the aforementioned U.S. Patent 5,127,923 and in U.S. Patent 4,224,380, aqua regia (a mixture of concentrated nitric acid (HNO3) and concentrated hydrochloric acid (HCl)) may be used to dissolve at least a portion of the supporting substrate (if present), to substantially remove the catalyst 204 from interstitial voids between the diamond crystals of the diamond table and from the crystal surfaces, and to dissolve catalytic binder material at an interface between the substrate 206 and the diamond table 202 resulting in separation therebetween. It is also known to use boiling hydrochloric acid (HCl) and boiling hydrofluoric acid (HF), as well as mixtures of HF and HNO3 in various ratios. Other techniques for catalyst removal are also known in the art. In additional embodiments, the substrate 206 may be removed from the diamond table 202 prior to removing catalyst 204 from interstitial voids between the diamond crystals of the diamond table 202, or the substrate 206 may be removed from the diamond table 202 after removing catalyst 204 from interstitial voids between the diamond crystals of the diamond table 202. Furthermore, methods other than acid leaching may be used to remove the substrate 206 from the diamond table 204. Such methods may include, for example, one or more of grinding, cutting, and laser ablation.
The resulting structure (FIG. 2B) is diamond table 202' with substantially no catalyst 204 present. As used herein, a diamond table or polycrystalline diamond compact having "substantially no catalyst" therein, or being "substantially free of catalyst" does not require complete removal of catalyst, as there may be some residual catalyst on the surfaces of diamond grit particles, as well as in some substantially closed voids between particles wherein the leaching agent has not penetrated fully. In act 104, another supporting substrate 208 is placed adjacent diamond table 202' and secured thereto in another conventional high temperature, high pressure process in the presence of a binder material differing at least in part from a material of the catalyst 204. Supporting substrate 208 may comprise a cemented tungsten carbide or other suitable material as known to those of ordinary skill in the art. As depicted in FIG. 2C, binder material 210 may be present at the commencement of act 104 in (for example) powder form or in the form of a thin disc 210a in a layer disposed between diamond table 202' and supporting substrate 208, as an integral portion 210b of the material of supporting substrate 208, or both. At the conclusion of act 104, polycrystalline diamond compact 200' having diamond table 202" including binder material 210 therein results due to migration of the binder material 210 from the source or sources thereof into interstitial voids between the diamond crystals in the polycrystalline diamond compact 200' that were vacated upon removal of the catalyst 204 therefrom in act 102.
As noted above, the another conventional high temperature, high pressure process conducted in the presence of a binder material 210 may be at a temperature and pressure comparable to that used to form the diamond table 202 or may be at a lower pressure and temperature. For example, the diamond table 202 may be formed at a pressure of at least about 5 GPa and a temperature of about 1500° C, while the another high temperature, high pressure process may be conducted at a substantially different, higher pressure, such as in the range of about 6 to about 7 GPa, or even as much as about 8 GPa or more, and at a temperature in the range of about 1650° C to about
2200° C. Conversely, the pressure used to form the diamond table may be in the range of about 6 to about 7 GPa, or even about 8 GPa or more, and the temperature may be in the range of about 1650° C to about 2200° C, and the another high temperature, high pressure process conducted in the presence of a binder material may be conducted at a substantially different, lower pressure, for example at least about 5 GPa, and at a temperature of about 1500° C to stay within the diamond stable region and prevent back-graphitization of the diamond table 202' during act 104. Such back-graphitization tendencies of the diamond table 202' may be of particular concern in light of catalytic properties of the binder employed. In each of the foregoing examples, only pressure may be varied while temperatures employed to respectively form diamond table 202 and attach diamond table 202' to supporting substrate 208 may be substantially the same. Conversely, temperatures may also be varied in the two respective acts 100 and 104. Furthermore, the times at temperature and pressure for each of the processes may vary in a range extending from about twenty seconds to about twenty minutes or more. In the first example set forth in the above paragraph, the diamond table 202 may be formed at a relatively lower temperature and pressure to produce a diamond-to- diamond bonded structure of lesser density and greater porosity to facilitate removal of catalyst 204 using an acid leaching or other conventional, invasive process. Subsequently, attachment of diamond table 202' to supporting substrate 208 may be conducted at a significantly higher (e.g., by about an additional ten percent or more) pressure and temperature to enhance the density and strength of the resulting diamond table 202". In the second example set forth in the above paragraph, the relatively higher pressure and temperature used to form diamond table 202 will provide a diamond structure of high density and strength, while the relatively lower pressure and temperature used to attach diamond table 202' to supporting substrate 208 will not compromise the density and strength of the resulting diamond table 202" while reducing cycle time for addition of binder material 210 and attachment of substrate 208. In a further act 106, a region or regions 212a, 212b of the diamond table 202" (being, respectively and by way of non-limiting example, a region adjacent a cutting face and a region adjacent a side surface 214 of diamond table 202") have the binder material 210 substantially and selectively removed therefrom while precluding contact with the supporting substrate 208 and, by way of non-limiting example, a portion of the side surface 214 of diamond table 202" with a leaching agent. Of course, the binder material may be removed from diamond table 202" to any substantial extent, or depth, desired. Suitable depths may range from, by way of non-limiting example, about .04 mm to about .5 mm. Any of the abovementioned leaching agents may be employed, and one particularly suitable leaching agent is hydrochloric acid (HCl) at a temperature of above 110° C for a period of about 3 to about 60 hours, depending upon the depth of desired removal of the binder material 210 from a surface of diamond table 202" exposed to the leaching agent, as depicted in FIG. 2D. Contact with the leaching agent may be precluded, as known in the art, by encasing substrate 208 and a portion of the diamond table 202" in a plastic resin, by coating substrate 208 and a portion of the diamond table 202" with a masking material, or by the use of an "O" ring seal resistant to the leaching agent, compressed against the side surface 214 of diamond table 202" using a plastic fixture. The resulting polycrystalline diamond compact 200" offers enhanced thermal stability and consequently improved wear resistance, during use due to the removal of binder material 210 from at least the region or regions 212a, 212b of diamond table 202". The presence of binder material in another region or regions of the diamond table 202" may enhance durability and impact strength thereof. The inventor herein has noted, surprisingly and contrary to conventional thought in the industry, that the strength of the resulting diamond table having a binder introduced therein after the initial removal of catalyst therefrom, is substantially the same as that of a diamond table having catalyst therein used to form the diamond table, for diamond tables of equal diamond density.
By way of non-limiting example, materials suitable for use as catalysts and binder materials in implementation of embodiments of the invention include Group VIII elements and alloys thereof, such as Co, Ni, Fe and alloys thereof. Thus, in one implementation, Co may be used as a catalyst in formation of a polycrystalline diamond compact which is then leached of the catalyst and the supporting substrate removed. Ni may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate. In another implementation, a Fe alloy is used as a catalyst in formation of a polycrystalline diamond compact, which is then leached of the catalyst and the supporting substrate removed. Co may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate. In another implementation, Co may be used as a catalyst in formation of a polycrystalline diamond compact, which is then leached of the catalyst and the supporting substrate removed. A Co/Ni alloy may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate. In a variation of the foregoing implementation, Co may be used as a catalyst in formation of a polycrystalline diamond compact, which is then leached of the catalyst and the supporting substrate removed. An Fe/Ni alloy may then be used as a binder material to attach the resulting leached diamond table to another supporting substrate. As noted above, the binder material may be incorporated into a cemented tungsten carbide or other suitable substrate, may be applied to an interface between the leached diamond table and the another supporting substrate, or both. In a further variation, binder material 210 may be placed adjacent a surface or surfaces (for example, a surface of diamond table 202' opposite substrate 210) to facilitate introduction of binder material 210 into diamond table 202' in act 104.
Referring to FIG. 3 of the drawings, drill bit 10 in the form of a rotary drag bit is shown. The drill bit 10 includes bit body 11. The bit 10 includes conventional male threads 12 on a shank thereof configured to API standards and adapted for connection to a component of a drill string, not shown. The face 14 of the bit body 11 has mounted thereon a plurality of cutting elements 16, at least some of which exhibit structure according to an embodiment of a cutting element of the present invention, each cutting element 16 comprising polycrystalline diamond compact (PDC) table 18 formed on a supporting carbide substrate. The cutting elements 16 are positioned to cut a subterranean formation being drilled while the drill bit 10 is rotated under weight on bit (WOB) in a bore hole about centerline 20. The bit body 11 may include gage trimmers 23, at least some of which may exhibit structure according to an embodiment of a cutting element of the present invention, each gage trimmer 23 including one of the aforementioned PDC tables 18, such tables 18 being configured with an edge (not shown) to trim and hold the gage diameter of the bore hole, and pads 22 on the gage which contact the walls of the bore hole and stabilize the bit in the hole. As used herein, the term "drill bit" includes and encompasses drag bits, roller cone bits, hybrid bits, reamers, mills and other subterranean tools for drilling and enlarging well bores.
During drilling, drilling fluid is discharged through nozzle assemblies 30 located in nozzle ports 28 in fluid communication with the face 14 of bit body 11 for cooling the PDC tables 18 of cutting elements 16 and removing formation cuttings from the face 14 of drill bit 10 into passages 15 and junk slots 17. The apertures 24 of nozzle assemblies 30 may be sized for different fluid flow rates depending upon the desired flushing required at each group of cutting elements 16 to which a particular nozzle assembly 30 directs drilling fluid. Although the foregoing description contains many specifics and examples, these are not limiting the scope of the present invention, but merely as providing illustrations of some embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the scope of the present invention. The scope of this invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions and modifications to the invention as disclosed herein and which fall within the meaning of the claims are embraced within their scope.

Claims

CLAIMS What is claimed is:
1. A method of forming a polycrystalline diamond element, the method comprising: forming a polycrystalline diamond compact from diamond particles at a temperature and a temperature sufficient to form diamond-to-diamond bonds in the presence of a catalyst; substantially removing the catalyst from the polycrystalline diamond compact; and securing the polycrystalline diamond compact having the catalyst substantially removed therefrom to a supporting substrate at a temperature and a pressure sufficiently high to maintain stability of diamond-to-diamond bonds in the polycrystalline diamond compact in the presence of a binder material differing at least in part from a material of the catalyst.
2. The method of claim 1, wherein substantially removing the catalyst from the polycrystalline diamond compact is effected by leaching.
3. The method of claim 2, wherein the polycrystalline diamond compact is formed on a supporting substrate, and the supporting substrate on which the polycrystalline diamond compact is formed is removed therefrom.
4. The method of claim 2, wherein the polycrystalline diamond compact is formed as a freestanding structure.
5. The method of claim 1, further comprising removing the binder material from at least one region of the polycrystalline diamond compact.
6. The method of claim 5, wherein the binder material is removed from the at least one region of the polycrystalline diamond compact by leaching. - i l -
7. The method of claim 5, wherein removing the binder material from at least one region of the polycrystalline diamond compact comprises removing the binder material from at least one of at least a portion of a cutting face of the polycrystalline diamond compact and at least a portion of a side surface of the polycrystalline diamond compact.
8. The method of claim 1, wherein at least one of the temperature and pressure for forming the diamond table is higher than a respective temperature or pressure for securing the polycrystalline diamond compact having the catalyst substantially removed therefrom to the supporting substrate
9. The method of claim 1 , wherein at least one of the temperature and pressure for forming the diamond table is lower than a respective temperature or pressure for securing the polycrystalline diamond compact having the catalyst substantially removed therefrom to the supporting substrate.
10. The method of claim 1, wherein the pressure for forming the polycrystalline diamond compact is substantially different from the pressure for securing the polycrystalline diamond compact to the supporting substrate.
11. A polycrystalline diamond element, comprising: a polycrystalline diamond compact formed using a catalyst; and a supporting substrate secured to the polycrystalline diamond compact; wherein the polycrystalline diamond element comprises a binder material differing at least in part from a material of the catalyst.
12. The polycrystalline diamond element of claim 11 , wherein the polycrystalline diamond compact is substantially free of the catalyst.
13. The polycrystalline diamond element of claim 12, wherein at least one region of the polycrystalline diamond element is substantially free of the binder material.
14. The polycrystalline diamond element of claim 13, wherein the at least one region comprises at least one of a region adjacent a cutting face and a region adjacent a side surface of the polycrystalline diamond compact.
15. The polycrystalline diamond element of claim 11 , wherein the binder material comprises another, different catalyst.
16. A drill bit for drilling subterranean formations, comprising: a body; structure for connection of the body to a drill string; at least one cutting element secured to the body for engaging a subterranean formation, the at least one cutting element comprising: a polycrystalline diamond compact formed using a catalyst; and a supporting substrate secured to the polycrystalline diamond compact; wherein the polycrystalline diamond element comprises a binder material differing at least in part from a material of the catalyst.
17. The drill bit of claim 16, wherein the polycrystalline diamond compact is substantially free of the catalyst.
18. The drill bit of claim 17, wherein at least one region of the polycrystalline diamond element is substantially free of the binder material.
19. The drill bit of claim 18, wherein the at least one region comprises at least one of a region adjacent a cutting face and a region adjacent a side surface of the polycrystalline diamond compact.
20. drill bit of claim 16, wherein the binder material comprises another, different catalyst.
PCT/US2010/021097 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped WO2010083351A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2011007251A MX2011007251A (en) 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped.
BRPI1007389A BRPI1007389A2 (en) 2009-01-16 2010-01-15 methods of forming polycrystalline diamond cutting elements, thus formed cutting elements and thus equipped drill bits
CN201080004577XA CN102281974A (en) 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
EP10732116.8A EP2379256B1 (en) 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements
RU2011133949/02A RU2539639C2 (en) 2009-01-16 2010-01-15 Forming of cutting elements of polycrystalline diamond, cutting elements thus made and drill bit equipped with such cutting elements
EP20169742.2A EP3698903A1 (en) 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
CA2749776A CA2749776C (en) 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14515509P 2009-01-16 2009-01-16
US61/145,155 2009-01-16

Publications (2)

Publication Number Publication Date
WO2010083351A2 true WO2010083351A2 (en) 2010-07-22
WO2010083351A3 WO2010083351A3 (en) 2010-10-21

Family

ID=42336046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/021097 WO2010083351A2 (en) 2009-01-16 2010-01-15 Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped

Country Status (8)

Country Link
US (2) US8573332B2 (en)
EP (2) EP2379256B1 (en)
CN (1) CN102281974A (en)
BR (1) BRPI1007389A2 (en)
CA (1) CA2749776C (en)
MX (1) MX2011007251A (en)
RU (1) RU2539639C2 (en)
WO (1) WO2010083351A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040381A3 (en) * 2011-09-16 2013-06-27 Baker Hughes Incorporated Methods of attaching a polycrystalline diamond compact to a substrate and cutting elements formed using such methods
US10113368B2 (en) 2010-10-01 2018-10-30 Baker Hughes Incorporated Cutting elements, earth-boring tools incorporating such cutting elements, and methods of forming such cutting elements

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328891B2 (en) * 2006-05-09 2012-12-11 Smith International, Inc. Methods of forming thermally stable polycrystalline diamond cutters
US8236074B1 (en) 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9017438B1 (en) 2006-10-10 2015-04-28 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
US8080071B1 (en) 2008-03-03 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compact, methods of fabricating same, and applications therefor
US8821604B2 (en) 2006-11-20 2014-09-02 Us Synthetic Corporation Polycrystalline diamond compact and method of making same
US8080074B2 (en) 2006-11-20 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8034136B2 (en) 2006-11-20 2011-10-11 Us Synthetic Corporation Methods of fabricating superabrasive articles
CA2619547C (en) 2007-02-06 2016-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US7942219B2 (en) 2007-03-21 2011-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8911521B1 (en) 2008-03-03 2014-12-16 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US10195687B2 (en) * 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
RU2539639C2 (en) 2009-01-16 2015-01-20 Бейкер Хьюз Инкорпорейтед Forming of cutting elements of polycrystalline diamond, cutting elements thus made and drill bit equipped with such cutting elements
US8071173B1 (en) 2009-01-30 2011-12-06 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond compact including a pre-sintered polycrystalline diamond table having a thermally-stable region
EP2467558A4 (en) * 2009-08-18 2015-12-02 Baker Hughes Inc Method of forming polystalline diamond elements, polycrystalline diamond elements, and earth boring tools carrying such polycrystalline diamond elements
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US8858662B2 (en) 2011-03-04 2014-10-14 Baker Hughes Incorporated Methods of forming polycrystalline tables and polycrystalline elements
US10099347B2 (en) * 2011-03-04 2018-10-16 Baker Hughes Incorporated Polycrystalline tables, polycrystalline elements, and related methods
US8882869B2 (en) 2011-03-04 2014-11-11 Baker Hughes Incorporated Methods of forming polycrystalline elements and structures formed by such methods
GB201112325D0 (en) 2011-07-18 2011-08-31 Element Six Abrasive Sa Inserts and method for making same
KR102031387B1 (en) * 2011-10-24 2019-10-11 다이아몬드 이노베이션즈, 인크. Method of joining two components to ensure axial and angular alignment therebetween by using a plurality of elongated elements
GB201118781D0 (en) * 2011-10-31 2011-12-14 Element Six Abrasives Sa Polycrystalline diamond construction and method for making same
GB201122434D0 (en) * 2011-12-29 2012-02-08 Element Six Abrasives Sa Method of processing polycrystalline diamond material
CN102747960A (en) * 2012-07-11 2012-10-24 江汉石油钻头股份有限公司 Hybrid drill bit
US9844854B1 (en) * 2012-11-21 2017-12-19 Us Synthetic Corporation Protective leaching cups, systems, and methods of use
US10046441B2 (en) 2013-12-30 2018-08-14 Smith International, Inc. PCD wafer without substrate for high pressure / high temperature sintering
JP6408030B2 (en) 2014-06-20 2018-10-17 ハリバートン エナジー サヴィシーズ インコーポレイテッド Laser-eluting polycrystalline diamond and laser elution method and apparatus
WO2016099784A1 (en) 2014-12-17 2016-06-23 Smith International, Inc. Solid pcd with transition layers to accelerate full leaching of catalyst
WO2017030554A1 (en) * 2015-08-17 2017-02-23 Halliburton Energy Services, Inc. Attachment of polycrystalline diamond tables to a substrate to form a pcd cutter using reactive/exothermic process
US9931714B2 (en) * 2015-09-11 2018-04-03 Baker Hughes, A Ge Company, Llc Methods and systems for removing interstitial material from superabrasive materials of cutting elements using energy beams
CN105156037A (en) * 2015-09-22 2015-12-16 富耐克超硬材料股份有限公司 Thermostable polycrystalline diamond composite piece and preparation method thereof
US20200139443A1 (en) * 2016-10-27 2020-05-07 Halliburton Energy Services, Inc. Polycrystalline diamond compact with sintering aid compound, a compound formed from a sintering aid compound, or a mixture thereof
US11292750B2 (en) * 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11866372B2 (en) 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224380A (en) 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
JPS59219500A (en) 1983-05-24 1984-12-10 Sumitomo Electric Ind Ltd Diamond sintered body and treatment thereof
US5127923A (en) 1985-01-10 1992-07-07 U.S. Synthetic Corporation Composite abrasive compact having high thermal stability
US6544308B2 (en) 2000-09-20 2003-04-08 Camco International (Uk) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US6601662B2 (en) 2000-09-20 2003-08-05 Grant Prideco, L.P. Polycrystalline diamond cutters with working surfaces having varied wear resistance while maintaining impact strength
WO2004106004A1 (en) 2003-05-27 2004-12-09 Element Six (Pty) Ltd Polycrystalline diamond abrasive elements
WO2005110648A2 (en) 2004-05-12 2005-11-24 Element Six (Pty) Ltd Cutting tool insert
US20060060391A1 (en) 2004-09-21 2006-03-23 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20060060390A1 (en) 2004-09-21 2006-03-23 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20060086540A1 (en) 2004-10-23 2006-04-27 Griffin Nigel D Dual-Edge Working Surfaces for Polycrystalline Diamond Cutting Elements
US20080185189A1 (en) 2007-02-06 2008-08-07 Smith International, Inc. Manufacture of thermally stable cutting elements
US20080230280A1 (en) 2007-03-21 2008-09-25 Smith International, Inc. Polycrystalline diamond having improved thermal stability
US20090152018A1 (en) 2006-11-20 2009-06-18 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745623A (en) 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
SU1218564A1 (en) * 1983-12-22 1998-07-10 Институт физики высоких давлений АН СССР Method of making cutting member
US6269894B1 (en) * 1999-08-24 2001-08-07 Camco International (Uk) Limited Cutting elements for rotary drill bits
US6248447B1 (en) * 1999-09-03 2001-06-19 Camco International (Uk) Limited Cutting elements and methods of manufacture thereof
RU2270820C9 (en) * 2000-09-20 2006-07-20 Камко Интернешнл (Юк) Лимитед Polycrystalline diamond with catalytic material-depleted surface
GB2408735B (en) 2003-12-05 2009-01-28 Smith International Thermally-stable polycrystalline diamond materials and compacts
KR100568971B1 (en) * 2004-01-13 2006-04-07 일진다이아몬드(주) Method of sintering body having high hardness
US7980334B2 (en) * 2007-10-04 2011-07-19 Smith International, Inc. Diamond-bonded constructions with improved thermal and mechanical properties
RU2539639C2 (en) 2009-01-16 2015-01-20 Бейкер Хьюз Инкорпорейтед Forming of cutting elements of polycrystalline diamond, cutting elements thus made and drill bit equipped with such cutting elements

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224380A (en) 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
JPS59219500A (en) 1983-05-24 1984-12-10 Sumitomo Electric Ind Ltd Diamond sintered body and treatment thereof
US5127923A (en) 1985-01-10 1992-07-07 U.S. Synthetic Corporation Composite abrasive compact having high thermal stability
US6544308B2 (en) 2000-09-20 2003-04-08 Camco International (Uk) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US6601662B2 (en) 2000-09-20 2003-08-05 Grant Prideco, L.P. Polycrystalline diamond cutters with working surfaces having varied wear resistance while maintaining impact strength
WO2004106004A1 (en) 2003-05-27 2004-12-09 Element Six (Pty) Ltd Polycrystalline diamond abrasive elements
WO2004106003A1 (en) 2003-05-27 2004-12-09 Element Six (Pty) Ltd Polycrystalline diamond abrasive elements
WO2005110648A2 (en) 2004-05-12 2005-11-24 Element Six (Pty) Ltd Cutting tool insert
US20060060391A1 (en) 2004-09-21 2006-03-23 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20060060390A1 (en) 2004-09-21 2006-03-23 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20060060392A1 (en) 2004-09-21 2006-03-23 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US20060086540A1 (en) 2004-10-23 2006-04-27 Griffin Nigel D Dual-Edge Working Surfaces for Polycrystalline Diamond Cutting Elements
US20090152018A1 (en) 2006-11-20 2009-06-18 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US20080185189A1 (en) 2007-02-06 2008-08-07 Smith International, Inc. Manufacture of thermally stable cutting elements
US20080223623A1 (en) 2007-02-06 2008-09-18 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US20080230280A1 (en) 2007-03-21 2008-09-25 Smith International, Inc. Polycrystalline diamond having improved thermal stability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2379256A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113368B2 (en) 2010-10-01 2018-10-30 Baker Hughes Incorporated Cutting elements, earth-boring tools incorporating such cutting elements, and methods of forming such cutting elements
WO2013040381A3 (en) * 2011-09-16 2013-06-27 Baker Hughes Incorporated Methods of attaching a polycrystalline diamond compact to a substrate and cutting elements formed using such methods
US9145603B2 (en) 2011-09-16 2015-09-29 Baker Hughes Incorporated Methods of attaching a polycrystalline diamond compact to a substrate
US9976355B2 (en) 2011-09-16 2018-05-22 Baker Hughes, A Ge Company, Llc Polycrystalline diamond compact cutting elements and earth-boring tools including polycrystalline diamond cutting elements

Also Published As

Publication number Publication date
BRPI1007389A2 (en) 2016-02-16
EP3698903A1 (en) 2020-08-26
US20100181117A1 (en) 2010-07-22
US8573332B2 (en) 2013-11-05
CA2749776A1 (en) 2010-07-22
EP2379256B1 (en) 2020-07-15
US9435159B2 (en) 2016-09-06
RU2011133949A (en) 2013-02-27
MX2011007251A (en) 2011-07-28
CN102281974A (en) 2011-12-14
RU2539639C2 (en) 2015-01-20
US20140048338A1 (en) 2014-02-20
EP2379256A2 (en) 2011-10-26
WO2010083351A3 (en) 2010-10-21
EP2379256A4 (en) 2014-05-07
CA2749776C (en) 2016-01-05

Similar Documents

Publication Publication Date Title
CA2749776C (en) Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
US8267204B2 (en) Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth-boring tools carrying cutting elements
US20110042149A1 (en) Methods of forming polycrystalline diamond elements, polycrystalline diamond elements, and earth-boring tools carrying such polycrystalline diamond elements
CA2858712C (en) Production of reduced catalyst pdc via gradient driven reactivity
CA2797700C (en) Polycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools
EP2798140B1 (en) Solid pcd cutter
EP3399136B1 (en) Methods of forming polycrystalline diamond compacts
CA2776780A1 (en) Cutting elements configured to generate shear lips during use in cutting, earth-boring tools including such cutting elements, and methods of forming and using such cutting elements and earth-boring tools
US10711528B2 (en) Diamond cutting elements for drill bits seeded with HCP crystalline material
WO2013170083A1 (en) Diamond cutting elements for drill bits seeded with hcp crystalline material
WO2014134428A1 (en) Cutting elements leached to different depths located in different regions of an earth-boring tool and related methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004577.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10732116

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/007251

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010732116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2749776

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011133949

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007389

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007389

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110715