WO2010082587A1 - Adsorbent for suspension in air - Google Patents

Adsorbent for suspension in air Download PDF

Info

Publication number
WO2010082587A1
WO2010082587A1 PCT/JP2010/050287 JP2010050287W WO2010082587A1 WO 2010082587 A1 WO2010082587 A1 WO 2010082587A1 JP 2010050287 W JP2010050287 W JP 2010050287W WO 2010082587 A1 WO2010082587 A1 WO 2010082587A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
influenza virus
air suspension
inactivating
adsorbent
Prior art date
Application number
PCT/JP2010/050287
Other languages
French (fr)
Japanese (ja)
Inventor
三郎 大原
Original Assignee
株式会社大気倶楽部
亜東商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大気倶楽部, 亜東商事株式会社 filed Critical 株式会社大気倶楽部
Publication of WO2010082587A1 publication Critical patent/WO2010082587A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16161Methods of inactivation or attenuation
    • C12N2760/16163Methods of inactivation or attenuation by chemical treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16261Methods of inactivation or attenuation
    • C12N2760/16263Methods of inactivation or attenuation by chemical treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20061Methods of inactivation or attenuation
    • C12N2770/20063Methods of inactivation or attenuation by chemical treatment

Definitions

  • the present invention relates to a low-concentration ethanol preparation that is sprayed into an environment in which a suspension containing bacteria and viruses is suspended to sterilize or inactivate pathogenic microorganisms.
  • a suspension containing bacteria and viruses is suspended to sterilize or inactivate pathogenic microorganisms.
  • it relates to an ethanol preparation that inactivates influenza virus.
  • Airborne suspensions contain pathogenic microorganisms such as brute force and bacteria mixed with dust, water droplets, pollen and exhaust gas.
  • pathogenic microorganisms there are pathogenic microorganisms that caused a pandemic typified by SARS that spread around the world in a few days from a single patient who entered Hong Kong from southern China, which became a global problem in 2002.
  • preventive measures such as developing safe usable drugs that can remove pathogenic microorganisms from the air.
  • gram-negative bacteria such as coliforms are vulnerable to drying and cannot float in the air for a long time, but Bacillus, mold spores, microknots, streptococci, etc. are strong in drying and long in the air. Float. Large mold spores float in the air as they are, but pathogenic bacteria and yeast float in the air as they are contained in clothes garbage and water droplets. Bacteria have many common bacteria such as cocci, bacilli and spore bacteria, and the ratio of cocci is high. There are a small number of molds such as Penicillim, Cladosporium, Aspergillus, Fusarium, Trichoderma, and other membrane-producing yeasts, Rhodetorufa (Non-patent Document 1).
  • Non-Patent Document 2 SARS (coronavirus), the influenza A virus that repeats epidemic every winter, and the highly virulent avian influenza virus, etc. will be mutated to become a new influenza virus, and the outbreak will no longer occur There is no reliable preventive measure even though it is a time issue (Non-Patent Document 2).
  • Non-patent Document 2 The flu, avian flu, and new flu that are prevalent each year are the same influenza viruses. Originally duck inhabiting Siberia go south for wintering, fly to lakes and drop feces, but there are a tremendous number of viruses in the feces. Water birds such as duck do not become ill when infected with influenza A virus, and maintain viruses in nature. Most of these viruses are attenuated viruses. Even if these viruses infect chickens and the like, many remain insidious infections, but a large amount of viruses are present in the feces and are said to be a source of infection to other birds (Non-patent Document 2). .
  • a / Hong Kong / 68 shares are introduced through the migratory duck group nesting in Siberia and Alaska in the summer, and wintering over Japan, China, Taiwan, Southeast Asia and North America in the fall.
  • the duck flies to the pond of the farm where the house duck and the pig are raised together and excretes the influenza virus along with the feces.
  • humans and pigs live closely, so the virus travels back and forth between pigs and humans.
  • H3 virus from duck and H2N2 virus from human Asian cold co-infect pigs, and gene segmentation is repeated. Aggregates were produced.
  • Non-patent Document 3 Non-patent Document 3
  • Non-Patent Document 2 Non-Patent Document 2
  • the main virus infection is air infection that infects people who have inhaled viruses in the air, and it is highly unlikely that bird viruses will infect humans, but there are many opportunities to come into contact with bird viruses.
  • the infection rate is higher.
  • chickens infected with a weakly virulent virus propagate only in the respiratory tract and intestinal tract, and noticeable symptoms often do not appear, but chickens infected with a virulent virus are systemic infections such as multiple organ failure. Can cause death in 1-2 days.
  • Non-patent Document 2 It is well known that when a new type of influenza emerges, it is necessary to immediately determine the classification of the virus type, urgently produce the vaccine, and immediately supply and inoculate it.
  • An object of the present invention is to provide an air suspension adsorbent that inactivates influenza virus in an air suspension.
  • an air suspension adsorbent that inactivates influenza virus in an air suspension For example, in the event of a new influenza outbreak overseas, even if people who are urgently trying to enter Japan, for example, become infected during flight and develop during flight, the virus will be prevented from spreading in the plane.
  • the air suspension adsorbent that inactivates the influenza virus in the air suspension which is effective for waterfront measures to normalize the air environment in advance and prevent the invasion of the new influenza virus, the influenza virus It is in providing the manufacturing method of the air suspension adsorbent which inactivates the method of inactivation, and inactivates influenza virus.
  • an air suspension adsorbent that inactivates influenza virus comprising ethanol, surfactant, polylysine, glycine, and food additive polymer.
  • water may be used as a solvent for the air suspension adsorbent.
  • the surfactant is any of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester.
  • glycerin fatty acid ester citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester.
  • citric acid fatty acid monoglyceride citric acid fatty acid monoglyceride
  • succinic acid fatty acid monoglyceride succinic acid fatty acid monoglyceride
  • diacetyltartaric acid fatty acid monoglyceride diglycerin fatty acid ester
  • sucrose fatty acid ester sucrose fatty acid ester
  • the glycerin fatty acid ester, the citric acid fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride have 8, 10, 12, 18 carbon atoms in the fatty acid. You may choose from either.
  • the diglycerin fatty acid ester may have 14 fatty acids.
  • the sucrose fatty acid ester may be selected from any of 12, 16, and 18 carbon atoms of the fatty acid.
  • the food additive polymer may be selected from any of sodium polyacrylate, sodium carboxymethylcellulose, regenerated cellulose porous membrane, and polydextrose.
  • the air suspension adsorbent may further contain a complex carbohydrate sugar chain.
  • the complex carbohydrate sugar chain may be N-acetylneuraminic acid and galactose.
  • the air suspension adsorbent may further contain a fragrance.
  • a method for inactivating influenza virus by spraying an air suspension adsorbent comprising ethanol, surfactant, polylysine, glycine, and food additive polymer. .
  • the first solution containing the ethanol and the food additive polymer and the second solution containing the ethanol, the surfactant, the polylysine and the glycine are sprayed, respectively.
  • the first solution and the second solution may be mixed in the air.
  • water may be used as a solvent for the air suspension adsorbent.
  • the surfactant is any one of glycerin fatty acid ester, citrate fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, sucrose fatty acid ester, or Two or more combinations may be selected.
  • the glycerin fatty acid ester, the citrate fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid monoglyceride are selected from any of 8, 10, 12, and 18 carbon atoms of fatty acid. May be.
  • the diglycerin fatty acid ester may have 14 fatty acids.
  • the sucrose fatty acid ester may be selected from any of 12, 16, and 18 carbon atoms of the fatty acid.
  • the food additive polymer may be selected from any of polyacrylic acid sodium salt, carboxymethylcellulose sodium, regenerated cellulose porous membrane, and polydextrose.
  • the air suspension adsorbent may further contain a complex carbohydrate chain.
  • the complex carbohydrate sugar chain may be N-acetylneuraminic acid and galactose.
  • the air suspension adsorbent may further include a fragrance.
  • water is heated to 46 ° C. or more and 67 ° C. or less, and a food additive polymer, glycine and polylysine are added and dissolved to prepare a first solution, and the surfactant
  • the suspension is adsorbed in air to inactivate influenza virus, wherein the second solution is prepared by dissolving ethanol by adding ethanol to the first solution, and the second solution is dissolved in the first solution.
  • a method for producing the agent is provided.
  • a complex carbohydrate sugar chain may be further added to the first solution.
  • the surfactant is glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, sucrose fatty acid. Any one of esters or a combination of two or more may be selected.
  • the glycerin fatty acid ester, the citrate fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride have 8, 10 and 12 carbon atoms in the fatty acid. , 18 may be selected.
  • the diglycerin fatty acid ester may have 14 fatty acids.
  • the sucrose fatty acid ester may be selected from any of 12, 16, and 18 carbon atoms of the fatty acid.
  • the food additive polymer is selected from any of polyacrylic acid sodium salt, sodium carboxymethylcellulose, regenerated cellulose porous membrane, and polydextrose Also good.
  • the complex carbohydrate sugar chain may be N-acetylneuraminic acid and galactose.
  • the air suspension adsorbent may further contain a fragrance.
  • an air suspension for preventing the spread of a new influenza virus by spraying an adsorbent to prevent the spread of the virus and further spraying in advance to normalize the air environment.
  • An air suspension adsorbent that inactivates the influenza virus, a method for inactivating the influenza virus, and a method for producing the air suspension adsorbent for inactivating the influenza virus are provided.
  • the air suspension adsorbent for inactivating the influenza virus in the air suspension according to the present invention the method for inactivating the influenza virus, and the method for producing the air suspension adsorbent for inactivating the influenza virus are described below. To do.
  • the air suspension adsorbent for inactivating the influenza virus in the air suspension according to the present invention, the method for inactivating the influenza virus, and the method for producing the air suspension adsorbent for inactivating the influenza virus are as follows: It is not limited to the embodiment.
  • the present inventor has so far proposed sterilization of the food production environment, researched a method for removing airborne bacteria and falling bacteria, etc.
  • We developed a food additive low-concentration alcohol preparation so that it can be sterilized in a manned environment.
  • airborne bacteria gathered on the workers' heads at the start of operation. It was also found that if it was sprayed toward the surface, a net-breaking effect was obtained against airborne bacteria.
  • the spore growth inhibitory preparation exhibits bactericidal effects against airborne and falling bacteria.
  • hemagglutinin HA on the influenza A virus membrane recognizes and binds to the sialic acid-containing complex sugar chain (receptor) of the host (human) cell membrane.
  • sialidase NA neuroaminidase
  • the genes of HA and NA are likely to change, thereby acquiring new antigenicity and presuming that the immune surveillance mechanism is replaced.
  • the sialo-glycan structure which is a receptor to which influenza virus subtypes bind strongly, is commonly a lacto type I and type II (Non-patent Document 3), and the pocket for recognizing the receptor is very good.
  • Vaccines are known to lose their potency due to subtype changes because conservatively, the amino acids in the antigenic determining region change rapidly.
  • the present invention attempted to inactivate the influenza virus virus using this immobilization mechanism in intercellular recognition. It has also been found that direct contact of sialic acid with the influenza virus binds but is readily cleaved by sialidase on the influenza virus membrane. Viruses that float in the air do not float alone, and are thought to be attached to mold, bacteria, water droplets, and so on, so we researched air suspension adsorbents that comprehensively inactivate them.
  • the air suspension adsorbent according to this embodiment includes ethanol, a surfactant (emulsifier), polylysine, glycine, and a food additive polymer. Moreover, the air suspension adsorbent according to this embodiment can further improve the inactivation effect of influenza virus by further adding a complex carbohydrate chain. You may denature ethanol by adding a fragrance
  • ethanol used for the air suspension adsorbent according to the present embodiment 95 ° primary unmodified alcohol can be used.
  • Examples of the surfactant for the air suspension adsorbent according to the present embodiment include glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester.
  • the fatty acid may be either a saturated fatty acid or an unsaturated fatty acid.
  • glycerin fatty acid ester citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyl tartaric acid fatty acid monoglyceride, any one of C 8 , C 10 , C 12 , and C 18 carbon atoms can be used.
  • the monoglyceride content is 80% or more, preferably 85% or more.
  • the surfactant for the air suspension adsorbent according to the present embodiment include caprylic acid monoglyceride (Sunsoft (registered trademark) No. 700) and capric acid monoglyceride (Sunsoft (registered trademark) No. manufactured by Taiyo Kagaku Co., Ltd.
  • glycerin monocaprylate (Poem (registered trademark) M-100) from Riken Vitamin Co., Ltd., glycerin monocaprate (Poem (registered trademark)) Trademark) M-200), glycerin monolaurate (Poem (R) M-300), citric acid saturated fatty acid monoglyceride (Poem (TM) K-30), succinic acid fatty acid monoglyceride (Poem (TM) B-10) or the like can be used.
  • glycerin monocaprylate (Poem (registered trademark) M-100) from Riken Vitamin Co., Ltd., glycerin monocaprate (Poem (registered trademark)) Trademark) M-200), glycerin monolaurate (Poem (R) M-300), citric acid saturated fatty acid monoglyceride (Poem (TM) K-30), succinic acid fatty acid monoglyceride
  • the air suspension adsorbent according to this embodiment may contain two or more kinds of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, and diacetyltartaric acid fatty acid monoglyceride depending on the properties required. Also includes a number of carbon atoms of the fatty acid is different fatty acid esters of two or more, for example, it is also possible to include two types of glycerin fatty acid esters of C 8 and C 10.
  • a fatty acid having a carbon number of C 14 and an HLB (Hydrophile-Lipophile Balance) value of 9.0 can be used.
  • the fatty acid may be either a saturated fatty acid or an unsaturated fatty acid.
  • diglycerin monomyristate (Poem (registered trademark) DM-100) manufactured by Riken Vitamin Co., Ltd. can be used.
  • sucrose fatty acid ester used for the surfactant of the air suspension adsorbent any one of C 12 , C 16 , and C 18 in the fatty acid can be used.
  • the fatty acid may be either a saturated fatty acid or an unsaturated fatty acid. Also includes a number of carbon atoms of the fatty acid is different fatty acid esters of two or more, for example, it is also possible to include two kinds of sucrose fatty acid esters of C 12 and C 16.
  • the surfactant for the air suspension adsorbent according to this embodiment 50 or more, preferably 70% or more of monoester is used.
  • Examples of the surfactant for the air suspension adsorbent according to the present embodiment include DK Ester (registered trademark) F-160, F-110, S-L18A manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Mitsubishi Chemical Foods Co., Ltd. Ryoto (registered trademark) Sugar Esters S-1570, O-1570, LWA-1570 and the like can be used.
  • DK Ester registered trademark
  • Ryoto registered trademark
  • Sugar Esters S-1570, O-1570, LWA-1570 and the like can be used.
  • ⁇ -polylysine can be used, for example, a 25% solution manufactured by Nippon Chisso Corporation.
  • the glycine (glycol) used for the air suspension adsorbent according to the present embodiment can be used as a food additive.
  • N-acetylneuraminic acid and galactose having binding properties with influenza virus are used as the complex carbohydrate sugar chain used in the air suspension adsorbent according to the present embodiment.
  • N-acetylneuraminic acid and galactose may be added separately as the complex carbohydrate sugar chain used in the air suspension adsorbent according to this embodiment, or N-acetylneuraminic acid and galactose are chemically You may use what was couple
  • N-acetylneuraminic acid and galactose are used instead of or in addition to the binding characteristics of inactivated viruses and toxins.
  • -Acetylglucosamine, glucose, N-acetylgalactosamine and the like can be used.
  • any of polyacrylic acid sodium salt, sodium carboxymethyl cellulose, regenerated cellulose porous membrane, and polydextrose can be used.
  • a known perfume may be added to alleviate the odor caused by the added drug and to change the unmodified alcohol to a modified alcohol.
  • flavor can use what can be used as a food additive, without inhibiting inactivation of influenza virus with respect to each component of the above-mentioned air suspension adsorbent.
  • the air suspension adsorbent according to the present embodiment is first stirred while heating purified water to 46 ° C. or more and 67 ° C. or less, and the food additive polymer, glycine and polylysine are added and dissolved. Moreover, when adding complex carbohydrate sugar chain, it adds to this solution last. Separately, ethanol is added to a surfactant (if it is solidified, it is liquefied with a warm bath), and dissolved by stirring. This surfactant / ethanol solution is gradually added to the solution of the food additive polymer and the like, and dissolved by stirring to obtain a preparation.
  • the ethanol concentration should be within the range that can be handled as non-dangerous substances, and should be used and stored as a low-concentration ethanol preparation of 6.00 v / v % or more and 50.00 v / v % or less to maintain safety.
  • the concentration of monoglycerol fatty acid ester is preferably 0.02 v / v % or more and 0.30 v / v % or less, and the concentration of diglycerol fatty acid ester is preferably 0.042 v / v % or more and 0.60 v / v % or less.
  • the polylysine concentration is preferably 0.04 v / v % or more and 0.60 v / v % or less, and the glycine concentration is preferably 0.20 v / v % or more and 3.00 v / v % or less.
  • the content of the food additive polymer is preferably 0.10 to 1.50%.
  • the concentration of the complex carbohydrate chain is preferably about 0.08 v / v %.
  • N-acetylneuraminic acid is about 0.03 v / v %
  • galactose is about 0.05 v / v %.
  • Perfume can be added at about 0.20 v / v %.
  • the air suspension adsorbent according to the present embodiment has an excellent effect of inactivating influenza virus while being a low-concentration ethanol preparation due to mutual recognition of glycoconjugates and viruses. Moreover, as shown in the below-mentioned Example, the air suspension adsorbent according to the present embodiment is effective in inactivating influenza virus even when it does not contain complex carbohydrate sugar chains.
  • the target cell recognition mechanism by neuraminic acid mutually recognizes bacterial cholera toxin, E. coli lytic toxin, tetanus toxin, botulinum toxin, clostridial toxin, Vibrio parahaemolytic thermolytic hemolysin, Shiga Shigella toxin, etc. This is considered to be effective against bacterial toxins adsorbed on neuraminic acid (Shinji Uchitaka, “Sugar II”, Sokkyo Chemical Dojin, Infection and Sugar Chains, p. 173 to 183). .
  • Embodiment 2 To inactivate viruses that have fallen on the floor, etc., or those that have adhered to walls or uneven surfaces, using an air suspension adsorbent, directly apply the air suspension adsorbent, soak it in a cloth, etc. However, in this embodiment, a method for spraying the air suspension adsorbent described in Embodiment 1 in the air will be described.
  • Air suspension particles of 3 microns or less containing microorganisms such as bacteria, molds and viruses are difficult to fall in still air. Air suspension particles flow with the movement of air and come into contact with people and food. When the air suspension adsorbent according to the present embodiment is sprayed, the air suspension particles come into contact with the air suspension adsorbent, and the air suspension adsorbent is absorbed to fall in weight. Bacteria and mold contained in the dropped air suspension particles are sterilized by the air suspension adsorbent, and the virus is inactivated.
  • the air suspension adsorbent is sprayed as fine particles of 16 ⁇ m or less, preferably as fine particles of about 3 ⁇ m.
  • the time for the air suspension adsorbent to float in the air becomes longer, and the contact efficiency with the air suspension particles can be increased.
  • spraying the air suspension adsorbent as fine particles of about 3 ⁇ m increases the contact efficiency with the air suspension particles.
  • the particle size of the air suspension adsorbent is increased and the residence time in the air is reduced, so that the contact efficiency with the air suspension particles is reduced. Further, by spraying the air suspension adsorbent as dry mist-like fine particles, clothes and objects of people in the sprayed space are not wetted.
  • spraying for the purpose of preventing air infection and droplet infection, to prevent influenza virus infection from person to person Can do.
  • the environment inside the aircraft can be purified by spraying to ensure the safety of passengers and prevent the entry of influenza viruses from abroad.
  • Japan prevent propagation at home, the workplace, medical institutions, schools, and other places where many people gather, and always use it everywhere, such as when going out. You can protect yourself from the influenza virus and make a healthy maintenance until you get an influenza vaccine.
  • the air suspension adsorbent according to the present embodiment is sprayed as fine particles by the influenza virus inactivation method described above, the air suspension adsorbent is efficiently brought into contact with the air suspension particles, and thus is included in the air suspension particles. An excellent effect is that the influenza virus can be inactivated efficiently.
  • the air suspension adsorbent according to the present embodiment can be sprayed using a device that generates dry mist that has been attracting attention in recent years as a countermeasure for the heat island phenomenon. Since it does not get wet, it can be used in various environments, both indoors and outdoors.
  • the aerial suspension adsorbent according to Embodiment 3 is obtained by purifying ethanol, a surfactant, polylysine, and glycine, a solution A obtained by solubilizing ethanol, a food additive polymer, a complex carbohydrate sugar chain, and a fragrance in purified water.
  • Liquid B solubilized in water is respectively ejected by a two-fluid ejection device, and the two solutions collide and mix outside the nozzle and are released into the air.
  • the released air suspension adsorbent mixture inactivates viruses contained in the air suspension.
  • the air suspension adsorbent according to Embodiment 1 can be sprayed as liquid A and an aqueous ethanol solution as liquid B more simply. Even when the air suspension adsorbent is sprayed using a two-component spray device, the air suspension adsorbent becomes fine particles of 16 ⁇ m or less, preferably about 3 ⁇ m, as described in the second embodiment. Spray like so.
  • the air suspension adsorbent can inactivate influenza virus efficiently. it can.
  • the air suspension adsorbent described in Embodiment 1 was subjected to an inactivation test against influenza virus.
  • evaluation was performed by an experiment in which the air suspension adsorbent and the influenza virus solution were directly mixed and a test in which the air suspension adsorbent and the influenza virus were contacted by spraying.
  • the air suspension adsorbent according to the present invention is not limited to the following and can be appropriately changed depending on various use conditions.
  • test sample was prepared by serially diluting the air suspension adsorbent by two times, sensitized to the influenza virus solution, and the amount of proliferative influenza virus in the mixture with the influenza virus was evaluated by plaque assay. The details of the test are described below.
  • the air suspension adsorbent having the composition shown in Table 1 is used as the air suspension adsorbent of Example 1 and Example 1.
  • An air suspension adsorbent to which no acetylneuraminic acid was added was an ethanol solution having the same concentration as in Example 2, Examples 1 and 2, and Comparative Example 1 was used. Each solution was serially diluted two times to obtain a test sample.
  • 95 degree primary unmodified alcohol Nippon Alcohol Sangyo Co., Ltd., traceable 95 primary
  • capric acid monoglyceride as ethanol
  • influenza virus solution For the influenza virus solution, A / Aichi / 2/68 strain (subtype: H3N2) was used, and the virus content was adjusted to 2.9 ⁇ 10 7 PFU / ml.
  • test samples of Examples 1 and 2 and Comparative Example 1 prepared as described above were mixed with 9 and influenza virus solution at a ratio of 1 and sensitized at room temperature for 1 minute. Moreover, it sensitized using the sterilized purified water as a control group.
  • the virus mixture after sensitization contains a culture medium for virus propagation (containing 0.2% sodium hydrogen carbonate, 3 mM L-glutamine, 0.2% albumin, 10,000 IU / ml penicillin and 10,000 ⁇ g titer / ml streptomycin. Dilute serially 10 times with MEM (Minimum Essential Medium) medium. The medium was removed from MDCK (Madin-Darby canine kidney) cells cultured in MEM medium containing fetal calf serum so as to form a monolayer on a 6-well plate, and washed once with PBS ( ⁇ ). Influenza virus was adsorbed by adding 0.1 ml of a diluted mixture per MDCK cell per well and culturing for 60 minutes.
  • a culture medium for virus propagation containing 0.2% sodium hydrogen carbonate, 3 mM L-glutamine, 0.2% albumin, 10,000 IU / ml penicillin and 10,000 ⁇ g titer / ml streptomycin. Dilute serially 10 times with M
  • the mixed solution is removed, and 2-3 ml of primary layered agar medium (virus culture medium containing 0.1% glucose, 2.5 ⁇ g / ml trypsin and 0.8% agarose) is added to solidify the agarose.
  • the cells were cultured at 34 ° C. in a 5% carbon dioxide atmosphere for 2 days.
  • 2 ml of a secondary multi-layered agar medium 1% agarose gel, 0.01% neutral red-containing virus growth medium was added and solidified, and cultured overnight at 34 ° C. in a 5% carbon dioxide atmosphere. The number of plaques formed in the wells to which the serially diluted mixture was added was counted.
  • Example 1 was effective up to 4-fold dilution
  • Example 2 was effective up to 2-fold dilution.
  • Comparative Example 1 consisting of ethanol with the same concentration as in Example 1 and Example 2 did not show the effect on influenza virus even in the stock solution.
  • the air suspension adsorbent according to the present invention of Example 1 is effective for inactivating influenza virus, and is effective for inactivating influenza virus even at an ethanol concentration of only 7.4%. I understand that there is.
  • N-acetylneuraminic acid and galactose were added. From this result, N-acetylneuraminic acid and galactose were chemically bonded. Even if a sugar chain is used, it is considered to be effective in inactivating influenza virus.
  • the air suspension adsorbent according to the present invention of Example 2 that does not contain N-acetylneuraminic acid is also effective in inactivating influenza viruses although it is weaker than Example 1. Therefore, the air suspension adsorbent according to the present invention has an excellent effect of enabling inactivation of influenza virus while ethanol is at a low concentration. Moreover, since the air suspension adsorbent according to the present invention of Example 2 is composed only of substances recognized as food additives, there is little danger to the human body and the environment.
  • influenza virus solution (Influenza virus solution) The above influenza virus solution was prepared so that the virus content was 2.5 ⁇ 10 8 PFU / ml. The spray amount was 1 ml.
  • the air suspension adsorbent and the influenza virus solution of Example 3 were put in a Jackson-type laryngeal anesthesia machine, respectively.
  • the air suspension adsorbent and the influenza virus solution were alternately sprayed several times in this order, and the air suspension adsorbent and the influenza virus solution were contacted and mixed in the air.
  • Six plastic petri dishes with the lid open were placed on the floor of the plastic box, and the influenza virus that fell was collected. When 10 minutes had elapsed after the completion of spraying, the plastic petri dish was covered and the plastic petri dish was collected from the plastic box.
  • Example 3 the virus content detected for three petri dishes placed on the floor is shown in Table 2.
  • influenza virus was inactivated by spraying the air suspension adsorbent of Example 3.
  • This example is a result of simple spraying of the air suspension adsorbent in the laboratory, but by using the spray device as described in Embodiments 2 and 3, the air suspension adsorbent is finer. It is possible to inactivate the influenza virus more effectively by improving the spray efficiency and the contact efficiency against the influenza virus by spraying as simple particles.

Abstract

Disclosed is an adsorbent for a suspension in air, which can inactivate an influenza virus in the suspension in air.  Also disclosed is a method for inactivating an influenza virus.  Further disclosed is a method for producing an adsorbent for a suspension in air, wherein the adsorbent can inactivate an influenza virus.  Specifically disclosed is an adsorbent for a suspension in air, which can inactivate an influenza virus and comprises ethanol, a surfactant, polylysine, glycine and a food additive polymer.  In the adsorbent for a suspension in air, water may be used as a solvent.

Description

空中懸濁物吸着剤Air suspension adsorbent
本発明は、バクテリア、ウイルスを含む懸濁物が浮遊する環境に噴霧して、病原微生物を殺菌または不活化する低濃度エタノール製剤に関する。特に、インフルエンザウイルスを不活化するエタノール製剤に関する。 The present invention relates to a low-concentration ethanol preparation that is sprayed into an environment in which a suspension containing bacteria and viruses is suspended to sterilize or inactivate pathogenic microorganisms. In particular, it relates to an ethanol preparation that inactivates influenza virus.
空中懸濁物には塵埃・水滴・花粉・排気ガスなどに混ざって力ビや細菌などの病原微生物が存在する。病原微生物のなかには2002年に世界的な問題となった、中国南部から香港入りした一人の患者から数日で世界中に広がったSARSに代表されるパンデミックを引き起こすような病原微生物もあり、このような空気感染を引き起こす病原微生物の感染を防ぐには、空気中から病原微生物を除去することができる安全に使用可能な薬剤を開発する等の予防策を講じる必要がある。 Airborne suspensions contain pathogenic microorganisms such as brute force and bacteria mixed with dust, water droplets, pollen and exhaust gas. Among pathogenic microorganisms, there are pathogenic microorganisms that caused a pandemic typified by SARS that spread around the world in a few days from a single patient who entered Hong Kong from southern China, which became a global problem in 2002. In order to prevent infection with pathogenic microorganisms that cause serious air infections, it is necessary to take preventive measures such as developing safe usable drugs that can remove pathogenic microorganisms from the air.
一般に空気中においては、大腸菌群などのグラム陰性菌は乾燥に弱く、生きたまま長く空気中を浮遊することはできないが、Bacillus、カビの胞子、ミクロコツカス、連鎖球菌などは乾燥に強く長く空気中を浮遊する。大きいカビの胞子はそのまま空気中を浮遊するが、病原菌や酵母は衣服のゴミや水滴の中に含まれて空気中を浮遊する。また細菌では球菌、桿菌、有芽胞細菌などの通常細菌が多く球菌の比率は高い。カビには、Penicillim、Cladosporium、Aspergillus、Fusarium、Trichodermaなどと産膜酵母、Rhodetorufaが少数ある(非特許文献1)。 Generally, in the air, gram-negative bacteria such as coliforms are vulnerable to drying and cannot float in the air for a long time, but Bacillus, mold spores, microknots, streptococci, etc. are strong in drying and long in the air. Float. Large mold spores float in the air as they are, but pathogenic bacteria and yeast float in the air as they are contained in clothes garbage and water droplets. Bacteria have many common bacteria such as cocci, bacilli and spore bacteria, and the ratio of cocci is high. There are a small number of molds such as Penicillim, Cladosporium, Aspergillus, Fusarium, Trichoderma, and other membrane-producing yeasts, Rhodetorufa (Non-patent Document 1).
ここでの問題は、SARS(コロナウイルス)や、毎冬、流行を繰り返すA型インフルエンザウイルス、それに強毒型トリインフルエンザウイルス等が、何時変異して新型インフルエンザウイルスになるのか、また、発生はもはや時間の問題とされているのに確実な予防対策がないことである(非特許文献2)。 The problem here is when SARS (coronavirus), the influenza A virus that repeats epidemic every winter, and the highly virulent avian influenza virus, etc. will be mutated to become a new influenza virus, and the outbreak will no longer occur There is no reliable preventive measure even though it is a time issue (Non-Patent Document 2).
毎年流行するインフルエンザとトリインフルエンザと新型インフルエンザは、元は同じインフルエンザウイルスである。元来はシベリアなどで生息する鴨が越冬のため南下し、湖沼に飛来して糞を落すが、その糞中には凄まじい数のウイルスが存在する。鴨などの水鳥はA型インフルエンザウイルスに感染しても発病せず、自然界においてウイルスを維持しており、そのウイルスのほとんどは弱毒型のウイルスである。それらのウイルスが鶏などに感染しても多くは不顕性感染に留まるが、糞中には大量のウイルスが存在し、他の鳥への感染源になるといわれている(非特許文献2)。 The flu, avian flu, and new flu that are prevalent each year are the same influenza viruses. Originally duck inhabiting Siberia go south for wintering, fly to lakes and drop feces, but there are a tremendous number of viruses in the feces. Water birds such as duck do not become ill when infected with influenza A virus, and maintain viruses in nature. Most of these viruses are attenuated viruses. Even if these viruses infect chickens and the like, many remain insidious infections, but a large amount of viruses are present in the feces and are said to be a source of infection to other birds (Non-patent Document 2). .
1994年、Kidaらは、1968年に人の新型ウイルスとして登場したA/Hong Kong/68(H3N2)株の出現に豚が果たした役割を検証したケースで、豚の上部呼吸器がインフルエンザウイルスの遺伝子分節の交換の場となり、豚が新しいインフルエンザウイルスを創り出すことを明らかにし、ウイルスに感染した豚は何ら臨床症状を示すことなく耐過し、病理検査でも病変は認められず、更にインフルエンザウイルスの生態調査を研究した結果、導入経路は次のように報告された(非特許文献3)。 In 1994, Kida et al. Examined the role that pigs played in the emergence of the A / Hong Kong / 68 (H3N2) strain that appeared as a new human virus in 1968. It became a place for gene segment exchange and revealed that pigs create new influenza viruses. Pigs infected with the virus tolerated without showing any clinical symptoms, and pathological examination showed no lesions. As a result of studying the ecological survey, the introduction route was reported as follows (Non-patent Document 3).
A/Hong Kong/68株の導入経路としては、まず夏季に、シベリアやアラスカで営巣する渡り鴨の集団が、秋に日本、中国、台湾、東南アジアや北米に渡って越冬する。鴨は家鴨と豚が一緒に飼育されている農家の池に飛来し、糞便とともにインフルエンザウイルスを排泄する。ここでは人と豚が密に生活しているためウイルスが豚と人の間を往復し、その結果、鴨由来のH3ウイルスと人のアジア風邪のH2N2ウイルスが豚に同時感染し、遺伝子分節再集合体が産生されたという。 A / Hong Kong / 68 shares are introduced through the migratory duck group nesting in Siberia and Alaska in the summer, and wintering over Japan, China, Taiwan, Southeast Asia and North America in the fall. The duck flies to the pond of the farm where the house duck and the pig are raised together and excretes the influenza virus along with the feces. Here, humans and pigs live closely, so the virus travels back and forth between pigs and humans. As a result, H3 virus from duck and H2N2 virus from human Asian cold co-infect pigs, and gene segmentation is repeated. Aggregates were produced.
即ちA/Hong Kong/68株の出現には渡り鴨と中国の家鴨と豚がそれぞれウイルス遺伝子の供給、伝播及び遺伝子分節再集合体産生の役割を果たしたと結論した(非特許文献3)。 That is, it was concluded that the advent of A / Hong Kong / 68 strain played the role of migratory duck, Chinese domestic duck and pig, respectively, for virus gene supply, transmission and gene segment reassembly production (Non-patent Document 3).
多くの研究努力により、人に感染する新型インフルエンザウイルスの伝播経路が明かにされたが、どうして人に感染するようになったのか、
(1)鳥と人の両方のウイルスが同時に豚に感染し、豚の体内で双方の遺伝子が混ざりあうことで、鳥インフルエンザから発生した新しい人のインフルエンザが誕生する。
(2)鳥インフルエンザが突然変異して人への感染や人から人への伝播を獲得する。
(3)鳥インフルエンザと人インフルエンザの両方に感染した人の中で、ウイルスが交雑して新たなウイルスが誕生する。
等が考えられており(非特許文献2)、この3つのいずれも鳥を宿主とするインフルエンザウイルスが、空中の浮遊物を介して人に感染するものと考えられる。
Many research efforts have revealed the transmission route of the new influenza virus that infects humans, but why did it infect humans?
(1) When both avian and human viruses infect pigs at the same time, and both genes are mixed in the body of the pig, a new human flu outbreak from avian influenza is born.
(2) Avian influenza is mutated to acquire human transmission and transmission from person to person.
(3) Among people infected with both bird flu and human flu, viruses cross and new viruses are born.
(Non-Patent Document 2), and it is considered that all three of these viruses infect humans via a floating substance in the air.
何時、何処で発生するか予測できない新型インフルエンザウイルスの発生を、最初に気付かされるのは養鶏場の鶏や養豚場の豚の異常からである。主なウイルスの感染は、空中に飛散したウイルスを吸い込んだ人に感染する空気感染であり、鳥のウイルスが人に感染する可能性は極めて低いとされるが、鳥ウイルスに接触する機会が多ければ感染率は高くなる。一般に弱毒性ウイルスに感染した鶏の場合、ウイルスは呼吸器と腸管のみで増殖し、目立った症状が現れず気付かないことが多いが、強毒性ウイルスに感染した鶏は多臓器不全などの全身感染により1~2日で死に至ることもある。感染拡大を防ぐには感染の疑いある鶏の全てを速やかに処分して、人への感染ウイルス量を減らし感染を遅らせる(非特許文献2)。新型インフルエンザが出現した際は、早急にウイルス型の分類を確定し、ワクチンを緊急生産して、直ちに供給と接種の実施が対策の要となることは周知の通りである。 The first thing to notice about the outbreak of a new influenza virus, which cannot be predicted when and where it occurs, is due to abnormalities in chickens in pig farms and pigs in pig farms. The main virus infection is air infection that infects people who have inhaled viruses in the air, and it is highly unlikely that bird viruses will infect humans, but there are many opportunities to come into contact with bird viruses. The infection rate is higher. In general, chickens infected with a weakly virulent virus propagate only in the respiratory tract and intestinal tract, and noticeable symptoms often do not appear, but chickens infected with a virulent virus are systemic infections such as multiple organ failure. Can cause death in 1-2 days. In order to prevent the spread of infection, all chickens suspected of being infected are promptly disposed of to reduce the amount of virus transmitted to humans and delay infection (Non-patent Document 2). It is well known that when a new type of influenza emerges, it is necessary to immediately determine the classification of the virus type, urgently produce the vaccine, and immediately supply and inoculate it.
しかし、ワクチンは新型インフルエンザウイルスを検出してからでないと開発できないことから、一般に供給されるまで早くて6か月以上かかる。また、製造した製品には厳重な品質管理を伴い、製造能力にも限界があることから、ワクチン製造に不可欠な発育鶏卵の供給が順調にいったとしても、十分な量が確保されるまで1年近くかかると予想され、新型インフルエンザウイルスの出現から半年はワクチンなしで急場を凌ぐことになる。 However, since vaccines can only be developed after detecting the new influenza virus, it takes at least six months to be generally available. In addition, since the manufactured products are accompanied by strict quality control and the production capacity is limited, even if the supply of growing eggs essential for vaccine production goes smoothly, 1 is sufficient until a sufficient amount is secured. It is expected to take almost a year, and half a year after the advent of the new influenza virus will surpass the emergency without a vaccine.
その間の対策は、マスクの使用でウイルスの吸い込みを防ぎ、咳などによる飛沫感染の拡散を防ぐ。手洗いを励行し、ウガイをする、外出を控えるなどである。このほかに抗ウイルス薬として、ウイルスの感染拡大を防ぐ薬剤もあるが、発症後48時間以内に内服しない場合には有効性を裏付けるデータはなく、服用してもすぐに耐性ウイルスが出現する薬剤もある。また、ウイルス表面のシアリダーゼ(ノイラミニダーゼ)の作用を抑えて、子ウイルスの発芽と遊離を阻止する薬剤は、感染の拡大は防げるが感染阻止はできない。 In the meantime, the use of a mask prevents the inhalation of viruses and prevents the spread of droplet infections caused by coughing. Encourage hand washing, crawl, refrain from going out. In addition, there are drugs that prevent the spread of viral infections as antiviral drugs, but there is no data to support their effectiveness if they are not taken within 48 hours after onset, and a drug in which resistant viruses appear even if taken. There is also. In addition, drugs that suppress the action of sialidase (neuraminidase) on the surface of the virus and prevent germination and release of offspring viruses can prevent the spread of infection but cannot prevent infection.
このほか新型の流行以前に製造可能なプレパンデミック・ワクチンがあるが、H5N1ウイルスをモデルに開発されたのでH5型であれば一定の予防効果が見込めるが、新型のウイルスがH5以外なら無効となるリスクなどで賛否両論がある。新型の出現に備え、医療現場でワクチン接種ができるまで事前接種が検討され、医療従事者など6400人を対象にした試験的な接種による臨床研究を始めたが、ワクチン接種者の70%以上が発病防止に有効な抗体を持つ必要があり、英国製ワクチンはこの割合が84%だが、日本の製品は17.4%に留まり効果に疑問があるという説もある(非特許文献4)。 In addition to this, there is a pre-pandemic vaccine that can be manufactured before the new epidemic, but since it was developed using the H5N1 virus as a model, a certain preventive effect can be expected if it is H5 type, but it will be invalid if the new virus is other than H5 There are pros and cons in terms of risks. In preparation for the emergence of new models, pre-vaccination was considered until vaccination was possible at the medical site, and clinical research was started by trial vaccination targeting 6400 people including medical workers, but more than 70% of vaccination persons It is necessary to have antibodies that are effective in preventing disease, and there is a theory that this ratio is 84% for UK-made vaccines, but there are doubts about the effectiveness of Japanese products at 17.4% (Non-patent Document 4).
本発明の目的は、空中懸濁物中のインフルエンザウイルスを不活化する空中懸濁物吸着剤を提供することにある。例えば、海外で新型インフルエンザが発生した際、緊急にわが国に入国しょうとする人々が、例えば飛行機搭乗前に感染して飛行中に発症したような場合でも、ウイルスが機内に拡散することを防止し、さらに、予め機内の空気環境を正常化して、新型インフルエンザウイルスの侵入を防止する水際対策に実行性を示す空中懸濁物中のインフルエンザウイルスを不活化する空中懸濁物吸着剤、インフルエンザウイルスを不活化する方法およびインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法を提供することにある。 An object of the present invention is to provide an air suspension adsorbent that inactivates influenza virus in an air suspension. For example, in the event of a new influenza outbreak overseas, even if people who are urgently trying to enter Japan, for example, become infected during flight and develop during flight, the virus will be prevented from spreading in the plane. In addition, the air suspension adsorbent that inactivates the influenza virus in the air suspension, which is effective for waterfront measures to normalize the air environment in advance and prevent the invasion of the new influenza virus, the influenza virus It is in providing the manufacturing method of the air suspension adsorbent which inactivates the method of inactivation, and inactivates influenza virus.
本発明の一実施形態によると、エタノール、界面活性剤、ポリリジン、グリシン、及び食品添加物高分子を含むインフルエンザウイルスを不活化する空中懸濁物吸着剤が提供される。 According to one embodiment of the present invention, an air suspension adsorbent is provided that inactivates influenza virus comprising ethanol, surfactant, polylysine, glycine, and food additive polymer.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記空中懸濁物吸着剤の溶媒として水を用いてもよい。 In the air suspension adsorbent that inactivates influenza virus, water may be used as a solvent for the air suspension adsorbent.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記界面活性剤は、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステルの何れか1つ、または2以上の組合せから選ばれてもよい。 In the air suspension adsorbent that inactivates influenza virus, the surfactant is any of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester. One or a combination of two or more may be selected.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記グリセリン脂肪酸エステル、前記クエン酸脂肪酸モノグリセリド、前記コハク酸脂肪酸モノグリセリド、前記ジアセチル酒石酸脂肪酸モノグリセリドは脂肪酸の炭素数が8、10、12、18の何れかから選ばれてもよい。 In the air suspension adsorbent that inactivates influenza virus, the glycerin fatty acid ester, the citric acid fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride have 8, 10, 12, 18 carbon atoms in the fatty acid. You may choose from either.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記ジグリセリン脂肪酸エステルの脂肪酸の炭素数が14であってもよい。 In the air suspension adsorbent that inactivates the influenza virus, the diglycerin fatty acid ester may have 14 fatty acids.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記ショ糖脂肪酸エステルは脂肪酸の炭素数が12、16、18の何れかから選ばれてもよい。 In the air suspension adsorbent that inactivates influenza virus, the sucrose fatty acid ester may be selected from any of 12, 16, and 18 carbon atoms of the fatty acid.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記食品添加物高分子は、ポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースの何れかから選ばれてもよい。 In the air suspension adsorbent that inactivates influenza virus, the food additive polymer may be selected from any of sodium polyacrylate, sodium carboxymethylcellulose, regenerated cellulose porous membrane, and polydextrose.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記空中懸濁物吸着剤が複合糖質糖鎖をさらに含んでもよい。 In the air suspension adsorbent that inactivates influenza virus, the air suspension adsorbent may further contain a complex carbohydrate sugar chain.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記複合糖質糖鎖がN-アセチルノイラミン酸及びガラクトースであってもよい。 In the air suspension adsorbent that inactivates influenza virus, the complex carbohydrate sugar chain may be N-acetylneuraminic acid and galactose.
インフルエンザウイルスを不活化する空中懸濁物吸着剤において、前記空中懸濁物吸着剤が香料をさらに含んでもよい。 In the air suspension adsorbent that inactivates influenza virus, the air suspension adsorbent may further contain a fragrance.
また、本発明の一実施形態によると、エタノール、界面活性剤、ポリリジン、グリシン、及び食品添加物高分子を含む空中懸濁物吸着剤を噴霧し、インフルエンザウイルスを不活化する方法が提供される。 Also, according to one embodiment of the present invention, there is provided a method for inactivating influenza virus by spraying an air suspension adsorbent comprising ethanol, surfactant, polylysine, glycine, and food additive polymer. .
インフルエンザウイルスを不活化する方法において、前記エタノール及び前記食品添加物高分子を含む第1の溶液と、前記エタノール、前記界面活性剤、前記ポリリジン及び前記グリシンを含む第2の溶液とをそれぞれ噴霧し、前記第1の溶液と前記第2の溶液とを空中で混合してもよい。 In the method for inactivating influenza virus, the first solution containing the ethanol and the food additive polymer and the second solution containing the ethanol, the surfactant, the polylysine and the glycine are sprayed, respectively. The first solution and the second solution may be mixed in the air.
インフルエンザウイルスを不活化する方法において、前記空中懸濁物吸着剤の溶媒として水を用いてもよい。 In the method for inactivating influenza virus, water may be used as a solvent for the air suspension adsorbent.
インフルエンザウイルスを不活化する方法において、前記界面活性剤は、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステルの何れか1つ、または2以上の組合せから選ばれてもよい。 In the method for inactivating influenza virus, the surfactant is any one of glycerin fatty acid ester, citrate fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, sucrose fatty acid ester, or Two or more combinations may be selected.
インフルエンザウイルスを不活化する方法において、前記グリセリン脂肪酸エステル、前記クエン酸脂肪酸モノグリセリド、前記コハク酸脂肪酸モノグリセリド、前記ジアセチル酒石酸脂肪酸モノグリセリドは脂肪酸の炭素数が8、10、12、18の何れかから選ばれてもよい。 In the method for inactivating influenza virus, the glycerin fatty acid ester, the citrate fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid monoglyceride are selected from any of 8, 10, 12, and 18 carbon atoms of fatty acid. May be.
インフルエンザウイルスを不活化する方法において、前記ジグリセリン脂肪酸エステルの脂肪酸の炭素数が14であってもよい。 In the method for inactivating influenza virus, the diglycerin fatty acid ester may have 14 fatty acids.
インフルエンザウイルスを不活化する方法において、前記ショ糖脂肪酸エステルは脂肪酸の炭素数が12、16、18の何れかから選ばれてもよい。 In the method for inactivating influenza virus, the sucrose fatty acid ester may be selected from any of 12, 16, and 18 carbon atoms of the fatty acid.
インフルエンザウイルスを不活化する方法において、前記食品添加物高分子は、ポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースの何れかから選ばれてもよい。 In the method of inactivating influenza virus, the food additive polymer may be selected from any of polyacrylic acid sodium salt, carboxymethylcellulose sodium, regenerated cellulose porous membrane, and polydextrose.
インフルエンザウイルスを不活化する方法において、前記空中懸濁物吸着剤が複合糖質糖鎖をさらに含んでもよい。 In the method for inactivating influenza virus, the air suspension adsorbent may further contain a complex carbohydrate chain.
インフルエンザウイルスを不活化する方法において、前記複合糖質糖鎖がN-アセチルノイラミン酸及びガラクトースであってもよい。 In the method for inactivating influenza virus, the complex carbohydrate sugar chain may be N-acetylneuraminic acid and galactose.
インフルエンザウイルスを不活化する方法において、前記空中懸濁物吸着剤が香料をさらに含んでもよい。 In the method for inactivating influenza virus, the air suspension adsorbent may further include a fragrance.
また、本発明の一実施形態によると、水を46℃以上67℃以下に加温し、食品添加物高分子、グリシン及びポリリジンを加えて溶解して第1の溶液を調製し、界面活性剤にエタノールを加えて溶解して第2の溶液を調製し、前記第2の溶液を、前記第1の溶液に溶解させて調製することを特徴とするインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法が提供される。 According to one embodiment of the present invention, water is heated to 46 ° C. or more and 67 ° C. or less, and a food additive polymer, glycine and polylysine are added and dissolved to prepare a first solution, and the surfactant The suspension is adsorbed in air to inactivate influenza virus, wherein the second solution is prepared by dissolving ethanol by adding ethanol to the first solution, and the second solution is dissolved in the first solution. A method for producing the agent is provided.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記第1の溶液に、複合糖質糖鎖をさらに添加してもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, a complex carbohydrate sugar chain may be further added to the first solution.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記界面活性剤は、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステルの何れか1つ、または2以上の組合せから選ばれてもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the surfactant is glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, sucrose fatty acid. Any one of esters or a combination of two or more may be selected.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記グリセリン脂肪酸エステル、前記クエン酸脂肪酸モノグリセリド、前記コハク酸脂肪酸モノグリセリド、前記ジアセチル酒石酸脂肪酸モノグリセリドは脂肪酸の炭素数が8、10、12、18の何れかから選ばれてもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the glycerin fatty acid ester, the citrate fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride have 8, 10 and 12 carbon atoms in the fatty acid. , 18 may be selected.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記ジグリセリン脂肪酸エステルの脂肪酸の炭素数が14であってもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the diglycerin fatty acid ester may have 14 fatty acids.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記ショ糖脂肪酸エステルは脂肪酸の炭素数が12、16、18の何れかから選ばれてもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the sucrose fatty acid ester may be selected from any of 12, 16, and 18 carbon atoms of the fatty acid.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記食品添加物高分子は、ポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースの何れかから選ばれてもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the food additive polymer is selected from any of polyacrylic acid sodium salt, sodium carboxymethylcellulose, regenerated cellulose porous membrane, and polydextrose Also good.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記複合糖質糖鎖がN-アセチルノイラミン酸及びガラクトースであってもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the complex carbohydrate sugar chain may be N-acetylneuraminic acid and galactose.
インフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法において、前記空中懸濁物吸着剤が香料をさらに含んでもよい。 In the method for producing an air suspension adsorbent that inactivates influenza virus, the air suspension adsorbent may further contain a fragrance.
本発明によると、吸着剤を噴霧することによりウイルスの拡散を防止し、さらに、空気環境を正常化するために予め噴霧することにより、新型インフルエンザウイルスの侵入を防止するための空中懸濁物中のインフルエンザウイルスを不活化する空中懸濁物吸着剤、インフルエンザウイルスを不活化する方法およびインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法が提供される。 According to the present invention, in an air suspension for preventing the spread of a new influenza virus by spraying an adsorbent to prevent the spread of the virus and further spraying in advance to normalize the air environment. An air suspension adsorbent that inactivates the influenza virus, a method for inactivating the influenza virus, and a method for producing the air suspension adsorbent for inactivating the influenza virus are provided.
実施例1、2及び比較例1のプラークアッセイの測定結果。Measurement results of plaque assays of Examples 1 and 2 and Comparative Example 1.
以下に本発明に係る空中懸濁物中のインフルエンザウイルスを不活化する空中懸濁物吸着剤、インフルエンザウイルスを不活化する方法およびインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法について説明する。なお、本発明に係る空中懸濁物中のインフルエンザウイルスを不活化する空中懸濁物吸着剤、インフルエンザウイルスを不活化する方法およびインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法は以下の実施形態に限定されるものではない。 The air suspension adsorbent for inactivating the influenza virus in the air suspension according to the present invention, the method for inactivating the influenza virus, and the method for producing the air suspension adsorbent for inactivating the influenza virus are described below. To do. The air suspension adsorbent for inactivating the influenza virus in the air suspension according to the present invention, the method for inactivating the influenza virus, and the method for producing the air suspension adsorbent for inactivating the influenza virus are as follows: It is not limited to the embodiment.
本発明者が先に特許第3491007号において開示した芽胞菌増殖抑制製剤には、熱や化学物質に耐性を有する芽胞形成菌であるBacillus anthracis、Clostridiurn botulinumに対する増殖抑制効果が認められ、また、酵母型真菌にもその効果が及ぶことも認められた。 In the spore growth inhibitory preparation previously disclosed by the present inventor in Japanese Patent No. 3491007, a growth inhibitory effect against Bacillus anthracis and Clostridium botulinum, which are spore-forming bacteria resistant to heat and chemical substances, was observed, and yeast It was also observed that the effect also affects mold fungi.
本発明者は、これまで食品製造環境の無菌化を提唱して、空中浮遊菌および落下菌などを除去する方法を研究し、従来の無人的噴射による空中無菌化に代わって、食品製造中でも噴射できる有人環境での無菌化を図れるよう、食品添加物低濃度アルコール製剤を開発した。また同時に、作業中の浮遊菌の動静を調査した結果、浮遊菌が操業開始とともに作業員の頭上に蝟集してくる有様を確認し、そこで作業中でも噴霧できる製剤の有用性を認識し、頭上に向けて噴射すれば浮遊菌に対して一網打尽的効果を得ることも分かった。また、芽胞菌増殖抑制製剤は浮遊菌と落下菌にも殺菌効果を示す。 The present inventor has so far proposed sterilization of the food production environment, researched a method for removing airborne bacteria and falling bacteria, etc. We developed a food additive low-concentration alcohol preparation so that it can be sterilized in a manned environment. At the same time, as a result of investigating the movement of airborne bacteria during work, we confirmed that airborne bacteria gathered on the workers' heads at the start of operation. It was also found that if it was sprayed toward the surface, a net-breaking effect was obtained against airborne bacteria. In addition, the spore growth inhibitory preparation exhibits bactericidal effects against airborne and falling bacteria.
一方、ウイルスに対するアルコールの効果は、ポリオウイルス、エコーウイルス、コクザッキーウイルスなどについては80~95%の濃度が必要であることが知られているが、このような高濃度のものを空中に噴霧するのは危険が伴う。懸濁物を捕捉するには噴射法が妥当だが、危険のない低濃度アルコール製剤が求められた。 On the other hand, the effect of alcohol on viruses is known to require a concentration of 80-95% for poliovirus, echovirus, coxsackie virus, etc., but such high concentrations are sprayed in the air. Doing is dangerous. A low-concentration alcohol formulation was sought, although the spray method was adequate to capture the suspension, but without danger.
ところで、A型インフルエンザウイルスの膜上のへムアグルチニンHAは、宿主(人)細胞膜のシアル酸含有複合糖鎖(受容体)を認識して結合する。A型インフルエンザウイルス膜上にはHAのほかにシアリダーゼNA(ノイラミニダーゼ)が存在し、このHAとNAの遺伝子が変わりやすく、それによって新しい抗原性を獲得し免疫監視機構をかわしていると考えられている(鈴木康夫著、「糖鎖II」、東京化学同人、ウイルス感染と糖鎖生物学、p.184~196)。 By the way, hemagglutinin HA on the influenza A virus membrane recognizes and binds to the sialic acid-containing complex sugar chain (receptor) of the host (human) cell membrane. In addition to HA, sialidase NA (neuraminidase) is present on the influenza A virus membrane, and the genes of HA and NA are likely to change, thereby acquiring new antigenicity and presuming that the immune surveillance mechanism is replaced. (Suzuki Yasuo, “Sugar Chain II”, Tokyo Kagaku Doujin, Virus Infection and Sugar Chain Biology, p.184-196).
しかも、インフルエンザウイルスの各亜型が強く結合する受容体であるシアロ糖鎖構造は共通してラクト系I型とII型であり(非特許文献3)、その受容体を認識するポケットは大変よく保存されているのに対して、抗原決定領域のアミノ酸が目まぐるしく変わるため、ワクチンは亜型の変化でその効力を失うことが知られている。 Moreover, the sialo-glycan structure, which is a receptor to which influenza virus subtypes bind strongly, is commonly a lacto type I and type II (Non-patent Document 3), and the pocket for recognizing the receptor is very good. Vaccines are known to lose their potency due to subtype changes because conservatively, the amino acids in the antigenic determining region change rapidly.
ヘムアグルチニンとシアリダーゼの遺伝子がどんなに変化しても、へムアグルチニンが受容体のシアル酸含有複合糖鎖を認識する部位はよく保存されているため、インフルエンザウイルス膜上のへムアグルチニンが宿主細胞膜のシアル酸含有複合糖鎖を認識して結合する機構は、インフルエンザウイルスの宿主への感染を成立させる。感染が成立すると1個のウイルスが24時間後には100万個になり、インフルエンザ宿主の細胞はインフルエンザウイルス1個の感染から1日で100万倍の攻撃を受けることとなり、インフルエンザウイルスを増殖させつつ放出し宿主の細胞は死滅する(非特許文献2)。インフルエンザウイルスはどんなに変異しても宿主細胞膜に結合する機序を変えることはない。 No matter how the hemagglutinin and sialidase genes change, the site where hemagglutinin recognizes the sialic acid-containing complex sugar chain of the receptor is well conserved, so that hemagglutinin on the influenza virus membrane contains sialic acid in the host cell membrane The mechanism for recognizing and binding complex sugar chains establishes infection of influenza virus hosts. When infection is established, one virus will become 1 million in 24 hours, and the cells of the influenza host will be attacked 1 million times a day from infection of one influenza virus, The cells of the released host are killed (Non-patent Document 2). No matter how mutated, influenza virus does not change the mechanism of binding to the host cell membrane.
へムアグルチニンがシアル酸糖鎖を認識する機序は不動であることから、本発明はこの細胞間認識における不動の機構をインフルエンザウイルスウイルスの不活化に試みた。インフルエンザウイルスに直接シアル酸を接触さえると結合するが、インフルエンザウイルス膜上のシアリダーゼによって直ちに切り放されてしまうことも分かっている。空中を漂うウイルスは単体で浮遊することはなく、カビ、細菌、水滴などに付着していると考えられるので、これらを包括的に不活化する空中懸濁物吸着剤の研究を進めた。 Since the mechanism by which hemagglutinin recognizes the sialic acid sugar chain is immobile, the present invention attempted to inactivate the influenza virus virus using this immobilization mechanism in intercellular recognition. It has also been found that direct contact of sialic acid with the influenza virus binds but is readily cleaved by sialidase on the influenza virus membrane. Viruses that float in the air do not float alone, and are thought to be attached to mold, bacteria, water droplets, and so on, so we researched air suspension adsorbents that comprehensively inactivate them.
(実施形態1)
(空中懸濁物吸着剤)
以下、本発明の一実施形態に係る空中懸濁物吸着剤を説明する。なお、本発明は以下の実施形態に限定されるものではない。
(Embodiment 1)
(Air suspension adsorbent)
Hereinafter, an air suspension adsorbent according to an embodiment of the present invention will be described. In addition, this invention is not limited to the following embodiment.
(空中懸濁物吸着剤の材料)
本実施形態に係る空中懸濁物吸着剤は、エタノール、界面活性剤(乳化剤)、ポリリジン、グリシン、及び食品添加物高分子を含む。また、本実施形態に係る空中懸濁物吸着剤は、複合糖質糖鎖をさらに添加することにより、インフルエンザウイルスの不活化効果をさらに向上させることもできる。香料を添加することによりエタノールを変性させてもよい。
(Material for air suspension adsorbent)
The air suspension adsorbent according to this embodiment includes ethanol, a surfactant (emulsifier), polylysine, glycine, and a food additive polymer. Moreover, the air suspension adsorbent according to this embodiment can further improve the inactivation effect of influenza virus by further adding a complex carbohydrate chain. You may denature ethanol by adding a fragrance | flavor.
本実施形態に係る空中懸濁物吸着剤に用いるエタノールとしては、95度1級無変性アルコールを使用することができる。 As ethanol used for the air suspension adsorbent according to the present embodiment, 95 ° primary unmodified alcohol can be used.
本実施形態に係る空中懸濁物吸着剤の界面活性剤としては、例えば、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステル等が挙げられる。また、脂肪酸は飽和脂肪酸、不飽和脂肪酸の何れでもよい。 Examples of the surfactant for the air suspension adsorbent according to the present embodiment include glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester. Can be mentioned. The fatty acid may be either a saturated fatty acid or an unsaturated fatty acid.
グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリドとしては、脂肪酸の炭素数がC、C10、C12、C18の何れかを使用できる。また、モノグリセリド含有量は80%以上、好ましくは85%以上のものを用いる。本実施形態に係る空中懸濁物吸着剤の界面活性剤として、例えば、太陽化学株式会社のカプリル酸モノグリセリド(サンソフト(登録商標)No.700)、カプリン酸モノグリセリド(サンソフト(登録商標)No.760)、ラウリン酸モノグリセリド(サンソフト(登録商標)No.750)、クエン酸モノステアリン酸グリセリド(サンソフト(登録商標)No.621B)、コハク酸モノカプリル酸グリセリド(サンソフト(登録商標)No.682T)、ジアセチル酒石酸モノステアリン酸グリセリド(サンソフト(登録商標)No.641D)、理研ビタミン株式会社のグリセリンモノカプリレート(ポエム(登録商標)M-100)、グリセリンモノカプレート(ポエム(登録商標)M-200)、グリセリンモノラウレート(ポエム(登録商標)M-300)、クエン酸飽和脂肪酸モノグリセライド(ポエム(登録商標)K-30)、コハク酸脂肪酸モノグリセライド(ポエム(登録商標)B-10)等を用いることができる。 As glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyl tartaric acid fatty acid monoglyceride, any one of C 8 , C 10 , C 12 , and C 18 carbon atoms can be used. The monoglyceride content is 80% or more, preferably 85% or more. Examples of the surfactant for the air suspension adsorbent according to the present embodiment include caprylic acid monoglyceride (Sunsoft (registered trademark) No. 700) and capric acid monoglyceride (Sunsoft (registered trademark) No. manufactured by Taiyo Kagaku Co., Ltd. 760), lauric acid monoglyceride (Sunsoft (registered trademark) No. 750), citric acid monostearate glyceride (Sunsoft (registered trademark) No. 621B), succinic acid monocaprylic acid glyceride (Sunsoft (registered trademark)) No. 682T), diacetyltartaric acid monostearate glyceride (Sunsoft (registered trademark) No. 641D), glycerin monocaprylate (Poem (registered trademark) M-100) from Riken Vitamin Co., Ltd., glycerin monocaprate (Poem (registered trademark)) Trademark) M-200), glycerin monolaurate (Poem (R) M-300), citric acid saturated fatty acid monoglyceride (Poem (TM) K-30), succinic acid fatty acid monoglyceride (Poem (TM) B-10) or the like can be used.
本実施形態に係る空中懸濁物吸着剤は、要求される性状により、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリドを2種類以上含んでもよい。また、脂肪酸の炭素数が異なる脂肪酸エステルを2種類以上含む、例えば、CとC10の2種類のグリセリン脂肪酸エステルを含むようにすることもできる。 The air suspension adsorbent according to this embodiment may contain two or more kinds of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, and diacetyltartaric acid fatty acid monoglyceride depending on the properties required. Also includes a number of carbon atoms of the fatty acid is different fatty acid esters of two or more, for example, it is also possible to include two types of glycerin fatty acid esters of C 8 and C 10.
本実施形態に係る空中懸濁物吸着剤の界面活性剤に用いるジグリセリン脂肪酸エステルとしては、脂肪酸の炭素数がC14、HLB(Hydrophile-Lipophile Balance)値が9.0のものを使用できる。また、脂肪酸は飽和脂肪酸、不飽和脂肪酸の何れでもよい。本実施形態に係る空中懸濁物吸着剤の界面活性剤として、例えば、理研ビタミン株式会社のジグリセリンモノミリステート(ポエム(登録商標)DM-100)等を用いることができる。 As the diglycerin fatty acid ester used for the surfactant of the air suspension adsorbent according to the present embodiment, a fatty acid having a carbon number of C 14 and an HLB (Hydrophile-Lipophile Balance) value of 9.0 can be used. The fatty acid may be either a saturated fatty acid or an unsaturated fatty acid. As the surfactant for the air suspension adsorbent according to this embodiment, for example, diglycerin monomyristate (Poem (registered trademark) DM-100) manufactured by Riken Vitamin Co., Ltd. can be used.
本実施形態に係る空中懸濁物吸着剤の界面活性剤に用いるショ糖脂肪酸エステルとしては、脂肪酸の炭素数がC12、C16、C18の何れかを使用できる。脂肪酸は飽和脂肪酸、不飽和脂肪酸の何れでもよい。また、脂肪酸の炭素数が異なる脂肪酸エステルを2種類以上含む、例えば、C12とC16の2種類のショ糖脂肪酸エステルを含むようにすることもできる。本実施形態に係る空中懸濁物吸着剤の界面活性剤としては、モノエステルを50以上、好ましくは70%以上のものを用いる。本実施形態に係る空中懸濁物吸着剤の界面活性剤として、例えば、第一工業製薬株式会社のDKエステル(登録商標)F-160、F-110、S-L18Aや、三菱化学フーズ株式会社のリョートー(登録商標)シュガーエステルS-1570、O-1570、LWA-1570等を用いることができる。 As the sucrose fatty acid ester used for the surfactant of the air suspension adsorbent according to the present embodiment, any one of C 12 , C 16 , and C 18 in the fatty acid can be used. The fatty acid may be either a saturated fatty acid or an unsaturated fatty acid. Also includes a number of carbon atoms of the fatty acid is different fatty acid esters of two or more, for example, it is also possible to include two kinds of sucrose fatty acid esters of C 12 and C 16. As the surfactant for the air suspension adsorbent according to this embodiment, 50 or more, preferably 70% or more of monoester is used. Examples of the surfactant for the air suspension adsorbent according to the present embodiment include DK Ester (registered trademark) F-160, F-110, S-L18A manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Mitsubishi Chemical Foods Co., Ltd. Ryoto (registered trademark) Sugar Esters S-1570, O-1570, LWA-1570 and the like can be used.
本実施形態に係る空中懸濁物吸着剤に用いるポリリジンとしては、ε-ポリリジンを用いることができ、例えば、日本チッソ株式会社製25%溶液のものが使用できる。 As the polylysine used in the air suspension adsorbent according to this embodiment, ε-polylysine can be used, for example, a 25% solution manufactured by Nippon Chisso Corporation.
本実施形態に係る空中懸濁物吸着剤に用いるグリシン(グリココール)は、食品添加物として使用可能なものを使用できる。 The glycine (glycol) used for the air suspension adsorbent according to the present embodiment can be used as a food additive.
本実施形態に係る空中懸濁物吸着剤に用いる複合糖質糖鎖としては、インフルエンザウイルスとの結合特性を有するN-アセチルノイラミン酸とガラクトースを用いる。本実施形態に係る空中懸濁物吸着剤に用いる複合糖質糖鎖としては、N-アセチルノイラミン酸とガラクトースを別々に添加してもよいし、N-アセチルノイラミン酸とガラクトースとが化学結合したものを用いてもよい。また、インフルエンザウイルス以外のウイルスや毒素に対して空中懸濁物吸着剤を用いる場合、N-アセチルノイラミン酸とガラクトースに替えて、またはそれらに加えて不活化するウイルスや毒素の結合特性によりN-アセチルグルコサミン、グルコース、N-アセチルガラクトサミン等を使用することができる。 As the complex carbohydrate sugar chain used in the air suspension adsorbent according to the present embodiment, N-acetylneuraminic acid and galactose having binding properties with influenza virus are used. N-acetylneuraminic acid and galactose may be added separately as the complex carbohydrate sugar chain used in the air suspension adsorbent according to this embodiment, or N-acetylneuraminic acid and galactose are chemically You may use what was couple | bonded. In addition, when an air suspension adsorbent is used for viruses and toxins other than influenza virus, N-acetylneuraminic acid and galactose are used instead of or in addition to the binding characteristics of inactivated viruses and toxins. -Acetylglucosamine, glucose, N-acetylgalactosamine and the like can be used.
本実施形態に係る空中懸濁物吸着剤に用いる食品添加物高分子としてはポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースのいずれかを使用できる。 As the food additive polymer used in the air suspension adsorbent according to this embodiment, any of polyacrylic acid sodium salt, sodium carboxymethyl cellulose, regenerated cellulose porous membrane, and polydextrose can be used.
また、本実施形態に係る空中懸濁物吸着剤において、添加された薬剤に起因する臭いを緩和し、無変性アルコールを変性アルコールにするために公知の香料を添加してもよい。香料は、上述の空中懸濁物吸着剤の各成分に対して、インフルエンザウイルスの不活化を阻害することがなく、食品添加物として使用可能なものを用いることができる。 Moreover, in the air suspension adsorbent according to the present embodiment, a known perfume may be added to alleviate the odor caused by the added drug and to change the unmodified alcohol to a modified alcohol. The fragrance | flavor can use what can be used as a food additive, without inhibiting inactivation of influenza virus with respect to each component of the above-mentioned air suspension adsorbent.
(空中懸濁物吸着剤の製造方法)
本実施形態に係る空中懸濁物吸着剤は、まず、精製水を46℃以上67℃以下に加温しながら攪拌し、食品添加物高分子、グリシン及びポリリジンを加えて溶解する。また、複合糖質糖鎖を添加する場合は、この溶液に最後に添加する。これとは別に、界面活性剤(固化している場合は温浴により液化させる)にエタノールを加え、攪拌して溶解する。この界面活性剤/エタノール溶液を、先の食品添加物高分子等の溶液に徐々に添加し撹拌溶解して製剤とする。
(Manufacturing method of air suspension adsorbent)
The air suspension adsorbent according to the present embodiment is first stirred while heating purified water to 46 ° C. or more and 67 ° C. or less, and the food additive polymer, glycine and polylysine are added and dissolved. Moreover, when adding complex carbohydrate sugar chain, it adds to this solution last. Separately, ethanol is added to a surfactant (if it is solidified, it is liquefied with a warm bath), and dissolved by stirring. This surfactant / ethanol solution is gradually added to the solution of the food additive polymer and the like, and dissolved by stirring to obtain a preparation.
エタノール濃度は非危険物扱いとなる濃度以内とし、6.00%以上50.00%以下の低濃度エタノール製剤として使用、保存し、安全性を保持する。 The ethanol concentration should be within the range that can be handled as non-dangerous substances, and should be used and stored as a low-concentration ethanol preparation of 6.00 v / v % or more and 50.00 v / v % or less to maintain safety.
モノグリセリン脂肪酸エステルの濃度は、0.02%以上0.30%以下、ジグリセリン脂肪酸エステルの濃度は0.042%以上0.60%以下が好ましい。また、ポリリジンの濃度は0.04%以上0.60%以下、グリシンの濃度は0.20%以上3.00%以下が好ましい。食品添加物高分子は、0.10~1.50%が好ましい。 The concentration of monoglycerol fatty acid ester is preferably 0.02 v / v % or more and 0.30 v / v % or less, and the concentration of diglycerol fatty acid ester is preferably 0.042 v / v % or more and 0.60 v / v % or less. . The polylysine concentration is preferably 0.04 v / v % or more and 0.60 v / v % or less, and the glycine concentration is preferably 0.20 v / v % or more and 3.00 v / v % or less. The content of the food additive polymer is preferably 0.10 to 1.50%.
また、複合糖質糖鎖の濃度は、約0.08%が好ましく、例えば、N-アセチルノイラミン酸は約0.03%、ガラクトースは約0.05%添加できる。香料は約0.20%添加できる。 The concentration of the complex carbohydrate chain is preferably about 0.08 v / v %. For example, N-acetylneuraminic acid is about 0.03 v / v %, and galactose is about 0.05 v / v %. Can be added. Perfume can be added at about 0.20 v / v %.
本実施形態に係る空中懸濁物吸着剤は、複合糖質糖鎖類とウイルスとの相互認識により、低濃度エタノール製剤でありながら、インフルエンザウイルスの不活化する優れた効果を奏する。また、後述の実施例に示すように、本実施形態に係る空中懸濁物吸着剤は複合糖質糖鎖類を含まない場合でも、インフルエンザウイルスの不活化に効果を有する。 The air suspension adsorbent according to the present embodiment has an excellent effect of inactivating influenza virus while being a low-concentration ethanol preparation due to mutual recognition of glycoconjugates and viruses. Moreover, as shown in the below-mentioned Example, the air suspension adsorbent according to the present embodiment is effective in inactivating influenza virus even when it does not contain complex carbohydrate sugar chains.
また、ノイラミン酸による標的細胞認識機構は、インフルエンザウイルスのほか、細菌のコレラ毒素、大腸菌易溶毒素、破傷風毒素、ボツリヌス毒素、クロストリジウム毒素、腸炎ビブリオ耐熱性溶血毒、志賀赤痢毒素などとも相互認識を行なうので(内貴正治著、「糖鎖II」、束京化学同人、感染と糖鎖、p.173~183)、これらノイラミン酸に吸着する細菌毒素に対しても効果を示すものと考えられる。 In addition to the influenza virus, the target cell recognition mechanism by neuraminic acid mutually recognizes bacterial cholera toxin, E. coli lytic toxin, tetanus toxin, botulinum toxin, clostridial toxin, Vibrio parahaemolytic thermolytic hemolysin, Shiga Shigella toxin, etc. This is considered to be effective against bacterial toxins adsorbed on neuraminic acid (Shinji Uchitaka, “Sugar II”, Sokkyo Chemical Dojin, Infection and Sugar Chains, p. 173 to 183). .
また、後述する実施例に示すように、本実施形態に係る空中懸濁物吸着剤において複合糖質糖鎖類を添加しない場合にも、同濃度のエタノールに比して顕著なインフルエンザウイルスの不活化効果を示す。インフルエンザウイルスの不活化効果を示す低濃度エタノール製剤の報告事例は知られていないことから、本実施形態に係る空中懸濁物吸着剤において複合糖質糖鎖類を添加しない場合であっても、優れた効果を示していることは明らかである。本実施形態に係る空中懸濁物吸着剤は、複合糖質糖鎖類を添加することでさらに向上した効果が得られる。 In addition, as shown in the examples described later, even in the case where complex carbohydrate sugar chains are not added to the air suspension adsorbent according to the present embodiment, there is a remarkable absence of influenza virus compared to ethanol at the same concentration. Shows the activation effect. Since there are no known reports of low-concentration ethanol preparations showing the inactivation effect of influenza virus, even in the case where complex carbohydrate sugar chains are not added in the air suspension adsorbent according to this embodiment, It is clear that it shows an excellent effect. The air suspension adsorbent according to the present embodiment can obtain further improved effects by adding complex carbohydrate sugar chains.
(実施形態2)
床等に落下したウイルスや壁や凹凸のあるもの等に付着したウイルスを空中懸濁物吸着剤により不活化する場合は、空中懸濁物吸着剤を直接かける、布等に染み込ませて拭き取る等の方法も可能であるが、本実施形態のおいては、実施形態1において説明した空中懸濁物吸着剤を、空中に噴霧する方法について説明する。
(Embodiment 2)
To inactivate viruses that have fallen on the floor, etc., or those that have adhered to walls or uneven surfaces, using an air suspension adsorbent, directly apply the air suspension adsorbent, soak it in a cloth, etc. However, in this embodiment, a method for spraying the air suspension adsorbent described in Embodiment 1 in the air will be described.
細菌、カビ、ウイルス等微生物を含む3ミクロン以下の空中懸濁物粒子は、静止した空気中では落下しにくい。空中懸濁物粒子は空気の動きに伴って流動し、人や食品に接触する。本実施形態に係る空中懸濁物吸着剤を噴霧すると、空中懸濁物粒子は空中懸濁物吸着剤と接触して、空中懸濁物吸着剤を吸収することにより重量が増して落下する。落下した空中懸濁物粒子に含まれる細菌やカビは空中懸濁物吸着剤により殺菌され、ウイルスは不活化された状態となる。 Air suspension particles of 3 microns or less containing microorganisms such as bacteria, molds and viruses are difficult to fall in still air. Air suspension particles flow with the movement of air and come into contact with people and food. When the air suspension adsorbent according to the present embodiment is sprayed, the air suspension particles come into contact with the air suspension adsorbent, and the air suspension adsorbent is absorbed to fall in weight. Bacteria and mold contained in the dropped air suspension particles are sterilized by the air suspension adsorbent, and the virus is inactivated.
本実施形態に係る空中懸濁物吸着剤の噴霧方法においては、空中懸濁物吸着剤を16μm以下の微粒子として、好ましくは3μm程度の微粒子として噴霧する。空中懸濁物吸着剤を細かな粒子として噴霧することにより、空中懸濁物吸着剤が空中を浮遊する時間が長くなり、空中懸濁物粒子との接触効率を高めることができる。先に述べた3ミクロン以下の空中懸濁物粒子を標的とする場合には、空中懸濁物吸着剤を3μm程度の微粒子として噴霧すると空中懸濁物粒子との接触効率が高くなる。一般的なスプレーで噴霧した場合は、空中懸濁物吸着剤の粒子サイズが大きくなり、空気中に滞留する時間が短くなるため、空中懸濁物粒子との接触効率が低下する。また、空中懸濁物吸着剤をドライミスト状の微粒子として噴霧することにより、噴霧した空間にいる人の衣服やものを濡らすこともない。 In the air suspension adsorbent spraying method according to this embodiment, the air suspension adsorbent is sprayed as fine particles of 16 μm or less, preferably as fine particles of about 3 μm. By spraying the air suspension adsorbent as fine particles, the time for the air suspension adsorbent to float in the air becomes longer, and the contact efficiency with the air suspension particles can be increased. When the above-mentioned air suspension particles of 3 microns or less are targeted, spraying the air suspension adsorbent as fine particles of about 3 μm increases the contact efficiency with the air suspension particles. When sprayed with a general spray, the particle size of the air suspension adsorbent is increased and the residence time in the air is reduced, so that the contact efficiency with the air suspension particles is reduced. Further, by spraying the air suspension adsorbent as dry mist-like fine particles, clothes and objects of people in the sprayed space are not wetted.
本実施形態に係る空中懸濁物吸着剤の噴霧方法においては、新型インフルエンザの発生に備え、空気感染、飛沫感染を予防する目的として噴霧することにより、人から人へのインフルエンザウイルス感染を防ぐことができる。即ち、航空機内環境を噴霧によって浄化し、乗客乗員の安全を確保し、海外からのインフルエンザウイルス侵入を防ぐことができる。国内においては、家庭をはじめ職場、医療機関、学校、その他、人が沢山集まる場所での伝播を予防し、外出時などあらゆる場面で常時使用して予防に努め、手洗い、ウガイ、マスクの着用とともにインフルエンザウイルスから身を護り、インフルエンザワクチン接種が受けられるまで健康維持の扶けとすることができる。 In the spray method of the air suspension adsorbent according to the present embodiment, in preparation for the occurrence of new influenza, spraying for the purpose of preventing air infection and droplet infection, to prevent influenza virus infection from person to person Can do. In other words, the environment inside the aircraft can be purified by spraying to ensure the safety of passengers and prevent the entry of influenza viruses from abroad. In Japan, prevent propagation at home, the workplace, medical institutions, schools, and other places where many people gather, and always use it everywhere, such as when going out. You can protect yourself from the influenza virus and make a healthy maintenance until you get an influenza vaccine.
以上説明したインフルエンザウイルスの不活化方法により、本実施形態に係る空中懸濁物吸着剤は、微粒子として噴霧することで、空中懸濁物粒子と効率よく接触するため、空中懸濁物粒子に含まれるインフルエンザウイルスを効率よく不活化することができるという優れた効果を奏する。また、本実施形態に係る空中懸濁物吸着剤は、ヒートアイランド現象の対策として近年注目されているドライミストを発生させる装置を用いて噴霧することも可能であり、噴霧することで衣服や物が濡れることがないため、室内外を問わず多様な環境下で使用可能である。 Since the air suspension adsorbent according to the present embodiment is sprayed as fine particles by the influenza virus inactivation method described above, the air suspension adsorbent is efficiently brought into contact with the air suspension particles, and thus is included in the air suspension particles. An excellent effect is that the influenza virus can be inactivated efficiently. In addition, the air suspension adsorbent according to the present embodiment can be sprayed using a device that generates dry mist that has been attracting attention in recent years as a countermeasure for the heat island phenomenon. Since it does not get wet, it can be used in various environments, both indoors and outdoors.
(実施形態3)
本実施形態においては、実施形態2で説明した空中懸濁物吸着剤の噴霧に、2液式の噴霧装置を用いる例について説明する。
(Embodiment 3)
In the present embodiment, an example in which a two-component spray device is used for spraying the air suspension adsorbent described in the second embodiment will be described.
実施形態3に係る空中懸濁物吸着剤は、エタノール、食品添加物高分子、複合糖質糖鎖及び香料を精製水に可溶化したA液と、エタノール、界面活性剤、ポリリジン及びグリシンを精製水に可溶化したB液を2流体噴射装置によりそれぞれ噴射し、ノズルの外で2つの溶液が衝突混合して空中に放出される。放出された空中懸濁物吸着剤の混合液は空中懸濁物に含まれるウイルスを不活化する。 The aerial suspension adsorbent according to Embodiment 3 is obtained by purifying ethanol, a surfactant, polylysine, and glycine, a solution A obtained by solubilizing ethanol, a food additive polymer, a complex carbohydrate sugar chain, and a fragrance in purified water. Liquid B solubilized in water is respectively ejected by a two-fluid ejection device, and the two solutions collide and mix outside the nozzle and are released into the air. The released air suspension adsorbent mixture inactivates viruses contained in the air suspension.
また、より簡便に、実施形態1に係る空中懸濁物吸着剤をA液、エタノールの水溶液をB液として噴霧することもできる。2液式の噴霧装置を用いて空中懸濁物吸着剤を噴霧する場合にも実施形態2で説明したように、空中懸濁物吸着剤を16μm以下の微粒子、好ましくは3μm程度の微粒子となるよう噴霧する。 In addition, the air suspension adsorbent according to Embodiment 1 can be sprayed as liquid A and an aqueous ethanol solution as liquid B more simply. Even when the air suspension adsorbent is sprayed using a two-component spray device, the air suspension adsorbent becomes fine particles of 16 μm or less, preferably about 3 μm, as described in the second embodiment. Spray like so.
本実施形態の本発明に係る空中懸濁物吸着剤の噴霧方法によると、2液式の噴霧装置を利用する場合においても、空中懸濁物吸着剤を効率よくインフルエンザウイルスを不活化することができる。 According to the spray method of the air suspension adsorbent according to the present invention of the present embodiment, even when a two-component spray device is used, the air suspension adsorbent can inactivate influenza virus efficiently. it can.
実施形態1で説明した空中懸濁物吸着剤についてインフルエンザウイルスに対する不活化試験を行った。不活化試験においては、以下に述べるように、空中懸濁物吸着剤とインフルエンザウイルス液を直接混合する実験と、空中懸濁物吸着剤とインフルエンザウイルスを噴霧により接触させる試験とにより評価した。なお、本発明に係る空中懸濁物吸着剤は、以下に限定されるものではなく、様々な使用条件により適宜変更可能であることは明らかである。 The air suspension adsorbent described in Embodiment 1 was subjected to an inactivation test against influenza virus. In the inactivation test, as described below, evaluation was performed by an experiment in which the air suspension adsorbent and the influenza virus solution were directly mixed and a test in which the air suspension adsorbent and the influenza virus were contacted by spraying. In addition, it is clear that the air suspension adsorbent according to the present invention is not limited to the following and can be appropriately changed depending on various use conditions.
(空中懸濁物吸着剤の希釈試験)
空中懸濁物吸着剤を2倍ずつ段階希釈した試験サンプルを調製し、インフルエンザウイルス液に感作させて、このインフルエンザウイルスとの混合液中の増殖可能なインフルエンザウイルス量をプラークアッセイにより評価した。以下に試験の詳細を述べる
(Dilution test of air suspension adsorbent)
A test sample was prepared by serially diluting the air suspension adsorbent by two times, sensitized to the influenza virus solution, and the amount of proliferative influenza virus in the mixture with the influenza virus was evaluated by plaque assay. The details of the test are described below.
(試験サンプル)
実施形態2で説明した1液式の空中懸濁物吸着剤の一例として、表1に示した組成の空中懸濁物吸着剤を実施例1、実施例1の空中懸濁物吸着剤にN-アセチルノイラミン酸を添加しなかった空中懸濁物吸着剤を実施例2、実施例1及び2と同濃度のエタノール溶液を比較例1とした。各溶液を2倍ずつ段階希釈して試験サンプルとした。ここで、エタノールとして95度1級無変性アルコール(日本アルコール産業株式会社、トレーサブル95 1級)、グリセリン脂肪酸エステルとしてカプリン酸モノグリセリド(太陽化学株式会社、サンソフト No.760)、ジグリセリン脂肪酸エステルとしてジグリセリンモノミリステート(理研ビタミン、ポエムDM-100)、ポリリジンとしてε-ポリリジン(日本チッソ株式会社、25%溶液)、アミノ酸としてグリシン(磐田化学工業株式会社)、食品添加物高分子としてポリデキストロース(ダニスコ ジャパン株式会社、ライテス(登録商標)ウルトラパウダー)、複合糖質糖鎖としてN-アセチルノイラミン酸(ジャパン・フード&リカー・アライアンス株式会社食品バイオ研究センター)およびガラクトース、香料としてミントエッセンス(コーケン香料株式会社、ミントエッセンスNO.64145)を用いた。
Figure JPOXMLDOC01-appb-T000001

 
 
(Test sample)
As an example of the one-component air suspension adsorbent described in the second embodiment, the air suspension adsorbent having the composition shown in Table 1 is used as the air suspension adsorbent of Example 1 and Example 1. An air suspension adsorbent to which no acetylneuraminic acid was added was an ethanol solution having the same concentration as in Example 2, Examples 1 and 2, and Comparative Example 1 was used. Each solution was serially diluted two times to obtain a test sample. Here, 95 degree primary unmodified alcohol (Nippon Alcohol Sangyo Co., Ltd., traceable 95 primary) as ethanol, capric acid monoglyceride (Taiyo Chemical Co., Ltd., Sunsoft No. 760) as glycerin fatty acid ester, and diglycerin fatty acid ester Diglycerin monomyristate (RIKEN vitamin, Poem DM-100), ε-polylysine (Nippon Chisso Corporation, 25% solution) as polylysine, glycine as amino acid (Iwata Chemical Co., Ltd.), polydextrose as food additive polymer (Danisco Japan Co., Ltd., Lites (registered trademark) Ultra Powder), N-acetylneuraminic acid (Japan Food & Liquor Alliance Co., Ltd.) Mint essence Te (Koken perfume Co., Ltd., mint essence NO.64145) was used.
Figure JPOXMLDOC01-appb-T000001


(インフルエンザウイルス液)
インフルエンザウイルス液には、A/Aichi/2/68株(亜型:H3N2)を用い、ウイルス含有量が2.9×10PFU/mlとなるよう調製した。
(Influenza virus solution)
For the influenza virus solution, A / Aichi / 2/68 strain (subtype: H3N2) was used, and the virus content was adjusted to 2.9 × 10 7 PFU / ml.
(インフルエンザウイルス液への感作)
上記のように調製した実施例1、2及び比較例1の試験サンプルを9とインフルエンザウイルス液を1の割合で混合して室温で1分間感作した。また、対照群として滅菌精製水を用いて感作した。
(Sensitization to influenza virus solution)
The test samples of Examples 1 and 2 and Comparative Example 1 prepared as described above were mixed with 9 and influenza virus solution at a ratio of 1 and sensitized at room temperature for 1 minute. Moreover, it sensitized using the sterilized purified water as a control group.
(プラークアッセイによる評価)
感作後のウイルス混合液をウイルス増殖用培養液(0.2% 炭酸水素ナトリウム、3mM L-グルタミン、0.2% アルブミン、10,000IU/ml ペニシリン及び10,000μg力価/ml ストレプトマイシンを含むMEM(Minimum Essential Medium)培地)で10倍ずつ段階希釈した。6ウェルプレートに単層を形成するように牛胎子血清を含むMEM培地で培養したMDCK(Madin-Darby canine kidney)細胞から培地を取り除き、PBS(-)で1回洗浄した。1ウェルのMDCK細胞当たり0.1mlの希釈した混合液を加え、60分間培養することでインフルエンザウイルスを吸着させた。その後、混合液を取り除き、1次重層寒天培地(0.1% グルコース、2.5μg/ml トリプシン及び0.8% アガロースを含むウイルス増殖用培養液)を2~3ml加えてアガロースを固化させ、34℃、5%炭酸ガス雰囲気で2日間培養した。さらに2次重層寒天培地(1% アガロースゲル、0.01%ニュートラルレッドを含むウイルス増殖用培養液)を2ml加えて固化し、34℃、5%炭酸ガス雰囲気で一晩培養した。各段階希釈した混合液を加えたウェルに形成したプラーク数を計測した。
(Evaluation by plaque assay)
The virus mixture after sensitization contains a culture medium for virus propagation (containing 0.2% sodium hydrogen carbonate, 3 mM L-glutamine, 0.2% albumin, 10,000 IU / ml penicillin and 10,000 μg titer / ml streptomycin. Dilute serially 10 times with MEM (Minimum Essential Medium) medium. The medium was removed from MDCK (Madin-Darby canine kidney) cells cultured in MEM medium containing fetal calf serum so as to form a monolayer on a 6-well plate, and washed once with PBS (−). Influenza virus was adsorbed by adding 0.1 ml of a diluted mixture per MDCK cell per well and culturing for 60 minutes. Thereafter, the mixed solution is removed, and 2-3 ml of primary layered agar medium (virus culture medium containing 0.1% glucose, 2.5 μg / ml trypsin and 0.8% agarose) is added to solidify the agarose. The cells were cultured at 34 ° C. in a 5% carbon dioxide atmosphere for 2 days. Furthermore, 2 ml of a secondary multi-layered agar medium (1% agarose gel, 0.01% neutral red-containing virus growth medium) was added and solidified, and cultured overnight at 34 ° C. in a 5% carbon dioxide atmosphere. The number of plaques formed in the wells to which the serially diluted mixture was added was counted.
計測したプラーク数を図1に示す。また、各試験サンプルについて対照群に対するLRV(Log Reduction Value)を算出し、有効性を評価した。ここで、LRVが2以上である試験サンプルが有効であるとすると、実施例1は4倍希釈まで有効であり、実施例2は2倍希釈まで有効であった。一方、実施例1及び実施例2と同濃度エタノールからなる比較例1は、原液でもインフルエンザウイルスに対する効果は認められなかった。 The measured number of plaques is shown in FIG. Moreover, LRV (Log Reduction Value) with respect to a control group was calculated about each test sample, and effectiveness was evaluated. Here, assuming that a test sample having an LRV of 2 or more is effective, Example 1 was effective up to 4-fold dilution, and Example 2 was effective up to 2-fold dilution. On the other hand, Comparative Example 1 consisting of ethanol with the same concentration as in Example 1 and Example 2 did not show the effect on influenza virus even in the stock solution.
以上の結果から、実施例1の本発明に係る空中懸濁物吸着剤は、インフルエンザウイルスの不活化に有効であり、僅か7.4%のエタノール濃度であってもインフルエンザウイルスの不活化に効果があることがわかる。実施例1の本発明に係る空中懸濁物吸着剤においては、N-アセチルノイラミン酸とガラクトースとを添加しているが、この結果から、N-アセチルノイラミン酸とガラクトースとが化学結合した糖鎖を用いても、インフルエンザウイルスの不活化に効果を示すと考えられる。また、N-アセチルノイラミン酸を含まない実施例2の本発明に係る空中懸濁物吸着剤についても、実施例1よりは弱いながらインフルエンザウイルスの不活化に有効であることがわかる。よって、本発明に係る空中懸濁物吸着剤は、エタノールが低濃度でありながら、インフルエンザウイルスの不活化を可能にする優れた効果を奏する。また、実施例2の本発明に係る空中懸濁物吸着剤は食品添加物として認められた物質のみからなるため、人体や環境に対する危険性も少ない。 From the above results, the air suspension adsorbent according to the present invention of Example 1 is effective for inactivating influenza virus, and is effective for inactivating influenza virus even at an ethanol concentration of only 7.4%. I understand that there is. In the air suspension adsorbent according to the present invention of Example 1, N-acetylneuraminic acid and galactose were added. From this result, N-acetylneuraminic acid and galactose were chemically bonded. Even if a sugar chain is used, it is considered to be effective in inactivating influenza virus. In addition, it can be seen that the air suspension adsorbent according to the present invention of Example 2 that does not contain N-acetylneuraminic acid is also effective in inactivating influenza viruses although it is weaker than Example 1. Therefore, the air suspension adsorbent according to the present invention has an excellent effect of enabling inactivation of influenza virus while ethanol is at a low concentration. Moreover, since the air suspension adsorbent according to the present invention of Example 2 is composed only of substances recognized as food additives, there is little danger to the human body and the environment.
(空中懸濁物吸着剤の噴霧によるインフルエンザウイルスの不活化効果)
上述の実施例においては、空中懸濁物吸着剤とインフルエンザウイルス液を直接混合した条件下での不活化効果を検証したが、以下に述べる実施例においては、空中懸濁物吸着剤とインフルエンザウイルス液を噴霧した、より実用的な条件下での空中懸濁物吸着剤による不活化効果を検証した。
(Influenza virus inactivation effect by spraying air suspension adsorbent)
In the above-mentioned examples, the inactivation effect under the condition in which the air suspension adsorbent and influenza virus solution were directly mixed was verified, but in the examples described below, the air suspension adsorbent and influenza virus were used. The inactivation effect of the air suspension adsorbent under the more practical conditions sprayed with the liquid was verified.
(試験サンプル)
実施例1の空中懸濁物吸着剤の原液を噴霧したものを実施例3、比較例1のエタノール溶液を噴霧したものを比較例2とした。噴霧には、それぞれ1mlを用いた。
(Test sample)
What sprayed the stock solution of the air suspension adsorbent of Example 1 was set to Example 3, and what sprayed the ethanol solution of Comparative Example 1 was set to Comparative Example 2. 1 ml each was used for spraying.
(インフルエンザウイルス液)
上述のインフルエンザウイルス液をウイルス含有量が2.5×10PFU/mlとなるよう調製した。噴霧量は1mlとした。
(Influenza virus solution)
The above influenza virus solution was prepared so that the virus content was 2.5 × 10 8 PFU / ml. The spray amount was 1 ml.
幅800mm × 奥行き400mm × 高さ400mmのプラスチックボックス内において、実施例3の空中懸濁物吸着剤とインフルエンザウイルス液を、それぞれジャクソン氏式喉頭麻酔器に入れ、ジャクソン氏式喉頭麻酔器のノズルが向い合うような配置で、空中懸濁物吸着剤、インフルエンザウイルス液の順に交互に数回噴霧し、空中で空中懸濁物吸着剤とインフルエンザウイルス液を接触、混合させた。プラスチックボックスの床面には蓋を開けたプラスチックシャーレを6枚配置し、落下したインフルエンザウイルスを回収した。噴霧完了後10分経過した時点で、プラスチックシャーレの蓋をして、プラスチックボックス内からプラスチックシャーレを回収した。 In a plastic box having a width of 800 mm × depth 400 mm × height 400 mm, the air suspension adsorbent and the influenza virus solution of Example 3 were put in a Jackson-type laryngeal anesthesia machine, respectively. The air suspension adsorbent and the influenza virus solution were alternately sprayed several times in this order, and the air suspension adsorbent and the influenza virus solution were contacted and mixed in the air. Six plastic petri dishes with the lid open were placed on the floor of the plastic box, and the influenza virus that fell was collected. When 10 minutes had elapsed after the completion of spraying, the plastic petri dish was covered and the plastic petri dish was collected from the plastic box.
回収したプラスチックシャーレにウイルス増殖用培養液を5ml加え、ウイルス混合液とした。比較例2のエタノール溶液についても同様の操作を行い、それぞれのウイルス混合液を段階希釈し、先に述べたプラークアッセイによりインフルエンザウイルスに対する不活化効果を評価した。 To the collected plastic petri dish, 5 ml of a virus growth medium was added to obtain a virus mixture. The same operation was performed for the ethanol solution of Comparative Example 2, and each virus mixture was serially diluted, and the inactivation effect against influenza virus was evaluated by the plaque assay described above.
実施例3及び比較例2において、床面に配置したシャーレ3枚について検出されたウイルス含有量を表2に示す。
Figure JPOXMLDOC01-appb-T000002

 
 
In Example 3 and Comparative Example 2, the virus content detected for three petri dishes placed on the floor is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002


表2の結果において実施例3は比較例2に対して検出されたインフルエンザウイルス量が10PFU/ml減少したことから、実施例3の空中懸濁物吸着剤の噴霧によりインフルエンザウイルスが不活化されていることがわかる。本実施例は、実験室における空中懸濁物吸着剤の簡易な噴霧による結果であるが、実施形態2及び3で説明したような噴霧装置を用いることで、空中懸濁物吸着剤をより細かな粒子として噴霧することにより噴霧効率とインフルエンザウイルスに対する接触効率を向上させることにより、さらに効果的にインフルエンザウイルスを不活化することが可能である。 In the results shown in Table 2, since the amount of influenza virus detected in Example 3 was reduced by 10 2 PFU / ml compared to Comparative Example 2, influenza virus was inactivated by spraying the air suspension adsorbent of Example 3. You can see that This example is a result of simple spraying of the air suspension adsorbent in the laboratory, but by using the spray device as described in Embodiments 2 and 3, the air suspension adsorbent is finer. It is possible to inactivate the influenza virus more effectively by improving the spray efficiency and the contact efficiency against the influenza virus by spraying as simple particles.
上述のように、本実施例3の本発明に係る空中懸濁物吸着剤の噴霧によると、アルコール溶液のみでは不活化が困難なインフルエンザウイルスを不活化することができる優れた効果を奏する。 As described above, according to the spray of the air suspension adsorbent according to the present invention of Example 3, there is an excellent effect capable of inactivating influenza virus that is difficult to inactivate only with an alcohol solution.

Claims (30)

  1. エタノール、界面活性剤、ポリリジン、グリシン、及び食品添加物高分子を含むインフルエンザウイルスを不活化する空中懸濁物吸着剤。 An air suspension adsorbent that inactivates influenza virus, including ethanol, surfactant, polylysine, glycine, and food additive polymer.
  2. 前記空中懸濁物吸着剤の溶媒として水を用いる請求項1に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The air suspension adsorbent for inactivating influenza virus according to claim 1, wherein water is used as a solvent for the air suspension adsorbent.
  3. 前記界面活性剤は、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステルの何れか1つ、または2以上の組合せから選ばれる請求項1に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The surfactant is selected from any one of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester, or a combination of two or more. An air suspension adsorbent that inactivates the influenza virus according to 1.
  4. 前記グリセリン脂肪酸エステル、前記クエン酸脂肪酸モノグリセリド、前記コハク酸脂肪酸モノグリセリド、前記ジアセチル酒石酸脂肪酸モノグリセリドは脂肪酸の炭素数が8、10、12、18の何れかから選ばれる請求項3に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The influenza virus according to claim 3, wherein the glycerin fatty acid ester, the citric acid fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride are selected from any of 8, 10, 12, and 18 carbon atoms. Inactive air suspension adsorbent.
  5. 前記ジグリセリン脂肪酸エステルの脂肪酸の炭素数が14である請求項3に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The air suspension adsorbent for inactivating influenza virus according to claim 3, wherein the diglycerin fatty acid ester has 14 fatty acids.
  6. 前記ショ糖脂肪酸エステルは脂肪酸の炭素数が12、16、18の何れかから選ばれる請求項3に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The air suspension adsorbent for inactivating the influenza virus according to claim 3, wherein the sucrose fatty acid ester is selected from any of 12, 16, and 18 carbon atoms of fatty acid.
  7. 前記食品添加物高分子は、ポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースの何れかから選ばれる請求項6に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The air suspension adsorbent for inactivating influenza virus according to claim 6, wherein the food additive polymer is selected from any of polyacrylic acid sodium salt, carboxymethylcellulose sodium, regenerated cellulose porous membrane, and polydextrose. .
  8. 前記空中懸濁物吸着剤が複合糖質糖鎖をさらに含む請求項7に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The air suspension adsorbent for inactivating the influenza virus according to claim 7, wherein the air suspension adsorbent further comprises a complex carbohydrate chain.
  9. 前記複合糖質糖鎖がN-アセチルノイラミン酸及びガラクトースである請求項8に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 9. The air suspension adsorbent for inactivating influenza virus according to claim 8, wherein the glycoconjugate sugar chains are N-acetylneuraminic acid and galactose.
  10. 前記空中懸濁物吸着剤が香料をさらに含む請求項9に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤。 The air suspension adsorbent for inactivating the influenza virus according to claim 9, wherein the air suspension adsorbent further contains a fragrance.
  11. エタノール、界面活性剤、ポリリジン、グリシン、及び食品添加物高分子を含む空中懸濁物吸着剤を噴霧し、インフルエンザウイルスを不活化する方法。 A method of inactivating influenza virus by spraying an air suspension adsorbent containing ethanol, a surfactant, polylysine, glycine, and a food additive polymer.
  12. 前記エタノール及び前記食品添加物高分子を含む第1の溶液と、前記エタノール、前記界面活性剤、前記ポリリジン及び前記グリシンを含む第2の溶液とをそれぞれ噴霧し、
    前記第1の溶液と前記第2の溶液とを空中で混合することを特徴とする請求項11に記載のインフルエンザウイルスを不活化する方法。
    Spraying the first solution containing the ethanol and the food additive polymer and the second solution containing the ethanol, the surfactant, the polylysine and the glycine, respectively;
    The method for inactivating influenza virus according to claim 11, wherein the first solution and the second solution are mixed in the air.
  13. 前記空中懸濁物吸着剤の溶媒として水を用いる請求項11に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating influenza virus according to claim 11, wherein water is used as a solvent for the air suspension adsorbent.
  14. 前記界面活性剤は、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステルの何れか1つ、または2以上の組合せから選ばれる請求項11に記載のインフルエンザウイルスを不活化する方法。 The surfactant is selected from any one of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester, or a combination of two or more. 11. A method for inactivating the influenza virus according to 11.
  15. 前記グリセリン脂肪酸エステル、前記クエン酸脂肪酸モノグリセリド、前記コハク酸脂肪酸モノグリセリド、前記ジアセチル酒石酸脂肪酸モノグリセリドは脂肪酸の炭素数が8、10、12、18の何れかから選ばれる請求項14に記載のインフルエンザウイルスを不活化する方法。 The influenza virus according to claim 14, wherein the glycerin fatty acid ester, the citric acid fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride are selected from any of 8, 10, 12, and 18 carbon atoms. How to inactivate.
  16. 前記ジグリセリン脂肪酸エステルの脂肪酸の炭素数が14である請求項14に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating influenza virus according to claim 14, wherein the diglycerin fatty acid ester has 14 fatty acids.
  17. 前記ショ糖脂肪酸エステルは脂肪酸の炭素数が12、16、18の何れかから選ばれる請求項16に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating the influenza virus according to claim 16, wherein the sucrose fatty acid ester is selected from any of 12, 16, and 18 carbon atoms of fatty acid.
  18. 前記食品添加物高分子は、ポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースの何れかから選ばれる請求項17に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating an influenza virus according to claim 17, wherein the food additive polymer is selected from any of polyacrylic acid sodium salt, carboxymethyl cellulose sodium, regenerated cellulose porous membrane, and polydextrose.
  19. 前記空中懸濁物吸着剤が複合糖質糖鎖をさらに含む請求項18に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating an influenza virus according to claim 18, wherein the air suspension adsorbent further comprises a complex carbohydrate sugar chain.
  20. 前記複合糖質糖鎖がN-アセチルノイラミン酸及びガラクトースである請求項19に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating an influenza virus according to claim 19, wherein the glycoconjugate sugar chains are N-acetylneuraminic acid and galactose.
  21. 前記空中懸濁物吸着剤が香料をさらに含む請求項20に記載のインフルエンザウイルスを不活化する方法。 The method for inactivating an influenza virus according to claim 20, wherein the air suspension adsorbent further comprises a fragrance.
  22. 水を46℃以上67℃以下に加温し、食品添加物高分子、グリシン及びポリリジンを加えて溶解して第1の溶液を調製し、
    界面活性剤にエタノールを加えて溶解して第2の溶液を調製し、
    前記第2の溶液を、前記第1の溶液に溶解させて調製することを特徴とするインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。
    Water is heated to 46 ° C. or more and 67 ° C. or less, and a food additive polymer, glycine and polylysine are added and dissolved to prepare a first solution,
    The ethanol is added to the surfactant and dissolved to prepare a second solution,
    A method for producing an air suspension adsorbent that inactivates influenza virus, wherein the second solution is prepared by dissolving the second solution in the first solution.
  23. 前記第1の溶液に、複合糖質糖鎖をさらに添加する請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 The method for producing an air suspension adsorbent for inactivating an influenza virus according to claim 22, wherein a complex carbohydrate sugar chain is further added to the first solution.
  24. 前記界面活性剤は、グリセリン脂肪酸エステル、クエン酸脂肪酸モノグリセリド、コハク酸脂肪酸モノグリセリド、ジアセチル酒石酸脂肪酸モノグリセリド、ジグリセリン脂肪酸エステル、ショ糖脂肪酸エステルの何れか1つ、または2以上の組合せから選ばれる請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 The surfactant is selected from any one of glycerin fatty acid ester, citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyltartaric acid fatty acid monoglyceride, diglycerin fatty acid ester, and sucrose fatty acid ester, or a combination of two or more. A method for producing an air suspension adsorbent that inactivates the influenza virus according to 22.
  25. 前記グリセリン脂肪酸エステル、前記クエン酸脂肪酸モノグリセリド、前記コハク酸脂肪酸モノグリセリド、前記ジアセチル酒石酸脂肪酸モノグリセリドは脂肪酸の炭素数が8、10、12、18の何れかから選ばれる請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 23. The influenza virus according to claim 22, wherein the glycerin fatty acid ester, the citric acid fatty acid monoglyceride, the succinic acid fatty acid monoglyceride, and the diacetyltartaric acid fatty acid monoglyceride are selected from any of 8, 10, 12, and 18 carbon atoms. A method for producing an inactive air suspension adsorbent.
  26. 前記ジグリセリン脂肪酸エステルの脂肪酸の炭素数が14である請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 The method for producing an air suspension adsorbent for inactivating the influenza virus according to claim 22, wherein the diglycerin fatty acid ester has 14 fatty acids.
  27. 前記ショ糖脂肪酸エステルは脂肪酸の炭素数が12、16、18の何れかから選ばれる請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 23. The method for producing an air suspension adsorbent for inactivating influenza virus according to claim 22, wherein the sucrose fatty acid ester is selected from any of 12, 16, and 18 carbon atoms of fatty acid.
  28. 前記食品添加物高分子は、ポリアクリル酸ナトリウム塩、カルボキシメチルセルローズナトリウム、再生セルローズ多孔膜、ポリデキストロースの何れかから選ばれる請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 23. The air suspension adsorbent for inactivating influenza virus according to claim 22, wherein the food additive polymer is selected from any of sodium polyacrylate, sodium carboxymethylcellulose, regenerated cellulose porous membrane, and polydextrose. Manufacturing method.
  29. 前記複合糖質糖鎖がN-アセチルノイラミン酸及びガラクトースである請求項23に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 The method for producing an air suspension adsorbent for inactivating influenza virus according to claim 23, wherein the complex carbohydrate sugar chains are N-acetylneuraminic acid and galactose.
  30. 前記空中懸濁物吸着剤が香料をさらに含む請求項22に記載のインフルエンザウイルスを不活化する空中懸濁物吸着剤の製造方法。 The manufacturing method of the air suspension adsorbent which inactivates the influenza virus of Claim 22 in which the said air suspension adsorbent further contains a fragrance | flavor.
PCT/JP2010/050287 2009-01-13 2010-01-13 Adsorbent for suspension in air WO2010082587A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-024249 2009-01-13
JP2009024249 2009-01-13
JP2009-217418 2009-09-18
JP2009217418 2009-09-18

Publications (1)

Publication Number Publication Date
WO2010082587A1 true WO2010082587A1 (en) 2010-07-22

Family

ID=42339841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050287 WO2010082587A1 (en) 2009-01-13 2010-01-13 Adsorbent for suspension in air

Country Status (1)

Country Link
WO (1) WO2010082587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197205A (en) * 2017-05-23 2018-12-13 株式会社ニイタカ Virus deactivator, norovirus deactivator and sanitary material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322218A (en) * 1992-05-15 1993-12-07 Ee P S:Kk Disinfecting method for air in room
JP2001233773A (en) * 2000-02-22 2001-08-28 Toko Yakuhin Kogyo Kk Antiviral agent
JP2002143277A (en) * 2000-08-11 2002-05-21 Ophtecs Corp Anti-acanthamoeba disinfection preservative for contact lens
JP2004529889A (en) * 2001-02-28 2004-09-30 コノワルチュク,トーマス・ダブリュ Virucidal composition
JP2005501863A (en) * 2001-08-23 2005-01-20 ウエストゲイト・バイオロジカル・リミテッド Use of whey apoprotein in the prevention or treatment of bacterial or viral infections
JP2007077127A (en) * 2005-09-12 2007-03-29 Taiki Club:Kk Preparation for inducing environmentally injurious microorganism-sterilizing function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322218A (en) * 1992-05-15 1993-12-07 Ee P S:Kk Disinfecting method for air in room
JP2001233773A (en) * 2000-02-22 2001-08-28 Toko Yakuhin Kogyo Kk Antiviral agent
JP2002143277A (en) * 2000-08-11 2002-05-21 Ophtecs Corp Anti-acanthamoeba disinfection preservative for contact lens
JP2004529889A (en) * 2001-02-28 2004-09-30 コノワルチュク,トーマス・ダブリュ Virucidal composition
JP2005501863A (en) * 2001-08-23 2005-01-20 ウエストゲイト・バイオロジカル・リミテッド Use of whey apoprotein in the prevention or treatment of bacterial or viral infections
JP2007077127A (en) * 2005-09-12 2007-03-29 Taiki Club:Kk Preparation for inducing environmentally injurious microorganism-sterilizing function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197205A (en) * 2017-05-23 2018-12-13 株式会社ニイタカ Virus deactivator, norovirus deactivator and sanitary material
JP7080461B2 (en) 2017-05-23 2022-06-06 株式会社ニイタカ Virus inactivating agents, norovirus inactivating agents and sanitary materials

Similar Documents

Publication Publication Date Title
Campos et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need
Borrego et al. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo
Dung et al. Silver nanoparticles as potential antiviral agents against African swine fever virus
Chakhalian et al. Opportunities for biomaterials to address the challenges of COVID‐19
Alphandéry The potential of various nanotechnologies for coronavirus diagnosis/treatment highlighted through a literature analysis
US9364511B2 (en) Antiviral preparations obtained from a natural cinnamon extract
JP5618218B2 (en) Bactericidal water, antiviral agents, cleaning water for sterilization in fresh food processing systems and insecticides for poultry farming
CN101128216A (en) Delivery vehicles, bioactive substances and viral vaccines
Pandey et al. Architectured therapeutic and diagnostic nanoplatforms for combating SARS-CoV-2: role of inorganic, organic, and radioactive materials
Goharshadi et al. The use of nanotechnology in the fight against viruses: A critical review
Lemaitre et al. Non-human primate models of human respiratory infections
Lv et al. Aerosol transmission of coronavirus and influenza virus of animal origin
Jastrzebska et al. Smart and sustainable nanotechnological solutions in a battle against COVID-19 and beyond: a critical review
Krishnan et al. Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: An update
JP4559089B2 (en) Virus capture spray and virus capture filter
WO2010082587A1 (en) Adsorbent for suspension in air
Roy et al. Nanomaterials and bioactive compounds against SARS-CoV-2
Guo et al. Inactivation of airborne pathogenic microorganisms by plasma-activated nebulized mist
Luisetto et al. Bioaerosols and corona virus diffusion, transmission, carriers, viral size, surfaces properties and other factor involved
CN113144177A (en) Surface sterilization antiviral spray and preparation method and application thereof
JP5612314B2 (en) Drugs and methods for destroying viruses and bacteria and inhibiting their growth
Ari Yuka et al. Recent advances in health biotechnology during pandemic
Khunger Antiviral biomaterials
WO2022079997A1 (en) Anti-coronavirus virucide and method and usage employing same
Selcen Recent advances in health biotechnology during pandemic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731256

Country of ref document: EP

Kind code of ref document: A1