JPS61125739A - Diamond sintered article for tool and manufacture thereof - Google Patents

Diamond sintered article for tool and manufacture thereof

Info

Publication number
JPS61125739A
JPS61125739A JP59246565A JP24656584A JPS61125739A JP S61125739 A JPS61125739 A JP S61125739A JP 59246565 A JP59246565 A JP 59246565A JP 24656584 A JP24656584 A JP 24656584A JP S61125739 A JPS61125739 A JP S61125739A
Authority
JP
Japan
Prior art keywords
diamond
volume
sintered body
cemented carbide
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59246565A
Other languages
Japanese (ja)
Other versions
JPH0530897B2 (en
Inventor
Tetsuo Nakai
哲男 中井
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59246565A priority Critical patent/JPS61125739A/en
Priority to AU46632/85A priority patent/AU571419B2/en
Priority to DE8585110715T priority patent/DE3583567D1/en
Priority to EP85110715A priority patent/EP0174546B1/en
Priority to US06/769,609 priority patent/US4636253A/en
Priority to KR1019850006553A priority patent/KR900002701B1/en
Publication of JPS61125739A publication Critical patent/JPS61125739A/en
Publication of JPH0530897B2 publication Critical patent/JPH0530897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/0685Crystal sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To assure heat resistance and wear resistance by constituting the captioned diamond sintered article with sintered diamond having the contents of the diamond more than 93 volume % and less than 99 volume % and a carbide alloy base material. CONSTITUTION:Sintered diamond more than 93 volume % and less than 90 volume %. A remaining fraction thereof has 0.1 to 3 volume % in total of at least one of metal of 4a, 5a, and 6a groups in a periodic table or carbide and metal of iron group, and 0.5 to 7 volume % of holes. In addition, the sintered diamond and the carbide alloy base material are joined with each other via an intermediate joint layer, which intermediate layer has its thickness less than 0.5mm. Accordingly, a base material composed of the sintered diamond and the carbide alloy as decribed above are provided, whereby rigidity of the carbide alloy is added to the sintered diamond.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、たとえば切削工具、掘削工具、ドレッサー
などの種々の工具に用いられる、ダイヤモンド焼結体お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a diamond sintered body used in various tools such as cutting tools, excavation tools, and dressers, and a method for manufacturing the same.

[従来の技術1 ダイヤモンドの粉末を金属を結合材としてダイヤモンド
が安定な超高圧、高温下で焼結して得られるダイヤモン
ド焼結体は工具材料の中では最も高硬度であるダイヤモ
ンドの特徴を有し、単結晶ダイヤモンドのごとくヘキ開
によって低応力で破損することもない。したがって、切
削工具、伸線ダイス、ドレッサー、岩石掘削工具など多
方面において工具として用いられている。このダイモン
ド焼結体には用途により各種の構造、形状のものがある
が、切削工具、ドレッサー、岩石掘削工具には、一般に
、ダイヤモンド焼結体の層が超硬合金などの剛性の高い
母材に接合されたものが用いられている。
[Conventional technology 1] A diamond sintered body obtained by sintering diamond powder with metal as a binder under ultra-high pressure and high temperature where diamond is stable has the characteristics of diamond, which has the highest hardness among tool materials. However, unlike single-crystal diamond, it does not break due to low stress due to cleavage. Therefore, it is used as a tool in many fields such as cutting tools, wire drawing dies, dressers, and rock excavation tools. This diamond sintered body has various structures and shapes depending on the purpose, but cutting tools, dressers, and rock drilling tools generally have a layer of diamond sintered body made of a highly rigid base material such as cemented carbide. The one joined to is used.

上記のような構jhの焼結体は、たとえば特開昭46−
5204号のようにダイヤモンド焼結体の層がWCC超
超硬合金基材直接接合されてなる焼結体や、特開昭54
−45313あるいは同56−5506号のように中間
接合層を介してダイヤモンド焼結体の層が超硬合金など
の基材に接合された例が知られている。
A sintered body having the above structure is disclosed, for example, in JP-A-46-
A sintered body in which a layer of a diamond sintered body is directly bonded to a WCC cemented carbide base material, such as No. 5204, and
Examples are known, such as No. 45313 or No. 56-5506, in which a layer of a diamond sintered body is bonded to a base material such as cemented carbide via an intermediate bonding layer.

現在使用されている、上述のような焼結体のダイヤモン
ド焼結体層はダイヤモンド粒子の結合材としてCOなと
の鉄属金属を用いているものが多い。鉄属金属は、黒鉛
からダイヤモンドを合成する際の溶媒として用いられる
ものであり、超高圧下における焼結時にダイヤモンド粉
末の一部を溶解し、ダイヤモンド粒子層を強固に焼結さ
せる作用を果たすと考えられている。
Many of the diamond sintered body layers of the above-mentioned sintered bodies currently in use use a ferrous metal such as CO as a binder for diamond particles. Ferrous metals are used as solvents when synthesizing diamond from graphite, and they dissolve a portion of the diamond powder during sintering under ultra-high pressure and serve to firmly sinter the diamond particle layer. It is considered.

鉄属金属は、焼結前にダイヤモンド粉末と混合されても
よく、また特開昭46−5204号に開示きれているよ
うに焼結時に基材WC−Coの結合材融液をダイヤモン
ド粉末中に溶浸させる方法も知られているつこのような
ダイヤモンド焼結体は、耐摩耗性強度が優れており、従
来単結晶ダイヤモンドを用いていた用途でも優れた性能
を発揮するが、耐熱性の点では大きな制約が存在する。
The ferrous metal may be mixed with diamond powder before sintering, or as disclosed in JP-A-46-5204, a binder melt of the base material WC-Co is mixed into diamond powder during sintering. Diamond sintered bodies such as this one, for which a method of infiltration is also known, have excellent wear resistance and strength, and exhibit excellent performance in applications that conventionally used single-crystal diamond. There are major limitations in this respect.

ダイヤモンドは大気中では約900℃以上で表面より黒
鉛化が生じるが、真空または不活性ガス中では、140
0℃前後の温度でも黒鉛化は生じにくい。しかしながら
、前述した従来のダイヤモンド焼結体を加熱すると、約
750℃の温度で工具性能の劣化が見られる。このこと
は、切削工具や掘削工具のごとく使用時に刃先が高温に
なる使用条件、下では当然性能の低下が生じることを意
味する。従来のダイヤモンド焼結体が、ダイヤモンド単
結晶より低温で劣化する原因として考えられるのは、鉄
属金属結合材とダイヤモンドの熱膨張係数の差が大きく
、加熱により焼結体中の熱応力が大きくなり組織が破壊
されること、ならびに鉄属金属がダイヤモンドの黒鉛化
を促進する作用を有するからである。
Graphitization occurs from the surface of diamond at temperatures above 900°C in the atmosphere, but graphitization occurs at temperatures above 140°C in vacuum or inert gas.
Graphitization is difficult to occur even at temperatures around 0°C. However, when the conventional diamond sintered body mentioned above is heated, the tool performance deteriorates at a temperature of about 750°C. This means that under usage conditions such as cutting tools and excavation tools where the cutting edge becomes hot during use, the performance naturally deteriorates. The reason why conventional diamond sintered bodies deteriorate at lower temperatures than diamond single crystals is that there is a large difference in the coefficient of thermal expansion between the ferrous metal binding material and diamond, and the thermal stress in the sintered bodies increases due to heating. This is because the diamond structure is destroyed and the ferrous metal has the effect of promoting graphitization of diamond.

ダイヤモンド焼結体の耐熱性を改良する方法として、超
硬合金などの基材に接合されていない焼結体を作成し、
これを王水などに浸漬して加熱し、焼結体中の金属結合
相を溶出させる方法が考えられている(特開昭53−1
14589号)。これにより、ダイヤモンド焼結体の耐
熱性は、1200℃の温度までの加熱に耐え得るように
なると考えられている。
As a method to improve the heat resistance of diamond sintered bodies, we create sintered bodies that are not bonded to a base material such as cemented carbide.
A method of immersing this in aqua regia and heating it to elute the metal bonding phase in the sintered body has been considered (Japanese Patent Laid-Open No. 53-1
No. 14589). It is thought that this allows the diamond sintered body to have heat resistance that can withstand heating up to a temperature of 1200°C.

この特開昭53−114589号に開示されているダイ
ヤモンド焼結体では、金属結合相が酸処理により溶出す
るので、約8容匿%の空孔が存在する。したがって、焼
結体の強度は大幅に低下し、工具に用いた場合、靭性に
欠けるものとなる。さらに、この先行技術に記載された
方法では、焼結ダイヤモンドに強靭さを付与する超硬合
金が接合されていないことも相俟って、掘削工員として
十分な性能を発揮することはできない。また、この方法
では、ダイヤモンド焼結体を工具支持体に接合するに際
し大きな制約を受け、したがって強固な接合を得ること
が困難である。
In the diamond sintered body disclosed in JP-A-53-114589, since the metal bonding phase is eluted by acid treatment, there are about 8% pores by volume. Therefore, the strength of the sintered body is significantly reduced, and when used in tools, it lacks toughness. Furthermore, in the method described in this prior art, the cemented carbide that imparts toughness to the sintered diamond is not bonded, and as a result, it cannot exhibit sufficient performance as an excavator. Furthermore, this method is subject to significant restrictions when bonding the diamond sintered body to the tool support, making it difficult to obtain a strong bond.

それゆえに、この発明の目的は、さらに耐熱性に優れ、
かつ強度および耐摩耗性に優れた工具用ダイヤモンド焼
結体を提供することにある。
Therefore, the object of this invention is to further improve heat resistance,
Another object of the present invention is to provide a diamond sintered body for tools that has excellent strength and wear resistance.

c問題点を解決するための手段および作用]ダイヤモン
ド焼結体を工具として用いる場合、たとえば硬度の高い
岩石の掘削やセラミックの切削にダイヤモンド焼結体を
使用する場合、刃先となるダイヤモンド焼結体には高い
応力が付加されるとともに、温度が上昇する。したがっ
て、焼結ダイヤモンドは、耐熱性があり、かつ強度およ
び靭性に富む必要がある。
c) Means and action for solving the problem] When using a diamond sintered body as a tool, for example, when using a diamond sintered body for excavating hard rocks or cutting ceramics, the diamond sintered body is used as the cutting edge. High stress is applied to the area, and the temperature rises. Therefore, sintered diamond needs to be heat resistant and have high strength and toughness.

本願発明者達は、上述のような特性−ゝ有するダイヤモ
ンド焼結体を間発すぺ< 枳i&R究を行なった結果、
ダイヤモンド含有量が93容澁%を檀え、99容量%以
下であり、残部が周期律表第4a。
The inventors of the present application have conducted research into producing a diamond sintered body having the above-mentioned characteristics.
The diamond content is 93% by volume, less than 99% by volume, and the remainder belongs to 4a of the periodic table.

5a 、6a族の金属もしくは炭化物および/または鉄
族金属0.1〜3容量%、空孔0.5容量%以上、7容
量%以下よりなり、あるいはこれに曙素および/または
硼化物0.005〜0.25容伍%を含有する焼結ダイ
ヤモンドが、直接あるいは中間接合層を介して超硬合金
から゛なる基材に接合されてなるダイヤモンド焼結体が
、耐熱性、強度および靭性のいずれにおいても優れてい
ることを見出した。
5a, 6a group metal or carbide and/or iron group metal 0.1 to 3% by volume, vacancies 0.5% to 7% by volume, or 0.5% by volume and 0.5% by volume of pores and/or borides. A diamond sintered body in which sintered diamond containing 0.005 to 0.25% by volume is bonded to a base material made of cemented carbide directly or through an intermediate bonding layer has excellent heat resistance, strength, and toughness. It was found that both were excellent.

焼結ダイヤモンドの耐熱性を向上させるには、前述した
ように結合材たる鉄族金属を除去すればよい。しかしな
がら、結合材が存在していた場所は鉄族金属の除去によ
り空孔となる。ところで、焼結ダイヤモンドにおいて、
その強度と空孔には、第1図に示す関係が存在する。す
なわち空孔の増加に従い、焼結ダイヤモンドの強度は低
下するが、空孔が5%以上、8%以下の間で急激な強度
低下が生じ、8%以下では強度低下の割合は小さくなる
のである。
In order to improve the heat resistance of sintered diamond, the iron group metal serving as the binder may be removed as described above. However, the locations where the binder was present become voids due to the removal of the iron group metal. By the way, in sintered diamond,
There is a relationship between the strength and pores as shown in FIG. In other words, as the number of pores increases, the strength of sintered diamond decreases, but when the number of vacancies is 5% or more and 8% or less, the strength decreases rapidly, and when the vacancies are 8% or less, the rate of decrease in strength becomes smaller. .

一般に焼結ダイヤモンドに必要とされる強度は、その用
途や加工物の強度等により異なる。たとえば比較的軟ら
かい岩石の掘削や、セラミックスの切削等には市販の耐
熱性焼結ダイヤモンドの1゜5倍以上の強度があれば、
その性能は著しく改善される。したがって、このような
用途には、空孔の含有量は少なくとも7%以下でなけれ
ばならず、ダイヤモンドの含有mは93容量%以上のm
粘体が必要となる。空孔の含有量が5容量%未満であれ
ば、焼結ダイヤモンドの強度は市販の耐熱性焼結ダイヤ
モンドの約3倍以上となり、硬い岩石の掘削や高硬度セ
ラミックス等の切削に対し優れた性能を示し、望ましい
Generally, the strength required for sintered diamond varies depending on its use and the strength of the workpiece. For example, for drilling relatively soft rocks, cutting ceramics, etc., if the strength is more than 1.5 times that of commercially available heat-resistant sintered diamond,
Its performance is significantly improved. Therefore, for such applications, the vacancy content must be at least 7% or less, and the diamond content m must be at least 93% m by volume.
A sticky substance is required. If the pore content is less than 5% by volume, the strength of sintered diamond is approximately three times that of commercially available heat-resistant sintered diamond, and it has excellent performance in drilling hard rocks and cutting high-hardness ceramics. is desirable.

この発明は、上記したような焼結ダイヤモンドと、超硬
合金からなる基材とを備えるものであり、超硬合金の靭
性が、焼結ダイヤモンドに付加されることになる。した
がって、硬質セラミックスの切削や硬質岩の掘削のよう
な刃先に高い応力が付加される用途に適したものとなる
This invention includes the above-described sintered diamond and a base material made of cemented carbide, and the toughness of cemented carbide is added to the sintered diamond. Therefore, it is suitable for applications where high stress is applied to the cutting edge, such as cutting hard ceramics or excavating hard rock.

なお、焼結ダイヤモンドが直接超硬合金に接合されてい
る場合には、接合部において鉄族金属に冨む層が形成さ
れ、酸処理に際し、該部分の鉄族金属が溶出し、その結
果接合強度が低下することがある。したがって、好まし
くは、焼結ダイヤモンドと超硬合金基材とを、特開昭5
6−5506号に記載されているような立方晶型周期律
表第4a 、5a 、 6a族の炭化物、窒化物または
炭窒化物よりなる中間接合層を介して接合することによ
り、このような@蝕を防止することが可能となる。
Note that when sintered diamond is directly bonded to cemented carbide, a layer rich in iron group metals is formed at the bonded portion, and during acid treatment, the iron group metals in this area are eluted, resulting in a bond failure. Strength may decrease. Therefore, preferably, the sintered diamond and the cemented carbide base material are
Such @ It becomes possible to prevent eclipse.

したがって、接合強度に優れたダイヤモンド焼結体を得
ることができる。この中間接合層の厚みは、0.511
IIli!下テアルコトが好ましい。0.5mmを越え
ると、掘削工具の刃先として用いた場合などにおいて、
中間接合層が摩耗するからである。
Therefore, a diamond sintered body with excellent bonding strength can be obtained. The thickness of this intermediate bonding layer is 0.511
IIli! The lower end is preferred. If it exceeds 0.5 mm, when used as the cutting edge of a drilling tool, etc.
This is because the intermediate bonding layer is worn out.

この発明の製造方法では、原料ダイヤモンド粉末を13
00℃以上の高温で加熱し、ダイヤモンド粉末の表面を
黒鉛化することと、粒度の異なるダイヤモンド粉末を混
合したものを原料として用いることにより、ダイヤモン
ドの含有量が93容型%を越える緻密な焼結体を得るこ
とが可能とされている。しかしながら、ダイヤモンド含
有■が99容邑%を越えると、鉄族金属が不足し十分な
強度の焼結ダイヤモンドを(qることはできない。
In the manufacturing method of this invention, the raw material diamond powder is
By heating at a high temperature of 00℃ or higher to graphitize the surface of the diamond powder, and by using a mixture of diamond powders with different particle sizes as raw materials, we can create a dense sintered product with a diamond content of over 93% by volume. It is said that it is possible to obtain a body. However, if the diamond content exceeds 99%, iron group metals become insufficient and sintered diamond of sufficient strength cannot be produced.

この発明の焼結ダイヤモンドにおいては、第1図にも示
されているように空孔の含有■ができるだけ少ない方が
好ましいが、強度の高い焼結体を得るには前述したよう
に鉄族金属も必要である。
In the sintered diamond of this invention, as shown in Figure 1, it is preferable to have as few pores as possible, but in order to obtain a sintered body with high strength, it is necessary to is also necessary.

したがって、この発明では、最少0.5容認%の空孔が
存在する。
Therefore, in this invention there is a minimum of 0.5% vacancy.

この発明のダイヤモンド焼結体の製造に用いるダイヤモ
ンド粉末としては、平均最大粒径aのものを40〜60
容量%、粒径a/2のものを30〜40容量%、残部が
粒径a/3〜a /1000の割合で混合したものが、
高いダイヤモンド含有量を得ることができるので好まし
い。
The diamond powder used in the production of the diamond sintered body of this invention has an average maximum particle diameter of 40 to 60.
A mixture of 30-40% by volume of particles with a particle size of a/2 and the remainder with a particle size of a/3-a/1000 is
This is preferred because it allows a high diamond content to be obtained.

この発明の焼結ダイヤモンド中には、種々の粒度のダイ
ヤモンドが含有されているが、周期律表第48,5a、
6a族の金属もしくは炭化物が含有されていない場合に
は、特に微粒ダイヤモンド粒子近傍で鉄族金属の異常集
積部が発生し、金属を溶出した場合、この部分が空孔と
なる。したがって、金属もしくは炭化物を含有させれば
、強度はさらに向上する。この鉄族金属および周期律表
第4a 、5a 、6a族の金属もしくは炭化物の含有
量は、0.1〜3容量%が好ましい。この含有mが3容
世%を越えると、ダイヤモンドとの熱膨張着による亀裂
の発生や、ダイヤモンドの黒鉛化が生じるため耐熱性が
低下するからである。またこの含有量はできるだけ少な
い方が好ましいが、ダイヤモンド原料中に残存する鉄族
金属などは事実上溶出不可能であるため、最少0.1容
量%の鉄族金属等は焼結体に残存することになる。
The sintered diamond of this invention contains diamonds of various particle sizes, including diamonds 48 and 5a of the periodic table,
If no group 6a metal or carbide is contained, abnormal accumulations of iron group metals occur particularly near the fine diamond particles, and when the metals are eluted, these areas become pores. Therefore, if metal or carbide is contained, the strength will be further improved. The content of the iron group metal, metals of groups 4a, 5a, and 6a of the periodic table, or carbides is preferably 0.1 to 3% by volume. This is because if the m content exceeds 3 vol. %, cracks may occur due to thermal expansion adhesion with diamond and graphitization of diamond will occur, resulting in a decrease in heat resistance. In addition, it is preferable that this content be as small as possible, but since iron group metals remaining in the diamond raw material are practically impossible to elute, a minimum of 0.1% by volume of iron group metals, etc. should remain in the sintered body. It turns out.

この発明の焼結ダイヤモンドでは、特に、炭化物がWC
あるいはこれと同一の結晶構造を有する(Mo 、W)
Cである場合に、靭性、耐摩耗性および耐熱性に優れる
ことがわかっている。
In the sintered diamond of this invention, in particular, the carbide is WC
Or has the same crystal structure as this (Mo, W)
It has been found that when C, the toughness, abrasion resistance and heat resistance are excellent.

また、この発明の焼結体に、焼結体に容量で0゜005
〜0.25%の硼素または硼化物あるいはこれらの双方
を含有さUた場合、その特性は一段と向上する。通常、
ダイヤモンド粒子は、超高圧高温下で、鉄族金属などの
触媒によるダイヤモンドの溶解あるいは析出現衆により
焼結される。硼素または硼化物の少なくとも一方を添加
した場合、鉄族金属の硼化物を生じ、融点が低下するの
と、溶解析出速度が泗すためダイヤモンド粒子同士の結
合部(ダイヤモンド・スプル1−ン部)が成長し、ダイ
ヤモンド粒子の保持力が向上したものと推測できる。硼
素あるいは硼化物の含有量が0,005%未満であると
、ダイヤモンド・スケルトン部の形成は遅い。一方、硼
素あるいは硼化物の含有量が0.25%を越えると、ダ
イヤモンド・スケルトン部に多■の硼素が侵入し、ダイ
ヤモンド・スケルトン部の強度が低下する。
Further, the sintered body of the present invention has a capacity of 0°005
When containing ~0.25% boron and/or boride, the properties are further improved. usually,
Diamond particles are sintered by melting or precipitating diamond particles using a catalyst such as an iron group metal under ultra-high pressure and high temperature. When at least one of boron and borides is added, borides of iron group metals are formed, which lowers the melting point and increases the melt deposition rate. It can be inferred that this is due to the growth of diamond particles, and the holding power of the diamond particles has improved. When the boron or boride content is less than 0,005%, the formation of the diamond skeleton is slow. On the other hand, if the boron or boride content exceeds 0.25%, a large amount of boron will invade the diamond skeleton, reducing the strength of the diamond skeleton.

この発明の焼結ダイヤモンドに用いるダイヤモンド粉末
は、合成ダイヤモンドあるいは天然ダイヤモンドのいず
れを用いることも可能である。
The diamond powder used in the sintered diamond of this invention can be either synthetic diamond or natural diamond.

この発明の製造方法において、周期律表第4a。In the manufacturing method of the present invention, the periodic table 4a.

5a 、6a族の金属もしくは炭化物を含有させるには
、ダイヤンド粉末と周期律表第48 、53 。
To contain metals or carbides of groups 5a and 6a, use diamond powder and items 48 and 53 of the periodic table.

6a族の炭化物もしくは金属ならびにl”e 、 co
 。
Group 6a carbides or metals as well as l”e, co
.

Niなどの鉄族金属粉末あるいはこれに硼素または硼化
物を加えた粉末を、ボールミルなどの手段を用い均一に
混合する。この鉄族金属は予め混合せずに、焼結時に、
鉄族金属からなる部材に接触させることにより溶浸させ
てもよい。
An iron group metal powder such as Ni or a powder obtained by adding boron or boride to the powder is uniformly mixed using a means such as a ball mill. This iron group metal is not mixed in advance, but during sintering,
Infiltration may be carried out by contacting a member made of an iron group metal.

また、本願発明者達の先願(特願11852−5188
1号)に開示されているように、ボールミル時のポット
とボールとを、混入する周期律表第4a、5a、5a族
の炭化物と鉄族金属との焼結体で作成しておき、ダイヤ
モンド粉末をボールミル扮砕すると同時に、ポットとボ
ールとから周期律表第4a、5a、5a族の炭化物と鉄
族金属との焼結体の微lIl扮末を混入させる方法も採
り得る。
In addition, the inventors' earlier application (patent application No. 11852-5188)
As disclosed in No. 1), the pot and ball for ball milling are made of a sintered body of carbides of groups 4a, 5a, and 5a of the periodic table mixed with iron group metals, and diamond At the same time as the powder is ground in a ball mill, a fine powder of a sintered body of carbides of groups 4a, 5a, and 5a of the periodic table and iron group metals may be mixed into the pot and ball.

混合された粉末を、1300℃以上の高温でダイヤモン
ドを一部黒鉛化してffl硬合金に直接または中間接合
層を介して接するように充填して、しかる侵超高圧・高
温装置に入れ、ダイヤモンドが安定な条件下で焼結する
と同時に超硬合金に接合する。このとき用いた鉄族金属
と炭化物などの化合物間に生じる共晶液相の出現潤度以
上で焼結する必要がある。
The mixed powder is heated to a high temperature of 1,300°C or higher to graphitize some of the diamonds, and is filled into the FFL hard alloy so that it is in contact with the FFL hard alloy directly or through an intermediate bonding layer. It is sintered under stable conditions and simultaneously bonded to cemented carbide. It is necessary to sinter at a moisture content higher than that at which a eutectic liquid phase appears between the iron group metal used at this time and a compound such as a carbide.

上述のようにして1ワられた焼結ダイヤモンドは、次に
酸化性を有する液体で処理される。この酸化性を仔する
液体としては、たとえば加熱された王水、硝酸またはフ
ッ化水素酸を用い得る。このような酸化性を有する液体
処理により、焼結ダイヤモンド中の鉄族金属および周期
律表第4a 、 5a 。
The sintered diamond heated as described above is then treated with an oxidizing liquid. As the oxidizing liquid, for example, heated aqua regia, nitric acid or hydrofluoric acid can be used. Such an oxidizing liquid treatment causes iron group metals in sintered diamond and metals of the periodic table 4a and 5a.

6aMの金属もしくは炭化物の一部を溶出することが可
能となる。同時に、超硬合金からなる塞材を焼結ダイヤ
モンドとともに酸化性を有する液体内で処理した場合に
は、超硬合金表面に酸化膜が形成され、したがって超硬
合金中の鉄族金属の溶出は防止される。
It becomes possible to elute part of the metal or carbide of 6aM. At the same time, when a plugging material made of cemented carbide is treated with sintered diamond in an oxidizing liquid, an oxide film is formed on the surface of the cemented carbide, and therefore the elution of iron group metals in the cemented carbide is prevented. Prevented.

もっとも、上述のような酸化性を有する液体による処理
に際しては、焼結ダイヤモンド層のみを液体に浸漬する
ことも可能である。
However, in the treatment with the oxidizing liquid as described above, it is also possible to immerse only the sintered diamond layer in the liquid.

この発明のダイヤモンド焼結体の用途としては、ピット
のほかに、セラミック切削加工用バイト、ドレッサーな
どが挙げられる。
Applications of the diamond sintered body of the present invention include, in addition to pits, ceramic cutting tools, dressers, and the like.

[実施例] 部下、実施例により具体的に説明する。[Example] This will be explained in detail using examples.

実施例 1 平均粒度80Atm 、35μs 、20j、Zlおよ
び5〜0.2μlのダイヤモンド粉末を、45:35:
1:1の割合で配合し、しかる後WC−C。
Example 1 Average particle size 80 Atm, 35 μs, 20j, Zl and 5-0.2 μl diamond powder in 45:35:
Blended at a ratio of 1:1 and then WC-C.

超硬合金からなるポットとボールとを用いて5分間粉砕
a合した。この粉末を1400℃の温度で30分間、真
空中で加熱した。次に、MO製の容器に、WC−12%
CO円板上に60容壱%の立方晶型窒化flIXを含み
残部がTiNとAfLよりなる粉末を塗布したちのを入
れ、しかる後上記混合扮末を充填し、Co板を完成粉末
上に@置して接触させ、超高圧・高温siW!を用いて
、まず圧力を55kb加え、引続き1460℃の温度に
加熱し、10分間保持した。このようにして得られた焼
結体を容器より取出して観察したところ、焼結ダイヤモ
ンドが厚み0.51alの中間接合層を介して超硬合金
基材に強固に接合されているのが認められた。
Grinding was carried out for 5 minutes using a pot and a ball made of cemented carbide. This powder was heated in vacuum at a temperature of 1400° C. for 30 minutes. Next, add WC-12% to an MO container.
A powder containing 60 volume 1% of cubic type nitride flIX with the balance consisting of TiN and AfL was coated on a CO disk, and then the above mixed powder was filled, and a Co plate was placed on the finished powder. @Place and contact, ultra-high pressure and high temperature siW! First, a pressure of 55 kb was applied using a vacuum cleaner, followed by heating to a temperature of 1460° C. and holding it for 10 minutes. When the sintered body thus obtained was taken out of the container and observed, it was found that the sintered diamond was firmly bonded to the cemented carbide base material through an intermediate bonding layer with a thickness of 0.51 al. Ta.

次に、この焼結ダイヤモンドのみを化学分析により分析
し、ダイヤモンド、WCおよびGOの含有Mを測定した
ところ、それぞれ、96.0容量%、0.15容量%、
3.85容量%であった。
Next, only this sintered diamond was analyzed by chemical analysis, and the M content of diamond, WC, and GO was measured, and the results were 96.0% by volume, 0.15% by volume, and 0.15% by volume, respectively.
It was 3.85% by volume.

次に、超硬合金!S材に中間接合層を介して接合した上
述の焼結ダイヤモンドを、加熱された王水中に浚潰し、
50時間処理したところ、焼結ダイヤモンドからはCo
とWCの一部が溶出し、その結果ダイヤモンド96.0
容量%、WCo、141K量%、Co0.8容認%およ
び空孔3,06容量%の組成となっていたが、超硬合金
基材は、表面のみが酸化されており、内部のcoはIよ
とんど溶出していないことが認められた。また、中11
1合層の腐蝕は観察されなかった。
Next, cemented carbide! The above-mentioned sintered diamond bonded to the S material via the intermediate bonding layer is dredged in heated aqua regia,
After 50 hours of treatment, Co was released from the sintered diamond.
and a part of WC elutes, resulting in diamond 96.0
The composition was 141% by volume, WCo, 141% by volume, 0.8% Co, and 3.06% by volume of pores, but the cemented carbide base material was oxidized only on the surface, and the internal Co was oxidized. It was observed that very little elution occurred. Also, middle school 11th
No corrosion of the first layer was observed.

上述のチップを、切削加工用のチップとして加工し、ビ
ッカース硬度1800のSi、N<を切削速度8011
/分、切込1mm、送り0.1111/回転・乾式で1
0分間切削した。
The above-mentioned chip was processed as a cutting chip, and Si with a Vickers hardness of 1800 was cut at a cutting speed of 8011.
/min, depth of cut 1mm, feed 0.1111/rotation/dry type 1
Cut for 0 minutes.

比較のために、王水処理を行なう前の焼結体および空孔
が8容量%残存する市販の耐熱性ダイヤモンド焼結体で
あって超硬合金基材が接合されていないものにつき、上
記実施例と同一条件下で切削を行なった。
For comparison, the above procedure was carried out on a sintered body before aqua regia treatment and on a commercially available heat-resistant diamond sintered body with 8% by volume of pores remaining and to which a cemented carbide base material was not bonded. Cutting was carried out under the same conditions as in the example.

結果、この実施例のダイヤモンドチップの逃げ面摩耗幅
は0.15+uであったのに対して、COの溶出を行な
っていないものについては0.351であった。また、
市販の焼結ダイヤモンドでは30秒切削した時点で欠損
し、切削を行なうことが不可能とく1つだ。
As a result, the flank wear width of the diamond tip of this example was 0.15+u, whereas it was 0.351 of the diamond tip without CO elution. Also,
Commercially available sintered diamond breaks after 30 seconds of cutting, making it impossible to cut.

実施例 2 平均粒度8C)cza+ 、 40.czm 、 15
ttmおよび0.5μmのダイヤモンド粒子を、5:3
:2:1の割合で配合した。この粉末に、第1表に示す
種々の鉄族金属および周mw表第4a 、 5a 、 
6a族の金属もしくは炭化物を混合し、完成粉末とした
。次に、これらの完成粉末を真空中で1350℃の温度
に加熱し、ダイヤモンド粒子の一部を黒鉛化した。しか
る侵丁a製の容器にWC−15%CO合金を置き、この
上に完成粉末を充填し、58kb、1500℃の温度の
電性にて焼結を行なった。このようにして嵜られた各焼
結体をTa容器から取出し、焼結ダイヤモンド府のみを
電解液に浸漬し、電流を流し焼結ダイヤモンド中より鉄
族金属を溶出した。
Example 2 Average particle size 8C) cza+, 40. czm, 15
ttm and 0.5 μm diamond particles in a 5:3
: They were blended at a ratio of 2:1. To this powder, various iron group metals shown in Table 1 and peripheral mw Tables 4a, 5a,
Group 6a metals or carbides were mixed to form a finished powder. Next, these finished powders were heated to a temperature of 1350° C. in a vacuum to graphitize some of the diamond particles. A WC-15% CO alloy was placed in a container made of the same material, filled with the finished powder, and sintered at a temperature of 58 kb and 1500°C. Each of the sintered bodies thus fitted was taken out from the Ta container, only the sintered diamond core was immersed in an electrolytic solution, and an electric current was applied to dissolve the iron group metals from the sintered diamond.

焼結ダイヤモンド中の空孔の含有口についても、第1表
に併せて示す。
Table 1 also shows the number of pores in the sintered diamond.

上述の各画も5グイヤUンドを超硬合金基材を利用して
、ピットボディにろう付けし、コアビットを作成した。
In each of the above-mentioned drawings, a core bit was created by brazing a 5-gold wire onto a pit body using a cemented carbide base material.

比較・のために、天然ダイヤモンドを用いて9−フエス
セットのコアビット、ならびに鉄族金属を溶出していな
い焼結ダイヤモンドを使用したコアビットを作成した。
For comparison, a 9-Fes set core bit using natural diamond and a core bit using sintered diamond from which iron group metals were not eluted were prepared.

上記各試験片につき、−軸圧縮強度1600−1700
K(1/CI’ (7)支出We500回転/分で掘削
した。掘進速度および寿命を第2表に示す。
For each test piece above, -axial compressive strength 1600-1700
K(1/CI' (7) Expenditure We excavated at 500 revolutions/min. The excavation speed and service life are shown in Table 2.

(以下余白) 第1表 *1:単位+t*m% *2:周r 表48,5a、6a族の金属の炭化物*3
:Fa処I!I!侵の空孔体積 11」LL 平均粒度0.8μ−のダイヤモンド粉末と、硼素粉末と
をWC−Co超硬合金のポットとボールとを用いて粉砕
・混合した。この粉末と、平均粒IT!50μ翔、25
μlおよび10μmのダイヤモンド粉末とを1:5:3
:1の割合で混合し、しかる瞬1450℃の温度で1時
間、真空中で加熱し、実施例1と同様にして55kl)
、1450℃の条件下で焼結を行なった。この焼結体を
分析したところ、ダイヤモンド96.0容量%、GO3
゜65容量%、x+ o、 1容量%、WCo、2容量
%、ならびに−素o、05容量%よりなる焼結体である
ことが認められた。この焼結体のみを加熱王水中で処理
したところ、3.4容量%の空孔が生じた。
(Margins below) Table 1 *1: Unit + t * m% *2: Perimeter Table 48, 5a, 6a group metal carbides *3
: Fa place I! I! Diamond powder with a pore volume of 11" LL and an average particle size of 0.8 .mu.m and boron powder were ground and mixed using a WC-Co cemented carbide pot and ball. This powder and average grain IT! 50μ sho, 25
1:5:3 of μl and 10μm diamond powder
: Mixed at a ratio of 1:1, then heated in vacuum at a temperature of 1450°C for 1 hour, and then treated in the same manner as in Example 1 to produce 55 kl)
The sintering was carried out under conditions of , 1450°C. When this sintered body was analyzed, it was found that 96.0% by volume of diamond, GO3
It was confirmed that the sintered body was composed of 65% by volume, 1% by volume of WCo, 2% by volume of WCo, and 05% by volume of -O. When this sintered body alone was treated in heated aqua regia, 3.4% by volume of pores were generated.

この焼結体を用いて、ビッカース硬度2300のアルミ
ナセラミックスを切削速度:80m/分、切込:211
111、送り:O,l+i/回転で、水溶性の切削油を
用いて15分間切削した。
Using this sintered body, cut alumina ceramics with a Vickers hardness of 2300 at a speed of 80 m/min and a depth of cut of 211.
111, feed: O, l+i/revolution, and cutting was carried out for 15 minutes using water-soluble cutting oil.

比較のために、粒度40μm〜60μmであり、空孔が
8容量%存在する市販の耐熱性ダイヤモンドであって超
硬合金が接合されていないものを用いて切削した。
For comparison, commercially available heat-resistant diamond with a particle size of 40 μm to 60 μm and 8% by volume of pores, to which no cemented carbide was bonded, was used for cutting.

その結果、この発明のダイヤモンド焼結体の逃げ面摩耗
幅は、0.25111であったのに対し、市販の耐熱ダ
イヤモンドは、2分間の切削後に欠損を生じてしまった
As a result, the flank wear width of the diamond sintered body of the present invention was 0.25111, whereas the commercially available heat-resistant diamond suffered from chipping after 2 minutes of cutting.

U21 粒度の異なるダイヤモンド粒子の配合比および黒鉛化処
理条件を変えることにより、最大粒径が60μmであり
、ダイヤモンド含有量の異なる種々のダイヤモンド焼結
体を実施例3と同様にして作成し、しかる後焼結ダイヤ
モンドのみを酸処理し、耐熱性ダイヤモンドチップを準
備した。各焼結ダイヤモンドのダイヤモンド含有量およ
び空孔含有量を第3表に示す。
U21 By changing the blending ratio of diamond particles with different particle sizes and the graphitization treatment conditions, various diamond sintered bodies with a maximum particle size of 60 μm and different diamond contents were created in the same manner as in Example 3, and then Only the post-sintered diamond was acid-treated to prepare a heat-resistant diamond chip. Table 3 shows the diamond content and pore content of each sintered diamond.

(以下余白) 第3表に示されている各焼結体M−Rを、切削加工用の
チップとして加工し、圧縮強度900〜1000にり/
cm’の安山岩を、切削速度=150@ 、/分、切込
+211、送り:0.3111/回転湿式で20分間切
削し、逃げ面摩耗幅を測定した。結果を第2図に示す。
(Left below) Each of the sintered bodies M-R shown in Table 3 was processed into a cutting chip with a compressive strength of 900 to 1000/
cm' of andesite was wet-cut for 20 minutes at a cutting speed of 150 @/min, depth of cut +211, feed: 0.3111/rotation, and the flank wear width was measured. The results are shown in Figure 2.

第2図から明らかなように、空孔の容積が7容量%以下
である、試料M、N、O,Pでは、逃げ面摩耗幅が、空
孔が7容量%以上の試料0.Rに比べてはるかに少ない
ことがわかる。
As is clear from FIG. 2, the flank wear width of samples M, N, O, and P, in which the volume of pores is 7% by volume or less, is that of sample 0.0, in which the volume of pores is 7% by volume or more. It can be seen that it is much less than R.

[発明の効果1 以上のように、この発明によれば、より一層耐熱性に優
れ、かつ強度、靭性および耐摩耗性に優れた工具用ダイ
ヤモンド焼結体を得ることが可能となる。
[Effect of the Invention 1 As described above, according to the present invention, it is possible to obtain a diamond sintered body for tools that has even better heat resistance, strength, toughness, and wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、結合相を溶出した耐熱ダイヤモンド焼結体に
おける圧縮強度と空孔容積との関係を表わす図である。 第2図は、耐熱性ダイヤモンド焼結体の安山岩切削試験
結果を示す図である。 特許出願人 住友電気工業株式会社 !!、1可 ゛)゛イヤモ〉ド煙善吉林中の仝孔幅I責2)@2図
FIG. 1 is a diagram showing the relationship between compressive strength and pore volume in a heat-resistant diamond sintered body from which the binder phase has been eluted. FIG. 2 is a diagram showing the results of an andesite cutting test on a heat-resistant diamond sintered body. Patent applicant Sumitomo Electric Industries, Ltd.! ! , 1) ``Iyamo'' hole width in Jilin Middle 2) @2 Figure

Claims (42)

【特許請求の範囲】[Claims] (1)ダイヤモンド含有量が93容量%を越え、かつ9
9容量%以下であり、残部が周期律表第4a、5a、6
a族の金属もしくは炭化物と、鉄族金属との少なくとも
一方を合計で0.1〜3容量%、ならびに空孔0.5容
量%以上7容量%以下よりなる焼結ダイヤモンドと、 超硬合金基材とからなる工具用ダイヤモンド焼結体。
(1) The diamond content exceeds 93% by volume, and
9% by volume or less, with the remainder being 4a, 5a, and 6 of the periodic table.
A sintered diamond comprising a total of 0.1 to 3% by volume of at least one of a group A metal or carbide and an iron group metal, and 0.5% to 7% by volume of voids, and a cemented carbide base. A diamond sintered body for tools made of materials.
(2)前記焼結ダイヤモンドと、前記超硬合金基材とは
、中間接合層を介して接合されている、特許請求の範囲
第1項記載の工具用ダイヤモンド焼結体。
(2) The diamond sintered body for a tool according to claim 1, wherein the sintered diamond and the cemented carbide base material are bonded via an intermediate bonding layer.
(3)前記中間接合層は、0.5mm以下の厚みを有す
る、特許請求の範囲第2項記載の工具用ダイヤモンド焼
結体。
(3) The diamond sintered body for a tool according to claim 2, wherein the intermediate bonding layer has a thickness of 0.5 mm or less.
(4)前記焼結ダイヤモンドは、超硬合金基材に直接接
合されている、特許請求の範囲第1項記載の工具用ダイ
ヤモンド焼結体。
(4) The diamond sintered body for a tool according to claim 1, wherein the sintered diamond is directly bonded to a cemented carbide base material.
(5)前記ダイヤモンド含有量が95容量%を越え99
容量%以下であり、残部の空孔が0.5容量%以上5容
量%未満である、特許請求の範囲第1項ないし第4項の
いずれかに記載の工具用ダイヤモンド焼結体。
(5) The diamond content exceeds 95% by volume and is 99%
% by volume or less, and the remaining pores are 0.5% by volume or more and less than 5% by volume, the diamond sintered body for tools according to any one of claims 1 to 4.
(6)前記周期律表第4a、5a、6a族の炭化物が、
WCまたはWCと同一の結晶構造を有する(MoW)C
である、特許請求の範囲第1項ないし第5項のいずれか
に記載の工具用ダイヤモンド焼結体。
(6) The carbide of groups 4a, 5a, and 6a of the periodic table is
WC or (MoW)C with the same crystal structure as WC
A diamond sintered body for a tool according to any one of claims 1 to 5.
(7)ダイヤモンドの含有量が93容量%を越え99容
量%以下であり、残部が周期律表第4a、5a、6a族
の金属もしくは炭化物および鉄族金属の少なくとも一方
を合計で0.1〜3容量%、空孔0.5容量%以上7容
量%以下、ならびに硼素および硼化物の少なくとも一方
を合計で0.005〜0.25容量%よりなる、焼結ダ
イヤモンドと、 超硬合金からなる基材とを備える、工具用ダイヤモンド
焼結体。
(7) The content of diamond is more than 93% by volume and not more than 99% by volume, and the balance is a total of 0.1 to 0.1% or more of at least one of metals or carbides of Groups 4a, 5a, and 6a of the periodic table, or carbides, and iron group metals. 3% by volume, 0.5% to 7% by volume of voids, and a total of 0.005 to 0.25% by volume of at least one of boron and boride; and a cemented carbide. A diamond sintered body for tools, comprising a base material.
(8)前記焼結ダイヤモンドは、中間接合層を介して前
記超硬合金基材に接合されている、特許請求の範囲第7
項記載の工具用ダイヤモンド焼結体。
(8) The sintered diamond is bonded to the cemented carbide base material via an intermediate bonding layer.
A diamond sintered body for tools as described in .
(9)前記中間接合層は、0.5mm以下の厚みを有す
る、特許請求の範囲第8項記載の工具用ダイヤモンド焼
結体。
(9) The diamond sintered body for a tool according to claim 8, wherein the intermediate bonding layer has a thickness of 0.5 mm or less.
(10)前記焼結ダイヤモンドは、直接前記超硬合金基
材に接合されている、特許請求の範囲第7項記載の工具
用ダイヤモンド焼結体。
(10) The diamond sintered body for a tool according to claim 7, wherein the sintered diamond is directly joined to the cemented carbide base material.
(11)前記ダイヤモンド含有量が95容量%を越え、
99容量%以下であり、残部の空孔が0.5容量%以上
5容量%未満である、特許請求の範囲第7項ないし第1
0項のいずれかに記載の工具用ダイヤモンド焼結体。
(11) the diamond content exceeds 95% by volume;
99% by volume or less, and the remaining pores are 0.5% by volume or more and less than 5% by volume, Claims 7 to 1
The diamond sintered body for tools according to any one of item 0.
(12)前記周期律表第4a、5a、6a族の炭化物が
WCまたはWCと同一の結晶構造を有する(MoW)C
である、特許請求の範囲第7項ないし第11項のいずれ
かに記載の工具用ダイヤモンド焼結体。
(12) The carbide of groups 4a, 5a, and 6a of the periodic table has WC or the same crystal structure as WC (MoW)C
A diamond sintered body for a tool according to any one of claims 7 to 11.
(13)ダイヤモンド粉末、またはダイヤモンド粉末と
周期律表第4a、5a、6a族の金属もしくは炭化物お
よび鉄族金属との混合粉末を作成し、1300℃以上の
温度にて、原料粉末中のダイヤモンドの一部を黒鉛化し
、しかる後超硬合金と接触させ、さらに該ダイヤモンド
に鉄族金属または周期律表第4a、5a、6a族の焼結
炭化物とを接触させ、超高圧・高温装置を用いてダイヤ
モンドが安定な高温高圧下においてホットプレスして焼
結体を作成し、該焼結体を酸化性液体で処理することに
より、焼結ダイヤモンド中の鉄族金属および周期律表第
4a、5a、6a族の金属もしくは炭化物の一部を溶出
することを特徴とする、ダイヤモンド含有量が93容量
%を越え、99容量%以下であり、残部が周期律表第4
a、5a、6a族の金属もしくは炭化物と、鉄族金属と
の少なくとも一方を合計で0.1〜3容量%、ならびに
空孔0.5容量%以上7容量%以下よりなる焼結ダイヤ
モンドと超硬合金基材とを備える工具用ダイヤモンド焼
結体の製造方法。
(13) Create diamond powder or a mixed powder of diamond powder and metals or carbides of Groups 4a, 5a, and 6a of the periodic table and iron group metals, and heat the diamond powder in the raw material powder at a temperature of 1300°C or higher. A part of the diamond is graphitized, and then brought into contact with a cemented carbide, and then the diamond is brought into contact with an iron group metal or a sintered carbide of groups 4a, 5a, and 6a of the periodic table, using an ultra-high pressure and high temperature device. By hot-pressing the diamond under high temperature and high pressure to create a sintered body, and treating the sintered body with an oxidizing liquid, iron group metals in the sintered diamond and elements 4a, 5a, and 5a of the periodic table can be removed. The diamond content is more than 93% by volume and less than 99% by volume, and the remainder is from the fourth group of the periodic table.
A sintered diamond containing a total of 0.1 to 3% by volume of at least one of metals or carbides of groups A, 5a, and 6a, and iron group metals, and 0.5% to 7% by volume of vacancies. A method for manufacturing a diamond sintered body for tools, comprising a hard metal base material.
(14)前記ダイヤモンドと超硬合金基材との接触に際
し、ダイヤモンドと超硬合金とを中間接合層を介して接
触させる、特許請求の範囲第13項記載の工具用ダイヤ
モンド焼結体の製造方法。
(14) A method for manufacturing a diamond sintered body for a tool according to claim 13, wherein the diamond and the cemented carbide are brought into contact with each other via an intermediate bonding layer when the diamond and the cemented carbide base material are brought into contact with each other. .
(15)前記酸化性液体による処理に際し、超硬合金表
面に酸化膜層を形成し、それによつて超硬合金中の鉄族
金属の溶出を防止する、特許請求の範囲第13項または
第14項記載の工具用ダイヤモンド焼結体の製造方法。
(15) In the treatment with the oxidizing liquid, an oxide film layer is formed on the surface of the cemented carbide, thereby preventing elution of iron group metals in the cemented carbide. A method for producing a diamond sintered body for tools as described in .
(16)前記酸化性液体による処理に際し、焼結ダイヤ
モンド層のみを酸化性液体に浸し、それによつて超硬合
金中の鉄族金属の溶出を防止する、特許請求の範囲第1
3項または第14項記載の工具用ダイヤモンド焼結体の
製造方法。
(16) During the treatment with the oxidizing liquid, only the sintered diamond layer is immersed in the oxidizing liquid, thereby preventing elution of iron group metals in the cemented carbide.
The method for producing a diamond sintered body for tools according to item 3 or 14.
(17)前記ダイヤモンド含有量が95容量%を越え、
99容量%以下であり、残部の空孔が0.5容量%以上
5容量%未満である、特許請求の範囲第13項ないし第
16項のいずれかに記載の工具用ダイヤモンド焼結体の
製造方法。
(17) the diamond content exceeds 95% by volume;
99% by volume or less, and the remaining pores are 0.5% by volume or more and less than 5% by volume, manufacturing a diamond sintered body for tools according to any one of claims 13 to 16. Method.
(18)前記周期律表第4a、5a、6a族の炭化物が
、WCまたはWCと同一の結晶構造を有する(MoW)
Cである、特許請求の範囲第13項ないし第17項のい
ずれかに記載の工具用ダイヤモンド焼結体の製造方法。
(18) The carbide of groups 4a, 5a, and 6a of the periodic table has WC or the same crystal structure as WC (MoW)
The method for manufacturing a diamond sintered body for tools according to any one of claims 13 to 17, wherein the diamond sintered body is C.
(19)ダイヤモンド粉末と鉄族金属、またはダイヤモ
ンド粉末と周期律表第4a、5a、6a族の金属もしく
は炭化物および鉄族金属との混合粉末を作成し、130
0℃以上の温度にて、原料粉末中のダイヤモンドの一部
を黒鉛化した後、超硬合金と該ダイヤモンドとを接触さ
せ、超高圧・高温装置を用いてダイヤモンドが安定な高
温高圧下においてホットプレスして焼結体を作成し、該
焼結体を酸化性液体で処理することにより、焼結体中の
鉄族金属および周期律表第4a、5a、6a族の金属も
しくは炭化物の一部を溶出することを特徴とする、ダイ
ヤモンドの含有量が93容量%を越え99容量%以下で
あり、残部が周期律表第4a、5a、6a族の金属もし
くは炭化物と鉄族金属との少なくとも一方を合計で0.
1〜3容量%、ならびに空孔0.5容量%以上7容量%
以下よりなる焼結ダイヤモンドと、超硬合金からなる基
材とを備える、工具用ダイヤモンド焼結体の製造方法。
(19) A mixed powder of diamond powder and an iron group metal, or a diamond powder and a metal or carbide of Groups 4a, 5a, or 6a of the periodic table and an iron group metal is prepared, and 130
After graphitizing a portion of the diamond in the raw material powder at a temperature of 0°C or higher, the diamond is brought into contact with the cemented carbide, and heated under high temperature and pressure at a stable temperature using an ultra-high pressure/high temperature device. By pressing to create a sintered body and treating the sintered body with an oxidizing liquid, some of the iron group metals and metals of groups 4a, 5a, and 6a of the periodic table or carbides in the sintered body are removed. The diamond content is more than 93% by volume and not more than 99% by volume, and the remainder is at least one of metals or carbides of groups 4a, 5a, and 6a of the periodic table and iron group metals. The total is 0.
1 to 3% by volume, and 0.5% to 7% by volume of voids
A method for manufacturing a diamond sintered body for tools, comprising a sintered diamond consisting of the following and a base material consisting of a cemented carbide.
(20)前記ダイヤモンドと超硬合金からなる基材とは
、中間接合層を介して接触される、特許請求の範囲第1
9項記載の工具用ダイヤモンド焼結体の製造方法。
(20) The diamond and the base material made of cemented carbide are in contact with each other via an intermediate bonding layer.
The method for producing a diamond sintered body for tools according to item 9.
(21)前記中間接合層は、0.5mm以下の厚みであ
る、特許請求の範囲第19項または第20項記載の工具
用ダイヤモンド焼結体の製造方法。
(21) The method for manufacturing a diamond sintered body for a tool according to claim 19 or 20, wherein the intermediate bonding layer has a thickness of 0.5 mm or less.
(22)前記ダイヤモンドと超硬合金基材とは直接接触
される、特許請求の範囲第19項記載の工具用ダイヤモ
ンド焼結体の製造方法。
(22) The method for manufacturing a diamond sintered body for a tool according to claim 19, wherein the diamond and the cemented carbide base material are brought into direct contact.
(23)前記酸化液体の処理に際し、超硬合金基材表面
に酸化膜層を形成し、それによつて超硬合金基材中の鉄
族金属の溶出を防止する、特許請求の範囲第19項ない
し第22項のいずれかに記載の工具用ダイヤモンド焼結
体の製造方法。
(23) When treating the oxidized liquid, an oxide film layer is formed on the surface of the cemented carbide base material, thereby preventing elution of iron group metals in the cemented carbide base material, claim 19. 23. A method for producing a diamond sintered body for tools according to any one of items 22 to 22.
(24)前記酸化性液体の処理に際し、焼結ダイヤモン
ド層のみを該液体に浸漬し、それによって超硬合金基材
中の鉄族金属の溶出を防止する、特許請求の範囲第19
項ないし第22項記載の工具用ダイヤモンド焼結体の製
造方法。
(24) When treating the oxidizing liquid, only the sintered diamond layer is immersed in the liquid, thereby preventing elution of iron group metals in the cemented carbide base material.
A method for producing a diamond sintered body for tools according to items 22 to 22.
(25)前記ダイヤモンド含有量が、95容量%を越え
、99容量%以下であり、残部の空孔が0.5容量%以
上5容量%未満である、特許請求の範囲第19項ないし
第24項のいずれかに記載の工具用ダイヤモンド焼結体
の製造方法。
(25) Claims 19 to 24, wherein the diamond content is more than 95% by volume and not more than 99% by volume, and the remaining pores are 0.5% by volume or more and less than 5% by volume. A method for producing a diamond sintered body for tools according to any one of paragraphs.
(26)前記周期律表第4a、5a、6a族の炭化物は
WCまたはWCと同一の結晶構造を有する(MoW)C
である、特許請求の範囲第19項ないし第25項のいず
れかに記載の工具用ダイヤモンド焼結体の製造方法。
(26) The carbides of groups 4a, 5a, and 6a of the periodic table have the same crystal structure as WC or WC (MoW)C
A method for manufacturing a diamond sintered body for tools according to any one of claims 19 to 25.
(27)ダイヤモンド粉末と硼素あるいは硼化物との混
合粉末、またはダイヤモンド粉末と周期律表第4a、5
a、6a族の金属もしくは炭化物、鉄族金属および硼素
もしくは硼化物との混合粉末を作成し、1300℃以上
の温度で、原料粉末中のダイヤモンドの一部を黒鉛化し
、しかる後超硬合金基材と接触させ、さらに該ダイヤモ
ンド上に鉄族金属または周期律表第4a、5a、6a族
の焼結炭化物を接触させ、超高圧・高温装置を用いてダ
イヤモンドが安定な高温高圧下においてホットプレスし
て焼結体を作成し、該焼結体を酸化性液体で処理するこ
とにより、ダイヤモンド焼結体中の鉄族金属および周期
律表第4a、5a、6a族の金属もしくは炭化物の一部
を溶出することを特徴とする、 ダイヤモンド含有量が93容量%を越え、99容量%以
下であり、残部が周期律表第4a、5a、6a族の金属
もしくは炭化物と、鉄族金属との少なくとも一方を合計
で0.1〜3容量%、硼素または硼化物の少なくとも一
方を合計で0.005〜0.25容量%、ならびに空孔
0.5容量%以上、7容量%以下よりなる焼結ダイヤモ
ンドと、超硬合金からなる基材とを備える、工具用ダイ
ヤモンド焼結体の製造方法。
(27) Mixed powder of diamond powder and boron or boride, or diamond powder and periodic table items 4a and 5
A, a mixed powder of group 6a metals or carbides, iron group metals, and boron or borides is prepared, a part of the diamond in the raw material powder is graphitized at a temperature of 1300°C or higher, and then a cemented carbide base is formed. Further, an iron group metal or a sintered carbide of groups 4a, 5a, and 6a of the periodic table is brought into contact with the diamond, and the diamond is hot-pressed using an ultra-high pressure and high temperature device under high temperature and pressure at which the diamond is stable. By preparing a sintered body and treating the sintered body with an oxidizing liquid, some of the iron group metals and metals of groups 4a, 5a, and 6a of the periodic table or carbides in the diamond sintered body are removed. The diamond content is more than 93% by volume and not more than 99% by volume, and the remainder is at least a metal or carbide of Group 4a, 5a, or 6a of the periodic table and an iron group metal. Sintered material consisting of 0.1 to 3% by volume of one in total, 0.005 to 0.25% by volume of at least one of boron or boride, and 0.5 to 7% by volume of voids. A method for manufacturing a diamond sintered body for tools, comprising diamond and a base material made of cemented carbide.
(28)前記ダイヤモンドと超硬合金とは、中間接合層
を介して接触される、特許請求の範囲第27項記載の工
具用ダイヤモンド焼結体の製造方法。
(28) The method for manufacturing a diamond sintered body for a tool according to claim 27, wherein the diamond and the cemented carbide are brought into contact with each other via an intermediate bonding layer.
(29)前記中間接合層は、0.5mm以下の厚みを有
する、特許請求の範囲第28項記載の工具用ダイヤモン
ド焼結体の製造方法。
(29) The method for manufacturing a diamond sintered body for tools according to claim 28, wherein the intermediate bonding layer has a thickness of 0.5 mm or less.
(30)前記ダイヤモンドと、超硬合金とは直接接触さ
れる、特許請求の範囲第27項記載の工具用ダイヤモン
ド焼結体の製造方法。
(30) The method for manufacturing a diamond sintered body for a tool according to claim 27, wherein the diamond and the cemented carbide are brought into direct contact.
(31)前記酸化性液体による処理に際しては、超硬合
金基材表面に酸化膜層を形成させる、特許請求の範囲第
27項ないし第30項のいずれかに記載の工具用ダイヤ
モンド焼結体の製造方法。
(31) The diamond sintered body for tools according to any one of claims 27 to 30, which forms an oxide film layer on the surface of the cemented carbide base material during the treatment with the oxidizing liquid. Production method.
(32)前記酸化性液体による処理に際しては、焼結ダ
イヤモンド層のみを前記酸化性液体に浸漬し、それによ
つて超硬合金基材からの鉄族金属の溶出を防止する、特
許請求の範囲第27項ないし第30項のいずれかに記載
の工具用ダイヤモンド焼結体の製造方法。
(32) During the treatment with the oxidizing liquid, only the sintered diamond layer is immersed in the oxidizing liquid, thereby preventing elution of the iron group metal from the cemented carbide base material. The method for producing a diamond sintered body for tools according to any one of Items 27 to 30.
(33)前記ダイヤモンド含有量は95容量%を越え、
99容量%以下であり、残部の空孔が0.5容量%以上
5容量%未満である、特許請求の範囲第27項ないし第
32項のいずれかに記載の工具用ダイヤモンド焼結体の
製造方法。
(33) the diamond content exceeds 95% by volume;
Production of a diamond sintered body for tools according to any one of claims 27 to 32, wherein the pores are 99% by volume or less and the remaining pores are 0.5% by volume or more and less than 5% by volume. Method.
(34)前記周期律表第4a、5a、6a族の炭化物が
、WCまたはWCと同一の結晶構造を有する(MoW)
Cである、特許請求の範囲第27項ないし第33項のい
ずれかに記載の工具用ダイヤモンド焼結体の製造方法。
(34) The carbide of groups 4a, 5a, and 6a of the periodic table has WC or the same crystal structure as WC (MoW)
The method for manufacturing a diamond sintered body for a tool according to any one of claims 27 to 33, wherein the diamond sintered body is C.
(35)ダイヤモンド粉末と、鉄族金属ならびに硼素お
よび硼化物の少なくとも一方との混合粉末、またはダイ
ヤモンド粉末と周期律表第4a、5a、6a族の金属も
しくは炭化物、鉄族金属ならびに硼素および硼化物の少
なくとも一方との混合粉末を作成し、1300℃以上の
温度にて原料粉末中のダイヤモンドの一部を黒鉛化した
後、超硬合金と接触させ、超高圧・高温装置を用いてダ
イヤモンドが安定な高温高圧下においてホットプレスし
て焼結体を作成し、該焼結体を酸化性液体で処理するこ
とにより、ダイヤモンド焼結体中の鉄族金属および周期
律表第4a、5a、6a族の金属もしくは炭化物の一部
を溶出することを特徴とする、 ダイヤモンド含有量が93容量%を越え、99容量%以
下であり、残部が周期律表第4a、5a、6a族の金属
もしくは炭化物および鉄族金属の少なくとも一方を合計
で0.1〜3容量%、硼素および硼化物の少なくとも一
方を合計で0.005〜0.25容量%、空孔0.5容
量%以上7容量%未満よりなる焼結ダイヤモンドと、超
硬合金からなる基材とを備える工具用ダイヤモンド焼結
体の製造方法。
(35) A mixed powder of diamond powder and an iron group metal and at least one of boron and borides, or a diamond powder and a metal or carbide of Groups 4a, 5a, or 6a of the periodic table, an iron group metal, and boron and boride. After creating a mixed powder with at least one of the above, graphitizing a part of the diamond in the raw material powder at a temperature of 1300°C or higher, bringing it into contact with cemented carbide, and stabilizing the diamond using an ultra-high pressure and high temperature device. By hot pressing under high temperature and high pressure to create a sintered body, and treating the sintered body with an oxidizing liquid, iron group metals and groups 4a, 5a, and 6a of the periodic table in the diamond sintered body can be removed. The diamond content is more than 93% by volume and not more than 99% by volume, and the remainder is metals or carbides from Groups 4a, 5a, and 6a of the periodic table. A total of at least one of iron group metals from 0.1 to 3% by volume, at least one of boron and boride from a total of 0.005 to 0.25% by volume, and vacancies of 0.5% to less than 7% by volume. A method for manufacturing a diamond sintered body for a tool, comprising: a sintered diamond made of sintered diamond; and a base material made of a cemented carbide.
(36)前記ダイヤモンドと超硬合金とは、中間接合層
を介して接触される、特許請求の範囲第35項記載の工
員用ダイヤモンド焼結体の製造方法。
(36) The method for producing a diamond sintered body for workers according to claim 35, wherein the diamond and the cemented carbide are brought into contact with each other via an intermediate bonding layer.
(37)前記中間接合層は0.5mm以下の厚みである
、特許請求の範囲第36項記載の工具用ダイヤモンド焼
結体の製造方法。
(37) The method for manufacturing a diamond sintered body for tools according to claim 36, wherein the intermediate bonding layer has a thickness of 0.5 mm or less.
(38)前記ダイヤモンドと、超硬合金とは直接接触さ
れる、特許請求の範囲第35項記載の工具用ダイヤモン
ド焼結体の製造方法。
(38) The method for manufacturing a diamond sintered body for a tool according to claim 35, wherein the diamond and the cemented carbide are brought into direct contact.
(39)前記酸化性液体による処理に際しては、超硬合
金表面に酸化膜層を形成させ、それによつて超硬合金中
の鉄族金属の溶出を防止する、特許請求の範囲第35項
ないし第38項のいずれかに記載の工具用ダイヤモンド
焼結体の製造方法。
(39) In the treatment with the oxidizing liquid, an oxide film layer is formed on the surface of the cemented carbide, thereby preventing elution of iron group metals in the cemented carbide. A method for producing a diamond sintered body for tools according to any one of Item 38.
(40)前記酸化性液体による処理に際しては、焼結ダ
イヤモンド層のみを酸化性液体に浸漬し、それによつて
超硬合金中の鉄族金属の溶出を防止する、特許請求の範
囲第35項ないし第38項のいずれかに記載の工員用ダ
イヤモンド焼結体の製造方法。
(40) In the treatment with the oxidizing liquid, only the sintered diamond layer is immersed in the oxidizing liquid, thereby preventing elution of the iron group metal in the cemented carbide. The method for producing a diamond sintered body for workers according to any one of Item 38.
(41)前記ダイヤモンド含有量が、95容量%を越え
、99容量%以下であり、残部の空孔が0.5容量%以
上、5容量%未満である、特許請求の範囲第35項ない
し第40項のいずれかに記載の工具用ダイヤモンド焼結
体の製造方法。
(41) Claims 35 to 35, wherein the diamond content is more than 95% by volume and not more than 99% by volume, and the remaining pores are 0.5% by volume or more and less than 5% by volume. A method for producing a diamond sintered body for tools according to any one of Item 40.
(42)前記周期律表第4a、5a、6a族の炭化物が
、WCまたはWCと同一の結晶構造を有する(MoW)
Cである、特許請求の範囲第35項ないし第41項のい
ずれかに記載の工具用ダイヤモンド焼結体の製造方法。
(42) The carbide of groups 4a, 5a, and 6a of the periodic table has WC or the same crystal structure as WC (MoW)
The method for manufacturing a diamond sintered body for tools according to any one of claims 35 to 41, wherein the diamond sintered body is C.
JP59246565A 1984-09-08 1984-11-21 Diamond sintered article for tool and manufacture thereof Granted JPS61125739A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59246565A JPS61125739A (en) 1984-11-21 1984-11-21 Diamond sintered article for tool and manufacture thereof
AU46632/85A AU571419B2 (en) 1984-09-08 1985-08-26 Diamond sintered for tools and method of manufacture
DE8585110715T DE3583567D1 (en) 1984-09-08 1985-08-26 SINTERED DIAMOND TOOL BODY AND METHOD FOR PRODUCING IT.
EP85110715A EP0174546B1 (en) 1984-09-08 1985-08-26 Diamond sintered body for tools and method of manufacturing the same
US06/769,609 US4636253A (en) 1984-09-08 1985-08-26 Diamond sintered body for tools and method of manufacturing same
KR1019850006553A KR900002701B1 (en) 1984-09-08 1985-09-07 Diamond sintered body for tools and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246565A JPS61125739A (en) 1984-11-21 1984-11-21 Diamond sintered article for tool and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61125739A true JPS61125739A (en) 1986-06-13
JPH0530897B2 JPH0530897B2 (en) 1993-05-11

Family

ID=17150299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246565A Granted JPS61125739A (en) 1984-09-08 1984-11-21 Diamond sintered article for tool and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61125739A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255836A (en) * 2005-03-17 2006-09-28 Shoichi Shimada MACHINING METHOD AND MACHINING DEVICE OF MATERIAL CONTAINING EITHER ELEMENT BELONGING TO FOUTH PERIOD OF GROUP VIIIA OR Ti
WO2008096402A1 (en) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. Diamond sinter
US9783425B1 (en) 2013-06-18 2017-10-10 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US11946320B2 (en) 2017-09-18 2024-04-02 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283016B2 (en) * 2009-03-30 2013-09-04 住友電工ハードメタル株式会社 Diamond sintered body for cutting tools containing coarse diamond particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100982A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for tool and manufacture
JPS59159902A (en) * 1983-03-03 1984-09-10 Toshiba Tungaloy Co Ltd Production of composite sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100982A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for tool and manufacture
JPS59159902A (en) * 1983-03-03 1984-09-10 Toshiba Tungaloy Co Ltd Production of composite sintered body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255836A (en) * 2005-03-17 2006-09-28 Shoichi Shimada MACHINING METHOD AND MACHINING DEVICE OF MATERIAL CONTAINING EITHER ELEMENT BELONGING TO FOUTH PERIOD OF GROUP VIIIA OR Ti
WO2008096402A1 (en) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. Diamond sinter
US7985470B2 (en) 2007-02-02 2011-07-26 Sumitomo Electric Hardmetal Corp. Diamond sintered compact
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US11383217B1 (en) 2011-08-15 2022-07-12 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US9783425B1 (en) 2013-06-18 2017-10-10 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10183867B1 (en) 2013-06-18 2019-01-22 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11370664B1 (en) 2013-06-18 2022-06-28 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11618718B1 (en) 2014-02-11 2023-04-04 Us Synthetic Corporation Leached superabrasive elements and leaching systems, methods and assemblies for processing superabrasive elements
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US11253971B1 (en) 2014-10-10 2022-02-22 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11535520B1 (en) 2015-05-31 2022-12-27 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11946320B2 (en) 2017-09-18 2024-04-02 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same

Also Published As

Publication number Publication date
JPH0530897B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
EP1309732B1 (en) Method of producing an abrasive product containing diamond
US5151107A (en) Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US5468268A (en) Method of making an abrasive compact
CA1255106A (en) Abrasive products
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
JPH02160429A (en) Super-abrasive cutting element
EP0383861B1 (en) Diamond compact possessing low electrical resistivity
CA2618658A1 (en) Polycrystalline diamond abrasive element and method of its production
JPS61125739A (en) Diamond sintered article for tool and manufacture thereof
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
KR20080111546A (en) Method of making a cbn compact
JPS6184303A (en) Manufacture of composite sintered body
JPS5935066A (en) Diamond sintered body for tool and manufacture
JPS6167740A (en) Diamond sintered body for tools and its manufacture
JPS6241778A (en) Improvement of composite polycrystal diamond plunged body
JP4065666B2 (en) High crater resistance High strength sintered body
JPH0782031A (en) Cubic boron nitride-containing sintered compact and its production
JPS6355161A (en) Manufacture of industrial diamond sintered body
JP4653922B2 (en) Method of attaching a coating to a substrate composed of diamond or a diamond-containing material
JPH04202490A (en) Coated diamond abrasive grain
JPS6319585B2 (en)
JPH0368938B2 (en)
JPS6350401B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees