JPS59219500A - Diamond sintered body and treatment thereof - Google Patents

Diamond sintered body and treatment thereof

Info

Publication number
JPS59219500A
JPS59219500A JP9169183A JP9169183A JPS59219500A JP S59219500 A JPS59219500 A JP S59219500A JP 9169183 A JP9169183 A JP 9169183A JP 9169183 A JP9169183 A JP 9169183A JP S59219500 A JPS59219500 A JP S59219500A
Authority
JP
Japan
Prior art keywords
sintered body
diamond
diamond sintered
base material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9169183A
Other languages
Japanese (ja)
Inventor
Shuji Yatsu
矢津 修示
Tetsuo Nakai
哲男 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9169183A priority Critical patent/JPS59219500A/en
Publication of JPS59219500A publication Critical patent/JPS59219500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve remarkably the heat resistance of a composite material formed by joining the layer of a sintered body consisting of the binding phase of diamond and a ferrous metal to a sintered hard alloy base material when said material is used for a tool, etc. by removing the binding phase in the surface layer part of said body. CONSTITUTION:A composite sintered body in which a disc-shaped diamond sintered body 1 obtd. under ultrahigh pressure is joined to a sintered hard alloy base material 2 is manufactured. The sintered body 1 contains 90vol% diamond particles having, for example, 5mu average grain size and consists of the balance Co binding phase. The composite sintered body is placed in such a way that the surface of the body 1 contacts with the sponge of a plastic contg. diluted hydrochloric acid soln. and is rested for a required time while a prescribed DC voltage is impressed between the base material 2 and the electrode placed under the sponge. The binding metal Co phase in the certain region 1' from the surface of the body 1 is thus mostly electrolytically removed. The heat resistance of the composite sintered diamond as a tool is thus improved without deteriorating the strength thereof.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は切削工具、岩石掘削工具等に用いられる超高圧
、高温焼結によるダイヤモンド焼結体に関するもので特
にその工具としての性能を著しく改良したものである。
[Detailed description of the invention] (a) Technical field The present invention relates to a diamond sintered body produced by ultra-high pressure and high temperature sintering for use in cutting tools, rock excavation tools, etc., and in particular, a diamond sintered body that has significantly improved performance as a tool. It is.

従来技術とその問題点 ダイヤモンドの粉末を金属を結合材としてダイヤモンド
が安定な超高圧、高温下で焼結して得られるダイヤモン
ド焼結体は工具材料の中では最な高硬度であるダイヤモ
ンドの特徴を持ち、単結晶ダイヤモンドの如くヘキ開に
よって低応力で破損することもないため、切削工具、伸
線ダイス、ドレッサー、岩石掘削工具など多方面に工具
として用いられている。このダイヤモンド焼結体には用
途によって各種の構造、形状のものがあるが、切削工具
、ドレッサー、岩石掘削工具には一般に第1図に示した
ようなダイヤモンド焼結体の層が超硬合金等の剛性の高
い母材に接合されたものが用いられている。このような
構造の焼結体については例えば特開昭46−5204号
の如くダイヤ−F−ンド焼結体の層がWCC超超硬合金
基材直接接合されて成る焼結体や、特開昭54−453
13同56−5506号の如く中間接合層を介してダイ
ヤモンド焼結体の層が超硬合金等の基材に接合された例
が知られている。現在使用されているこのような焼結体
のダイヤモンド焼結体層はダイヤモンド粒子の結合材と
してCO等の鉄族金属を用いているものが多い。鉄族金
属は黒鉛からダイヤモンドを合成する際の溶媒として用
いられるもので、超高圧下における焼結時にダイヤモン
ド粉末の一部を溶解し、ダイヤモンド粒子相互を強固に
焼結せしめる作用をすると考えられている。この鉄族金
属は焼結前にダイヤモンド粉末と混合されたものを用い
ても良いし、特開昭46−5204号の如く焼結時に基
材WC−Coの結合材融液をダイヤモンド粉末中に溶浸
せしめる方法も知られている。このようなダイヤモンド
焼結体は耐摩耗性強度が優れており、従来単結晶ダイヤ
モンドを用いていた用途でも優れた性能を発揮するが、
一方耐熱性の点では大きな制約がある。ダイヤモンドは
大気中では約9C1O″C以上で表面より黒鉛化が生じ
るが、真空又は不活性ガス中では1400・C前後でも
黒鉛化は生じ難い。しかるに前述した従来のダイヤモン
ド焼結体を加熱すると約750°Cて工具性能の劣化が
見られる。このことは切削工具や掘削工具の如く使用時
に刃先が高温になるような使用条件下では当然性能が低
下することを意味する。従来のダイヤモンド焼結体がダ
イヤモンド単味より位温で劣化する原因として考えられ
るのは鉄族金属結合材とダイヤモンドの熱膨張係数の差
が大きく、加熱によって焼結体中の熱応力が大きくなり
組織が破壊されることと、鉄族金属がダイヤモンドの黒
鉛化を促進する作用を有することである。ダイヤモンド
焼結体の耐熱性を改良する方法として超硬合金等の基材
に接合されていない焼結体を作成し、このものを王水等
に浸漬して加熱し焼結体中の金属結合相を溶出せしめる
方法が考えられている。(特開昭53−114589 
)これによりダイヤモンド焼結体の耐熱性は1200℃
までの加熱に耐えるようになるとされている。しかしな
がら金属結合相が抜けて焼結体全体に空孔が存在するた
め、焼結体の強度は大巾に低下し、工具としての強靭性
の点Q不充分のものしか得られない。またこの方法では
ダイヤモンド焼結体を工具支持体に接合する方法が大き
な制約を受は強固な接合が困難である。
Conventional technology and its problems The diamond sintered body obtained by sintering diamond powder with metal as a binder under ultra-high pressure and high temperature where diamond is stable has the highest hardness among tool materials. Because it does not break due to low stress due to cleavage like single-crystal diamond, it is used in a variety of tools such as cutting tools, wire drawing dies, dressers, and rock excavation tools. This diamond sintered body has various structures and shapes depending on the purpose, but cutting tools, dressers, and rock drilling tools generally have a layer of diamond sintered body made of cemented carbide as shown in Figure 1. A material bonded to a highly rigid base material is used. Regarding sintered bodies having such a structure, for example, there is a sintered body in which a layer of a diamond ferrite sintered body is directly bonded to a WCC cemented carbide base material as disclosed in Japanese Patent Application Laid-open No. 46-5204, and Showa 54-453
No. 13, No. 56-5506, there is known an example in which a layer of a diamond sintered body is bonded to a base material such as a cemented carbide via an intermediate bonding layer. Many of the diamond sintered body layers of such sintered bodies currently in use use an iron group metal such as CO as a binding material for diamond particles. Iron group metals are used as solvents when synthesizing diamond from graphite, and are thought to dissolve part of the diamond powder during sintering under ultra-high pressure, thereby sintering the diamond particles together. There is. This iron group metal may be mixed with diamond powder before sintering, or as in JP-A-46-5204, a binder melt of base material WC-Co is added to diamond powder during sintering. Infiltration methods are also known. This type of diamond sintered body has excellent wear resistance and strength, and exhibits excellent performance in applications that conventionally used single-crystal diamond.
On the other hand, there are major limitations in terms of heat resistance. Graphitization occurs from the surface of diamond at temperatures above about 9C1O''C in the atmosphere, but graphitization hardly occurs in vacuum or inert gas even at around 1400C.However, when the conventional diamond sintered body mentioned above is heated, Deterioration of tool performance is seen at 750°C. This means that the performance naturally deteriorates under usage conditions such as cutting tools and drilling tools where the cutting edge becomes hot during use. Conventional diamond sintering A possible reason why the sintered body deteriorates at temperatures higher than that of diamond alone is that there is a large difference in the coefficient of thermal expansion between the iron group metal binding material and diamond, and heating increases thermal stress in the sintered body and destroys the structure. In addition, iron group metals have the effect of promoting graphitization of diamond.As a method to improve the heat resistance of diamond sintered bodies, sintered bodies that are not bonded to a base material such as cemented carbide are created. However, a method has been considered in which this material is immersed in aqua regia or the like and heated to elute the metal binder phase in the sintered material. (JP-A-53-114589
) As a result, the heat resistance of the diamond sintered body is 1200℃.
It is said that it can withstand heating up to. However, since the metal binding phase is removed and pores are present throughout the sintered body, the strength of the sintered body is greatly reduced, and the toughness Q of the sintered body is insufficient for use as a tool. In addition, this method has major limitations on the method of joining the diamond sintered body to the tool support, making it difficult to achieve a strong joint.

(ロ)発明の構成 本発明はこのような従来の焼結体の欠点を解消した新た
なダイヤモンド焼結体を提供することを目的とする。ダ
イヤモンド焼結体を工具として使用する場合、例えば切
削工具の場合に最も高温となるのは被加工材と接触する
刃先先端である。
(B) Structure of the Invention The object of the present invention is to provide a new diamond sintered body that eliminates the drawbacks of the conventional sintered bodies. When a diamond sintered body is used as a tool, for example, in the case of a cutting tool, the highest temperature is at the tip of the cutting edge that comes into contact with the workpiece.

この部分の温度勾酸は大きく、被加工材との接触点から
離れると急激に温度は低下している。従って例えば第2
図の如く円板形状焼結体の表層部のみ耐熱性を向上して
おけば工具としての性能が大[1]に改良されるのであ
る。本発明はこの点に着目して第2図の如くダイヤモン
ドと鉄族金属結合相からなるダイヤモンド焼結体の層が
超硬合金基材に超高圧焼結時に接合された複合焼結体の
ダイヤモンド焼結体層の表層部の結合相を除去したもの
である。こ〜れにより工具として用いるときの耐熱性が
大巾に向上する。またダイヤモンド焼結体内部は結合相
が存在しており焼結体全体としての強度低下は少い。ま
た内部は空孔が無いため熱伝導度も低下せず、刃先に生
じた熱を発散させる上でも有効である。本発明焼結体で
はダイヤモンド焼結体層の厚みは通常0.6〜5闘でこ
れが超硬合金基材上に超高圧下焼結時に接合されており
、そのダイヤモンド焼結体層の表層部の少くとも0.2
 mmの領域で鉄族金属結合相の大部分を除去したもの
である。本発明焼結体の製造に当っては例えば前記した
特開昭46−5204号、54−45313号、56−
55506号等に記載された方法を採ることができる。
The temperature gradient in this part is large, and the temperature drops rapidly away from the point of contact with the workpiece. Therefore, for example, the second
As shown in the figure, if the heat resistance of only the surface layer of the disc-shaped sintered body is improved, the performance as a tool can be greatly improved [1]. Focusing on this point, the present invention has developed a diamond composite sintered body in which a layer of a diamond sintered body consisting of diamond and an iron group metal bonding phase is bonded to a cemented carbide base material during ultra-high pressure sintering, as shown in FIG. The binder phase on the surface layer of the sintered body layer has been removed. This greatly improves the heat resistance when used as a tool. Furthermore, since a binder phase exists inside the diamond sintered body, the strength of the sintered body as a whole does not decrease much. Also, since there are no holes inside, the thermal conductivity does not decrease, and it is effective in dissipating heat generated at the cutting edge. In the sintered body of the present invention, the thickness of the diamond sintered body layer is usually 0.6 to 5 mm, and this is bonded to the cemented carbide base material during sintering under ultra-high pressure, and the surface layer of the diamond sintered body layer is at least 0.2 of
Most of the iron group metal binding phase has been removed in the mm region. In producing the sintered body of the present invention, for example, the above-mentioned JP-A-46-5204, 54-45313, 56-
The method described in No. 55506 etc. can be used.

これ等の方法により0.3〜5 mmのダイヤモンド焼
結体層が超硬合金基材上に接合された複合焼結体を得る
。この複合焼結体のダイヤモンド焼結体の表層部から鉄
族金属結合相を除去するにはスポンヂ状の物質に塩酸水
溶液を含ませ、これを焼結体の表面に置いて直流電圧を
加え電解除去する方法が最も有効である。このような方
法により基材の超硬合金を酸により傷めることなくダイ
ヤモンド焼結体の表層部のみ結合相を除去することがで
きる。
By these methods, a composite sintered body in which a 0.3 to 5 mm diamond sintered body layer is bonded onto a cemented carbide base material is obtained. To remove the iron group metal binder phase from the surface layer of the diamond sintered body of this composite sintered body, a sponge-like substance is soaked with an aqueous hydrochloric acid solution, placed on the surface of the sintered body, and a DC voltage is applied to electrolyze it. The most effective method is to remove it. By such a method, the binder phase can be removed only from the surface layer of the diamond sintered body without damaging the cemented carbide base material with acid.

(ハ)発明の効果 本発明によれば従来の複合焼結ダイヤモンドの強度を害
うことなく、耐熱性不足による工具としての性能の限界
を大きく改善することが可能である。以下実施例を記す
(c) Effects of the Invention According to the present invention, it is possible to greatly improve the performance limitations of conventional composite sintered diamonds as tools due to insufficient heat resistance, without impairing their strength. Examples will be described below.

実施例1 超高圧下で焼結して得られた第1図の構造を有する直径
26mm、ダイヤモンド焼結体部の厚みが1闘でWC−
10%COからなる厚さ25πmの基材こ接合された複
合焼結体を作成した。ダイヤモンド焼結体部は平均粒度
5μのダイヤモンド粒子を体積で90%含有し、残部が
CO結合相からなるものである。この焼結体のダイヤモ
ンド焼結体層の表面が希塩酸水を含んだプラスチックの
スポンヂに接するように置き、超硬合金基材とスポンヂ
の下に置いた電極との間に10Vの直流電圧を加えて2
時間放置しtコ。通電を断ち、焼結体を放電加工により
切断し多数の三角形状に分割した。断面を研摩して調べ
たところダイヤモンド焼結体の表面から3.5 mmの
領域の結合金属CO相が殆んど電解除去されていた。こ
の焼結体を別の超硬合金台金にロー付してアルミナ磁器
の切削加工テストを行なった。比較のため同様複合焼結
体の米処理のもので同一形状工具を作成して用いた。切
削テスト条件は切削速度601分切込み0.15ff1
m、送り002痛π/回転で水溶性切削剤をかけながら
行なった。
Example 1 A diamond sintered body having the structure shown in Fig. 1 obtained by sintering under ultra-high pressure has a diameter of 26 mm and a thickness of WC-
A composite sintered body made of 10% CO and having a thickness of 25πm was bonded to the base material. The diamond sintered body portion contained 90% by volume of diamond particles with an average particle size of 5 μm, and the remainder consisted of a CO binding phase. The surface of the diamond sintered body layer of this sintered body was placed in contact with a plastic sponge containing dilute hydrochloric acid water, and a 10V DC voltage was applied between the cemented carbide base material and the electrode placed under the sponge. te2
Leave it for a while. The electricity was turned off, and the sintered body was cut into many triangular pieces by electric discharge machining. When the cross section was polished and examined, it was found that most of the bound metal CO phase in a region 3.5 mm from the surface of the diamond sintered body had been electrolytically removed. This sintered body was brazed onto another cemented carbide base metal, and a cutting test for alumina porcelain was conducted. For comparison, a tool with the same shape was made and used with the same composite sintered body treated with rice. Cutting test conditions are cutting speed 601 minutes depth of cut 0.15ff1
The cutting was carried out at a feed rate of 002 m and a feed rate of π/revolution while applying a water-soluble cutting agent.

ネ発明の焼結体では工具逃げ面摩耗中が0.4朋に介す
るまでに50分間切削できたが、比較焼結体では10分
で同−摩耗中に達した。
The sintered body of the invention could be cut for 50 minutes until the tool flank wear reached 0.4 mm, but the comparative sintered body reached the same level of wear after 10 minutes.

実施例2 実施例1と同様にして直径8mm、ダイヤモンド焼結体
層1mm、超硬合金基材2.5門の本発明焼結体を4ケ
用いて直径46mmのコアビットを製作した。比較のた
めダイヤモンド焼結体のみからなる直径8πIn厚さ2
 mmのもので全体を王水中で加熱処理して結合金属C
O相の大部分を焼結体の全体から除去したものを作成し
、同−形状のコアピットを製作した。2つのビットで一
軸圧縮強度1.650”鴇の安山岩の堀割テストを行な
った。回転数200回/分で同一ビット給圧でテストし
たところ本発明焼結体を用いたビットでは掘進速度10
m/分で20π掘削可能であった。一方比較焼結体を用
いたビットでは掘削初期に全ての焼結体が欠損した。
Example 2 A core bit with a diameter of 46 mm was manufactured in the same manner as in Example 1 using four sintered bodies of the present invention each having a diameter of 8 mm, a diamond sintered body layer of 1 mm, and a cemented carbide base material of 2.5 pieces. For comparison, a diamond sintered body with a diameter of 8πIn and a thickness of 2
mm, and the whole is heat-treated in aqua regia to form a bonded metal C.
A sintered body was prepared by removing most of the O phase from the entire sintered body, and a core pit of the same shape was manufactured. A drilling test was carried out on andesite with an unconfined compressive strength of 1.65" using two bits. When the test was conducted at the rotation speed of 200 rpm and the same bit supply pressure, the bit using the sintered body of the present invention had a drilling speed of 10.
It was possible to excavate 20π at m/min. On the other hand, with the bit using the comparative sintered compact, all of the sintered compact was broken at the early stage of drilling.

【図面の簡単な説明】 第1図は典型的な従来のダイヤモンド複合焼結体の斜視
図である。1はダイヤモンド焼結体部2は超硬合金基材
である。第2図は本発明焼結体の断面図である。1.2
は第1図と同じ、1′はダイヤモンド焼結体部から鉄族
金属結合相の大部分が除去された領域である。 5 ア1圀 手続補正書 昭和58年7月27日 1、事件の光示 昭和58年特許願 第’?+6’?1  号2、発明の
名称 ダイヤモンド焼結体及びその処理方法 3、補正をする者 事件との関係 特許出願人 住所    大阪市東区北浜5丁目15番地名称(21
3)住方電気工業f13式会社社長 用上哲部 4、代理人 住所    大阪市此花区島屋1丁目1番3号住友電気
工業株式会社内 6、補正の対象 明細書中、発明の詳細な説明の欄 Z 補正の内容 (1)  明細書中、発明の詳細な説明の欄を下記の通
。 り補正する。 (イ) 同書第2頁4行目「従来技術とその問題点」を
「(ロ) 従来技術とその問題点」に補正する。 (ロ) 同書第4頁8行目「位温」を「低温」に補正す
る。 (ハ) 同書第5頁5行目「(ロ)発明の構成」を「(
ハ)発明の構成」に補正する。 に) 同書第5頁11行目「勾酸」を「勾配」に補正す
る。 (… 同書第7頁6行目「(ハ)発明の効果」を「に)
発明の効果」に補正する。 (ハ) 同書第8頁最下行r 1.65 Jをr 1.
65 jに補正する。 (ト)  同書第9頁5行目「掘進」を「掘進」に補正
する。 (イ)同書第9頁4行目「掘削」を「掘削」に補正する
。 (I刀 同書第9頁5行目「掘削」を「掘削」に補正す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a typical conventional diamond composite sintered body. 1, the diamond sintered body part 2 is a cemented carbide base material. FIG. 2 is a sectional view of the sintered body of the present invention. 1.2
is the same as in FIG. 1, and 1' is a region where most of the iron group metal binder phase has been removed from the diamond sintered body. 5 A1. Written amendment of country procedure dated July 27, 1982 1. Lighting up of the case 1989 Patent Application No.'? +6'? 1 No. 2, Name of the invention Diamond sintered body and its processing method 3, Relationship with the case of the person making the amendment Patent applicant address Name (21), 5-15 Kitahama, Higashi-ku, Osaka
3) Sumikata Electric Industries Co., Ltd. F13 Type Company President Tetsube 4, Agent address 6, Sumitomo Electric Industries Co., Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka City, Detailed explanation of the invention in the specification subject to amendment Column Z Contents of amendment (1) In the specification, the column for detailed explanation of the invention should be changed as follows. Correct. (b) On page 2, line 4 of the same book, ``Prior art and its problems'' is amended to ``(b) Prior art and its problems.'' (b) On page 4, line 8 of the same book, "potential temperature" is corrected to "low temperature." (c) On page 5, line 5 of the same book, “(b) Structure of the invention” was changed to “(
C) Amendment to "Composition of the invention". ) In the same book, page 5, line 11, ``magic acid'' is corrected to ``gradient.'' (…Page 7, line 6 of the same book, “(c) Effect of the invention”)
The amendment shall be made to ``effect of the invention''. (c) Same book, page 8, bottom line r 1.65 J to r 1.
Correct to 65 j. (g) In the 5th line of page 9 of the same book, "digging" is amended to "digging". (b) On page 9, line 4 of the same book, "excavation" is amended to "excavation." (Ito, page 9, line 5 of the same book, "excavation" is corrected to "excavation".

Claims (2)

【特許請求の範囲】[Claims] (1)ダイヤモンドと鉄族金属結合相からなるダイヤモ
ンド焼結体の層が超硬合金からなる基材に超高圧焼結時
に接合されてなる複合焼結体において、ダイヤモンド焼
結体層の表面から少くとも0.2Mπの表層部が予め含
有されていた鉄族金属結合相の大部分を溶解除去したも
のであることを特徴とするダイヤモンド焼結体。
(1) In a composite sintered body in which a layer of a diamond sintered body made of diamond and an iron group metal bonding phase is bonded to a base material made of cemented carbide during ultra-high pressure sintering, from the surface of the diamond sintered body layer A diamond sintered body characterized in that the surface layer portion of at least 0.2Mπ is obtained by dissolving and removing most of the iron group metal binder phase previously contained.
(2)  超高圧下で焼結されたダイヤモンドと鉄族金
属結合相からなるダイヤモンド焼結体の層が超硬合金基
材に接合されてなる複合ダイヤモンド焼結体のダイヤモ
ンド焼結体層のみを鉄族金属を溶解する酸または電解液
に浸し、ダイヤモンド焼結体の表層部の鉄族金属結合相
を溶解除去することを特徴とするダイヤモンド焼結体の
処理方法。
(2) Only the diamond sintered body layer of a composite diamond sintered body is formed by bonding a layer of diamond sintered body made of diamond and an iron group metal bonding phase under ultra-high pressure to a cemented carbide base material. A method for treating a diamond sintered body, which comprises immersing the diamond sintered body in an acid or an electrolytic solution that dissolves the iron group metal to dissolve and remove the iron group metal binder phase in the surface layer of the diamond sintered body.
JP9169183A 1983-05-24 1983-05-24 Diamond sintered body and treatment thereof Pending JPS59219500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169183A JPS59219500A (en) 1983-05-24 1983-05-24 Diamond sintered body and treatment thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169183A JPS59219500A (en) 1983-05-24 1983-05-24 Diamond sintered body and treatment thereof

Publications (1)

Publication Number Publication Date
JPS59219500A true JPS59219500A (en) 1984-12-10

Family

ID=14033527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169183A Pending JPS59219500A (en) 1983-05-24 1983-05-24 Diamond sintered body and treatment thereof

Country Status (1)

Country Link
JP (1) JPS59219500A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070562A1 (en) * 1998-03-02 2001-01-24 Sumitomo Electric Industries, Ltd. Sintered diamond tool and method for manufacturing the same
US6344149B1 (en) * 1998-11-10 2002-02-05 Kennametal Pc Inc. Polycrystalline diamond member and method of making the same
US6481511B2 (en) 2000-09-20 2002-11-19 Camco International (U.K.) Limited Rotary drill bit
US6544308B2 (en) * 2000-09-20 2003-04-08 Camco International (Uk) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
EP1318969A1 (en) 2000-09-20 2003-06-18 Camco International (UK) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
WO2004106592A1 (en) * 2003-05-30 2004-12-09 Jozef Leopold Stankiewicz A process for the recovery of synthetic diamonds
US7575805B2 (en) * 2003-12-11 2009-08-18 Roy Derrick Achilles Polycrystalline diamond abrasive elements
US7730977B2 (en) 2004-05-12 2010-06-08 Baker Hughes Incorporated Cutting tool insert and drill bit so equipped
WO2010083351A2 (en) 2009-01-16 2010-07-22 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
WO2010084447A1 (en) 2009-01-23 2010-07-29 Element Six Ltd Method of treating a diamond containing body
WO2011019647A2 (en) 2009-08-11 2011-02-17 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth boring tools carrying cutting elements
US7918293B1 (en) 2005-03-09 2011-04-05 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
CN102059341A (en) * 2011-01-27 2011-05-18 成都比拓超硬材料有限公司 Treatment method for improving high temperature resistance of polycrystalline diamond composite material
US7972395B1 (en) 2009-04-06 2011-07-05 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US8016054B2 (en) 2003-05-27 2011-09-13 Brett Lancaster Polycrystalline diamond abrasive elements
US8056650B2 (en) 2005-05-26 2011-11-15 Smith International, Inc. Thermally stable ultra-hard material compact construction
US8191656B2 (en) 2005-12-20 2012-06-05 Varel International, Ind., L.P. Auto adaptable cutting structure
US8191658B2 (en) 2009-08-20 2012-06-05 Baker Hughes Incorporated Cutting elements having different interstitial materials in multi-layer diamond tables, earth-boring tools including such cutting elements, and methods of forming same
US8372334B2 (en) 2007-10-04 2013-02-12 Smith International, Inc. Method of making diamond-bonded constructions with improved thermal and mechanical properties
WO2013050571A1 (en) 2011-10-07 2013-04-11 Element Six Abrasives S.A. Method of processing a composite body
US8485284B2 (en) 2008-06-04 2013-07-16 Element Six Abrasives S.A. Method for producing a PCD compact
US8499861B2 (en) 2007-09-18 2013-08-06 Smith International, Inc. Ultra-hard composite constructions comprising high-density diamond surface
US8573333B2 (en) 2009-03-31 2013-11-05 Baker Hughes Incorporated Methods for bonding preformed cutting tables to cutting element substrates and cutting elements formed by such processes
US8800692B2 (en) 2009-10-02 2014-08-12 Baker Hughes Incorporated Cutting elements configured to generate shear lips during use in cutting, earth-boring tools including such cutting elements, and methods of forming and using such cutting elements and earth-boring tools
US8852304B2 (en) 2004-05-06 2014-10-07 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US8858665B2 (en) 2011-04-28 2014-10-14 Robert Frushour Method for making fine diamond PDC
US8932376B2 (en) 2005-10-12 2015-01-13 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US8936659B2 (en) 2010-04-14 2015-01-20 Baker Hughes Incorporated Methods of forming diamond particles having organic compounds attached thereto and compositions thereof
US8951317B1 (en) 2009-04-27 2015-02-10 Us Synthetic Corporation Superabrasive elements including ceramic coatings and methods of leaching catalysts from superabrasive elements
US8961630B2 (en) 2012-05-04 2015-02-24 Baker Hughes Incorporated Methods of forming cutting elements by removing metal from interstitial spaces in polycrystalline diamond
US8969833B1 (en) 2011-12-16 2015-03-03 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US8974559B2 (en) 2011-05-12 2015-03-10 Robert Frushour PDC made with low melting point catalyst
US9061264B2 (en) 2011-05-19 2015-06-23 Robert H. Frushour High abrasion low stress PDC
US9115553B2 (en) 2009-05-06 2015-08-25 Smith International, Inc. Cutting elements with re-processed thermally stable polycrystalline diamond cutting layers, bits incorporating the same, and methods of making the same
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
US9144886B1 (en) 2011-08-15 2015-09-29 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US9255312B2 (en) 2008-04-08 2016-02-09 John Hewitt Liversage Cutting tool insert
US9297213B2 (en) 2009-03-06 2016-03-29 Baker Hughes Incorporated Polycrystalline diamond element
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US9352447B2 (en) 2009-09-08 2016-05-31 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US9387571B2 (en) 2007-02-06 2016-07-12 Smith International, Inc. Manufacture of thermally stable cutting elements
US9404309B2 (en) 2008-10-03 2016-08-02 Smith International, Inc. Diamond bonded construction with thermally stable region
US9550276B1 (en) 2013-06-18 2017-01-24 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10132121B2 (en) 2007-03-21 2018-11-20 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US10301882B2 (en) 2010-12-07 2019-05-28 Us Synthetic Corporation Polycrystalline diamond compacts
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070562A1 (en) * 1998-03-02 2001-01-24 Sumitomo Electric Industries, Ltd. Sintered diamond tool and method for manufacturing the same
EP1070562A4 (en) * 1998-03-02 2004-11-24 Sumitomo Electric Industries Sintered diamond tool and method for manufacturing the same
US6344149B1 (en) * 1998-11-10 2002-02-05 Kennametal Pc Inc. Polycrystalline diamond member and method of making the same
US6481511B2 (en) 2000-09-20 2002-11-19 Camco International (U.K.) Limited Rotary drill bit
US6544308B2 (en) * 2000-09-20 2003-04-08 Camco International (Uk) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
EP1318969A1 (en) 2000-09-20 2003-06-18 Camco International (UK) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US6592985B2 (en) * 2000-09-20 2003-07-15 Camco International (Uk) Limited Polycrystalline diamond partially depleted of catalyzing material
EP1318969B1 (en) * 2000-09-20 2011-04-27 Camco International (UK) Limited High volume density polycrystalline diamond with working surfaces depleted of catalyzing material
KR100871594B1 (en) 2000-09-20 2008-12-02 캠코 인터내셔널 (유케이) 리미티드 High Volume Density Polycrystalline Diamond With Working Surfaces Depleted Of Catalyzing Material
US8016054B2 (en) 2003-05-27 2011-09-13 Brett Lancaster Polycrystalline diamond abrasive elements
US8020642B2 (en) 2003-05-27 2011-09-20 Brett Lancaster Polycrystalline diamond abrasive elements
US8240405B2 (en) 2003-05-27 2012-08-14 Onesteel Trading Pty Ltd. Polycrystalline diamond abrasive elements
US8469121B2 (en) 2003-05-27 2013-06-25 Baker Hughes Incorporated Polycrystalline diamond abrasive elements
WO2004106592A1 (en) * 2003-05-30 2004-12-09 Jozef Leopold Stankiewicz A process for the recovery of synthetic diamonds
US7575805B2 (en) * 2003-12-11 2009-08-18 Roy Derrick Achilles Polycrystalline diamond abrasive elements
US8852304B2 (en) 2004-05-06 2014-10-07 Smith International, Inc. Thermally stable diamond bonded materials and compacts
US7730977B2 (en) 2004-05-12 2010-06-08 Baker Hughes Incorporated Cutting tool insert and drill bit so equipped
US8172012B2 (en) 2004-05-12 2012-05-08 Baker Hughes Incorporated Cutting tool insert and drill bit so equipped
USRE47605E1 (en) 2004-05-12 2019-09-17 Baker Hughes, A Ge Company, Llc Polycrystalline diamond elements, cutting elements, and related methods
US8617310B1 (en) 2005-03-09 2013-12-31 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US7918293B1 (en) 2005-03-09 2011-04-05 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US9453802B1 (en) 2005-03-09 2016-09-27 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US8056650B2 (en) 2005-05-26 2011-11-15 Smith International, Inc. Thermally stable ultra-hard material compact construction
US8932376B2 (en) 2005-10-12 2015-01-13 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US8191656B2 (en) 2005-12-20 2012-06-05 Varel International, Ind., L.P. Auto adaptable cutting structure
US10124468B2 (en) 2007-02-06 2018-11-13 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US9387571B2 (en) 2007-02-06 2016-07-12 Smith International, Inc. Manufacture of thermally stable cutting elements
US10132121B2 (en) 2007-03-21 2018-11-20 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US8499861B2 (en) 2007-09-18 2013-08-06 Smith International, Inc. Ultra-hard composite constructions comprising high-density diamond surface
US8372334B2 (en) 2007-10-04 2013-02-12 Smith International, Inc. Method of making diamond-bonded constructions with improved thermal and mechanical properties
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US10076824B2 (en) 2007-12-17 2018-09-18 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
US9255312B2 (en) 2008-04-08 2016-02-09 John Hewitt Liversage Cutting tool insert
US8485284B2 (en) 2008-06-04 2013-07-16 Element Six Abrasives S.A. Method for producing a PCD compact
US9404309B2 (en) 2008-10-03 2016-08-02 Smith International, Inc. Diamond bonded construction with thermally stable region
US9435159B2 (en) 2009-01-16 2016-09-06 Baker Hughes Incorporated Methods of forming and treating polycrystalline diamond cutting elements, cutting elements so formed and drill bits equipped
US8573332B2 (en) 2009-01-16 2013-11-05 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
EP3698903A1 (en) 2009-01-16 2020-08-26 Baker Hughes, A Ge Company, Llc Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
WO2010083351A2 (en) 2009-01-16 2010-07-22 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements so formed and drill bits so equipped
WO2010084447A1 (en) 2009-01-23 2010-07-29 Element Six Ltd Method of treating a diamond containing body
US9297213B2 (en) 2009-03-06 2016-03-29 Baker Hughes Incorporated Polycrystalline diamond element
US8851208B2 (en) 2009-03-31 2014-10-07 Baker Hughes Incorporated Cutting elements including adhesion materials, earth-boring tools including such cutting elements, and related methods
US8573333B2 (en) 2009-03-31 2013-11-05 Baker Hughes Incorporated Methods for bonding preformed cutting tables to cutting element substrates and cutting elements formed by such processes
US9839989B2 (en) 2009-03-31 2017-12-12 Baker Hughes Incorporated Methods of fabricating cutting elements including adhesion materials for earth-boring tools
US7972395B1 (en) 2009-04-06 2011-07-05 Us Synthetic Corporation Superabrasive articles and methods for removing interstitial materials from superabrasive materials
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US8951317B1 (en) 2009-04-27 2015-02-10 Us Synthetic Corporation Superabrasive elements including ceramic coatings and methods of leaching catalysts from superabrasive elements
US9115553B2 (en) 2009-05-06 2015-08-25 Smith International, Inc. Cutting elements with re-processed thermally stable polycrystalline diamond cutting layers, bits incorporating the same, and methods of making the same
WO2011019647A2 (en) 2009-08-11 2011-02-17 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth boring tools carrying cutting elements
US8267204B2 (en) 2009-08-11 2012-09-18 Baker Hughes Incorporated Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth-boring tools carrying cutting elements
US8858663B2 (en) 2009-08-20 2014-10-14 Baker Hughes Incorporated Methods of forming cutting elements having different interstitial materials in multi-layer diamond tables
US8191658B2 (en) 2009-08-20 2012-06-05 Baker Hughes Incorporated Cutting elements having different interstitial materials in multi-layer diamond tables, earth-boring tools including such cutting elements, and methods of forming same
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US9352447B2 (en) 2009-09-08 2016-05-31 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US9567808B2 (en) 2009-10-02 2017-02-14 Baker Hughes Incorporated Cutting elements configured to generate shear lips during use in cutting, earth-boring tools including such cutting elements, and methods of forming and using such cutting elements and earth-boring tools
US8800692B2 (en) 2009-10-02 2014-08-12 Baker Hughes Incorporated Cutting elements configured to generate shear lips during use in cutting, earth-boring tools including such cutting elements, and methods of forming and using such cutting elements and earth-boring tools
US8936659B2 (en) 2010-04-14 2015-01-20 Baker Hughes Incorporated Methods of forming diamond particles having organic compounds attached thereto and compositions thereof
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US10301882B2 (en) 2010-12-07 2019-05-28 Us Synthetic Corporation Polycrystalline diamond compacts
CN102059341A (en) * 2011-01-27 2011-05-18 成都比拓超硬材料有限公司 Treatment method for improving high temperature resistance of polycrystalline diamond composite material
US8858665B2 (en) 2011-04-28 2014-10-14 Robert Frushour Method for making fine diamond PDC
US8974559B2 (en) 2011-05-12 2015-03-10 Robert Frushour PDC made with low melting point catalyst
US9061264B2 (en) 2011-05-19 2015-06-23 Robert H. Frushour High abrasion low stress PDC
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US9144886B1 (en) 2011-08-15 2015-09-29 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US11383217B1 (en) 2011-08-15 2022-07-12 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
WO2013050571A1 (en) 2011-10-07 2013-04-11 Element Six Abrasives S.A. Method of processing a composite body
US8969833B1 (en) 2011-12-16 2015-03-03 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US9423364B1 (en) 2011-12-16 2016-08-23 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and second region of a superabrasive volume
US9724804B2 (en) 2012-05-04 2017-08-08 Baker Hughes Incorporated Methods of forming cutting elements by oxidizing metal in interstitial spaces in polycrystalline material
US8961630B2 (en) 2012-05-04 2015-02-24 Baker Hughes Incorporated Methods of forming cutting elements by removing metal from interstitial spaces in polycrystalline diamond
US9140072B2 (en) 2013-02-28 2015-09-22 Baker Hughes Incorporated Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements
US9783425B1 (en) 2013-06-18 2017-10-10 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11370664B1 (en) 2013-06-18 2022-06-28 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9550276B1 (en) 2013-06-18 2017-01-24 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10183867B1 (en) 2013-06-18 2019-01-22 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11618718B1 (en) 2014-02-11 2023-04-04 Us Synthetic Corporation Leached superabrasive elements and leaching systems, methods and assemblies for processing superabrasive elements
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US11253971B1 (en) 2014-10-10 2022-02-22 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US11535520B1 (en) 2015-05-31 2022-12-27 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
US11946320B2 (en) 2017-09-18 2024-04-02 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same

Similar Documents

Publication Publication Date Title
JPS59219500A (en) Diamond sintered body and treatment thereof
US5116568A (en) Method for low pressure bonding of PCD bodies
EP0264674B1 (en) Low pressure bonding of PCD bodies and method
US6410085B1 (en) Method of machining of polycrystalline diamond
US4943488A (en) Low pressure bonding of PCD bodies and method for drill bits and the like
US5030276A (en) Low pressure bonding of PCD bodies and method
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
JP6038652B2 (en) Metal-free supported polycrystalline diamond (PCD) and formation method
US5062865A (en) Chemically bonded superabrasive grit
JP4045014B2 (en) Polycrystalline diamond tools
JP3193690B2 (en) Peelable binder composition for polishing tool, method for bonding abrasive grains using the same, and polishing tool
JP4790630B2 (en) Coated abrasive
JPH02160429A (en) Super-abrasive cutting element
JP2000054007A (en) Diamond-sintered body and its production
EP1361931A1 (en) Reducing metals as a brazing flux
AU2001275856A1 (en) Reducing metals as a brazing flux
SA110310235B1 (en) Methods for Bonding Preformed Cutting Tables to Cutting Element Substrates and Cutting Element Formed by such Processes
JPS61125739A (en) Diamond sintered article for tool and manufacture thereof
KR100375649B1 (en) Removable bond for abrasive tool
JP4653922B2 (en) Method of attaching a coating to a substrate composed of diamond or a diamond-containing material
JPS60187603A (en) Sintered diamond tool and its production
CN1034879A (en) Improved have coating polycrystalline diamond monomer and products thereof and a manufacture method
JP3486666B2 (en) Processing method of ceramics
JPS61104045A (en) Diamond sintered body for tool and production thereof
JPS5884187A (en) Composite sintered body tool and manufacture