WO2022079997A1 - Anti-coronavirus virucide and method and usage employing same - Google Patents

Anti-coronavirus virucide and method and usage employing same Download PDF

Info

Publication number
WO2022079997A1
WO2022079997A1 PCT/JP2021/030071 JP2021030071W WO2022079997A1 WO 2022079997 A1 WO2022079997 A1 WO 2022079997A1 JP 2021030071 W JP2021030071 W JP 2021030071W WO 2022079997 A1 WO2022079997 A1 WO 2022079997A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronavirus
particles
mass
titanium oxide
killing agent
Prior art date
Application number
PCT/JP2021/030071
Other languages
French (fr)
Japanese (ja)
Inventor
成実 岡崎
Original Assignee
Dr.C医薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr.C医薬株式会社 filed Critical Dr.C医薬株式会社
Priority to JP2021549398A priority Critical patent/JPWO2022079997A1/ja
Publication of WO2022079997A1 publication Critical patent/WO2022079997A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks

Definitions

  • the present invention relates to a coronavirus killing agent and a method and use using the same.
  • coronavirus which causes unprecedented damage in the world, is one of the coronaviruses and the seventh virus that infects humans.
  • Coronavirus is a type of RNA virus (single-stranded RNA virus) that has RNA as genetic information, and has a double membrane made of lipid called "envelope" on the outermost side of the particle. It does not increase by itself, but it can increase by adhering to cells such as mucous membranes.
  • new coronavirus infections knowledge about pathogens and diseases is gradually accumulating (see, for example, Non-Patent Documents 1 and 2).
  • the new coronavirus infection is generally said to be transmitted by droplet infection or contact transmission.
  • the new coronavirus survives up to 72 hours on plastic surfaces and up to 24 hours on cardboard (see, for example, Non-Patent Documents 3 and 4).
  • As a clinical feature it develops with fever, respiratory symptoms, general malaise, etc. after an incubation period of 1 to 14 days (mostly 5 days). Cold-like symptoms often persist for about a week. Some exhibit symptoms such as dyspnea and become severe.
  • most of the affected people are considered to be mild, but strict caution is required because it may become serious especially in the elderly and those with underlying diseases. The increase in the number of seriously ill people should be avoided because it puts pressure on medical institutions and may lead to the collapse of medical care. Therefore, countermeasures against new coronavirus infectious diseases are required.
  • a member for preventing droplet infection and contact infection and a method using the same have been proposed, focusing on the above-mentioned infection route.
  • wearing a mask is recommended.
  • wearing a mask could suppress the spread of the new coronavirus, it could not kill the new coronavirus. Therefore, as one of the countermeasures against infectious diseases of the new coronavirus, there has been a demand for a coronavirus killing agent that can be used for members such as masks.
  • an object of the present invention is to provide a coronavirus killing agent capable of killing a new type of coronavirus easily and economically, and a method and use using the same.
  • a coronavirus-killing agent comprising composite particles, wherein the coronavirus-killing agent contains 70% by mass to 96% by mass of titanium oxide particles and silver particles based on the total mass of the coronavirus-killing agent.
  • a coronavirus killing agent containing an amount of more than 0.5% by mass and 3.6% by mass or less.
  • the composite particle has a particle size of more than 0.1 ⁇ m and less than 0.3 ⁇ m as measured by a laser diffraction method, in which silver particles are bonded to the surface of titanium oxide particles. Viral agent.
  • the content of titanium oxide particles is 78 to 96% by mass, and the content of silver particles is more than 0.5% by mass and 3.3% by mass or less ⁇ 1>.
  • the coronavirus killing agent according to ⁇ 2> is 78 to 96% by mass, and the content of silver particles is more than 0.5% by mass and 3.3% by mass or less.
  • the coronavirus killing agent according to ⁇ 2> is 78 to 96% by mass, and the content of silver particles is more than 0.5% by mass and 3.3% by mass or less ⁇ 1>.
  • the coronavirus killing agent according to ⁇ 2> is 78 to 96% by mass
  • the content of silver particles is more than 0.5% by mass and 3.3% by mass or less ⁇ 1>.
  • the coronavirus killing agent according to ⁇ 2> is COVID-19.
  • ⁇ 5> The coronavirus killing agent according to any one of ⁇ 1> to ⁇ 4>, further comprising calcium phosphate particles.
  • ⁇ 6> The coronavirus killing agent according to any one of ⁇ 1> to ⁇ 5>, wherein the particle size of the composite particle is 0.2 ⁇ m or more and 0.29 ⁇ m or less.
  • ⁇ 7> The coronavirus killing agent according to any one of ⁇ 1> to ⁇ 6>, wherein the particle size of the composite particle is 0.24 ⁇ m or more and 0.27 ⁇ m or less.
  • ⁇ 8> A member containing the coronavirus-killing agent according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> The member according to ⁇ 8>, wherein the member is any one selected from the group consisting of non-woven fabric, woven fabric, knitted fabric, resin film, plastic, metal, ceramics, and air filter.
  • ⁇ 10> A medical device containing the coronavirus-killing agent according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 11> A mask containing the coronavirus-killing agent according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 12> A medical sheet containing the coronavirus-killing agent according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 13> A coronavirus-killing agent having silver particles bonded to the surface of titanium oxide particles and having a particle diameter of more than 0.1 ⁇ m and less than 0.3 ⁇ m as measured by a laser diffraction method, or a member containing the same.
  • a coronavirus killing method that places the virus in a place where the presence of coronavirus is expected.
  • ⁇ 14> The method for preventing the growth of coronavirus according to ⁇ 13>, wherein the coronavirus killing agent or a member containing the agent is the one according to ⁇ 8> or ⁇
  • a coronavirus killing agent capable of killing a new type of coronavirus, and a method and use using the same are provided simply and economically.
  • FIG. 1A and 1B are electron micrographs of cells used in the experiment.
  • FIG. 1A shows VeroE6 / TMPRSS2 cells
  • FIG. 1B shows VeroE6 cells.
  • 2A to 2F are views showing the results of shape comparison (2nd day) with the eluate-added cells.
  • FIG. 2A is hydrosilver titanium powder (low concentration)
  • FIG. 2B is hydrosilver titanium powder (high concentration)
  • FIG. 2C is A1 sheet (low concentration)
  • FIG. 2D is A2 sheet (high concentration)
  • FIG. 2E is binder processing only.
  • the sheet, FIG. 2F, is an additive-free sheet.
  • 3A to 3F are views showing the results of shape comparison (4th day) with the eluate-added cells.
  • FIG. 1A shows VeroE6 / TMPRSS2 cells
  • FIG. 1B shows VeroE6 cells.
  • 2A to 2F are views showing the results of shape comparison (2nd day) with the
  • FIG. 3A is a hydrosilver titanium powder (low concentration)
  • FIG. 3B is a hydrosilver titanium powder (high concentration)
  • FIG. 3C is an A1 sheet (low concentration)
  • FIG. 3D is an A2 sheet (high concentration)
  • FIG. 3E is binder processing only.
  • the sheet, FIG. 3F is an additive-free sheet.
  • FIG. 4 is a photograph before culturing (left of the screen) and after culturing (3rd day, right of the screen) when the virus was cultured in the VP-SFM medium.
  • FIG. 5 is a virus infectious titer test crystal violet stained image.
  • FIG. 6 is a list of virus liquid processing conditions.
  • FIG. 7A is a conceptual diagram of the dipping method
  • FIG. 7A is a conceptual diagram of the dipping method
  • FIG. 7B is a conceptual diagram of the dropping method.
  • FIG. 8 is a layout drawing of the dipping method plate.
  • FIG. 9 is a layout drawing of the dropping method plate.
  • FIG. 10 is a layout diagram of virus inoculation for measuring infectious titer.
  • FIG. 11 is a virus infectious titer test plaque image (refrigerated 24 hr immersion treatment).
  • FIG. 12 is a list of virus infectious titers and antiviral activity values (immersion method).
  • FIG. 13 is a list of virus infectious titers and antiviral activity values (drop method).
  • FIG. 14 is a list of antiviral activity of A1 sheet and A2 sheet.
  • FIG. 15 is a diagram showing a configuration.
  • FIG. 16 is an image diagram of the test.
  • FIG. 16 is an image diagram of the test.
  • FIG. 17 is an image diagram of the test.
  • FIG. 18 is a diagram showing the results of SDS-PAGE (+ ⁇ ME), which is electrophoresis when the S domain sample solution is irradiated with artificial sunlight in the presence of composite particles M1 and composite particles M2.
  • FIG. 19 is a diagram showing the results of SDS-PAGE (+ ⁇ ME), which is an electrophoresis when an S domain sample solution is irradiated with artificial sunlight in the presence of an X1 sheet and an X2 sheet.
  • FIG. 20A is a diagram showing the ratio of the amount of disintegrated protein over time to the control when the composite particles M1 and M2 are used.
  • FIG. 20B is a diagram showing the ratio of the amount of disintegrated protein over time to the control when using the X1 and X2 sheets.
  • FIG. 21 is a molecular dynamics (MD) simulation diagram of the new coronavirus spike protein.
  • 21A to 21C show a view seen from the side
  • FIGS. 21D to 21F show a view seen from above (outside).
  • 22A-22D are molecular dynamics (MD) simulation diagrams focusing on the peplomer protein S domain and ACE2 receptor.
  • FIG. 23A is a conceptual diagram of an electron microscope (SEM) photograph of a composite particle.
  • FIG. 23B is a partially enlarged view of FIG. 23A.
  • FIG. 24A is a conceptual diagram of the configuration of the coronavirus.
  • FIG. 24B is a partially enlarged view of FIG. 24A.
  • 25A-25G are schematic views of the coronavirus infection system. It is a partially cutaway perspective view of a mask as a medical instrument according to an embodiment. It is a perspective view of the sheet as a medical instrument which concerns on embodiment.
  • the present invention is a coronavirus killing agent comprising composite particles having a particle size of more than 0.1 ⁇ m and less than 0.3 ⁇ m as measured by a laser diffraction method, wherein the coronavirus killing agent is all of the coronavirus killing agents.
  • the present invention relates to a coronavirus killing agent containing 70% by mass to 96% by mass of titanium oxide particles and more than 0.5% by mass and 3.6% by mass or less of silver particles on a mass basis.
  • the composite particles have a morphology in which silver particles are bonded to the surface of titanium oxide particles.
  • titanium oxide particles The number of titanium oxide particles per composite particle may be one or two or more. The number of titanium oxide particles per composite particle is usually two or more.
  • the form of the titanium oxide particles contained in the composite particles is not particularly limited, and examples thereof include spherical, granular, needle-like, flaky, and indefinite shapes.
  • the composite particles may contain two or more titanium oxide particles having different morphologies.
  • the particle size of the titanium oxide particles contained in the composite particles is not particularly limited as long as it is smaller than the particle size of the composite particles, and can be appropriately adjusted according to the particle size of the composite particles.
  • the titanium oxide particles contained in the composite particles are, for example, nanoparticles or submicron particles.
  • Examples of the crystal structure of titanium oxide constituting the titanium oxide particles include anatase type, rutile type, brookite type and the like, of which anatase type is preferable.
  • the number of silver particles per composite particle may be one or two or more.
  • the number of metal particles per composite particle is usually two or more.
  • the form of the silver particles contained in the composite particles is not particularly limited, and examples thereof include spherical, granular, needle-like, flaky, and indefinite shapes.
  • the composite particle may contain two or more metal particles having different morphologies.
  • the particle size of the silver particles contained in the composite particles is not particularly limited as long as it is smaller than the particle size of the composite particles, and can be appropriately adjusted according to the particle size of the composite particles.
  • the silver particles contained in the composite particles are, for example, nanoparticles or submicron particles.
  • the composite particles preferably have a content of titanium oxide particles of 70% by mass to 96% by mass and a content of silver particles of more than 0.5% by mass and 10% by mass or less based on the total mass of the composite particles. This is because the slaughtered coronavirus effect cannot be obtained if the range is out of the above range. It is more preferable that the content of the titanium oxide particles is 78 to 96% by mass and the content of the silver particles is more than 0.5% by mass and 3.3% by mass or less.
  • the composite particles may further contain calcium phosphate particles.
  • the number of calcium phosphate particles per composite particle may be one or two or more.
  • the number of calcium phosphate particles per composite particle is usually two or more.
  • the morphology of the calcium phosphate particles contained in the composite particles is not particularly limited, and examples thereof include spherical, granular, needle-like, flaky, and indefinite shapes.
  • the composite particles may contain two or more calcium phosphate particles having different morphologies.
  • the particle size of the calcium phosphate particles contained in the composite particles is not particularly limited as long as it is smaller than the particle size of the composite particles, and can be appropriately adjusted according to the particle size of the composite particles.
  • the calcium phosphate particles contained in the composite particles are, for example, nanoparticles or submicron particles.
  • Examples of the calcium phosphate constituting the calcium phosphate particles include apatite (apatite), tricalcium phosphate, octacalcium phosphate and the like, and among these, apatite is preferable.
  • Examples of the apatite include hydroxyapatite, fluorinated apatite, carbonated apatite and the like, and among these, hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) is preferable.
  • the content of the titanium oxide particles, the silver particles and the calcium phosphate particles per composite particle is not particularly limited, but the lower limit of the content of the titanium oxide particles is one mass of silver particles. It is usually 10 parts by mass, preferably 20 parts by mass, more preferably 25 parts by mass, still more preferably 30 parts by mass, and the upper limit of the content of titanium oxide particles is 1 part by mass of silver particles. On the other hand, it is usually 300 parts by mass, preferably 250 parts by mass, more preferably 200 parts by mass, and even more preferably 180 parts by mass.
  • the lower limit of the content of the calcium phosphate particles is usually 1 part by mass, preferably 2 parts by mass, more preferably 3 parts by mass with respect to 1 part by mass of the metal particles, and the upper limit of the content of the calcium phosphate particles is. , Usually 100 parts by mass, preferably 80 parts by mass, still more preferably 60 parts by mass, and even more preferably 50 parts by mass.
  • the composite particles may contain other metal particles in addition to the silver particles.
  • the other metal particles can be selected from the group consisting of, for example, gold particles, platinum particles and copper particles.
  • the composite particles may contain two or more metal particles (including silver particles) of different types.
  • the particle size of the composite particles measured by the laser diffraction method is preferably 0.1 to 0.3 ⁇ m, more preferably 0.11 to 0.29 ⁇ m, and even more preferably 0.15 to 0.25 ⁇ m.
  • the particle size is measured by the laser diffraction method using a commercially available particle size distribution measuring device, preferably a laser diffraction / scattering type particle size distribution measuring device Partica LA-960V2 series (manufactured by HORIBA).
  • the composite particles it is preferable that one or more titanium oxide particles and one or more silver particles are three-dimensionally and randomly arranged.
  • At least one silver particle is bonded to at least one titanium oxide particle.
  • one or more particles are present around one particle (one of the titanium oxide particles and one of the silver particles). ..
  • one or more particles of the same type may be adjacent to one or more particles of the same type, or one or more particles of different types may be adjacent to each other. Adjacent particles are preferably bonded to each other. Examples of the combination of adjacent particles include titanium oxide particles, silver particles, titanium oxide particles and silver particles, and the like.
  • a part of at least one of titanium oxide particles and silver particles is exposed on the surface of the composite particles.
  • a part of at least one titanium oxide particle and a part of at least one silver particle are exposed on the surface of the composite particle.
  • At least one particle selected from titanium oxide particles, metal particles and calcium phosphate particles is present inside the composite particles without being exposed on the surface of the composite particles.
  • one particle has a particle morphology, has a membranous morphology, or has a membranous morphology integrally with or in conjunction with another one or more particles is a composite particle. It may be affected by the mixing ratio of particles when producing. Depending on the compounding ratio, one particle may no longer maintain its particle morphology and may take a membranous morphology that is present on at least a portion of the surface of the composite particle. For example, when particle compositing is carried out by a mechanical method such as a bead mill or a ball mill, particles composed of a material having a hardness lower than that of other particles (for example, silver particles) take such a film-like form. obtain.
  • a mechanical method such as a bead mill or a ball mill
  • At least one particle selected from titanium oxide particles, silver particles and calcium phosphate particles has a film-like morphology and is on the surface of the composite particle. It exists at least in part.
  • two or more particles selected from titanium oxide particles, silver particles and calcium phosphate particles have a film-like morphology as one or a series of particles. However, it is present on at least a part of the surface of the composite particle.
  • the composite particles are obtained by mixing titanium oxide powder and silver powder in a liquid using, for example, a wet mill, and one or more titanium oxide particles contained in the titanium oxide powder and one or more titanium oxide particles contained in the silver powder. It can be manufactured by combining with silver particles. The composite particles thus produced are subsequently used in the present invention without being sintered.
  • the titanium oxide content (purity) in the titanium oxide powder is preferably 90% by weight or more, more preferably 95% by weight or more, and even more preferably 98% by weight or more.
  • the upper limit is, for example, 99%.
  • the particle size of the titanium oxide particles (primary particles) contained in the titanium oxide powder is not particularly limited, but is, for example, 0.03 to 0.3 ⁇ m. Since the wet mill can disperse the particle agglomerates into individual particles, the titanium oxide powder may contain agglomerates of titanium oxide particles (secondary particles).
  • the particle size of the aggregate of titanium oxide particles is, for example, 1 to 2 ⁇ m.
  • the particle size of the titanium oxide particles or aggregates thereof is measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • the silver content (purity) in the silver powder is preferably 80% by weight or more, more preferably 95% by weight or more, and even more preferably 98% by weight or more.
  • the upper limit is, for example, 99.9%.
  • the particle size of the silver particles (primary particles) contained in the silver powder is not particularly limited, but is, for example, 0.1 to 1.9 ⁇ m. Since the wet mill can disperse the particle agglomerates into individual particles, the metal powder may contain agglomerates of metal particles (secondary particles). By storing the silver powder in a freezer until use, it is possible to suppress the aggregation of silver particles contained in the silver powder.
  • the particle size of silver particles or aggregates thereof is calculated, for example, based on the specific surface area.
  • the calcium phosphate content (purity) in the calcium phosphate powder is preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% or more.
  • the particle size of the calcium phosphate particles (primary particles) contained in the calcium phosphate powder is not particularly limited, but is, for example, 0.1 to 2.0 ⁇ m. Since the wet mill can disperse the particle aggregates into individual particles, the calcium phosphate powder may contain aggregates (secondary particles) of calcium phosphate particles.
  • the particle size of the aggregate of calcium phosphate particles is, for example, 4 to 5 ⁇ m.
  • the particle size of the calcium phosphate particles or their aggregates is measured by, for example, a laser diffraction / scattering method.
  • the wet mill can combine one or more titanium oxide particles and one or more silver particles while dispersing and finely pulverizing the titanium oxide powder and the particles contained in the silver powder in a liquid.
  • the wet mill include a bead mill, a ball mill and the like, and among these, a bead mill is preferable.
  • the material of the crushing medium such as beads and balls used in a mill such as a bead mill and a ball mill include alumina, zircon, zirconia, steel and glass, and among these, zirconia is preferable.
  • the size (diameter) of the pulverized media can be appropriately adjusted according to the particle size and the like of the composite particles to be produced, but is usually 0.05 to 3.0 mm, preferably 0.1 to 0.5 mm.
  • the pulverizing medium for example, beads or balls having a size of about 0.1 mm and a mass of about 0.004 mg can be used.
  • the liquid used for mixing is, for example, an aqueous medium such as water.
  • the total blending amount of the titanium oxide powder and the silver powder is usually 25 to 45 parts by mass, preferably 30 to 40 parts by mass with respect to 65 parts by mass of water. Is adjusted to.
  • various conditions such as the total amount of raw material powder added, the flow rate of the liquid, the peripheral speed of the blades in the cylinder, the stirring temperature, the stirring time, etc. , It can be appropriately adjusted according to the particle size and the like of the composite particles to be produced.
  • the total amount of the raw material powder (titanium oxide powder, metal powder and calcium phosphate powder) added is, for example, 4 kg or more
  • the cylinder volume is, for example, 0.5 to 4 L
  • the flow rate of the liquid is, for example, 0.5 to 3 L / min.
  • the peripheral speed of the blade is, for example, 300 to 900 m / min
  • the liquid temperature is, for example, 20 to 60 ° C.
  • the mixing time per 1 kg of raw material powder is, for example, 0.5 to 2 hours.
  • the upper limit of the total addition amount of the raw material powder can be appropriately adjusted according to the cylinder volume and the like.
  • the mixing time can be appropriately adjusted according to the total amount of the raw material powder added and the like.
  • a dispersant to the raw material in addition to titanium oxide powder, silver powder and liquid.
  • the dispersant include a polymer-type dispersant, a low-molecular-weight dispersant, an inorganic-type dispersant, and the like, and can be appropriately selected depending on the type of liquid used in the wet mixing.
  • the liquid used for mixing is an aqueous medium such as water, for example, an anionic polymer-type dispersant, a nonionic polymer-type dispersant, or the like can be used as the dispersant, and an anion can be used.
  • Examples of the sex polymer type dispersant include a polycarboxylic acid type dispersant, a naphthalin sulfonic acid formalin condensation type dispersant and the like, and examples of the nonionic polymer type dispersant include polyethylene glycol and the like. ..
  • the amount of the dispersant added can be appropriately adjusted, but is, for example, 0.01 to 5% by mass, preferably 0.05 to 3% by mass, based on 35 parts by mass of the total amount of the titanium oxide powder and the silver powder. %.
  • titanium oxide powder and metal powder are mixed in a liquid to combine one or more titanium oxide particles contained in the titanium oxide powder with one or more silver particles contained in the silver powder.
  • a suspension (slurry) of composite particles can be produced.
  • an aggregate of composite particles (dry powder) can be produced.
  • An aggregate of composite particles (dry powder) can also be produced from a suspension (slurry) of composite particles by a known granulation method such as a spray-dry granulation method.
  • the particle size of the aggregate of composite particles measured by the laser diffraction method is preferably more than 0.1 ⁇ m and less than 0.29 ⁇ m, and more preferably 0.15 ⁇ m or more and 0.25 ⁇ m or less. This is because if it is below the above lower limit, it may be absorbed by the human body. Further, if it is more than the above upper limit, the surface area of the composite particle becomes narrow and the action and effect of the present invention cannot be expected.
  • the particle size of the composite particles is more preferably 0.2 ⁇ m or more and 0.29 ⁇ m or less, and further preferably 0.24 ⁇ m or more and 0.27 ⁇ m or less.
  • the median diameter (d50) of the aggregate of the composite particles measured by the laser diffraction method on a volume basis is, for example, 0.1 to 0.35 ⁇ m, preferably about 0.25 ⁇ m.
  • the particle size by the laser diffraction method is measured by a commercially available particle size distribution measuring device, preferably a laser diffraction / scattering type particle size distribution measuring device Partica LA-960V2 series (manufactured by HORIBA).
  • the produced composite particles can be used as they are in the present invention, but the particle size may be adjusted before they are used in the present invention.
  • the particle size can be adjusted, for example, by sieving the composite particles in the powder state or the suspension state.
  • the number of titanium oxide particles, silver particles and calcium phosphate particles per composite particle may be the same or different among the composite particles.
  • the aggregate of the composite particles contains other particles that may be by-produced in the production of the composite particles. May be.
  • other particles include single titanium oxide particles, single silver particles, single metal particles, single calcium phosphate particles, conjugates of titanium oxide particles (excluding metal particles and calcium phosphate particles), and metal particles of each other. (Excluding titanium oxide particles and calcium phosphate particles), conjugates of calcium phosphate particles (excluding titanium oxide particles and metal particles), and conjugate of titanium oxide particles and metal particles (excluding calcium phosphate particles) , A conjugate of titanium oxide particles and calcium phosphate particles (excluding metal particles), a conjugate of metal particles and calcium phosphate particles (excluding titanium oxide particles), and the like.
  • the composite particles can be applied to coronavirus, but among coronaviruses, it is preferably applied to COVID-19 (SARS-CoV-2). This is from the viewpoint that the mortality rate of SARS-CoV-2 reaches 99.9%.
  • FIG. 24A is a schematic diagram of the coronavirus (SARS-CoV-2), and FIG. 24B is a partially enlarged view of FIG. 24A.
  • the coronavirus is surrounded by an envelope protein (Envelope (E)), which is the outer shell, and RNA (ribonucleic acid) and N protein are stored inside it.
  • envelope E
  • RNA ribonucleic acid
  • N protein N protein
  • protruding spike proteins spike proteins
  • human cells have a molecular mechanism that allows coronavirus to efficiently invade.
  • the coronavirus infection process is thought to be as follows. As shown in FIG. 25A, the coronavirus enters the body via the oral cavity and reaches the lungs. The coronavirus then binds superficial protruding peplomer proteins (Spike, S) to the Ace2 receptor on the host cell, as shown in FIG. 25B. Then, as shown in FIG. 25C, the protein-degrading enzymes TMPRSS2 and FURIN in the cell membrane cleave the head of the viral spike protein. As shown in FIG. 25D, the fusion mechanism begins to develop. As shown in FIG.
  • the tip of the fusion mechanism penetrates the lung cells of the coronavirus.
  • the fusion mechanism grabs and attracts lung cells.
  • the coronavirus and lung cells fuse to open a channel through which N protein and RNA invade the lung cells. After that, the RNA that entered the lung cells is translated into protein, and the coronavirus proliferates. According to the above-mentioned coronavirus infection process, if the coronavirus spike protein (S) or envelope protein (E) fails, it is considered that the coronavirus cannot infect human cells.
  • the coronavirus killing agent has, for example, (1) destroys the spike protein (S), (2) inhibits the function of the spike protein (S), and (3) the envelope protein. It is believed that (E) is destroyed, or (4) a combination thereof kills the coronavirus.
  • the spike protein (S) is considered to be destroyed as follows. First, when titanium dioxide (TiO 2 ) is irradiated with light (ultraviolet rays), electrons (e-) are ejected from its surface. At this time, by coexisting a metal catalyst (for example, Ag) with titanium dioxide, the emission of electrons is further promoted. The holes from which the electrons have escaped are called holes, which are positively charged.
  • the present invention also relates to a member containing the above-mentioned coronavirus killing agent.
  • the member include non-woven fabric, woven fabric, woven fabric, resin film, plastic, metal, ceramics, air filter and the like.
  • Specific products include, for example, masks, towels, gauze, socks, underwear, shirts, eyeglasses and the like.
  • the present invention also relates to a medical device containing the above-mentioned coronavirus killing agent.
  • the medical device according to the present invention is a medical device capable of killing a new type of coronavirus.
  • a mask will be described as an example as a medical device according to an embodiment based on the drawings.
  • FIG. 26 is a partially cutaway perspective view of a mask as a medical instrument according to an embodiment.
  • the mask 10 includes a substantially rectangular mask body 11 that covers the nostrils of the target, ring-shaped ear hooks 12a and 12b provided on both short sides of the mask body 11, and a mask.
  • a composite particle 13 detachably attached to the inside of the main body 11 is provided.
  • the composite particles include one or more titanium oxide particles and one or more metal particles.
  • the ear hook portion 12a When the mask 10 is attached to the target, the ear hook portion 12a is hung on one ear of the target, the ear hook portion 12b is hung on the other ear of the target, and at least the nostrils of the target face are covered with the mask body 11. .
  • the mouth of the subject When the mask 10 is attached to the subject, the mouth of the subject may be covered with the mask body 11 in addition to the nostrils of the subject.
  • the form of the mask 10 is the form of the flat mask, but the form of the mask 10 is not limited to the form of the flat mask, and the pleated type mask, the three-dimensional type mask, etc. It may be in the form of other masks.
  • the mask body 11 is a mask body that covers the nostrils of the target and has breathability.
  • the air permeability of the mask body 11 can be appropriately adjusted within a range in which the subject wearing the mask 10 can breathe.
  • the air permeability of the mask body 11 is, for example, 5 to 150 cm 3 / cm 2 ⁇ sec, preferably 30 to 100 cm 3 / cm 2 ⁇ sec.
  • the measurement of the air permeability is carried out in accordance with, for example, JIS L10968.27.1A method (Frazil type method).
  • the mask body 11 is formed of a plurality of laminated breathable sheet members.
  • the edge portions of the plurality of breathable sheet members are joined by a known joining method such as heat welding, ultrasonic welding, or an adhesive.
  • the mask main body 11 includes a first breathable sheet member 111, a second breathable sheet member 112, and a third breathable sheet member 113, which are stacked in this order.
  • the first breathable sheet member 111 is arranged on the face side of the target
  • the third breathable sheet member 113 is arranged on the outside air side.
  • the number of breathable sheet members constituting the mask body 11 can be appropriately changed.
  • one or more breathable sheet members may be provided between the first breathable sheet member 111 and the second breathable sheet member 112.
  • one or more breathable sheet members may be provided between the second breathable sheet member 112 and the third breathable sheet member 113.
  • Each breathable sheet member can be formed of, for example, a non-woven fabric, a woven fabric, a knitted fabric, or the like.
  • the fiber constituting each breathable sheet member include synthetic fiber, regenerated fiber, natural fiber and the like.
  • the synthetic fiber include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, and polyamide fibers such as nylon.
  • the synthetic fiber may be a composite fiber such as a core-sheath type fiber.
  • Examples of the recycled fiber include rayon, acetate and the like.
  • natural fibers include cotton and the like.
  • non-woven fabric examples include spunbond non-woven fabric, thermal bond non-woven fabric, spunlace non-woven fabric, air-through non-woven fabric, melt blow non-woven fabric, needle punch non-woven fabric and the like.
  • woven fabric examples include gauze and the like.
  • the nonwoven fabric may have a multilayer structure having two or more layers. Examples of such a multi-layer structure include an SS structure (spun bond-spun bond two-layer structure), SMS (spun bond-melt blow-spun bond three-layer structure), and the like.
  • each breathable sheet member can be adjusted to the same extent as the breathable sheet member used in commercially available household or medical masks.
  • the basis weights of the first breathable sheet member 111 and the third breathable sheet member 113 can be adjusted from the viewpoint of breathability, for example.
  • the basis weight of the second breathable sheet member 112 can be adjusted, for example, from the viewpoint of filterability.
  • the basis weight of these breathable sheet members can be adjusted from the viewpoint of breathability or filterability, for example.
  • the ear hook portions 12a and 12b are formed of, for example, a string-shaped member.
  • the string-shaped member preferably has elasticity.
  • the string-shaped member is, for example, a stretchable rubber or plastic string-shaped member or the like. Both ends of the ear hooks 12a and 12b are fixed to the mask body 11 by a joining method such as sewing, whereby a ring that can be hung on the target ear is formed.
  • the composite particle 13 contains one or more titanium oxide particles and one or more silver particles. The above description applies to composite particles.
  • the composite particles 13 are attached to the mask body 11 so that they can be detached by breathing of the subject wearing the mask 10. Therefore, when the subject wearing the mask 10 breathes, a part of the large number of composite particles 13 adhering to the mask body 11 is detached and administered to the mucous membrane in the nasal cavity of the subject. That is, the composite particles 13 can be administered to the intranasal mucosa of the subject by utilizing the respiration of the subject wearing the mask 10, whereby the subject can be protected from coronavirus infection.
  • the target to which the mask 10 is applied is not limited to those who use it for the purpose of preventing coronavirus infection.
  • those in need of prevention or treatment of rhinitis, specifically rhinitis patients are also included.
  • the composite particles 13 are detachably attached to the second breathable sheet member 112 among the plurality of sheet members constituting the mask main body 11.
  • the sheet member to which the composite particles 13 are detachably attached is not limited to the second breathable sheet member 112, and may be another breathable sheet member. Further, the composite particles 13 may be detachably attached to two or more breathable sheet members.
  • the total amount of composite particles attached per unit area of the breathable sheet member is not particularly limited, but the lower limit of the total amount of adhesion is usually 1 g / m 2 , preferably 2 g / m 2 , and more preferably 3 g / m 2 . , Even more preferably 4 g / m 2 , even more preferably 5 g / m 2 , and the upper limit of the total adhered amount is usually 20 g / m 2 , preferably 15 g / m 2 , still more preferably 10 g / m 2 . be.
  • the amount of the binder resin contained in the mixed solution is preferably 20 to 90 parts by mass, more preferably 30 to 85 parts by mass, and even more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the composite particles. The same applies to the amount of binder resin contained in the breathable sheet member.
  • the total adhesion amount of the composite particles and the binder resin per unit area of the breathable sheet member is not particularly limited, but the lower limit of the total adhesion amount is usually 2 g / m 2 , preferably 3 g / m 2 , and more preferably 4 g. / M 2 , even more preferably 5 g / m 2 , even more preferably 6 g / m 2 , and the upper limit of the total adhered amount is usually 30 g / m 2 , preferably 25 g / m 2 , still more preferably 20 g / m 2. m 2 , even more preferably 15 g / m 2 .
  • the binder resin a known resin having adhesiveness can be used alone or in combination of two or more.
  • the binder resin include natural glues or natural resins such as gelatin, gum arabic, shellac, dammar, elemy, and thunderac; semi-synthetic glues or semi-synthetic such as methyl cellulose, ethyl cellulose, nitrocellulose, carboxymethyl cellulose, and acetate.
  • Resins Isocyanate-based, terephthalic acid-based, bisphenol-based, vinyl ester-based polyester resins; Acrylic copolymer resins such as ethylene-acrylic acid, ethylene-acrylic acid ester, acrylic ester-vinyl, and methacrylic acid ester-vinyl; Isocyanate derivatives or isocyanurate derivatives such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, lysine ester triisocyanate, isocyanate derivatives such as tolylene diisocyanate or isocyanurate derivatives, polyester polyols, polyether polyols, acrylic loylol , Urethane-based resin formed by reaction with polyol such as phenolic polyol; halogenated polymer such as polyvinyl chloride and polyvinylidene chloride; polyvinyl acetate, ethylene-vinyl acetate copolymer, vinyl chloride-
  • Silicone resins such as polyalkylsiloxane, polyalkylhydrogensiloxane, polyalkylalkenylsiloxane, polyalkylsyliconate, polyalkalialkylsiliconate, and polyalkylphenylsiloxane, as well as epoxy-modified, amino-modified, urethane-modified, and alkyd-modified.
  • a modified product such as acrylic modification, a silicone resin containing a copolymer, etc .; or a polymer such as tetrafluoroethylene or vinylidene fluoride, a fluororesin such as a copolymer of these monomers and other kinds of monomers, etc. Be done.
  • urethane-based resins and silicone resins are preferable, and urethane-based resins are particularly preferable, from the viewpoint of adhesiveness and the like.
  • the inorganic binder may be used alone or in combination of two or more in place of the binder resin or in combination with the binder resin.
  • examples of the inorganic binder include alkyl silicates, silicon halides, products obtained by decomposing hydrolyzable silicon compounds such as partial hydrolysates thereof, organic polysiloxane compounds and their polycondensates, silica, colloidal silica. , Water glass, silicon compounds, phosphates such as zinc phosphate, metal oxides such as zinc oxide and zirconium oxide, heavy phosphates, cement, gypsum, lime, frit for brooms and the like.
  • FIG. 27 is a perspective view of a medical sheet as a medical device according to an embodiment.
  • the medical sheet according to the embodiment includes a sheet portion inserted into the nasal cavity of the target and composite particles attached to the sheet portion, and the composite particles include one or more titanium oxide particles and one or more silver particles. Including particles.
  • the medical sheet 20 includes a sheet portion 21 inserted into the nasal cavity of the target and composite particles 22 attached to the sheet portion 21.
  • the medical sheet 20 is used by inserting it into the target nasal cavity.
  • the medical sheet 20 When the medical sheet 20 is inserted into the nasal cavity of the subject, the medical sheet 20 may be deformed so as to be easy to insert.
  • the medical sheet 20 can be twisted, deformed into a paper twist, and then inserted into the nasal cavity of the subject.
  • the entire medical sheet 20 may be inserted into the target nasal cavity, or a part of the medical sheet 20 may be inserted.
  • the medical sheet 20 is preferably inserted up to the posterior part of the nasal cavity (at a distance of, for example, 1 to 10 cm, preferably 1 to 8 cm from the lower nose point). Further, it is preferable that the medical sheet 20 is inserted into the target nasal cavity so that the portion of the sheet portion 21 to which the composite particles 22 are attached comes into contact with the target intranasal mucosa.
  • the seat portion 21 has a size that can be inserted into the nasal cavity of the subject.
  • the length of the sheet portion 21 is usually 50 to 300 mm, preferably 100 to 200 mm, and the width of the sheet portion 21 is usually 5 to 40 mm, preferably 10 to 20 mm.
  • a part of the sheet portion 21 (for example, a portion having a length of 1 to 5 cm) is held outside the target nasal cavity without being inserted into the target nasal cavity.
  • the rest of the sheet portion 21 is inserted into the nasal cavity of the subject.
  • the sheet portion 21 is, for example, in the shape of a strip.
  • the sheet portion 21 does not have to be breathable, but is preferably breathable.
  • the air permeability of the seat portion 21 can be appropriately adjusted within a range in which the subject into which the medical sheet 20 is inserted can breathe.
  • the air permeability of the sheet portion 21 is, for example, 5 to 150 cm 3 / cm 2 ⁇ sec, preferably 30 to 100 cm 3 / cm 2 ⁇ sec.
  • the measurement of the air permeability is carried out in accordance with, for example, JIS L10968.27.1A method (Frazil type method).
  • the sheet portion 21 can be formed of, for example, a non-woven fabric, a woven fabric, a knitted fabric, a plastic film having ventilation holes, or the like.
  • the fiber constituting the sheet portion 21 include synthetic fiber, regenerated fiber, natural fiber and the like.
  • the synthetic fiber include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, and polyamide fibers such as nylon.
  • the synthetic fiber may be a composite fiber such as a core-sheath type fiber.
  • Examples of the recycled fiber include rayon, acetate and the like.
  • natural fibers include cotton and the like.
  • non-woven fabric examples include spunbond non-woven fabric, thermal bond non-woven fabric, spunlace non-woven fabric, air-through non-woven fabric, melt blow non-woven fabric, needle punch non-woven fabric and the like.
  • woven fabric examples include gauze and the like.
  • the nonwoven fabric may have a multilayer structure having two or more layers. Examples of such a multi-layer structure include an SS structure (spun bond-spun bond two-layer structure), SMS (spun bond-melt blow-spun bond three-layer structure), and the like.
  • the composite particle 22 includes one or more titanium oxide particles, one or more metal particles, and one or more calcium phosphate particles. The above description applies to composite particles.
  • the composite particles 22 may be attached to the sheet portion 21 so that the medical sheet 20 can be detached by breathing of the object inserted into the nasal cavity, or the medical sheet 20 is inserted into the nasal cavity. It may be attached to the sheet portion 21 so as not to be detached by breathing.
  • the composite particles 22 attached to the sheet portion 21 come into contact with or adhere to the target intranasal mucosa. Therefore, the composite particles 22 can be administered to the intranasal mucosa of the subject without utilizing the subject's respiration.
  • the total adhesion amount of the composite particles per unit area of the sheet portion 21 is not particularly limited, but the lower limit of the total adhesion amount is usually 1 g / m 2 , preferably 2 g / m 2 , and more preferably 3 g / m 2 . It is even more preferably 4 g / m 2 , even more preferably 5 g / m 2 , and the upper limit of the total adhered amount is usually 20 g / m 2 , preferably 15 g / m 2 , and even more preferably 10 g / m 2 . ..
  • the composite particles 22 can be attached to the sheet portion 21 via, for example, a binder resin.
  • a binder resin For example, by supplying the sheet member with a mixed solution containing the composite particles 22 and the binder resin, or by immersing the sheet member in the mixed solution containing the composite particles 22 and the binder resin, and then drying the sheet member. , The sheet portion 21 to which the composite particles 22 are attached via the binder resin can be manufactured. Further, after the mixed liquid containing the composite particles 22 and the binder resin is supplied to the raw material of the sheet, or after the raw material of the sheet is immersed in the mixed liquid containing the composite particles 22 and the binder resin, the raw material of the sheet is used. By drying the fabric and then cutting out the sheet member from the original fabric of the sheet, the sheet portion 21 to which the composite particles 22 are attached via the binder resin can be manufactured.
  • the amount of the binder resin contained in the mixed solution is preferably 20 to 90 parts by mass, more preferably 30 to 85 parts by mass, and even more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the composite particles. The same applies to the amount of binder resin contained in the sheet portion 21.
  • the total adhesion amount of the composite particles and the binder resin per unit area of the sheet portion 21 is not particularly limited, but the lower limit of the total adhesion amount is usually 2 g / m 2 , preferably 3 g / m 2 , and more preferably 4 g / m 2. m 2 , even more preferably 5 g / m 2 , even more preferably 6 g / m 2 , and the upper limit of the total adhesion amount is usually 30 g / m 2 , preferably 25 g / m 2 , still more preferably 20 g / m. 2 , even more preferably 15 g / m 2 .
  • the binder resin a known resin having adhesiveness can be used alone or in combination of two or more.
  • the binder resin include natural glues or natural resins such as gelatin, gum arabic, shellac, dammar, elemy, and thunderac; semi-synthetic glues or semi-synthetic such as methyl cellulose, ethyl cellulose, nitrocellulose, carboxymethyl cellulose, and acetate.
  • Resins Isocyanate-based, terephthalic acid-based, bisphenol-based, vinyl ester-based polyester resins; Acrylic copolymer resins such as ethylene-acrylic acid, ethylene-acrylic acid ester, acrylic ester-vinyl, and methacrylic acid ester-vinyl; Isocyanate derivatives or isocyanurate derivatives such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, lysine ester triisocyanate, isocyanate derivatives such as tolylene diisocyanate or isocyanurate derivatives, polyester polyols, polyether polyols, acrylic loylol , Urethane-based resin formed by reaction with polyol such as phenolic polyol; halogenated polymer such as polyvinyl chloride and polyvinylidene chloride; polyvinyl acetate, ethylene-vinyl acetate copolymer, vinyl chloride-
  • Silicone resins such as polyalkylsiloxane, polyalkylhydrogensiloxane, polyalkylalkenylsiloxane, polyalkylsyliconate, polyalkalialkylsiliconate, and polyalkylphenylsiloxane, as well as epoxy-modified, amino-modified, urethane-modified, and alkyd-modified.
  • a modified product such as acrylic modification, a silicone resin containing a copolymer, etc .; or a polymer such as tetrafluoroethylene or vinylidene fluoride, a fluororesin such as a copolymer of these monomers and other kinds of monomers, etc. Be done.
  • urethane-based resins and silicone resins are preferable, and urethane-based resins are particularly preferable, from the viewpoint of adhesiveness and the like.
  • the inorganic binder may be used alone or in combination of two or more in place of the binder resin or in combination with the binder resin.
  • examples of the inorganic binder include alkyl silicates, silicon halides, products obtained by decomposing hydrolyzable silicon compounds such as partial hydrolysates thereof, organic polysiloxane compounds and their polycondensates, silica, colloidal silica. , Water glass, silicon compounds, phosphates such as zinc phosphate, metal oxides such as zinc oxide and zirconium oxide, heavy phosphates, cement, gypsum, lime, frit for brooms and the like.
  • the particle size when silver particles are bonded to the surface of titanium oxide particles and measured by a laser diffraction method is more than 0.1 ⁇ m and less than 0.3 ⁇ m, based on the total mass of the coronavirus killing agent.
  • a corona-killing agent or a member containing the composite particles, wherein the content of titanium oxide particles is 70 to 96% by mass, the content of silver particles is more than 0.5% by mass and 3.6% by mass or less. is also related to the method of killing coronaviruses, which places the particles in places where the presence of coronaviruses is expected.
  • the coronavirus-killing agent or a member containing the same for example, the above-mentioned medical sheet is preferably used.
  • materials that are expected to be infected by droplets or contact from patients such as clothing such as underwear and socks; textiles such as sheets and duvet covers; air conditioning equipment such as air purifiers and air conditioner filters; door knobs and wallpaper Indoor equipment such as;
  • the new coronavirus can be killed in a short time, which is effective. It is possible to prevent the spread of the new coronavirus.
  • the new coronavirus is killed by applying a coronavirus-killing agent or a member containing it to, for example, seats, handrails, straps, buzzers, air-conditioning equipment, etc. in a car of public transportation. be able to.
  • a coronavirus-killing agent or a member containing it to, for example, seats, handrails, straps, buzzers, air-conditioning equipment, etc. in a car of public transportation. be able to.
  • the coronavirus-killing agent is applied to each member, the service life of the coronavirus-killing agent becomes longer by applying it using a predetermined binder.
  • the pharmaceutical preparation of the present invention is a pharmaceutical preparation administered to the mucous membrane in the nasal cavity, and is a composite particle containing one or more titanium oxide particles, one or more calcium phosphate particles, and one or more metal particles. contains. The above description applies to composite particles.
  • the pharmaceutical preparation of the present invention can be produced by blending a pharmaceutically acceptable additive in addition to the composite particles as an active ingredient.
  • a pharmaceutically acceptable additive include pH adjusters, preservatives, fragrances, dispersants, wetting agents, stabilizers, preservatives, suspending agents, surfactants and the like.
  • the pH adjuster can be appropriately selected and used from those generally used for external use.
  • the blending amount of the pH adjuster can be appropriately adjusted according to the dosage form, the base component and the like.
  • the pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid and phosphoric acid, acetic acid, succinic acid, fumaric acid, malic acid, oxalic acid, lactic acid, glutaric acid, salicylic acid and tartrate acid. Examples thereof include organic acids and salts of these acids.
  • the pH adjuster one type may be used alone, or two or more types may be used in combination.
  • the preservative can be appropriately selected and used from those generally used for external use.
  • the blending amount of the preservative can be appropriately adjusted according to the dosage form, the base component and the like.
  • the preservative include paraoxybenzoic acid alkyl esters such as paraoxybenzoic acid, methylparaben, ethylparaben, propylparaben, chlorobutanol, benzyl alcohol, methyl paraoxybenzoate, and propyl paraoxybenzoate.
  • the preservative one type may be used alone, or two or more types may be used in combination.
  • the fragrance can be appropriately selected and used from those generally used for external use.
  • the blending amount of the flavoring agent can be appropriately adjusted according to the dosage form, the base component and the like.
  • the flavoring agent include menthol, rose oil, eucalyptus oil, d-camphor and the like.
  • the flavoring agent one type may be used alone, or two or more types may be used in combination.
  • the dispersant can be appropriately selected and used from those generally used for external use.
  • the blending amount of the dispersant can be appropriately adjusted according to the dosage form, the base component and the like.
  • examples of the dispersant include sodium metaphosphate, calcium polyphosphate, silicic acid anhydride and the like.
  • the dispersant one type may be used alone, or two or more types may be used in combination.
  • the wetting agent can be appropriately selected and used from those generally used for external use.
  • the blending amount of the wetting agent can be appropriately adjusted according to the dosage form, the base component and the like.
  • the wetting agent include propylene glycol, butylene glycol, glycerin, sorbitol, sodium lactate, sodium hyaluronate and the like.
  • the wetting agent one type may be used alone, or two or more types may be used in combination.
  • the stabilizer can be appropriately selected and used from those generally used for external use.
  • the blending amount of the stabilizer can be appropriately adjusted according to the dosage form, the base component and the like.
  • examples of the stabilizer include sodium bisulfite, tocopherol, ethylenediaminetetraacetic acid (EDTA), citric acid and the like.
  • EDTA ethylenediaminetetraacetic acid
  • citric acid citric acid and the like.
  • one type may be used alone, or two or more types may be used in combination.
  • the preservative can be appropriately selected and used from those generally used for external use.
  • the blending amount of the preservative can be appropriately adjusted according to the dosage form, the base component and the like.
  • examples of the preservative include ethyl paraoxybenzoate, propyl paraoxybenzoate, benzalkonium hydrochloride, sorbic acid and the like.
  • the preservative one kind may be used alone, or two or more kinds may be used in combination.
  • the suspending agent can be appropriately selected and used from those generally used for external use.
  • the blending amount of the suspending agent can be appropriately adjusted according to the dosage form, the base component and the like.
  • examples of the suspending agent include tragant powder, gum arabic powder, bentonite, sodium carboxymethyl cellulose and the like.
  • the suspending agent one type may be used alone, or two or more types may be used in combination.
  • the surfactant can be appropriately selected and used from those generally used for external use.
  • the blending amount of the surfactant can be appropriately adjusted according to the dosage form, the base component and the like.
  • the surfactant include polyoxyethylene hydrogenated castor oil, sorbitan fatty acid ester such as sorbitan sesquioleate, and polyoxyl stearate.
  • the surfactant one type may be used alone, or two or more types may be used in combination.
  • the dosage form of the pharmaceutical preparation of the present invention is not particularly limited as long as it can be administered to the intranasal mucosa, and for example, nasal drops, sprays, aerosols, ointments, creams, lotions, liniments, and paps. , Plasters, patches, plasters, gels, liquids, tapes, powders, granules and the like.
  • the formulation into a desired dosage form can be carried out by using an additive, a base or the like suitable for each dosage form according to the usual method described in the general formulation rules of the Japanese Pharmacopoeia. Examples of the base material used in the dosage form of patches, tapes, etc.
  • the base material may be a laminated sheet composed of two or more layers.
  • the dosage form is an ointment or a cream
  • an oily base or an emulsion base can be used as the base.
  • oily base examples include hydrocarbons, higher alcohols, higher fatty acids, higher fatty acid esters, glycols, vegetable oils, animal oils and the like.
  • the oily base may be used alone or in combination of two or more.
  • Hydrocarbons that can be used as an oily base include, for example, hydrocarbons having 12 to 32 carbon atoms, liquid paraffin, which is a mixture of various hydrocarbons, branched paraffin, solid paraffin, white petrolatum, yellow petrolatum, and squalane. , Squalane, paraffin base, etc.
  • Higher alcohols that can be used as oily bases include, for example, lauryl alcohol, tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol (cetanol), hexadecyl alcohol, heptadecyl alcohol, stearyl alcohol, oleyl alcohol, and nona.
  • lauryl alcohol tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol (cetanol), hexadecyl alcohol, heptadecyl alcohol, stearyl alcohol, oleyl alcohol, and nona.
  • examples thereof include aliphatic monohydric alcohols having 12 to 30 carbon atoms such as decyl alcohol, eicosyl alcohol, ceryl alcohol, mericyl alcohol and cetostearyl alcohol.
  • Higher fatty acids that can be used as oily bases include, for example, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, undesic acid, lauric acid, tridecyl acid, myristic acid, pentadecic acid, palmitic acid and heptadecic acid. , Stearic acid, oleic acid, nonadecanic acid, araquinic acid, arachidonic acid, linoleic acid, linolenic acid, behenic acid, lignoseric acid, cellotic acid, heptacosanoic acid, montanic acid, melicic acid, laxeric acid, ellagic acid, brushzic acid, etc. Examples thereof include saturated or unsaturated fatty acids having 6 to 32 carbon atoms.
  • higher fatty acid esters that can be used as an oily base include fatty acid esters such as myristyl palmitate, stearyl stearate, myristyl myristate, ceryl lignoserate, luxeryl serotinate, and luxeryl laxelate; Esters of fatty acids having 10 to 32 carbon atoms and fatty monovalent alcohols having 14 to 32 carbon atoms such as natural waxes derived from animals such as cellac wax, carnauba wax, and natural waxes derived from plants such as candelilla wax; glyceryl monolaurylate, glyceryl Monomyristylate, glyceryl monooleate, glyceryl monostearate, glyceryl dilaurylate, glyceryl dimyristylate, glyceryl distearate, glyceryl trilaurylate, glyceryl trimylstyrate, glyceryl tristearate, etc. 10
  • Vegetable oils that can be used as oily bases include, for example, camellia oil, castor oil, olive oil, cacao oil, palm oil, palm oil, macadamia nut oil, soybean oil, brown seed oil, sesame oil, gentle oil, and saflower oil. Examples thereof include cottonseed oil, terepine oil, and vegetable oils and fats obtained by hydrogenating these vegetable oils.
  • animal oils that can be used as oily bases include mink oil, egg yolk oil, squalane, squalene, lanolin, and animal oil derivatives.
  • emulsion base examples include an oil-in-water base, a water-in-oil base, and a suspension base.
  • the emulsion base may be used alone or in combination of two or more.
  • oil-in-water base components such as lanolin, propylene glycol, stearyl alcohol, petrolatum, silicone oil, liquid paraffin, glyceryl monostearate, and polyethylene glycol are contained in the aqueous phase in the presence or absence of a surfactant. Examples include emulsified and dispersed bases.
  • the oil-in-water base can be suitably used when preparing a cream or the like.
  • water-in-oil base examples include a base obtained by adding water to components such as petrolatum, higher fatty alcohol, and liquid paraffin in the presence of a nonionic surfactant, and emulsifying and dispersing the base.
  • the oil-in-water base and the water-in-oil base can be suitably used in a dosage form containing water, for example, a liquid containing water, a lotion, a poultice, an ointment, and the like.
  • suspendable base examples include an aqueous base obtained by adding a suspending agent such as starch, glycerin, high-viscosity carboxymethyl cellulose, and carboxyvinyl polymer to water to form a gel.
  • a suspending agent such as starch, glycerin, high-viscosity carboxymethyl cellulose, and carboxyvinyl polymer
  • the pharmaceutical preparation of the present invention can be produced according to a generally adopted method for preparing an external preparation.
  • an ointment or cream is produced by kneading, emulsifying or suspending a base material according to each dosage form to prepare a base, and then adding an active ingredient and various additives and mixing them. can do.
  • a commonly used mixer such as a screw mixer, a homomixer, a kneader, or a roll mill can be used.
  • the dosage form When the dosage form is a lotion, it may be any type of suspension type, emulsion type and solution type.
  • Examples of the base of the suspension type lotion include rubbers such as Arabica rubber and tragant rubber, celluloses such as methyl cellulose, hydroxyethyl cellulose and hydroxyethyl starch, and a mixture of clay suspension such as bentonite and bee gum HV and water. Can be mentioned.
  • the base of the suspension lotion can usually be used alone or in admixture of two or more.
  • Examples of the base of the emulsion-type lotion include water and a base obtained by emulsifying an oily substance such as fatty acid such as stearic acid, behenic acid and oleic acid, and higher alcohol such as stearyl alcohol, cetanol and behenic alcohol.
  • the base of the emulsion lotion can usually be used alone or in admixture of two or more.
  • Examples of the base of the solution type lotion include water, ethanol, glycerin, alcohol such as propylene glycol, and the like.
  • the base of the solution lotion can usually be used alone or in combination of two or more.
  • the lotion can be produced, for example, by adding various base components to purified water, mixing and stirring, then adding the active ingredient and additives, mixing, and filtering if desired. ..
  • the base thereof is, for example, vegetable oils such as olive oil, sesame oil, prunus dulcis oil, cottonseed oil, and terepine oil, alcohols such as ethanol, propanol and isopropanol, and a mixture thereof with water. And so on.
  • the base of the liniment agent can usually be used alone or in combination of two or more.
  • the liniment agent can be produced by dissolving the active ingredient in the base, further adding the desired ingredient, and mixing.
  • the base thereof is, for example, a water-soluble polymer compound such as polyacrylic acid and a salt thereof, polyvinyl alcohol, polyvinylpyrrolidone, etc.
  • the water-soluble polymer compound is a polyvalent metal such as myoban.
  • examples thereof include a base crosslinked with a salt, a crosslinked body such as a base crosslinked by subjecting the water-soluble polymer compound to a physical treatment such as irradiation.
  • the base of the poultice can usually be used alone or in admixture of two or more.
  • the poultice can be produced by mixing the active ingredient, the base and the desired additive, heating and then cooling.
  • supports such as non-woven fabrics, natural rubber, styrene-butadiene rubber (SBR), butyl rubber, polyisobutylene, polyvinyl alkyl ether, polyurethane, dimethylpolysiloxane, styrene-isoprene-styrene.
  • SBR styrene-butadiene rubber
  • butyl rubber polyisobutylene
  • polyvinyl alkyl ether polyurethane
  • dimethylpolysiloxane dimethylpolysiloxane
  • styrene-isoprene-styrene styrene-isoprene-styrene.
  • Elastic materials such as rubber and isoprene rubber, fillers such as zinc flower, titanium oxide, silica, adhesives such as terpene resin, rosin or its ester, phenol resin, etc., which have good compatibility with elastic materials, vinyl acetate, silicone Examples thereof include a stripping agent such as resin and polyvinyl chloride, a softening agent such as liquid paraffin and process oil, and an antiaging agent such as dibutylhydroxytoluene (BHT). These components can be used alone or in admixture of two or more.
  • Plaster agents, patches, plasters, etc. can be manufactured by conventional methods such as solution method and thermal pressure method. Specifically, for example, in the case of a thermal pressure type, the active ingredient and each ingredient are uniformly kneaded with a roll machine or the like, and applied to a uniform thickness on a release paper using a calendar to which heat and pressure are applied. This can be used to form a drug-containing layer, which can be laminated on the surface of the support and brought into close contact with the support.
  • the base may be any as long as it is used as a normal external preparation, and is not particularly limited.
  • the composite particles M1 and M2 differ in the content ratio of titanium oxide, silver and hydroxyapatite.
  • the raw material powder shown in Table 1 was prepared.
  • the particle size of the titanium oxide powder is a value measured using a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and the particle size of the silver powder is a value calculated based on the specific surface area.
  • the particle size of the hydroxyapatite powder is a value measured by a laser diffraction / scattering method. Since the silver powder was stored frozen until use, the aggregation of silver particles contained in the silver powder was suppressed.
  • Titanium oxide powder by mixing titanium oxide powder, silver powder, hydroxyapatite powder and polycarboxylic acid-based dispersant in water using a commercially available wet bead mill (“Star Mill LME” manufactured by Ashizawa Finetech Co., Ltd.). One or more titanium oxide particles contained in the above, one or more silver particles contained in the silver powder, and one or more hydroxyapatite particles contained in the hydroxyapatite powder are combined to form a suspension of the composite particles. Slurry) was produced.
  • the wet bead mill used can be finely pulverized while dispersing titanium oxide particles, silver particles and hydroxyapatite particles contained in the raw material powder, and can be finely divided into nanoparticles or submicron particles, and the finely divided particles are combined. Can be transformed into.
  • the conditions for particle compositing using a wet bead mill are as follows. Total amount of raw material powder added: 4 kg or more Cylinder volume: 3.3 L Beads: Zirconia beads (diameter 0.5 mm, mass 0.37 mg) Liquid flow rate: 2 L / min Peripheral speed of blades in cylinder: 540 m / min Liquid temperature: 35-45 ° C Mixing time per 1 kg of raw material powder: 30-40 minutes (about 36 minutes)
  • the total amount of titanium oxide powder, silver powder and hydroxyapatite powder was adjusted to 35 parts by mass with respect to 65 parts by mass of water.
  • the blending amount of the polycarboxylic acid-based dispersant was adjusted to 0.5 parts by mass with respect to 35 parts by mass of the total blending amount of titanium oxide powder, silver powder and hydroxyapatite powder.
  • the blending amount of the titanium oxide powder is adjusted to about 160 parts by mass (155 to 165 parts by mass) with respect to 1 part by mass of the silver powder, and the blending amount of the hydroxyapatite powder is 1 mass by mass of the silver powder. It was adjusted to about 40 parts by mass (39 to 41 parts by mass) with respect to the part.
  • the blending amount of the titanium oxide powder is adjusted to about 30 parts by mass (29 to 31 parts by mass) with respect to 1 part by mass of the silver powder, and the blending amount of the hydroxyapatite powder is 1 mass by mass of the silver powder. It was adjusted to about 3 parts by mass (2.5 to 3.5 parts by mass) with respect to the part.
  • Composite particles M1 and M2 were produced by drying a suspension (slurry) of composite particles.
  • the particle diameters of the composite particles M1 and M2 measured by the laser diffraction method were 200 to 500 nm.
  • the median diameter (d50) of the composite particles M1 and M2 measured by the laser diffraction method on a volume basis was about 300 nm.
  • the particle size is measured by the laser diffraction method using a commercially available particle size distribution measuring device, specifically, a laser diffraction / scattering type particle size distribution measuring device Partica LA-960V2 series (manufactured by HORIBA). bottom.
  • the total adhesion amount (total fixed amount) of the composite particles M1 and the binder resin per unit area of the composite particle-adhered nonwoven fabric A1 is adjusted to 4 g / m 2 . bottom.
  • the breakdown of 4 g / m 2 was titanium oxide 2.27 g / m 2 , hydroxyapatite 0.571 g / m 2 , silver 0.014 g / m 2 , and binder resin 1.14 g /.
  • the composite particle-adhered nonwoven fabric A2 was produced in the same manner as above, except that the suspension of the composite particles M2 was used instead of the suspension of the composite particles M1.
  • the total adhesion amount (total fixed amount) of the composite particles M2 and the binder resin per unit area of the composite particle-adhered nonwoven fabric A2 is 10.5 g / m 2 . Adjusted to.
  • the breakdown of 10.5 g / m 2 was titanium oxide 6.525 g / m 2 , hydroxyapatite 0.750 g / m 2 , silver 0.225 g / m 2 , and binder resin 3.00 g / m 2 .
  • the composite particle-adhered nonwoven fabric A1 having a total adhered amount (total fixed amount) of 4 g / m 2 of the composite particles M1 and the binder resin was observed with an electron microscope.
  • a schematic diagram of the electron microscope observation results is shown in FIG. 23A, and a partially enlarged view thereof is shown in FIG. 23B.
  • the white portion is titanium oxide particles
  • the hatch portion is silver particles.
  • FIGS. 23A and 23B it was confirmed that the composite particles have a morphology in which silver particles are bonded to the surface of titanium oxide particles.
  • Example 1 Bioshoot Co., Ltd. was commissioned to evaluate the antiviral activity of the hydrosilver-titanium coated product against the new coronavirus (SARS-CoV-2). This experiment was conducted at the Yasuda Laboratory in the Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, under the supervision of Professor Jiro Yasuda of the same laboratory. Cells were handled in the BSL-2 area and viruses were handled in the BSL-3 area.
  • SARS-CoV-2 new coronavirus
  • Test material The following materials were used as the test material.
  • 1.1 Processed non-woven fabric with composite particles (hereinafter also referred to as "A1 sheet") (low concentration) (Titanium oxide (79.5%), silver (0.5%), apatite (20%), urethane binder; 4g / m 2 ) 1.2
  • Test material 2 Processed non-woven fabric with composite particles (hereinafter also referred to as "A2 sheet”) (high concentration) (Titanium oxide (87%), silver (3%), apatite (10%), urethane binder; 10.5 g / m 2 )
  • Reference material 1 Hydro Silver Titanium Processed Powder (Hydro Silver Titanium Powder) (Low Concentration) (Titanium oxide, silver, apatite; for 4g / m 2 ) 1.4
  • Hydro Silver Titanium Processed Powder Hydro Silver Titanium Processed Powder (Hydro Silver Titanium Powder)
  • VeroE6 / TMPRSS2 TMPRSS2-expressing African green monkey kidney-derived cells
  • VeroE6 African green monkey kidney-derived cells
  • the cells used in the laboratory were used.
  • VeroE6 / TMPRSS2 was used for serum-free culture of the virus, and VeroE6 cells with a clear plaque image were used for infectious titer measurement. There is no limit on the number of cell passages in virus cultures and infectious titer tests.
  • Test method and results 5.1 Preparation of cells for virus culture
  • VeroE6 / TMPRSS2 cells in serum medium (2.1) in T-75 and T-175 flasks 6 ⁇ per 10 storage tubes (1.5 mL cryotubes) 10 6 cells / tube (1 mL / tube) was frozen (-70 ° C or lower) and stored (stored during the experimental period). One of them was restored and it was confirmed that the storage condition was good.
  • the cells were separately subcultured in a T-75 or T-175 flask and used to prepare the SARS-CoV-2 virus solution.
  • 1A and 1B are micrographs of cells (VeroE6 / TMPRSS2 cells and VeroE6 cells) used in the experiment.
  • the petri dish was decanted, and the centrifuge tube was centrifuged at 1,000 rpm (9,100 g) for 5 minutes, and 0.7 mL of each supernatant was collected.
  • Each test material 1.1 to 1.4 was not sterilized, and 1.5 was pretreated with a UV lamp for sterilization for 30 minutes.
  • VeroE6 cell cells were seeded on two 6-well plates at 4 ⁇ 10 5 cells per well, and the eluate was added 6 hours later.
  • the eluate solution was added to the cultured cells at 0.3 mL / well (the eluate concentration was about 3 times the amount of the infectious titer test).
  • the sample was duplicated.
  • the culture was continued for 4 days, the growth state was observed, and the number of cells was counted on the 4th day, which was compared with the negative control.
  • the powder material the supernatant obtained by centrifuging at 10,000 rpm (9,100 g) for 5 minutes was used.
  • virus solution for infectious titer test 5.3.1 Collection of virus solution
  • Vero E6 / TMPRSS2 cells were cultured in a T-175 flask in serum medium (2.1), the culture medium was removed from the cells that became confulent, the cells were washed with serum-free medium (2.2), and then the virus solution (4.1) provided in the laboratory.
  • FIG. 4 is a photograph before culturing (left of the screen) and after culturing (3rd day, right of the screen) when the virus was cultured in the VP-SFM medium.
  • a plaque assay was performed on a 12-well plate using Vero E6 / TMPRSS2 cells using a virus (5.3.1 collected virus) cultured in serum-free medium (2.2). Assuming that the collected virus (5.3.1) is 10 6 to 7 pfu / mL, the dilution is 10 2 -fold, 10 3 -fold, 10 4 -fold, 10 5 -fold, 10 6 -fold step dilution to 12-well plates.
  • FIG. 5 is a virus infectious titer test crystal violet stained image.
  • the infectious titer of the virus solution collected on the third day after inoculation was 2.8 ⁇ 10 7 pfu / mL.
  • FIG. 7A is a conceptual diagram of the dipping method
  • FIG. 7B is a conceptual diagram of the dropping method
  • FIG. 8 is a layout drawing of the dipping method plate. As shown in FIG. 8, six plates containing the materials 1) to 5) were prepared in each well of the 6-well plate. 2 mL of the collected virus solution (5.3.1) diluted 20-fold with serum-free medium (2.2) was placed in each well, and the materials of 1) to 5) were immersed, and the following treatments A to C were performed by duplicate.
  • FIG. 9 is a layout drawing of the dropping method plate. As shown in FIG. 9, six plates containing the materials of 6) to 9) were prepared in each well of the 6-well plate. In advance, 100 ⁇ L of the collected virus solution (5.3) was dropped directly onto the materials of 6), 7), 8) on 6 6-well plates. In the well of 9), 2 mL of the collected virus solution (5.3) was diluted 20-fold. The following processes A to C were performed in duplicate. A: Refrigerated 24hr treatment B: Room temperature 6hr treatment C: Room temperature 6hr treatment + UV irradiation After A to C treatment, add 2 mL of washout solution (FBS-added D-MEM medium) to each well to wash out the virus, and the washout solution is the virus. It was cryopreserved (-70 ° C or lower) until the infectious titer was measured.
  • FBS-added D-MEM medium room temperature 6hr treatment + UV irradiation
  • virus infectivity The day before the virus infectivity test, cells (cells using VeroE6) were seeded on a 12-well plate in 2 ⁇ 10 5 cells per well, and virus inoculation was carried out the next day. For virus inoculation, the frozen virus sample (5.5.1) after each treatment was thawed, and then a virus solution diluted stairs at 100-fold, 10-fold, 100-fold, and 1,000-fold was inoculated at 100 ⁇ L / well.
  • FIG. 10 is a layout diagram of virus inoculation for measuring infectious titer.
  • FIG. 11 is a virus infectious titer test plaque image (refrigerated 24 hr immersion treatment).
  • the abbreviations in FIG. 11 have the following meanings.
  • Sh-NC Control
  • Sh + 4 Test material (low concentration)
  • Sh + 10 Test material (high concentration)
  • Antiviral activity value (M) regular log value (log (Va)) of control group pfu / mL value (Va) -common log value (log (Vb)) of sample group pfu / mL value (Vb). i) For the infectious titer, the average value performed by duplicate was used.
  • FIG. 12 is a list of virus infectious titers and antiviral activity values (immersion method).
  • FIG. 13 is a list of virus infectious titers and antiviral activity values (drop method).
  • Virus solution preparation Since protein is an inhibitor to confirm the antiviral activity of the sheet coating, SARS-CoV-2 (laboratory established wild strain) virus is inoculated into VeroE6 / TRPMSS2 cells and serum-free medium. By culturing in (2.2), a virus solution with less protein contamination was obtained. The virus infectious titer was 2.8 ⁇ 10 7 pfu / mL, and a virus solution having an infectious titer equivalent to that of serum culture was obtained.
  • FIG. 14 is a list of antiviral activity of A1 sheet and A2 sheet.
  • the antiviral activity value (M) was calculated using the following formula.
  • Antiviral activity value (M) log (Va; control) -log (Vb; sample) *: M ⁇ 2.0 is considered to be significantly different. It was determined that the eluate from each test material had no effect on the viral infectious titer test. In this experiment, it was confirmed that the test material "A2 sheet (high concentration)" has significant antiviral activity against SARS-CoV-2 virus.
  • the antiviral activity value (M value) of the test material A2 sheet after refrigerated 24-hour treatment was 4.0 or more, assuming that the growth of the new coronavirus of the control (untreated test material) is 1, the new type of A2 sheet It was confirmed that the growth of coronavirus was suppressed to 0.0001 or less, and that the new coronavirus could be attenuated with a reduction rate of 99.99% or more. By the same calculation, it was confirmed that the new coronavirus can be attenuated by 99.9% or more by treating the test material A2 sheet at room temperature for 6 hours.
  • the virus activity is considered to decrease with a dominant difference (effective for reducing the infectious titer). Therefore, in the confirmation test of the activity of the A2 sheet against the new coronavirus by the immersion method, the number of coronaviruses that existed in the 4th power of 10 at the start of the experiment decreased to the 4th power of 10 which is the decrease in the dominant difference. Calculated. As a result, the time from the start of the experiment to the time when the superiority difference was seen was 0.05 hours, that is, 3 minutes. This confirmed that the activity of the A2 sheet against coronavirus had an immediate effect. Similarly, for the A1 sheet by the immersion method, the time from the start of the experiment until the superiority difference was found was about 100 hours (4 to 5 days).
  • Example 2 A confirmation test of the inactivating ability of composite particles and processed non-woven particles (hereinafter also referred to as "X sheet") containing composite particles against the new coronavirus (SARS-CoV-2) was conducted at the Yokoyama Special Laboratory, RIKEN. It was outsourced to Shigeyuki Yokoyama under the supervision of Research Fellow.
  • X sheet composite particles and processed non-woven particles
  • SARS-CoV-2 new coronavirus
  • Viral protein preparation Three SARS-CoV-2 proteins (S, M, E) were synthesized by cell-free protein synthesis as fusion proteins with N-terminal FLAG-SUMO tags attached, and affinity was achieved. Purified by chromatography and gel filtration. Preparation of X1 sheet and X2 sheet: The test product and the control product were sterilized (dry heat, EOG) and then inflated with PBS. Dose: Equivalent to x1, x3, x10 doses of clinical dose (m 2 / kg or m 2 / surface area)
  • FIG. 15 shows the configuration
  • 16 and 17 are image diagrams of the evaluation method.
  • FIG. 18 is a diagram showing the results of SDS-PAGE (+ ⁇ ME), which is electrophoresis when the S domain sample solution is irradiated with artificial sunlight in the presence of composite particles M1 and composite particles M2. From FIG. 18, it was shown that the disconnection of the S domain started 1 minute later.
  • the meanings of the abbreviations in FIG. 18 are as follows.
  • C Control (without composite particles M1 and M2), +4: Composite particle M1 (low concentration), +10: Composite particle M2 (high concentration)
  • FIG. 19 is a diagram showing the results of SDS-PAGE (+ ⁇ ME), which is an electrophoresis when an S domain sample solution is irradiated with artificial sunlight in the presence of an X1 sheet and an X2 sheet. From FIG. 19, it was shown that the disconnection of the S domain started 3 minutes later.
  • the meanings of the abbreviations in the figure are as follows.
  • C Control (without X1, X2 sheet), +4: X1 sheet, +10: X2 sheet
  • FIG. 20A is a diagram showing the ratio of the amount of disintegrated protein over time to the control when the composite particles M1 and M2 are used.
  • FIG. 20B is a diagram showing the ratio of the amount of disintegrated protein over time to the control when using the X1 and X2 sheets.
  • FIG. 20A it was shown that in the composite particles M1 and M2, cleavage started after 1 minute, and the S domain collapsed to about 10% after 6 minutes.
  • FIG. 20B it was shown that in the X1 and X2 sheets, cleavage started after 3 minutes and the S domain was disrupted to 20% or less after 10 minutes.
  • FIG. 21 is a molecular dynamics (MD) simulation diagram of the new coronavirus spike protein.
  • 21A to 21C show a view seen from the side
  • FIGS. 21D to 21F show a view seen from above (outside).
  • FIGS. 21A and 21D the peplomer trimer in the native state was stable and the three-dimensional structure was maintained.
  • FIGS. 21B and 21E when the protein loop was cleaved, the three-dimensional structure instantly deteriorated and began to disintegrate. Then, as shown in FIGS. 21C and 21F, the three-dimensional structure rapidly deteriorated and collapsed.
  • Molecular dynamics simulations of the cleaved S protein showed in a video the process by which the conformational collapse was triggered almost instantly (2 microseconds; 2 ⁇ 10-6 seconds).
  • FIG. 22A to 22D are molecular dynamics (MD) simulation diagrams focusing on the peplomer protein S domain and ACE2 receptor.
  • FIG. 22A the peplomer protein S domain was bound to the ACE2 receptor.
  • FIG. 22B the native S domain was stable and the three-dimensional structure was maintained.
  • FIG. 22C the three-dimensional structure instantly deteriorated and began to disintegrate.
  • FIG. 22D the three-dimensional structure rapidly deteriorated and collapsed.
  • the coronavirus killing agent according to the present invention can easily and economically kill a new type of coronavirus. Further, the coronavirus killing agent according to the present invention can kill the new coronavirus in a short time.
  • the coronavirus killing agent according to the present invention can be applied to various members. Therefore, as one of the countermeasures against infectious diseases of the new coronavirus, it is possible to kill the new coronavirus in a short time by applying the coronavirus killing agent according to the present invention to a member which is expected to be infected by droplets or contact. Therefore, it is possible to effectively prevent the spread of the new coronavirus.

Abstract

Provided are: an anti-coronavirus virucide capable of destroying novel coronavirus in a simple, economic manner; and a method and usage employing the same. The present invention provides an anti-coronavirus virucide containing composite particles, wherein the titanium oxide particle content is 70-96 mass% and the silver particle content is greater than 0.5 mass% and at most 3.6 mass% with respect to the total mass of the anti-coronavirus virucide.

Description

殺コロナウイルス剤並びにそれを用いた方法及び用途Coronavirus killing agent and methods and uses using it
 本発明は、殺コロナウイルス剤並びにそれを用いた方法及び用途に関する。 The present invention relates to a coronavirus killing agent and a method and use using the same.
 現在、世界的に未曾有の禍を引き起こしている新型コロナウイルス(SARS-CoV-2)は、コロナウイルスの一つであり、ヒトに感染するコロナウイルスとしては7番目のウイルスである。コロナウイルスは遺伝情報としてRNAをもつRNAウイルスの一種(一本鎖RNAウイルス)で、粒子の一番外側に「エンベロープ」という脂質からできた二重の膜を持っている。自分自身で増えることはないが、粘膜などの細胞に付着して入り込んで増えることができる。新型コロナウイルス感染症については、病原体や疾患に関する知見が徐々に蓄積されつつある(例えば、非特許文献1、2参照)。
 新型コロナウイルス感染症は一般的には飛沫感染、接触感染で感染するとされている。閉鎖した空間で、近距離で多くの人と会話するなどの環境では、咳やくしゃみなどの症状がなくても感染を拡大させるリスクがある。世界保健機関(WHO)の報告によると、一般に、5分間の会話で1回の咳と同じくらいの飛まつ(約3,000個)が飛ぶとされている。飛まつ感染とは、感染者がくしゃみや咳を手で押さえた後、その手で周りの物に触れるとウイルスがつき、他の者がそれを触るとウイルスが手に付着し、その手で口や鼻を触ることにより粘膜から感染することを言う。WHOの報告によれば、新型コロナウイルスは、プラスチックの表面では最大72時間、ボール紙では最大24時間生存すると言われている(例えば、非特許文献3、4参照)。
 臨床的な特徴としては、1~14日(5日間が最も多い)の潜伏期間を経て、発熱や呼吸器症状、全身倦怠感等で発症する。感冒様症状が1週間前後持続することが多い。一部のものは、呼吸困難等の症状を呈し、重症化する。また、発症者の多くが軽症であると考えられているが、特に高齢者や基礎疾患等を有する者においては重篤になる可能性があるため厳重な注意が求められている。重篤者の増加は医療機関を圧迫し、医療崩壊を招くおそれがあるため避けなければならない。そのため、新型コロナウイルス感染症対策が求められている。
Currently, the new coronavirus (SARS-CoV-2), which causes unprecedented damage in the world, is one of the coronaviruses and the seventh virus that infects humans. Coronavirus is a type of RNA virus (single-stranded RNA virus) that has RNA as genetic information, and has a double membrane made of lipid called "envelope" on the outermost side of the particle. It does not increase by itself, but it can increase by adhering to cells such as mucous membranes. Regarding new coronavirus infections, knowledge about pathogens and diseases is gradually accumulating (see, for example, Non-Patent Documents 1 and 2).
The new coronavirus infection is generally said to be transmitted by droplet infection or contact transmission. In an environment such as talking to many people at close range in a closed space, there is a risk of spreading the infection even if there are no symptoms such as coughing or sneezing. According to a report from the World Health Organization (WHO), a five-minute conversation generally produces as many flies (about 3,000) as a single cough. Flying infection is when an infected person holds a sneeze or cough with his or her hand and then touches something around him with the virus, and when another person touches it, the virus attaches to his or her hand. Infection through the mucous membrane by touching the mouth or nose. According to a WHO report, the new coronavirus survives up to 72 hours on plastic surfaces and up to 24 hours on cardboard (see, for example, Non-Patent Documents 3 and 4).
As a clinical feature, it develops with fever, respiratory symptoms, general malaise, etc. after an incubation period of 1 to 14 days (mostly 5 days). Cold-like symptoms often persist for about a week. Some exhibit symptoms such as dyspnea and become severe. In addition, most of the affected people are considered to be mild, but strict caution is required because it may become serious especially in the elderly and those with underlying diseases. The increase in the number of seriously ill people should be avoided because it puts pressure on medical institutions and may lead to the collapse of medical care. Therefore, countermeasures against new coronavirus infectious diseases are required.
 新型コロナウイルス感染症対策の一つとして、新薬やワクチンの開発が求められている。しかし、一般に、新薬等の開発には、それらの有効性・安全性の確認や、一定の品質を担保しつつ大量生産が可能かどうかの確認などを行う必要があり、開発には年単位の期間がかかるため、市場に一般的に出回るまでには時間がかかるという課題がある。また新薬等の開発には莫大な費用がかかり、早期承認のためには法整備も必要となるという課題もある。
 ワクチン接種の効果として、集団免疫が得られることが期待されている。集団免疫とは人口の一定割合以上の人が免疫を持つことで、感染患者が出ても他の人に感染しにくくなり、感染症が流行しなくなることである。しかし、ワクチンによっては、接種で重症化を防ぐ効果があっても感染を防ぐ効果が乏しく、どれだけ多くの人に接種しても集団免疫の効果が得られないこともある。実際のところ、新型コロナワクチンによって、集団免疫の効果があるかどうかは分かっておらず、分かるまでには、かなりの時間と労力を要すると考えられている。また、新型コロナウイルスの変異により、免疫やワクチンの効果が低下することが懸念されている。例えば、インド型変異株ウイルスともいわれる「L452R」変異株にあっては、アジア系人種の新型コロナウイルスに対する免疫反応・ワクチン効果が弱くなることが指摘されている。このような状況から、集団免疫が得られるのはかなり先になるのではないかと危惧されている。
 このように、新型コロナウイルス感染症対策としてはワクチンの開発だけでは解決できない課題が残されていた。
Development of new drugs and vaccines is required as one of the countermeasures against new coronavirus infectious diseases. However, in general, when developing new drugs, it is necessary to confirm their effectiveness and safety, and whether mass production is possible while ensuring a certain level of quality, and development is on an annual basis. Since it takes a long time, there is a problem that it takes time to reach the market in general. In addition, the development of new drugs requires enormous costs, and there is also the problem that legislation must be established for early approval.
It is expected that herd immunity will be obtained as an effect of vaccination. Herd immunity means that more than a certain percentage of the population has immunity, which makes it difficult for infected patients to infect other people and prevents the spread of infectious diseases. However, depending on the vaccine, even if vaccination has the effect of preventing aggravation, the effect of preventing infection is poor, and no matter how many people are vaccinated, the effect of herd immunity may not be obtained. In fact, it is not known if the new corona vaccine will have a herd immunity effect, and it is believed that it will take a considerable amount of time and effort to do so. In addition, there is concern that mutations in the new coronavirus may reduce the effects of immunity and vaccines. For example, it has been pointed out that the immune response / vaccine effect against the new coronavirus of Asian races is weakened in the "L452R" mutant strain, which is also called an Indian mutant virus. Under these circumstances, it is feared that herd immunity will not be obtained until a long time ago.
In this way, there are still issues that cannot be solved by the development of vaccines alone as a countermeasure against new coronavirus infectious diseases.
 新型コロナウイルス感染症対策の他の方法として、上述の感染経路に着目して、飛沫感染や接触感染を防止する部材やそれを用いた方法が提案されている。具体策としては、マスクの着用が推奨されている。しかし、マスクの着用により、新型コロナウイルスの感染拡大を抑制することは出来ても、新型コロナウイルスを死滅させることまではできなかった。そのため、新型コロナウイルスの感染症対策の一つとして、マスク等の部材にも使用可能な、殺コロナウイルス剤が求められていた。 As another method for controlling new coronavirus infections, a member for preventing droplet infection and contact infection and a method using the same have been proposed, focusing on the above-mentioned infection route. As a concrete measure, wearing a mask is recommended. However, although wearing a mask could suppress the spread of the new coronavirus, it could not kill the new coronavirus. Therefore, as one of the countermeasures against infectious diseases of the new coronavirus, there has been a demand for a coronavirus killing agent that can be used for members such as masks.
 以上より、本発明の目的は、簡易かつ経済的に、新型コロナウイルスを死滅させることができる殺コロナウイルス剤並びにそれを用いた方法及び用途を提供することにある。 From the above, an object of the present invention is to provide a coronavirus killing agent capable of killing a new type of coronavirus easily and economically, and a method and use using the same.
 本発明は以下の内容に関する。
〈1〉複合粒子を備える殺コロナウイルス剤であって、殺コロナウイルス剤は、殺コロナウイルス剤の全質量基準で、酸化チタン粒子の含有量が70質量%~96質量%、銀粒子の含有量が0.5質量%を超え3.6質量%以下含む殺コロナウイルス剤。
〈2〉複合粒子は、酸化チタン粒子の表面に銀粒子が接合された、レーザー回折法で測定したときの粒子径が0.1μmを超え0.3μm未満である、〈1〉記載の殺コロナウイルス剤。
〈3〉殺コロナウイルス剤の全質量基準で、酸化チタン粒子の含有量が78~96質量%、銀粒子の含有量が0.5質量%を超え3.3質量%以下である〈1〉又は〈2〉に記載の殺コロナウイルス剤。
〈4〉コロナウイルスがCOVID-19である〈1〉~〈3〉のいずれかに記載の殺コロナウイルス剤。
〈5〉殺コロナウイルス剤は、さらに、リン酸カルシウム粒子を含む〈1〉~〈4〉のいずれかに記載の殺コロナウイルス剤。
〈6〉複合粒子の粒子径が0.2μm以上0.29μm以下である〈1〉~〈5〉のいずれかに記載の殺コロナウイルス剤。
〈7〉複合粒子の前記粒子径が0.24μm以上0.27μm以下である〈1〉~〈6〉のいずれかに記載の殺コロナウイルス剤。
〈8〉〈1〉~〈7〉のいずれかに記載の前記殺コロナウイルス剤を含む部材。
〈9〉部材が、不織布、織布、編物、樹脂フィルム、プラスチック、金属、セラミックス、エアーフィルターからなる群から選択されるいずれか1つである〈8〉に記載の部材。
〈10〉〈1〉~〈7〉のいずれかに記載の前記殺コロナウイルス剤を含む医療用器具。
〈11〉〈1〉~〈7〉のいずれかに記載の前記殺コロナウイルス剤を含むマスク。
〈12〉〈1〉~〈7〉のいずれかに記載の前記殺コロナウイルス剤を含む医療用シート。
〈13〉酸化チタン粒子の表面に銀粒子が接合された、レーザー回折法で測定したときの粒子径が0.1μmを超0.3μm未満の複合粒子を備える殺コロナウイルス剤又はそれを含む部材を、コロナウイルスの存在が想定される箇所に配置する、殺コロナウイルス方法。
〈14〉殺コロナウイルス剤又はそれを含む部材が、〈8〉又は〈9〉に記載のものである、〈13〉記載の、コロナウイルスの増殖防止方法。
The present invention relates to the following contents.
<1> A coronavirus-killing agent comprising composite particles, wherein the coronavirus-killing agent contains 70% by mass to 96% by mass of titanium oxide particles and silver particles based on the total mass of the coronavirus-killing agent. A coronavirus killing agent containing an amount of more than 0.5% by mass and 3.6% by mass or less.
<2> The composite particle has a particle size of more than 0.1 μm and less than 0.3 μm as measured by a laser diffraction method, in which silver particles are bonded to the surface of titanium oxide particles. Viral agent.
<3> Based on the total mass of the coronavirus-killing agent, the content of titanium oxide particles is 78 to 96% by mass, and the content of silver particles is more than 0.5% by mass and 3.3% by mass or less <1>. Or the coronavirus killing agent according to <2>.
<4> The coronavirus killing agent according to any one of <1> to <3>, wherein the coronavirus is COVID-19.
<5> The coronavirus killing agent according to any one of <1> to <4>, further comprising calcium phosphate particles.
<6> The coronavirus killing agent according to any one of <1> to <5>, wherein the particle size of the composite particle is 0.2 μm or more and 0.29 μm or less.
<7> The coronavirus killing agent according to any one of <1> to <6>, wherein the particle size of the composite particle is 0.24 μm or more and 0.27 μm or less.
<8> A member containing the coronavirus-killing agent according to any one of <1> to <7>.
<9> The member according to <8>, wherein the member is any one selected from the group consisting of non-woven fabric, woven fabric, knitted fabric, resin film, plastic, metal, ceramics, and air filter.
<10> A medical device containing the coronavirus-killing agent according to any one of <1> to <7>.
<11> A mask containing the coronavirus-killing agent according to any one of <1> to <7>.
<12> A medical sheet containing the coronavirus-killing agent according to any one of <1> to <7>.
<13> A coronavirus-killing agent having silver particles bonded to the surface of titanium oxide particles and having a particle diameter of more than 0.1 μm and less than 0.3 μm as measured by a laser diffraction method, or a member containing the same. A coronavirus killing method that places the virus in a place where the presence of coronavirus is expected.
<14> The method for preventing the growth of coronavirus according to <13>, wherein the coronavirus killing agent or a member containing the agent is the one according to <8> or <9>.
 本発明によれば、簡易かつ経済的に、新型コロナウイルスを死滅させることができる殺コロナウイルス剤並びにそれを用いた方法及び用途が提供される。 According to the present invention, a coronavirus killing agent capable of killing a new type of coronavirus, and a method and use using the same are provided simply and economically.
図1A、図1Bは実験に使用した細胞の電子顕微鏡写真である。図1AはVeroE6/TMPRSS2細胞、図1BはVeroE6細胞である。1A and 1B are electron micrographs of cells used in the experiment. FIG. 1A shows VeroE6 / TMPRSS2 cells, and FIG. 1B shows VeroE6 cells. 図2A~図2Fは溶出物添加細胞との形状比較(2日目)した結果を示す図である。図2Aはハイドロ銀チタン粉末(低濃度)、図2Bはハイドロ銀チタン粉末(高濃度)、図2CはA1シート(低濃度)、図2DはA2シート(高濃度)、図2Eはバインダー加工のみシート、図2Fは無添加のシートである。2A to 2F are views showing the results of shape comparison (2nd day) with the eluate-added cells. FIG. 2A is hydrosilver titanium powder (low concentration), FIG. 2B is hydrosilver titanium powder (high concentration), FIG. 2C is A1 sheet (low concentration), FIG. 2D is A2 sheet (high concentration), and FIG. 2E is binder processing only. The sheet, FIG. 2F, is an additive-free sheet. 図3A~図3Fは溶出物添加細胞との形状比較(4日目)した結果を示す図である。図3Aはハイドロ銀チタン粉末(低濃度)、図3Bはハイドロ銀チタン粉末(高濃度)、図3CはA1シート(低濃度)、図3DはA2シート(高濃度)、図3Eはバインダー加工のみシート、図3Fは無添加のシートである。3A to 3F are views showing the results of shape comparison (4th day) with the eluate-added cells. FIG. 3A is a hydrosilver titanium powder (low concentration), FIG. 3B is a hydrosilver titanium powder (high concentration), FIG. 3C is an A1 sheet (low concentration), FIG. 3D is an A2 sheet (high concentration), and FIG. 3E is binder processing only. The sheet, FIG. 3F, is an additive-free sheet. 図4はVP-SFM培地でウイルス培養した際の、培養前(画面左)と培養後(3日目、画面右)の写真である。FIG. 4 is a photograph before culturing (left of the screen) and after culturing (3rd day, right of the screen) when the virus was cultured in the VP-SFM medium. 図5はウイルス感染価試験クリスタルバイオレット染色像である。FIG. 5 is a virus infectious titer test crystal violet stained image. 図6はウイルス液の処理条件の一覧である。FIG. 6 is a list of virus liquid processing conditions. 図7Aは浸漬法の概念図、図7Bは滴下法の概念図である。FIG. 7A is a conceptual diagram of the dipping method, and FIG. 7B is a conceptual diagram of the dropping method. 図8は浸漬法プレートの配置図である。FIG. 8 is a layout drawing of the dipping method plate. 図9は滴下法プレートの配置図である。FIG. 9 is a layout drawing of the dropping method plate. 図10は感染価測定ウイルス接種の配置図である。FIG. 10 is a layout diagram of virus inoculation for measuring infectious titer. 図11はウイルス感染価試験プラーク像(冷蔵24hr浸漬処理)である。FIG. 11 is a virus infectious titer test plaque image (refrigerated 24 hr immersion treatment). 図12はウイルス感染価と抗ウイルス活性値の一覧である(浸漬法)。FIG. 12 is a list of virus infectious titers and antiviral activity values (immersion method). 図13はウイルス感染価と抗ウイルス活性値の一覧である(滴下法)。FIG. 13 is a list of virus infectious titers and antiviral activity values (drop method). 図14はA1シート及びA2シートの抗ウイルス活性能の一覧である。FIG. 14 is a list of antiviral activity of A1 sheet and A2 sheet. 図15は構成を示す図である。FIG. 15 is a diagram showing a configuration. 図16は試験のイメージ図である。FIG. 16 is an image diagram of the test. 図17は試験のイメージ図である。FIG. 17 is an image diagram of the test. 図18は、複合粒子M1、複合粒子M2の存在下でSドメイン試料溶液に人工太陽光を照射した際の電気泳動である、SDS-PAGE(+βME)の結果を示す図である。FIG. 18 is a diagram showing the results of SDS-PAGE (+ βME), which is electrophoresis when the S domain sample solution is irradiated with artificial sunlight in the presence of composite particles M1 and composite particles M2. 図19は、X1シート、X2シートの存在下でSドメイン試料溶液に人工太陽光を照射した際の電気泳動である、SDS-PAGE(+βME)の結果を示す図である。FIG. 19 is a diagram showing the results of SDS-PAGE (+ βME), which is an electrophoresis when an S domain sample solution is irradiated with artificial sunlight in the presence of an X1 sheet and an X2 sheet. 図20Aは、複合粒子M1、M2を用いた際のコントロールに対して崩壊したタンパク量の経時的割合を示す図である。図20Bは、X1、X2シートを用いた際のコントロールに対して崩壊したタンパク量の経時的割合を示す図である。FIG. 20A is a diagram showing the ratio of the amount of disintegrated protein over time to the control when the composite particles M1 and M2 are used. FIG. 20B is a diagram showing the ratio of the amount of disintegrated protein over time to the control when using the X1 and X2 sheets. 図21は、新型コロナウイルス スパイクタンパク質の分子動力学(MD)シミュレーション図である。図21A~図21Cは、横から見た図を示し、図21D~図21Fは、上(外側)から見た図を示す。FIG. 21 is a molecular dynamics (MD) simulation diagram of the new coronavirus spike protein. 21A to 21C show a view seen from the side, and FIGS. 21D to 21F show a view seen from above (outside). 図22A~図22Dは、スパイクタンパク質SドメインとACE2受容体に注目した分子動力学(MD)シミュレーション図である。22A-22D are molecular dynamics (MD) simulation diagrams focusing on the peplomer protein S domain and ACE2 receptor. 図23Aは複合粒子の電子顕微鏡(SEM)写真の概念図である。図23Bは、図23Aの一部拡大図である。FIG. 23A is a conceptual diagram of an electron microscope (SEM) photograph of a composite particle. FIG. 23B is a partially enlarged view of FIG. 23A. 図24Aはコロナウイルスの構成の概念図である。図24Bは図24Aの一部拡大図である。FIG. 24A is a conceptual diagram of the configuration of the coronavirus. FIG. 24B is a partially enlarged view of FIG. 24A. 図25A~図25Gはコロナウイルスの感染システムの概略図である。25A-25G are schematic views of the coronavirus infection system. 実施形態に係る医療器具としてのマスクの一部切欠き斜視図である。It is a partially cutaway perspective view of a mask as a medical instrument according to an embodiment. 実施形態に係る医療器具としてのシートの斜視図である。It is a perspective view of the sheet as a medical instrument which concerns on embodiment.
 以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments.
 本発明者は、上述の課題を解決すべく鋭意研究した結果、酸化チタンと銀を所定の濃度で備える複合粒子が死滅率99.9%以上でコロナウイルスを死滅させることを見出した。これは驚くべきことである。本発明は上記知見に基づくものである。以下に実施形態を挙げて説明していく。 As a result of diligent research to solve the above-mentioned problems, the present inventor has found that composite particles containing titanium oxide and silver at a predetermined concentration kill coronavirus at a mortality rate of 99.9% or more. This is amazing. The present invention is based on the above findings. An embodiment will be described below.
[殺コロナウイルス剤]
 本発明は、レーザー回折法で測定したときの粒子径が0.1μmを超え0.3μm未満である複合粒子を備える殺コロナウイルス剤であって、殺コロナウイルス剤は、殺コロナウイルス剤の全質量基準で、酸化チタン粒子の含有量が70質量%~96質量%、銀粒子の含有量が0.5質量%を超え3.6質量%以下含む殺コロナウイルス剤に関する。
 なお、後述するように、複合粒子は、酸化チタン粒子の表面に銀粒子が接合されたモルフォロジーを有する。
[Coronavirus killing agent]
The present invention is a coronavirus killing agent comprising composite particles having a particle size of more than 0.1 μm and less than 0.3 μm as measured by a laser diffraction method, wherein the coronavirus killing agent is all of the coronavirus killing agents. The present invention relates to a coronavirus killing agent containing 70% by mass to 96% by mass of titanium oxide particles and more than 0.5% by mass and 3.6% by mass or less of silver particles on a mass basis.
As will be described later, the composite particles have a morphology in which silver particles are bonded to the surface of titanium oxide particles.
(酸化チタン粒子)
 複合粒子1個あたりの酸化チタン粒子の個数は、1個であってもよいし、2個以上であってもよい。複合粒子1個あたりの酸化チタン粒子の個数は、通常2個以上である。
(Titanium oxide particles)
The number of titanium oxide particles per composite particle may be one or two or more. The number of titanium oxide particles per composite particle is usually two or more.
 複合粒子に含まれる酸化チタン粒子の形態は、特に限定されるものではなく、例えば、球状、粒状、針状、薄片状、不定形状等が挙げられる。複合粒子は、異なる形態を有する2個以上の酸化チタン粒子を含んでいてもよい。 The form of the titanium oxide particles contained in the composite particles is not particularly limited, and examples thereof include spherical, granular, needle-like, flaky, and indefinite shapes. The composite particles may contain two or more titanium oxide particles having different morphologies.
 複合粒子に含まれる酸化チタン粒子の粒子径は、複合粒子の粒子径よりも小さい限り特に限定されるものではなく、複合粒子の粒子径に応じて適宜調整することができる。複合粒子に含まれる酸化チタン粒子は、例えば、ナノ粒子又はサブミクロン粒子である。 The particle size of the titanium oxide particles contained in the composite particles is not particularly limited as long as it is smaller than the particle size of the composite particles, and can be appropriately adjusted according to the particle size of the composite particles. The titanium oxide particles contained in the composite particles are, for example, nanoparticles or submicron particles.
 酸化チタン粒子を構成する酸化チタンの結晶構造としては、例えば、アナターゼ型、ルチル型、ブルッカイト型等が挙げられ、これのうち、アナターゼ型が好ましい。 Examples of the crystal structure of titanium oxide constituting the titanium oxide particles include anatase type, rutile type, brookite type and the like, of which anatase type is preferable.
(銀粒子)
 複合粒子1個あたりの銀粒子の個数は、1個であってもよいし、2個以上であってもよい。複合粒子1個あたりの金属粒子の個数は、通常2個以上である。
(Silver particles)
The number of silver particles per composite particle may be one or two or more. The number of metal particles per composite particle is usually two or more.
 複合粒子に含まれる銀粒子の形態は、特に限定されるものではなく、例えば、球状、粒状、針状、薄片状、不定形状等が挙げられる。複合粒子は、異なる形態を有する2個以上の金属粒子を含んでいてもよい。 The form of the silver particles contained in the composite particles is not particularly limited, and examples thereof include spherical, granular, needle-like, flaky, and indefinite shapes. The composite particle may contain two or more metal particles having different morphologies.
 複合粒子に含まれる銀粒子の粒子径は、複合粒子の粒子径よりも小さい限り特に限定されるものではなく、複合粒子の粒子径に応じて適宜調整することができる。複合粒子に含まれる銀粒子は、例えば、ナノ粒子又はサブミクロン粒子である。 The particle size of the silver particles contained in the composite particles is not particularly limited as long as it is smaller than the particle size of the composite particles, and can be appropriately adjusted according to the particle size of the composite particles. The silver particles contained in the composite particles are, for example, nanoparticles or submicron particles.
(成分比)
 複合粒子は、複合粒子の全質量基準で、酸化チタン粒子の含有量が70質量%~96質量%、銀粒子の含有量が0.5質量%を超え10質量%以下であることが好ましい。上記範囲を外れると殺コロナウイルス効果が得られないからである。酸化チタン粒子の含有量が78~96質量%、銀粒子の含有量が0.5質量%を超え3.3質量%以下であることがより好ましい。
(Component ratio)
The composite particles preferably have a content of titanium oxide particles of 70% by mass to 96% by mass and a content of silver particles of more than 0.5% by mass and 10% by mass or less based on the total mass of the composite particles. This is because the slaughtered coronavirus effect cannot be obtained if the range is out of the above range. It is more preferable that the content of the titanium oxide particles is 78 to 96% by mass and the content of the silver particles is more than 0.5% by mass and 3.3% by mass or less.
(その他の成分)
 複合粒子には、さらにリン酸カルシウム粒子を含んでもよい。複合粒子1個あたりのリン酸カルシウム粒子の個数は、1個であってもよいし、2個以上であってもよい。複合粒子1個あたりのリン酸カルシウム粒子の個数は、通常2個以上である。
(Other ingredients)
The composite particles may further contain calcium phosphate particles. The number of calcium phosphate particles per composite particle may be one or two or more. The number of calcium phosphate particles per composite particle is usually two or more.
 複合粒子に含まれるリン酸カルシウム粒子の形態は、特に限定されるものではなく、例えば、球状、粒状、針状、薄片状、不定形状等が挙げられる。複合粒子は、異なる形態を有する2個以上のリン酸カルシウム粒子を含んでいてもよい。 The morphology of the calcium phosphate particles contained in the composite particles is not particularly limited, and examples thereof include spherical, granular, needle-like, flaky, and indefinite shapes. The composite particles may contain two or more calcium phosphate particles having different morphologies.
 複合粒子に含まれるリン酸カルシウム粒子の粒子径は、複合粒子の粒子径よりも小さい限り特に限定されるものではなく、複合粒子の粒子径に応じて適宜調整することができる。複合粒子に含まれるリン酸カルシウム粒子は、例えば、ナノ粒子又はサブミクロン粒子である。 The particle size of the calcium phosphate particles contained in the composite particles is not particularly limited as long as it is smaller than the particle size of the composite particles, and can be appropriately adjusted according to the particle size of the composite particles. The calcium phosphate particles contained in the composite particles are, for example, nanoparticles or submicron particles.
 リン酸カルシウム粒子を構成するリン酸カルシウムとしては、例えば、アパタイト(リン灰石)、リン酸三カルシウム、リン酸八カルシウム等が挙げられ、これらのうち、アパタイトが好ましい。アパタイトとしては、例えば、ハイドロキシアパタイト、フッ化アパタイト、炭酸アパタイト等が挙げられ、これらのうち、ハイドロキシアパタイト(Ca10(PO46(OH)2)が好ましい。 Examples of the calcium phosphate constituting the calcium phosphate particles include apatite (apatite), tricalcium phosphate, octacalcium phosphate and the like, and among these, apatite is preferable. Examples of the apatite include hydroxyapatite, fluorinated apatite, carbonated apatite and the like, and among these, hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) is preferable.
 複合粒子にリン酸カルシウム粒子が含まれる場合、複合粒子1個あたりの酸化チタン粒子、銀粒子及びリン酸カルシウム粒子の含有量は、特に限定されないが、酸化チタン粒子の含有量の下限値は、銀粒子1質量部に対して、通常10質量部、好ましくは20質量部、さらに好ましくは25質量部、さらに一層好ましくは30質量部であり、酸化チタン粒子の含有量の上限値は、銀粒子1質量部に対して、通常300質量部、好ましくは250質量部、さらに好ましくは200質量部、さらに一層好ましくは180質量部である。
 また、リン酸カルシウム粒子の含有量の下限値は、金属粒子1質量部に対して、通常1質量部、好ましくは2質量部、さらに好ましくは3質量部であり、リン酸カルシウム粒子の含有量の上限値は、通常100質量部、好ましくは80質量部、さらに好ましくは60質量部、さらに一層好ましくは50質量部である。
When the composite particles contain calcium phosphate particles, the content of the titanium oxide particles, the silver particles and the calcium phosphate particles per composite particle is not particularly limited, but the lower limit of the content of the titanium oxide particles is one mass of silver particles. It is usually 10 parts by mass, preferably 20 parts by mass, more preferably 25 parts by mass, still more preferably 30 parts by mass, and the upper limit of the content of titanium oxide particles is 1 part by mass of silver particles. On the other hand, it is usually 300 parts by mass, preferably 250 parts by mass, more preferably 200 parts by mass, and even more preferably 180 parts by mass.
The lower limit of the content of the calcium phosphate particles is usually 1 part by mass, preferably 2 parts by mass, more preferably 3 parts by mass with respect to 1 part by mass of the metal particles, and the upper limit of the content of the calcium phosphate particles is. , Usually 100 parts by mass, preferably 80 parts by mass, still more preferably 60 parts by mass, and even more preferably 50 parts by mass.
 複合粒子には、銀粒子の他に、その他の金属粒子を含んでいてもよい。その他の金属粒子としては、例えば、金粒子、白金粒子及び銅粒子からなる群から選択することができる。複合粒子は、異なる種類の2個以上の金属粒子(銀粒子を含む)を含んでいてもよい。 The composite particles may contain other metal particles in addition to the silver particles. The other metal particles can be selected from the group consisting of, for example, gold particles, platinum particles and copper particles. The composite particles may contain two or more metal particles (including silver particles) of different types.
(粒子径)
 レーザー回折法により測定される複合粒子の粒子径は、好ましくは0.1~0.3μm、さらに好ましくは0.11~0.29μm、さらに一層好ましくは0.15~0.25μmである。レーザー回折法による粒子径の測定は、市販の粒子径分布測定装置、好ましくはレーザ回折/散乱式粒子径分布測定装置Partica(パーティカ)LA-960V2シリーズ(HORIBA社製)により測定される。
(Particle size)
The particle size of the composite particles measured by the laser diffraction method is preferably 0.1 to 0.3 μm, more preferably 0.11 to 0.29 μm, and even more preferably 0.15 to 0.25 μm. The particle size is measured by the laser diffraction method using a commercially available particle size distribution measuring device, preferably a laser diffraction / scattering type particle size distribution measuring device Partica LA-960V2 series (manufactured by HORIBA).
(構造)
 複合粒子において、1個以上の酸化チタン粒子及び1個以上の銀粒子は、三次元かつランダムに配置されていることが好ましい。
(Construction)
In the composite particles, it is preferable that one or more titanium oxide particles and one or more silver particles are three-dimensionally and randomly arranged.
 三次元かつランダムな配置の一実施形態では、少なくとも1個の銀粒子が、少なくとも1個の酸化チタン粒子に接合している。 In one embodiment of three-dimensional and random arrangement, at least one silver particle is bonded to at least one titanium oxide particle.
 三次元かつランダムな配置の一実施形態では、ある1個の粒子(酸化チタン粒子及び銀粒子のいずれか一方の1個の粒子)の周囲に、別の1個以上の粒子が存在している。この実施形態において、ある1個の粒子には、同種の1個以上の粒子が隣接していてもよいし、異種の1個以上の粒子が隣接していてもよい。隣接する粒子は互いに結合していることが好ましい。隣接する粒子の組み合わせとしては、酸化チタン粒子同士、銀粒子同士、酸化チタン粒子と銀粒子等が挙げられる。 In one embodiment of three-dimensional and random arrangement, one or more particles are present around one particle (one of the titanium oxide particles and one of the silver particles). .. In this embodiment, one or more particles of the same type may be adjacent to one or more particles of the same type, or one or more particles of different types may be adjacent to each other. Adjacent particles are preferably bonded to each other. Examples of the combination of adjacent particles include titanium oxide particles, silver particles, titanium oxide particles and silver particles, and the like.
 三次元かつランダムな配置の一実施形態では、酸化チタン粒子及び銀粒子のいずれか一方の少なくとも1個の粒子の一部が、複合粒子の表面に露出している。 In one embodiment of three-dimensional and random arrangement, a part of at least one of titanium oxide particles and silver particles is exposed on the surface of the composite particles.
 三次元かつランダムな配置の一実施形態では、少なくとも1個の酸化チタン粒子の一部、少なくとも1個の銀粒子の一部が、複合粒子の表面に露出している。 In one embodiment of three-dimensional and random arrangement, a part of at least one titanium oxide particle and a part of at least one silver particle are exposed on the surface of the composite particle.
 三次元かつランダムな配置の一実施形態では、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される少なくとも1個の粒子が、複合粒子の表面に露出することなく、複合粒子の内部に存在している。 In one embodiment of three-dimensional and random arrangement, at least one particle selected from titanium oxide particles, metal particles and calcium phosphate particles is present inside the composite particles without being exposed on the surface of the composite particles. There is.
 ある1個の粒子が粒子形態を有するか、あるいは、膜状の形態を有するか、あるいは、別の1個以上の粒子と一体となって又は連なって膜状の形態を有するかは、複合粒子を製造する際の粒子の配合比等の影響を受け得る。配合比によっては、ある1個の粒子が、もはや粒子形態を維持せず、複合粒子の表面の少なくとも一部に存在する膜状の形態をとり得る。例えば、ビーズミル、ボールミル等の機械的手法により粒子複合化を実施する場合、その他の粒子よりも硬度が低い材料で構成される粒子(例えば、銀粒子)は、このような膜状の形態をとり得る。 Whether one particle has a particle morphology, has a membranous morphology, or has a membranous morphology integrally with or in conjunction with another one or more particles is a composite particle. It may be affected by the mixing ratio of particles when producing. Depending on the compounding ratio, one particle may no longer maintain its particle morphology and may take a membranous morphology that is present on at least a portion of the surface of the composite particle. For example, when particle compositing is carried out by a mechanical method such as a bead mill or a ball mill, particles composed of a material having a hardness lower than that of other particles (for example, silver particles) take such a film-like form. obtain.
 三次元かつランダムな配置に関する上記実施形態のうち2種以上が組み合わせられてもよい。 Two or more of the above embodiments relating to three-dimensional and random arrangement may be combined.
 リン酸カルシウム粒子を含む場合、三次元かつランダムな配置の一実施形態では、酸化チタン粒子、銀粒子及びリン酸カルシウム粒子から選択される少なくとも1個の粒子が膜状の形態を有し、複合粒子の表面の少なくとも一部に存在している。 When containing calcium phosphate particles, in one embodiment of three-dimensional and random arrangement, at least one particle selected from titanium oxide particles, silver particles and calcium phosphate particles has a film-like morphology and is on the surface of the composite particle. It exists at least in part.
 リン酸カルシウム粒子を含む場合、三次元かつランダムな配置の一実施形態では、酸化チタン粒子、銀粒子及びリン酸カルシウム粒子から選択される2個以上の粒子が一体となって又は連なって膜状の形態を有し、複合粒子の表面の少なくとも一部に存在している。 In the case of containing calcium phosphate particles, in one embodiment of three-dimensional and random arrangement, two or more particles selected from titanium oxide particles, silver particles and calcium phosphate particles have a film-like morphology as one or a series of particles. However, it is present on at least a part of the surface of the composite particle.
(製造方法)
 複合粒子は、例えば、湿式ミルを使用して、酸化チタン粉末及び銀粉末を液体中で混合し、酸化チタン粉末に含まれる1個以上の酸化チタン粒子と、銀粉末に含まれる1個以上の銀粒子とを複合化することにより製造することができる。なお、こうして製造された複合粒子は、その後、焼結されずに、本発明において使用される。
(Production method)
The composite particles are obtained by mixing titanium oxide powder and silver powder in a liquid using, for example, a wet mill, and one or more titanium oxide particles contained in the titanium oxide powder and one or more titanium oxide particles contained in the silver powder. It can be manufactured by combining with silver particles. The composite particles thus produced are subsequently used in the present invention without being sintered.
 酸化チタン粉末における酸化チタン含量(純度)は、好ましくは90重量%以上、さらに好ましくは95重量%以上、さらに一層好ましくは98%以上である。上限値は、例えば、99%である。 The titanium oxide content (purity) in the titanium oxide powder is preferably 90% by weight or more, more preferably 95% by weight or more, and even more preferably 98% by weight or more. The upper limit is, for example, 99%.
 酸化チタン粉末に含まれる酸化チタン粒子(一次粒子)の粒子径は、特に限定されないが、例えば、0.03~0.3μmである。湿式ミルは、粒子凝集体を個々の粒子に分散させることができるので、酸化チタン粉末には、酸化チタン粒子の凝集体(二次粒子)が含まれていてもよい。酸化チタン粒子の凝集体の粒子径は、例えば、1~2μmである。酸化チタン粒子又はその凝集体の粒子径は、例えば、透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)を使用して測定される。 The particle size of the titanium oxide particles (primary particles) contained in the titanium oxide powder is not particularly limited, but is, for example, 0.03 to 0.3 μm. Since the wet mill can disperse the particle agglomerates into individual particles, the titanium oxide powder may contain agglomerates of titanium oxide particles (secondary particles). The particle size of the aggregate of titanium oxide particles is, for example, 1 to 2 μm. The particle size of the titanium oxide particles or aggregates thereof is measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
 銀粉末における銀含量(純度)は、好ましくは80重量%以上、さらに好ましくは95重量%以上、さらに一層好ましくは98%以上である。上限値は、例えば、99.9%である。 The silver content (purity) in the silver powder is preferably 80% by weight or more, more preferably 95% by weight or more, and even more preferably 98% by weight or more. The upper limit is, for example, 99.9%.
 銀粉末に含まれる銀粒子(一次粒子)の粒子径は、特に限定されないが、例えば、0.1~1.9μmである。湿式ミルは、粒子凝集体を個々の粒子に分散させることができるので、金属粉末には、金属粒子の凝集体(二次粒子)が含まれていてもよい。なお、銀粉末を使用まで冷凍保存しておくことにより、銀粉末に含まれる銀粒子の凝集を抑制することができる。銀粒子又はその凝集体の粒子径は、例えば、比表面積に基づいて算出される。 The particle size of the silver particles (primary particles) contained in the silver powder is not particularly limited, but is, for example, 0.1 to 1.9 μm. Since the wet mill can disperse the particle agglomerates into individual particles, the metal powder may contain agglomerates of metal particles (secondary particles). By storing the silver powder in a freezer until use, it is possible to suppress the aggregation of silver particles contained in the silver powder. The particle size of silver particles or aggregates thereof is calculated, for example, based on the specific surface area.
 リン酸カルシウムを使用する場合、リン酸カルシウム粉末におけるリン酸カルシウム含量(純度)は、好ましくは90重量%以上、さらに好ましくは95重量%以上、さらに一層好ましくは98%以上である。
 リン酸カルシウム粉末に含まれるリン酸カルシウム粒子(一次粒子)の粒子径は、特に限定されないが、例えば、0.1~2.0μmである。湿式ミルは、粒子凝集体を個々の粒子に分散させることができるので、リン酸カルシウム粉末には、リン酸カルシウム粒子の凝集体(二次粒子)が含まれていてもよい。リン酸カルシウム粒子の凝集体の粒子径は、例えば、4~5μmである。リン酸カルシウム粒子又はその凝集体の粒子径は、例えば、レーザー回折・散乱法によって測定される。
When calcium phosphate is used, the calcium phosphate content (purity) in the calcium phosphate powder is preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% or more.
The particle size of the calcium phosphate particles (primary particles) contained in the calcium phosphate powder is not particularly limited, but is, for example, 0.1 to 2.0 μm. Since the wet mill can disperse the particle aggregates into individual particles, the calcium phosphate powder may contain aggregates (secondary particles) of calcium phosphate particles. The particle size of the aggregate of calcium phosphate particles is, for example, 4 to 5 μm. The particle size of the calcium phosphate particles or their aggregates is measured by, for example, a laser diffraction / scattering method.
 湿式ミルは、酸化チタン粉末及び銀粉末に含まれる粒子を液体中で分散及び微粉砕しながら、1個以上の酸化チタン粒子と、1個以上の銀粒子と、を複合化することができる。湿式ミルとしては、例えば、ビーズミル、ボールミル等が挙げられ、これらのうち、ビーズミルが好ましい。ビーズミル、ボールミル等のミルで使用されるビーズ、ボール等の粉砕メディアの材質としては、例えば、アルミナ、ジルコン、ジルコニア、スチール、ガラス等が挙げられ、これらのうち、ジルコニアが好ましい。粉砕メディアのサイズ(直径)は、製造すべき複合粒子の粒子径等に応じて適宜調整することができるが、通常0.05~3.0mm、好ましくは0.1~0.5mmである。粉砕メディアとしては、例えば、サイズが約0.1mm、質量が約0.004mgのビーズ又はボールを使用することができる。 The wet mill can combine one or more titanium oxide particles and one or more silver particles while dispersing and finely pulverizing the titanium oxide powder and the particles contained in the silver powder in a liquid. Examples of the wet mill include a bead mill, a ball mill and the like, and among these, a bead mill is preferable. Examples of the material of the crushing medium such as beads and balls used in a mill such as a bead mill and a ball mill include alumina, zircon, zirconia, steel and glass, and among these, zirconia is preferable. The size (diameter) of the pulverized media can be appropriately adjusted according to the particle size and the like of the composite particles to be produced, but is usually 0.05 to 3.0 mm, preferably 0.1 to 0.5 mm. As the pulverizing medium, for example, beads or balls having a size of about 0.1 mm and a mass of about 0.004 mg can be used.
 混合の際に使用される液体は、例えば、水等の水性媒体である。混合の際に使用される液体が水である場合、酸化チタン粉末及び銀粉末の合計配合量は、水65質量部に対して、通常25~45質量部、好ましくは30~40質量部となるように調整される。 The liquid used for mixing is, for example, an aqueous medium such as water. When the liquid used for mixing is water, the total blending amount of the titanium oxide powder and the silver powder is usually 25 to 45 parts by mass, preferably 30 to 40 parts by mass with respect to 65 parts by mass of water. Is adjusted to.
 酸化チタン粉末及び銀粉末及び液体を含む原料を湿式ミルで混合する際、各種条件、例えば、原料粉末の合計添加量、液の流量、シリンダー内の羽根の周速、攪拌温度、攪拌時間等は、製造すべき複合粒子の粒子径等に応じて適宜調整することができる。原料粉末(酸化チタン粉末、金属粉末及びリン酸カルシウム粉末)の合計添加量は、例えば4kg以上であり、シリンダー容積は、例えば0.5~4L、液の流量は、例えば0.5~3L/分であり、羽根の周速は、例えば300~900m/分であり、液温は、例えば20~60℃であり、原料粉末1kgあたりの混合時間は、例えば0.5~2時間である。原料粉末の合計添加量の上限値は、シリンダー容積等に応じて適宜調整可能である。混合時間は、原料粉末の合計添加量等に応じて適宜調整可能である。 When mixing raw materials containing titanium oxide powder, silver powder and liquid with a wet mill, various conditions such as the total amount of raw material powder added, the flow rate of the liquid, the peripheral speed of the blades in the cylinder, the stirring temperature, the stirring time, etc. , It can be appropriately adjusted according to the particle size and the like of the composite particles to be produced. The total amount of the raw material powder (titanium oxide powder, metal powder and calcium phosphate powder) added is, for example, 4 kg or more, the cylinder volume is, for example, 0.5 to 4 L, and the flow rate of the liquid is, for example, 0.5 to 3 L / min. The peripheral speed of the blade is, for example, 300 to 900 m / min, the liquid temperature is, for example, 20 to 60 ° C., and the mixing time per 1 kg of raw material powder is, for example, 0.5 to 2 hours. The upper limit of the total addition amount of the raw material powder can be appropriately adjusted according to the cylinder volume and the like. The mixing time can be appropriately adjusted according to the total amount of the raw material powder added and the like.
 原料には、酸化チタン粉末、銀粉末及び液体に加えて、分散剤を添加することが好ましい。分散剤としては、例えば、高分子型分散剤、低分子型分散剤、無機型分散剤等が挙げられ、湿式混合で使用される液体の種類に応じて適宜選択することができる。混合の際に使用される液体が水等の水性媒体である場合、分散剤としては、例えば、アニオン性高分子型分散剤、非イオン性高分子型分散剤等を使用することができ、アニオン性高分子型分散剤としては、例えば、ポリカルボン酸系分散剤、ナフタリンスルホン酸ホルマリン縮合系分散剤等が挙げられ、非イオン性高分子型分散剤としては、例えば、ポリエチレングリコール等が挙げられる。分散剤の添加量は、適宜調整することができるが、酸化チタン粉末及び銀粉末の合計配合量35質量部に対して、例えば、0.01~5質量%、好ましくは0.05~3質量%である。 It is preferable to add a dispersant to the raw material in addition to titanium oxide powder, silver powder and liquid. Examples of the dispersant include a polymer-type dispersant, a low-molecular-weight dispersant, an inorganic-type dispersant, and the like, and can be appropriately selected depending on the type of liquid used in the wet mixing. When the liquid used for mixing is an aqueous medium such as water, for example, an anionic polymer-type dispersant, a nonionic polymer-type dispersant, or the like can be used as the dispersant, and an anion can be used. Examples of the sex polymer type dispersant include a polycarboxylic acid type dispersant, a naphthalin sulfonic acid formalin condensation type dispersant and the like, and examples of the nonionic polymer type dispersant include polyethylene glycol and the like. .. The amount of the dispersant added can be appropriately adjusted, but is, for example, 0.01 to 5% by mass, preferably 0.05 to 3% by mass, based on 35 parts by mass of the total amount of the titanium oxide powder and the silver powder. %.
 湿式ミルを使用して、酸化チタン粉末及び金属粉末を液体中で混合し、酸化チタン粉末に含まれる1個以上の酸化チタン粒子と、銀粉末に含まれる1個以上の銀粒子とを複合化することにより、複合粒子の懸濁液(スラリー)を製造することができる。その後、懸濁液中の溶媒を蒸発等により除去することにより、複合粒子の集合体(乾燥粉末)を製造することができる。噴霧乾燥造粒法等の公知の造粒法により、複合粒子の懸濁液(スラリー)から、複合粒子の集合体(乾燥粉末)を製造することもできる。 Using a wet mill, titanium oxide powder and metal powder are mixed in a liquid to combine one or more titanium oxide particles contained in the titanium oxide powder with one or more silver particles contained in the silver powder. By doing so, a suspension (slurry) of composite particles can be produced. Then, by removing the solvent in the suspension by evaporation or the like, an aggregate of composite particles (dry powder) can be produced. An aggregate of composite particles (dry powder) can also be produced from a suspension (slurry) of composite particles by a known granulation method such as a spray-dry granulation method.
 レーザー回折法により測定される複合粒子の集合体の粒子径は、0.1μmを超え0.29μm未満であることが好ましく、0.15μm以上0.25μm以下がさらに好ましい。上記下限値以下では人体に吸収されるおそれがあるからである。また上記上限値以上だと複合粒子の表面積が狭くなり本発明の作用効果が期待できなくなるからである。複合粒子の粒子径は、0.2μm以上0.29μm以下がより好ましく、0.24μm以上0.27μm以下がさらに好ましい。
 レーザー回折法により体積基準で測定される複合粒子の集合体のメディアン径(d50)は、例えば0.1~0.35μm、好ましくは約0.25μmである。レーザー回折法による粒子径は、市販の粒子径分布測定装置、好ましくはレーザ回折/散乱式粒子径分布測定装置Partica(パーティカ)LA-960V2シリーズ(HORIBA社製)により測定される。
The particle size of the aggregate of composite particles measured by the laser diffraction method is preferably more than 0.1 μm and less than 0.29 μm, and more preferably 0.15 μm or more and 0.25 μm or less. This is because if it is below the above lower limit, it may be absorbed by the human body. Further, if it is more than the above upper limit, the surface area of the composite particle becomes narrow and the action and effect of the present invention cannot be expected. The particle size of the composite particles is more preferably 0.2 μm or more and 0.29 μm or less, and further preferably 0.24 μm or more and 0.27 μm or less.
The median diameter (d50) of the aggregate of the composite particles measured by the laser diffraction method on a volume basis is, for example, 0.1 to 0.35 μm, preferably about 0.25 μm. The particle size by the laser diffraction method is measured by a commercially available particle size distribution measuring device, preferably a laser diffraction / scattering type particle size distribution measuring device Partica LA-960V2 series (manufactured by HORIBA).
 製造された複合粒子は、そのまま、本発明において使用することができるが、本発明において使用する前に、粒子径の調整を行ってもよい。粒子径の調整は、例えば、粉末の状態又は懸濁液の状態の複合粒子を篩化することにより行うことができる。 The produced composite particles can be used as they are in the present invention, but the particle size may be adjusted before they are used in the present invention. The particle size can be adjusted, for example, by sieving the composite particles in the powder state or the suspension state.
 複合粒子の集合体において、複合粒子1個あたりの酸化チタン粒子、銀粒子及びリン酸カルシウム粒子のそれぞれの個数は、複合粒子の間で同一であってもよいし、異なっていてもよい。 In the aggregate of composite particles, the number of titanium oxide particles, silver particles and calcium phosphate particles per composite particle may be the same or different among the composite particles.
 複合粒子の集合体には、1個以上の酸化チタン粒子と、1個以上の銀粒子と、を含む複合粒子に加えて、複合粒子を製造する際に副生され得るその他の粒子が混在していてもよい。その他の粒子としては、例えば、単独の酸化チタン粒子、単独の銀粒子、単独の金属粒子、単独のリン酸カルシウム粒子、酸化チタン粒子同士の結合体(金属粒子及びリン酸カルシウム粒子を含まない)、金属粒子同士の結合体(酸化チタン粒子及びリン酸カルシウム粒子を含まない)、リン酸カルシウム粒子同士の結合体(酸化チタン粒子及び金属粒子を含まない)、酸化チタン粒子と金属粒子との結合体(リン酸カルシウム粒子を含まない)、酸化チタン粒子とリン酸カルシウム粒子との結合体(金属粒子を含まない)、金属粒子とリン酸カルシウム粒子との結合体(酸化チタン粒子を含まない)等が挙げられる。 In addition to the composite particles containing one or more titanium oxide particles and one or more silver particles, the aggregate of the composite particles contains other particles that may be by-produced in the production of the composite particles. May be. Examples of other particles include single titanium oxide particles, single silver particles, single metal particles, single calcium phosphate particles, conjugates of titanium oxide particles (excluding metal particles and calcium phosphate particles), and metal particles of each other. (Excluding titanium oxide particles and calcium phosphate particles), conjugates of calcium phosphate particles (excluding titanium oxide particles and metal particles), and conjugate of titanium oxide particles and metal particles (excluding calcium phosphate particles) , A conjugate of titanium oxide particles and calcium phosphate particles (excluding metal particles), a conjugate of metal particles and calcium phosphate particles (excluding titanium oxide particles), and the like.
 複合粒子は、コロナウイルスに適用され得るが、コロナウイルスの中でも、COVID-19(SARS-CoV-2)に適用されることが好ましい。SARS-CoV-2の死滅率が99.9%に達する観点からである。 The composite particles can be applied to coronavirus, but among coronaviruses, it is preferably applied to COVID-19 (SARS-CoV-2). This is from the viewpoint that the mortality rate of SARS-CoV-2 reaches 99.9%.
[コロナウイルスの感染プロセス]
 本発明の作用効果の理解を容易にする目的で、コロナウイルスの感染プロセスについて簡単に説明する。
 図24Aはコロナウイルス(SARS-CoV-2)の模式図であり、図24Bは図24Aの一部拡大図である。コロナウイルスは外殻であるエンベロープタンパク質(Envelope(E))に囲まれており、その内側にRNA(リボ核酸)とNタンパク質が収納されている。またコロナウイルスの表面には、図24Bに示すような、突起状のスパイクタンパク質(Spike、S))等がある。一方、ヒトの細胞には、コロナウイルスが効率よく侵入できる分子的な仕組みがある。細胞への入り口として使用されるAce2受容体と、タンパク質分解酵素であるTMPRSS2、FURINである。コロナウイルスの感染プロセスは以下のように考えられている。
 図25Aに示すように、コロナウイルスは経口経由で体内に侵入し、そして肺に到達する。その後、図25Bに示すように、コロナウイルスは表面にある突起状のスパイクタンパク質(Spike、S)を、宿主細胞のAce2受容体と結合させる。そして図25Cに示すように、細胞膜にあるタンパク質の分解酵素TMPRSS2、FURINが、ウイルスのスパイクタンパク質の頭部を切断する。図25Dに示すように融合機構が展開し始める。図25Eに示すように融合機構の先端がコロナウイルスの肺細胞に貫入する。図25Fに示すように融合機構が肺細胞をつかんで引き寄せる。図25Gに示すように、コロナウイルスと肺細胞が融合して流路が開かれ、そこからNタンパク質とRNAが肺細胞に侵入する。その後、肺細胞に入ったRNAからタンパク質に翻訳され、コロナウイルスが増殖していく。
 上述のコロナウイルスの感染プロセスによれば、コロナウイルスのスパイクタンパク質(S)やエンベロープタンパク質(E)が機能しなくなれば、コロナウイルスがヒトの細胞に感染することができなくなると考えられる。本発明に係る殺コロナウイルス剤は、理由は定かではないが、例えば、(1)スパイクタンパク質(S)を破壊する、(2)スパイクタンパク質(S)の機能を阻害する、(3)エンベロープタンパク質(E)を破壊する、又は(4)それらの組合せにより、コロナウイルスを死滅させると考えられる。
 具体的には、スパイクタンパク質(S)は以下のようにして破壊されるものと考えられる。
 まず、二酸化チタン(TiO)に光(紫外線)を照射すると、その表面から電子(e-)が飛び出る。このとき、二酸化チタンに金属触媒(例えばAg)を併存させることで、より電子の放出が促進される。そして、電子が抜け出た穴は正孔(ホール)と呼ばれており、プラスの電荷を帯びる。この正孔は強い酸化力をもつため、水中にある水酸化物イオン(OH-)などから電子を奪い、電子を奪われた水酸化物イオンは非常に不安定な状態のOHラジカル[・OH]になる。一方、二酸化チタンの表面から飛び出した電子(e-)は、酸素(O)を還元して、酸素ラジカル[O-]を生じさせる。このようにして得られたOHラジカルや酸素ラジカルにより、スパイクタンパク質(S)が破壊されるものと考えられる。
[Coronavirus infection process]
For the purpose of facilitating the understanding of the action and effect of the present invention, the coronavirus infection process will be briefly described.
FIG. 24A is a schematic diagram of the coronavirus (SARS-CoV-2), and FIG. 24B is a partially enlarged view of FIG. 24A. The coronavirus is surrounded by an envelope protein (Envelope (E)), which is the outer shell, and RNA (ribonucleic acid) and N protein are stored inside it. Further, on the surface of the coronavirus, there are protruding spike proteins (Spike, S) and the like as shown in FIG. 24B. On the other hand, human cells have a molecular mechanism that allows coronavirus to efficiently invade. The Ace2 receptor used as an entrance to cells and the proteolytic enzymes TMPRSS2 and FURIN. The coronavirus infection process is thought to be as follows.
As shown in FIG. 25A, the coronavirus enters the body via the oral cavity and reaches the lungs. The coronavirus then binds superficial protruding peplomer proteins (Spike, S) to the Ace2 receptor on the host cell, as shown in FIG. 25B. Then, as shown in FIG. 25C, the protein-degrading enzymes TMPRSS2 and FURIN in the cell membrane cleave the head of the viral spike protein. As shown in FIG. 25D, the fusion mechanism begins to develop. As shown in FIG. 25E, the tip of the fusion mechanism penetrates the lung cells of the coronavirus. As shown in FIG. 25F, the fusion mechanism grabs and attracts lung cells. As shown in FIG. 25G, the coronavirus and lung cells fuse to open a channel through which N protein and RNA invade the lung cells. After that, the RNA that entered the lung cells is translated into protein, and the coronavirus proliferates.
According to the above-mentioned coronavirus infection process, if the coronavirus spike protein (S) or envelope protein (E) fails, it is considered that the coronavirus cannot infect human cells. Although the reason is not clear, the coronavirus killing agent according to the present invention has, for example, (1) destroys the spike protein (S), (2) inhibits the function of the spike protein (S), and (3) the envelope protein. It is believed that (E) is destroyed, or (4) a combination thereof kills the coronavirus.
Specifically, the spike protein (S) is considered to be destroyed as follows.
First, when titanium dioxide (TiO 2 ) is irradiated with light (ultraviolet rays), electrons (e-) are ejected from its surface. At this time, by coexisting a metal catalyst (for example, Ag) with titanium dioxide, the emission of electrons is further promoted. The holes from which the electrons have escaped are called holes, which are positively charged. Since these holes have strong oxidizing power, they take electrons from hydroxide ions (OH-) in water, and the deprived hydroxide ions are OH radicals [・ OH] in a very unstable state. ]become. On the other hand, the electrons (e-) ejected from the surface of titanium dioxide reduce oxygen (O 2 ) to generate oxygen radicals [O 2 · - ]. It is considered that the spike protein (S) is destroyed by the OH radicals and oxygen radicals thus obtained.
[殺コロナウイルス剤を含む部材]
 本発明は、上記殺コロナウイルス剤を含む部材にも関する。
 部材としては、不織布、織布、織物、樹脂フィルム、プラスチック、金属、セラミックス、エアーフィルター等が挙げられる。具体的な製品としては、例えば、マスク、タオル、ガーゼ、靴下、肌着、シャツ、眼鏡等が挙げられる。
[Members containing coronavirus killing agent]
The present invention also relates to a member containing the above-mentioned coronavirus killing agent.
Examples of the member include non-woven fabric, woven fabric, woven fabric, resin film, plastic, metal, ceramics, air filter and the like. Specific products include, for example, masks, towels, gauze, socks, underwear, shirts, eyeglasses and the like.
[医療器具]
 本発明は、上記殺コロナウイルス剤を含む医療器具にも関する。本発明に係る医療器具は、新型コロナウイルスを死滅させることができる医療器具である。以下、図面に基づいて、実施形態に係る医療器具としてマスクを例に挙げて説明する。
[Medical equipment]
The present invention also relates to a medical device containing the above-mentioned coronavirus killing agent. The medical device according to the present invention is a medical device capable of killing a new type of coronavirus. Hereinafter, a mask will be described as an example as a medical device according to an embodiment based on the drawings.
(マスク)
 図26は、実施形態に係る医療器具としてのマスクの一部切欠き斜視図である。
 図26に示されるように、マスク10は、対象の鼻孔を覆う略長方形状のマスク本体11と、マスク部本体11の両短辺に設けられたリング状の耳掛け部12a、12bと、マスク本体11の内部に脱離可能に付着した複合粒子13とを備える。ここで、複合粒子は、1個以上の酸化チタン粒子と、1個以上の金属粒子と、を含んでいる。
(mask)
FIG. 26 is a partially cutaway perspective view of a mask as a medical instrument according to an embodiment.
As shown in FIG. 26, the mask 10 includes a substantially rectangular mask body 11 that covers the nostrils of the target, ring-shaped ear hooks 12a and 12b provided on both short sides of the mask body 11, and a mask. A composite particle 13 detachably attached to the inside of the main body 11 is provided. Here, the composite particles include one or more titanium oxide particles and one or more metal particles.
 マスク10が対象に装着される際、耳掛け部12aが対象の一方の耳に、耳掛け部12bが対象の他方の耳に掛けられ、対象の顔のうち少なくとも鼻孔がマスク本体11で覆われる。マスク10が対象に装着される際、対象の鼻孔に加えて対象の口がマスク本体11で覆われてもよい。 When the mask 10 is attached to the target, the ear hook portion 12a is hung on one ear of the target, the ear hook portion 12b is hung on the other ear of the target, and at least the nostrils of the target face are covered with the mask body 11. .. When the mask 10 is attached to the subject, the mouth of the subject may be covered with the mask body 11 in addition to the nostrils of the subject.
 図26に示すように、マスク10の形態は、平型マスクの形態であるが、マスク10の形態は、平型マスクの形態に限定されるものではなく、プリーツ型マスク、立体型マスク等、その他のマスクの形態であってもよい。 As shown in FIG. 26, the form of the mask 10 is the form of the flat mask, but the form of the mask 10 is not limited to the form of the flat mask, and the pleated type mask, the three-dimensional type mask, etc. It may be in the form of other masks.
 マスク本体11は、対象の鼻孔を覆うマスク本体であり、通気性を有する。マスク本体11の通気性は、マスク10を装着した対象が呼吸を行うことができる範囲で適宜調整することができる。マスク本体11の通気度は、例えば、5~150cm/cm・sec、好ましくは、30~100cm/cm・secである。通気度の測定は、例えば、JIS L10968.27.1A法(フラジール形法)に準拠して実施される。 The mask body 11 is a mask body that covers the nostrils of the target and has breathability. The air permeability of the mask body 11 can be appropriately adjusted within a range in which the subject wearing the mask 10 can breathe. The air permeability of the mask body 11 is, for example, 5 to 150 cm 3 / cm 2 · sec, preferably 30 to 100 cm 3 / cm 2 · sec. The measurement of the air permeability is carried out in accordance with, for example, JIS L10968.27.1A method (Frazil type method).
 マスク本体11は、重ね合わされた複数の通気性シート部材により形成されている。複数の通気性シート部材の端縁部は、熱溶着、超音波溶着、接着剤等の公知の接合方法により接合されている。マスク本体11は、順に重ね合わされた第1の通気性シート部材111、第2の通気性シート部材112及び第3の通気性シート部材113を備える。対象にマスク10を装着する際、第1の通気性シート部材111は、対象の顔側に配置され、第3の通気性シート部材113は、外気側に配置される。マスク本体11を構成する通気性シート部材の数は適宜変更可能である。例えば、第1の通気性シート部材111と第2の通気性シート部材112との間に、1又は2以上の通気性シート部材を設けてもよい。また、第2の通気性シート部材112と第3の通気性シート部材113との間に、1又は2以上の通気性シート部材を設けてもよい。 The mask body 11 is formed of a plurality of laminated breathable sheet members. The edge portions of the plurality of breathable sheet members are joined by a known joining method such as heat welding, ultrasonic welding, or an adhesive. The mask main body 11 includes a first breathable sheet member 111, a second breathable sheet member 112, and a third breathable sheet member 113, which are stacked in this order. When the mask 10 is attached to the target, the first breathable sheet member 111 is arranged on the face side of the target, and the third breathable sheet member 113 is arranged on the outside air side. The number of breathable sheet members constituting the mask body 11 can be appropriately changed. For example, one or more breathable sheet members may be provided between the first breathable sheet member 111 and the second breathable sheet member 112. Further, one or more breathable sheet members may be provided between the second breathable sheet member 112 and the third breathable sheet member 113.
 それぞれの通気性シート部材は、例えば、不織布、織布、編物等により形成することができる。それぞれの通気性シート部材を構成する繊維としては、例えば、合成繊維、再生繊維、天然繊維等が挙げられる。合成繊維としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系繊維、ナイロン等のポリアミド系繊維等が挙げられる。合成繊維は、芯鞘型繊維等の複合繊維であってもよい。再生繊維としては、例えば、レーヨン、アセテート等が挙げられる。天然繊維としては、例えば、コットン等が挙げられる。不織布としては、例えば、スパンボンド不織布、サーマルボンド不織布、スパンレース不織布、エアスルー不織布、メルトブロー不織布、ニードルパンチ不織布等が挙げられる。織布としては、例えば、ガーゼ等が挙げられる。不織布は、2層以上を有する多層構造であってもよい。このような多層構造としては、例えば、SS構造(スパンボンド-スパンボンドの2層構造)、SMS(スパンボンド-メルトブロー-スパンボンドの3層構造)等が挙げられる。 Each breathable sheet member can be formed of, for example, a non-woven fabric, a woven fabric, a knitted fabric, or the like. Examples of the fiber constituting each breathable sheet member include synthetic fiber, regenerated fiber, natural fiber and the like. Examples of the synthetic fiber include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, and polyamide fibers such as nylon. The synthetic fiber may be a composite fiber such as a core-sheath type fiber. Examples of the recycled fiber include rayon, acetate and the like. Examples of natural fibers include cotton and the like. Examples of the non-woven fabric include spunbond non-woven fabric, thermal bond non-woven fabric, spunlace non-woven fabric, air-through non-woven fabric, melt blow non-woven fabric, needle punch non-woven fabric and the like. Examples of the woven fabric include gauze and the like. The nonwoven fabric may have a multilayer structure having two or more layers. Examples of such a multi-layer structure include an SS structure (spun bond-spun bond two-layer structure), SMS (spun bond-melt blow-spun bond three-layer structure), and the like.
 それぞれの通気性シート部材の目付は、市販の家庭用又は医療用マスクで使用される通気性シート部材と同程度に調整することができる。第1の通気性シート部材111及び第3の通気性シート部材113の目付は、例えば、通気性の観点から調整することができる。第2の通気性シート部材112の目付は、例えば、フィルター性の観点から調整することができる。第1の通気性シート部材111と第2の通気性シート部材112との間に、1又は2以上の通気性シート部材を設ける場合、あるいは、第2の通気性シート部材112と第3の通気性シート部材113との間に、1又は2以上の通気性シート部材を設ける場合、これらの通気性シート部材の目付は、例えば、通気性又はフィルター性の観点から調整することができる。 The basis weight of each breathable sheet member can be adjusted to the same extent as the breathable sheet member used in commercially available household or medical masks. The basis weights of the first breathable sheet member 111 and the third breathable sheet member 113 can be adjusted from the viewpoint of breathability, for example. The basis weight of the second breathable sheet member 112 can be adjusted, for example, from the viewpoint of filterability. When one or more breathable sheet members are provided between the first breathable sheet member 111 and the second breathable sheet member 112, or between the second breathable sheet member 112 and the third breathable sheet member 112. When one or more breathable sheet members are provided between the sex sheet member 113, the basis weight of these breathable sheet members can be adjusted from the viewpoint of breathability or filterability, for example.
 耳掛け部12a、12bは、例えば、紐状部材で形成される。紐状部材は、伸縮性を有することが好ましい。紐状部材は、例えば、伸縮性を有するゴム製又はプラスチック製紐状部材等である。耳掛け部12a,12bの両端部は、例えば、縫い付け等の接合方法により、マスク本体11に固定されており、これにより、対象の耳に掛けることができる輪が形成されている。 The ear hook portions 12a and 12b are formed of, for example, a string-shaped member. The string-shaped member preferably has elasticity. The string-shaped member is, for example, a stretchable rubber or plastic string-shaped member or the like. Both ends of the ear hooks 12a and 12b are fixed to the mask body 11 by a joining method such as sewing, whereby a ring that can be hung on the target ear is formed.
 複合粒子13は、1個以上の酸化チタン粒子と、1個以上の銀粒子と、とを含んでいる。複合粒子に関しては、上記説明が適用される。 The composite particle 13 contains one or more titanium oxide particles and one or more silver particles. The above description applies to composite particles.
 複合粒子13は、マスク10を装着した対象の呼吸により脱離可能となるように、マスク本体11に付着している。したがって、マスク10を装着した対象が呼吸を行うと、マスク本体11に付着した多数の複合粒子13のうち一部が脱離し、対象の鼻腔内粘膜に投与される。すなわち、マスク10を装着した対象の呼吸を利用して、対象の鼻腔内粘膜に複合粒子13を投与することができ、これにより、対象をコロナウイルス感染から守ることができる。 The composite particles 13 are attached to the mask body 11 so that they can be detached by breathing of the subject wearing the mask 10. Therefore, when the subject wearing the mask 10 breathes, a part of the large number of composite particles 13 adhering to the mask body 11 is detached and administered to the mucous membrane in the nasal cavity of the subject. That is, the composite particles 13 can be administered to the intranasal mucosa of the subject by utilizing the respiration of the subject wearing the mask 10, whereby the subject can be protected from coronavirus infection.
 マスク10が適用される対象は、コロナウイルス感染防止目的に使用する者に限られない。例えば、鼻炎の予防又は治療を必要とする者、具体的には、鼻炎患者も含まれる。 The target to which the mask 10 is applied is not limited to those who use it for the purpose of preventing coronavirus infection. For example, those in need of prevention or treatment of rhinitis, specifically rhinitis patients are also included.
 本実施形態において、複合粒子13は、マスク本体11を構成する複数のシート部材のうち、第2の通気性シート部材112に脱離可能に付着している。複合粒子13が脱離可能に付着するシート部材は、第2の通気性シート部材112に限定されるものではなく、その他の通気性シート部材であってもよい。また、複合粒子13は、2以上の通気性シート部材に脱離可能に付着していてもよい。 In the present embodiment, the composite particles 13 are detachably attached to the second breathable sheet member 112 among the plurality of sheet members constituting the mask main body 11. The sheet member to which the composite particles 13 are detachably attached is not limited to the second breathable sheet member 112, and may be another breathable sheet member. Further, the composite particles 13 may be detachably attached to two or more breathable sheet members.
 通気性シート部材の単位面積あたりの複合粒子の合計付着量は、特に限定されないが、合計付着量の下限値は、通常1g/m、好ましくは2g/m、さらに好ましくは3g/m、さらに一層好ましくは4g/m、さらに一層好ましくは5g/mであり、合計付着量の上限値は、通常20g/m、好ましくは15g/m、さらに好ましくは10g/mである。 The total amount of composite particles attached per unit area of the breathable sheet member is not particularly limited, but the lower limit of the total amount of adhesion is usually 1 g / m 2 , preferably 2 g / m 2 , and more preferably 3 g / m 2 . , Even more preferably 4 g / m 2 , even more preferably 5 g / m 2 , and the upper limit of the total adhered amount is usually 20 g / m 2 , preferably 15 g / m 2 , still more preferably 10 g / m 2 . be.
 混合液に含有されるバインダ樹脂の量は、複合粒子100質量部に対して、好ましくは20~90質量部、さらに好ましくは30~85質量部、さらに一層好ましくは40~80質量部である。通気性シート部材に含有されるバインダ樹脂の量も同様である。 The amount of the binder resin contained in the mixed solution is preferably 20 to 90 parts by mass, more preferably 30 to 85 parts by mass, and even more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the composite particles. The same applies to the amount of binder resin contained in the breathable sheet member.
 通気性シート部材の単位面積あたりの複合粒子及びバインダ樹脂の合計付着量は、特に限定されないが、合計付着量の下限値は、通常2g/m、好ましくは3g/m、さらに好ましくは4g/m、さらに一層好ましくは5g/m、さらに一層好ましくは6g/mであり、合計付着量の上限値は、通常30g/m、好ましくは25g/m、さらに好ましくは20g/m、さらに一層好ましくは15g/mである。 The total adhesion amount of the composite particles and the binder resin per unit area of the breathable sheet member is not particularly limited, but the lower limit of the total adhesion amount is usually 2 g / m 2 , preferably 3 g / m 2 , and more preferably 4 g. / M 2 , even more preferably 5 g / m 2 , even more preferably 6 g / m 2 , and the upper limit of the total adhered amount is usually 30 g / m 2 , preferably 25 g / m 2 , still more preferably 20 g / m 2. m 2 , even more preferably 15 g / m 2 .
 バインダ樹脂としては、接着性を有する公知の樹脂を1種単独で又は2種以上組み合わせて使用することができる。バインダ樹脂としては、例えば、ゼラチン、アラビアゴム、シェラック、ダンマル、エレミー、サンダラック等の天然糊料あるいは天然樹脂類;メチルセルロース、エチルセルロース、ニトロセルロース、カルボキシメチルセルロース、アセテート等の半合成糊料又は半合成樹脂類;イソフタル酸系、テレフタル酸系、ビスフェノール系、ビニルエステル系のポリエステル樹脂;エチレンーアクリル酸、エチレンーアクリル酸エステル、アクリルエステルービニル、メタクリル酸エステルービニル等のアクリル系共重合樹脂;トリレンジシソシアネート、4,4’-ジフェニルメタンジイソシアネート、リジンエステルトリイソシアネート等のイソシアネート誘導体又はイソシアヌレート誘導体と、トリレンジイソシアネート等のイソシアネート誘導体又はイソシアヌレート誘導体と、ポリエステルポリオール、ポリエーテルポリオール、アクリルロイルオール、フェノーリックポリオール等のポリオールとの反応により形成されるウレタン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン化ポリマー;ポリ酢酸ビニル、エチレンー酢酸ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、ポリアクリルエステル、ポリスチレン、ポリビニルアセタール等のアセタール系樹脂;ポリカーボネート系樹脂;セルロースアセテート等のセルロース系樹脂;ポリオレフィン系樹脂;尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂等の合成糊料あるいは合成樹脂類;ポリアルキルシロキサン、ポリアルキル水素シロキサン、ポリアルキルアルケニルシロキサン、ポリアルキルシリコネート、ポリアルカリアルキルシリコネート、ポリアルキルフェニルシロキサン等のシリコーン樹脂をはじめ、エポキシ変性、アミノ変性、ウレタン変性、アルキド変性、アクリル変性等の変性体、共重合体等を含むシリコーン樹脂;あるいは、テトラフルオロエチレン、フッ化ビニリデン等の重合体、これらのモノマーと他種モノマーとの共重合体等のフッ素樹脂等が挙げられる。これらのうち、接着性等の観点から、ウレタン系樹脂、シリコーン樹脂が好ましく、ウレタン系樹脂が特に好ましい。 As the binder resin, a known resin having adhesiveness can be used alone or in combination of two or more. Examples of the binder resin include natural glues or natural resins such as gelatin, gum arabic, shellac, dammar, elemy, and thunderac; semi-synthetic glues or semi-synthetic such as methyl cellulose, ethyl cellulose, nitrocellulose, carboxymethyl cellulose, and acetate. Resins; Isocyanate-based, terephthalic acid-based, bisphenol-based, vinyl ester-based polyester resins; Acrylic copolymer resins such as ethylene-acrylic acid, ethylene-acrylic acid ester, acrylic ester-vinyl, and methacrylic acid ester-vinyl; Isocyanate derivatives or isocyanurate derivatives such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, lysine ester triisocyanate, isocyanate derivatives such as tolylene diisocyanate or isocyanurate derivatives, polyester polyols, polyether polyols, acrylic loylol , Urethane-based resin formed by reaction with polyol such as phenolic polyol; halogenated polymer such as polyvinyl chloride and polyvinylidene chloride; polyvinyl acetate, ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer , Polyacrylic ester, polystyrene, polyvinyl acetal and other acetal resins; polycarbonate resins; cellulose acetate and other cellulose resins; polyolefin resins; urea resins, melamine resins, benzoguanamine resins and other amino resins and other synthetic glues or synthetics. Resins: Silicone resins such as polyalkylsiloxane, polyalkylhydrogensiloxane, polyalkylalkenylsiloxane, polyalkylsyliconate, polyalkalialkylsiliconate, and polyalkylphenylsiloxane, as well as epoxy-modified, amino-modified, urethane-modified, and alkyd-modified. , A modified product such as acrylic modification, a silicone resin containing a copolymer, etc .; or a polymer such as tetrafluoroethylene or vinylidene fluoride, a fluororesin such as a copolymer of these monomers and other kinds of monomers, etc. Be done. Of these, urethane-based resins and silicone resins are preferable, and urethane-based resins are particularly preferable, from the viewpoint of adhesiveness and the like.
 バインダ樹脂に代えて又はバインダ樹脂と組み合わせて、無機バインダを1種単独で又は2種以上組み合わせて使用してもよい。無機バインダとしては、例えば、アルキルシリケート、ハロゲン化ケイ素、これらの部分加水分解物等の加水分解性ケイ素化合物を分解して得られる生成物、有機ポリシロキサン化合物とその重縮合物、シリカ、コロイダルシリカ、水ガラス、ケイ素化合物、リン酸亜鉛等のリン酸塩、酸化亜鉛、酸化ジルコニウム等の金属酸化物、重リン酸塩、セメント、石膏、石灰、ほうろう用フリット等が挙げられる。 The inorganic binder may be used alone or in combination of two or more in place of the binder resin or in combination with the binder resin. Examples of the inorganic binder include alkyl silicates, silicon halides, products obtained by decomposing hydrolyzable silicon compounds such as partial hydrolysates thereof, organic polysiloxane compounds and their polycondensates, silica, colloidal silica. , Water glass, silicon compounds, phosphates such as zinc phosphate, metal oxides such as zinc oxide and zirconium oxide, heavy phosphates, cement, gypsum, lime, frit for brooms and the like.
(医療用シート)
 図27は、実施形態に係る医療器具としての医療用シートの斜視図である。
(Medical sheet)
FIG. 27 is a perspective view of a medical sheet as a medical device according to an embodiment.
 実施形態に係る医療用シートは、対象の鼻腔内に挿入されるシート部と、シート部に付着した複合粒子とを備え、複合粒子は、1個以上の酸化チタン粒子と、1個以上の銀粒子と、を含む。 The medical sheet according to the embodiment includes a sheet portion inserted into the nasal cavity of the target and composite particles attached to the sheet portion, and the composite particles include one or more titanium oxide particles and one or more silver particles. Including particles.
 図27に示すように、本実施形態に係る医療用シート20は、対象の鼻腔内に挿入されるシート部21と、シート部21に付着した複合粒子22とを備える。 As shown in FIG. 27, the medical sheet 20 according to the present embodiment includes a sheet portion 21 inserted into the nasal cavity of the target and composite particles 22 attached to the sheet portion 21.
 医療用シート20は、対象の鼻腔内に挿入して使用される。医療用シート20を対象の鼻腔内に挿入する際、挿入が容易となるように医療用シート20を変形させてもよい。例えば、医療用シート20をねじり、紙縒り状に変形させた上で、対象の鼻腔内に挿入することができる。シート部21のうち複合粒子22が付着した部分が対象の鼻腔内に挿入される限り、医療用シート20の全体が対象の鼻腔内に挿入されてもよいし、医療用シート20の一部が対象の鼻腔内に挿入されてもよいが、鼻腔内からの除去の容易性の観点から、医療用シート20の一部が対象の鼻腔内に挿入され、残部が対象の鼻腔外に保持されることが好ましい。医療用シート20は、鼻腔内後方まで(下鼻点からの距離が例えば1~10cm、好ましくは1~8cmの位置まで)挿入されることが好ましい。また、医療用シート20は、シート部21のうち複合粒子22が付着した部分が対象の鼻腔内粘膜に接触するように、対象の鼻腔内に挿入されることが好ましい。 The medical sheet 20 is used by inserting it into the target nasal cavity. When the medical sheet 20 is inserted into the nasal cavity of the subject, the medical sheet 20 may be deformed so as to be easy to insert. For example, the medical sheet 20 can be twisted, deformed into a paper twist, and then inserted into the nasal cavity of the subject. As long as the portion of the sheet portion 21 to which the composite particles 22 are attached is inserted into the target nasal cavity, the entire medical sheet 20 may be inserted into the target nasal cavity, or a part of the medical sheet 20 may be inserted. It may be inserted into the nasal cavity of the subject, but from the viewpoint of ease of removal from the nasal cavity, a part of the medical sheet 20 is inserted into the nasal cavity of the subject and the rest is held outside the nasal cavity of the subject. Is preferable. The medical sheet 20 is preferably inserted up to the posterior part of the nasal cavity (at a distance of, for example, 1 to 10 cm, preferably 1 to 8 cm from the lower nose point). Further, it is preferable that the medical sheet 20 is inserted into the target nasal cavity so that the portion of the sheet portion 21 to which the composite particles 22 are attached comes into contact with the target intranasal mucosa.
 シート部21は、対象の鼻腔内に挿入可能なサイズを有する。シート部21の長さは、通常50~300mm、好ましくは100~200mmであり、シート部21の幅は、通常5~40mm、好ましくは10~20mmである。医療用シート20が対象の鼻腔内に挿入される際、例えば、シート部21の一部(例えば、長さが1~5cmの部分)が対象の鼻腔内に挿入されずに鼻腔外に保持され、シート部21の残部が対象の鼻腔内に挿入される。シート部21は、例えば、短冊状である。シート部21は、通気性を有しなくてもよいが、通気性を有することが好ましい。シート部21の通気性は、医療用シート20を挿入した対象が呼吸を行うことができる範囲で適宜調整することができる。シート部21の通気度は、例えば、5~150cm/cm・sec、好ましくは、30~100cm/cm・secである。通気度の測定は、例えば、JIS L10968.27.1A法(フラジール形法)に準拠して実施される。 The seat portion 21 has a size that can be inserted into the nasal cavity of the subject. The length of the sheet portion 21 is usually 50 to 300 mm, preferably 100 to 200 mm, and the width of the sheet portion 21 is usually 5 to 40 mm, preferably 10 to 20 mm. When the medical sheet 20 is inserted into the target nasal cavity, for example, a part of the sheet portion 21 (for example, a portion having a length of 1 to 5 cm) is held outside the target nasal cavity without being inserted into the target nasal cavity. , The rest of the sheet portion 21 is inserted into the nasal cavity of the subject. The sheet portion 21 is, for example, in the shape of a strip. The sheet portion 21 does not have to be breathable, but is preferably breathable. The air permeability of the seat portion 21 can be appropriately adjusted within a range in which the subject into which the medical sheet 20 is inserted can breathe. The air permeability of the sheet portion 21 is, for example, 5 to 150 cm 3 / cm 2 · sec, preferably 30 to 100 cm 3 / cm 2 · sec. The measurement of the air permeability is carried out in accordance with, for example, JIS L10968.27.1A method (Frazil type method).
 シート部21は、例えば、不織布、織布、編物、通気孔を有するプラスチックフィルム等により形成することができる。シート部21を構成する繊維としては、例えば、合成繊維、再生繊維、天然繊維等が挙げられる。合成繊維としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系繊維、ナイロン等のポリアミド系繊維等が挙げられる。
 合成繊維は、芯鞘型繊維等の複合繊維であってもよい。再生繊維としては、例えば、レーヨン、アセテート等が挙げられる。天然繊維としては、例えば、コットン等が挙げられる。不織布としては、例えば、スパンボンド不織布、サーマルボンド不織布、スパンレース不織布、エアスルー不織布、メルトブロー不織布、ニードルパンチ不織布等が挙げられる。織布としては、例えば、ガーゼ等が挙げられる。不織布は、2層以上を有する多層構造であってもよい。このような多層構造としては、例えば、SS構造(スパンボンド-スパンボンドの2層構造)、SMS(スパンボンド-メルトブロー-スパンボンドの3層構造)等が挙げられる。
The sheet portion 21 can be formed of, for example, a non-woven fabric, a woven fabric, a knitted fabric, a plastic film having ventilation holes, or the like. Examples of the fiber constituting the sheet portion 21 include synthetic fiber, regenerated fiber, natural fiber and the like. Examples of the synthetic fiber include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, and polyamide fibers such as nylon.
The synthetic fiber may be a composite fiber such as a core-sheath type fiber. Examples of the recycled fiber include rayon, acetate and the like. Examples of natural fibers include cotton and the like. Examples of the non-woven fabric include spunbond non-woven fabric, thermal bond non-woven fabric, spunlace non-woven fabric, air-through non-woven fabric, melt blow non-woven fabric, needle punch non-woven fabric and the like. Examples of the woven fabric include gauze and the like. The nonwoven fabric may have a multilayer structure having two or more layers. Examples of such a multi-layer structure include an SS structure (spun bond-spun bond two-layer structure), SMS (spun bond-melt blow-spun bond three-layer structure), and the like.
 複合粒子22は、1個以上の酸化チタン粒子と、1個以上の金属粒子と、1個以上のリン酸カルシウム粒子とを含んでなる。複合粒子に関しては、上記説明が適用される。 The composite particle 22 includes one or more titanium oxide particles, one or more metal particles, and one or more calcium phosphate particles. The above description applies to composite particles.
 複合粒子22は、医療用シート20を鼻腔内に挿入した対象の呼吸により脱離可能となるように、シート部21に付着していてもよいし、医療用シート20を鼻腔内に挿入した対象の呼吸により脱離しないように、シート部21に付着していてもよい。 The composite particles 22 may be attached to the sheet portion 21 so that the medical sheet 20 can be detached by breathing of the object inserted into the nasal cavity, or the medical sheet 20 is inserted into the nasal cavity. It may be attached to the sheet portion 21 so as not to be detached by breathing.
 医療用シート20が対象の鼻腔内に挿入されると、シート部21に付着した複合粒子22は、対象の鼻腔内粘膜に接触又は付着する。したがって、対象の呼吸を利用しなくも、対象の鼻腔内粘膜に複合粒子22を投与することができる。 When the medical sheet 20 is inserted into the target nasal cavity, the composite particles 22 attached to the sheet portion 21 come into contact with or adhere to the target intranasal mucosa. Therefore, the composite particles 22 can be administered to the intranasal mucosa of the subject without utilizing the subject's respiration.
 シート部21の単位面積あたりの複合粒子の合計付着量は、特に限定されないが、合計付着量の下限値は、通常1g/m、好ましくは2g/m、さらに好ましくは3g/m、さらに一層好ましくは4g/m、さらに一層好ましくは5g/mであり、合計付着量の上限値は、通常20g/m、好ましくは15g/m、さらに好ましくは10g/mである。 The total adhesion amount of the composite particles per unit area of the sheet portion 21 is not particularly limited, but the lower limit of the total adhesion amount is usually 1 g / m 2 , preferably 2 g / m 2 , and more preferably 3 g / m 2 . It is even more preferably 4 g / m 2 , even more preferably 5 g / m 2 , and the upper limit of the total adhered amount is usually 20 g / m 2 , preferably 15 g / m 2 , and even more preferably 10 g / m 2 . ..
 複合粒子22は、例えば、バインダ樹脂を介してシート部21に付着させることができる。例えば、複合粒子22及びバインダ樹脂を含有する混合液をシート部材に供給した後、あるいは、複合粒子22及びバインダ樹脂を含有する混合液中にシート部材を浸漬した後、シート部材を乾燥することにより、複合粒子22がバインダ樹脂を介して付着したシート部21を製造することができる。また、複合粒子22及びバインダ樹脂を含有する混合液をシートの原反に供給した後、あるいは、複合粒子22及びバインダ樹脂を含有する混合液中にシートの原反を浸漬した後、シートの原反を乾燥し、次いで、シートの原反からシート部材を切り出すことにより、複合粒子22がバインダ樹脂を介して付着したシート部21を製造することができる。 The composite particles 22 can be attached to the sheet portion 21 via, for example, a binder resin. For example, by supplying the sheet member with a mixed solution containing the composite particles 22 and the binder resin, or by immersing the sheet member in the mixed solution containing the composite particles 22 and the binder resin, and then drying the sheet member. , The sheet portion 21 to which the composite particles 22 are attached via the binder resin can be manufactured. Further, after the mixed liquid containing the composite particles 22 and the binder resin is supplied to the raw material of the sheet, or after the raw material of the sheet is immersed in the mixed liquid containing the composite particles 22 and the binder resin, the raw material of the sheet is used. By drying the fabric and then cutting out the sheet member from the original fabric of the sheet, the sheet portion 21 to which the composite particles 22 are attached via the binder resin can be manufactured.
 混合液に含有されるバインダ樹脂の量は、複合粒子100質量部に対して、好ましくは20~90質量部、さらに好ましくは30~85質量部、さらに一層好ましくは40~80質量部である。シート部21に含有されるバインダ樹脂の量も同様である。 The amount of the binder resin contained in the mixed solution is preferably 20 to 90 parts by mass, more preferably 30 to 85 parts by mass, and even more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the composite particles. The same applies to the amount of binder resin contained in the sheet portion 21.
 シート部21の単位面積あたりの複合粒子及びバインダ樹脂の合計付着量は、特に限定されないが、合計付着量の下限値は、通常2g/m、好ましくは3g/m、さらに好ましくは4g/m、さらに一層好ましくは5g/m、さらに一層好ましくは6g/mであり、合計付着量の上限値は、通常30g/m、好ましくは25g/m、さらに好ましくは20g/m、さらに一層好ましくは15g/mである。 The total adhesion amount of the composite particles and the binder resin per unit area of the sheet portion 21 is not particularly limited, but the lower limit of the total adhesion amount is usually 2 g / m 2 , preferably 3 g / m 2 , and more preferably 4 g / m 2. m 2 , even more preferably 5 g / m 2 , even more preferably 6 g / m 2 , and the upper limit of the total adhesion amount is usually 30 g / m 2 , preferably 25 g / m 2 , still more preferably 20 g / m. 2 , even more preferably 15 g / m 2 .
 バインダ樹脂としては、接着性を有する公知の樹脂を1種単独で又は2種以上組み合わせて使用することができる。バインダ樹脂としては、例えば、ゼラチン、アラビアゴム、シェラック、ダンマル、エレミー、サンダラック等の天然糊料あるいは天然樹脂類;メチルセルロース、エチルセルロース、ニトロセルロース、カルボキシメチルセルロース、アセテート等の半合成糊料又は半合成樹脂類;イソフタル酸系、テレフタル酸系、ビスフェノール系、ビニルエステル系のポリエステル樹脂;エチレンーアクリル酸、エチレンーアクリル酸エステル、アクリルエステルービニル、メタクリル酸エステルービニル等のアクリル系共重合樹脂;トリレンジシソシアネート、4,4’-ジフェニルメタンジイソシアネート、リジンエステルトリイソシアネート等のイソシアネート誘導体又はイソシアヌレート誘導体と、トリレンジイソシアネート等のイソシアネート誘導体又はイソシアヌレート誘導体と、ポリエステルポリオール、ポリエーテルポリオール、アクリルロイルオール、フェノーリックポリオール等のポリオールとの反応により形成されるウレタン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン化ポリマー;ポリ酢酸ビニル、エチレンー酢酸ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、ポリアクリルエステル、ポリスチレン、ポリビニルアセタール等のアセタール系樹脂;ポリカーボネート系樹脂;セルロースアセテート等のセルロース系樹脂;ポリオレフィン系樹脂;尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂等の合成糊料あるいは合成樹脂類;ポリアルキルシロキサン、ポリアルキル水素シロキサン、ポリアルキルアルケニルシロキサン、ポリアルキルシリコネート、ポリアルカリアルキルシリコネート、ポリアルキルフェニルシロキサン等のシリコーン樹脂をはじめ、エポキシ変性、アミノ変性、ウレタン変性、アルキド変性、アクリル変性等の変性体、共重合体等を含むシリコーン樹脂;あるいは、テトラフルオロエチレン、フッ化ビニリデン等の重合体、これらのモノマーと他種モノマーとの共重合体等のフッ素樹脂等が挙げられる。これらのうち、接着性等の観点から、ウレタン系樹脂、シリコーン樹脂が好ましく、ウレタン系樹脂が特に好ましい。 As the binder resin, a known resin having adhesiveness can be used alone or in combination of two or more. Examples of the binder resin include natural glues or natural resins such as gelatin, gum arabic, shellac, dammar, elemy, and thunderac; semi-synthetic glues or semi-synthetic such as methyl cellulose, ethyl cellulose, nitrocellulose, carboxymethyl cellulose, and acetate. Resins; Isocyanate-based, terephthalic acid-based, bisphenol-based, vinyl ester-based polyester resins; Acrylic copolymer resins such as ethylene-acrylic acid, ethylene-acrylic acid ester, acrylic ester-vinyl, and methacrylic acid ester-vinyl; Isocyanate derivatives or isocyanurate derivatives such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, lysine ester triisocyanate, isocyanate derivatives such as tolylene diisocyanate or isocyanurate derivatives, polyester polyols, polyether polyols, acrylic loylol , Urethane-based resin formed by reaction with polyol such as phenolic polyol; halogenated polymer such as polyvinyl chloride and polyvinylidene chloride; polyvinyl acetate, ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer , Polyacrylic ester, polystyrene, polyvinyl acetal and other acetal resins; polycarbonate resins; cellulose acetate and other cellulose resins; polyolefin resins; urea resins, melamine resins, benzoguanamine resins and other amino resins and other synthetic glues or synthetics. Resins: Silicone resins such as polyalkylsiloxane, polyalkylhydrogensiloxane, polyalkylalkenylsiloxane, polyalkylsyliconate, polyalkalialkylsiliconate, and polyalkylphenylsiloxane, as well as epoxy-modified, amino-modified, urethane-modified, and alkyd-modified. , A modified product such as acrylic modification, a silicone resin containing a copolymer, etc .; or a polymer such as tetrafluoroethylene or vinylidene fluoride, a fluororesin such as a copolymer of these monomers and other kinds of monomers, etc. Be done. Of these, urethane-based resins and silicone resins are preferable, and urethane-based resins are particularly preferable, from the viewpoint of adhesiveness and the like.
 バインダ樹脂に代えて又はバインダ樹脂と組み合わせて、無機バインダを1種単独で又は2種以上組み合わせて使用してもよい。無機バインダとしては、例えば、アルキルシリケート、ハロゲン化ケイ素、これらの部分加水分解物等の加水分解性ケイ素化合物を分解して得られる生成物、有機ポリシロキサン化合物とその重縮合物、シリカ、コロイダルシリカ、水ガラス、ケイ素化合物、リン酸亜鉛等のリン酸塩、酸化亜鉛、酸化ジルコニウム等の金属酸化物、重リン酸塩、セメント、石膏、石灰、ほうろう用フリット等が挙げられる。 The inorganic binder may be used alone or in combination of two or more in place of the binder resin or in combination with the binder resin. Examples of the inorganic binder include alkyl silicates, silicon halides, products obtained by decomposing hydrolyzable silicon compounds such as partial hydrolysates thereof, organic polysiloxane compounds and their polycondensates, silica, colloidal silica. , Water glass, silicon compounds, phosphates such as zinc phosphate, metal oxides such as zinc oxide and zirconium oxide, heavy phosphates, cement, gypsum, lime, frit for brooms and the like.
[殺コロナウイルス方法]
 また本発明は、酸化チタン粒子の表面に銀粒子が接合された、レーザー回折法で測定したときの粒子径が0.1μmを超え0.3μm未満であり、殺コロナウイルス剤の全質量基準で、酸化チタン粒子の含有量が70~96質量%、銀粒子の含有量が0.5質量%を超え3.6質量%以下である、複合粒子を備える、殺コロナウイルス剤又はそれを含む部材を、コロナウイルスの存在が想定される箇所に配置する、殺コロナウイルス方法にも関する。
 殺コロナウイルス剤又はそれを含む部材として、例えば上述の医療用シートを用いることが好ましい。
 医療機関において、患者からの飛沫感染や接触感染が想定される部材、例えば、肌着、靴下等の衣服;シーツや布団カバー等の織物;空気清浄機やエアコンのフィルター等の空調設備;ドアノブや壁紙等の室内設備;マスク、フェースシールド、防護服等の感染防護用品に、殺コロナウイルス剤又はそれを含む部材を、適用することにより、新型コロナウイルスを短時間で死滅させることができるので、効果的に新型コロナウイルスの感染拡大を防止することができる。
 その他にも、公共交通機関の車内において、例えば、座席シート、手すり、つり革、ブザー、空調設備等に、殺コロナウイルス剤又はそれを含む部材を、適用することにより、新型コロナウイルスを死滅させることができる。
 なお、殺コロナウイルス剤を各部材に適用する際に、所定のバインダーを用いて適用することにより、殺コロナウイルス剤の耐用期間が長くなる。
[Coronavirus killing method]
Further, in the present invention, the particle size when silver particles are bonded to the surface of titanium oxide particles and measured by a laser diffraction method is more than 0.1 μm and less than 0.3 μm, based on the total mass of the coronavirus killing agent. , A corona-killing agent or a member containing the composite particles, wherein the content of titanium oxide particles is 70 to 96% by mass, the content of silver particles is more than 0.5% by mass and 3.6% by mass or less. Is also related to the method of killing coronaviruses, which places the particles in places where the presence of coronaviruses is expected.
As the coronavirus-killing agent or a member containing the same, for example, the above-mentioned medical sheet is preferably used.
In medical institutions, materials that are expected to be infected by droplets or contact from patients, such as clothing such as underwear and socks; textiles such as sheets and duvet covers; air conditioning equipment such as air purifiers and air conditioner filters; door knobs and wallpaper Indoor equipment such as; By applying a coronavirus killing agent or a member containing it to infection protection products such as masks, face shields, protective clothing, etc., the new coronavirus can be killed in a short time, which is effective. It is possible to prevent the spread of the new coronavirus.
In addition, the new coronavirus is killed by applying a coronavirus-killing agent or a member containing it to, for example, seats, handrails, straps, buzzers, air-conditioning equipment, etc. in a car of public transportation. be able to.
When the coronavirus-killing agent is applied to each member, the service life of the coronavirus-killing agent becomes longer by applying it using a predetermined binder.
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、以下のような医薬製剤が含まれる。
(Other embodiments)
As mentioned above, the invention has been described by embodiment, but the statements and drawings that form part of this disclosure should not be understood to limit the invention. This disclosure will reveal to those skilled in the art various alternative embodiments, examples and operational techniques. For example, the following pharmaceutical formulations are included.
[医薬製剤]
 本発明の医薬製剤は、鼻腔内粘膜に投与される医薬製剤であり、1個以上の酸化チタン粒子と、1個以上のリン酸カルシウム粒子と、1個以上の金属粒子とを含んでなる複合粒子を含有する。複合粒子に関しては、上記説明が適用される。
[Pharmaceutical product]
The pharmaceutical preparation of the present invention is a pharmaceutical preparation administered to the mucous membrane in the nasal cavity, and is a composite particle containing one or more titanium oxide particles, one or more calcium phosphate particles, and one or more metal particles. contains. The above description applies to composite particles.
 本発明の医薬製剤には、有効成分である複合粒子に加えて、医薬上許容され得る添加剤を配合して製造することができる。このような添加剤としては、例えば、pH調整剤、保存剤、着香料、分散剤、湿潤剤、安定剤、防腐剤、懸濁剤、界面活性剤等が挙げられる。 The pharmaceutical preparation of the present invention can be produced by blending a pharmaceutically acceptable additive in addition to the composite particles as an active ingredient. Examples of such additives include pH adjusters, preservatives, fragrances, dispersants, wetting agents, stabilizers, preservatives, suspending agents, surfactants and the like.
 pH調整剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。pH調整剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。pH調整剤としては、例えば、塩酸、硫酸、硝酸、臭化水素酸、リン酸等の無機酸、酢酸、コハク酸、フマル酸、リンゴ酸、シュウ酸、乳酸、グルタル酸、サリチル酸、酒石酸等の有機酸、これら酸の塩等が挙げられる。pH調整剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The pH adjuster can be appropriately selected and used from those generally used for external use. The blending amount of the pH adjuster can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid and phosphoric acid, acetic acid, succinic acid, fumaric acid, malic acid, oxalic acid, lactic acid, glutaric acid, salicylic acid and tartrate acid. Examples thereof include organic acids and salts of these acids. As the pH adjuster, one type may be used alone, or two or more types may be used in combination.
 保存剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。保存剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。保存剤としては、例えば、パラオキシ安息香酸、メチルパラベン、エチルパラベン、プロピルパラベン、クロロブタノール、ベンジルアルコール、パラオキシ安息香酸メチル、パラオキシ安息香酸プロピル等のパラオキシ安息香酸アルキルエステル等が挙げられる。保存剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The preservative can be appropriately selected and used from those generally used for external use. The blending amount of the preservative can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the preservative include paraoxybenzoic acid alkyl esters such as paraoxybenzoic acid, methylparaben, ethylparaben, propylparaben, chlorobutanol, benzyl alcohol, methyl paraoxybenzoate, and propyl paraoxybenzoate. As the preservative, one type may be used alone, or two or more types may be used in combination.
 着香料は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。着香料の配合量は、剤形、基剤成分等に応じて適宜調整することができる。着香料としては、例えば、メントール、ローズ油、ユーカリ油、d-カンフル等が挙げられる。着香料は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The fragrance can be appropriately selected and used from those generally used for external use. The blending amount of the flavoring agent can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the flavoring agent include menthol, rose oil, eucalyptus oil, d-camphor and the like. As the flavoring agent, one type may be used alone, or two or more types may be used in combination.
 分散剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。分散剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。分散剤としては、例えば、メタリン酸ナトリウム、ポリリン酸カルシウム、無水ケイ酸等が挙げられる。分散剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The dispersant can be appropriately selected and used from those generally used for external use. The blending amount of the dispersant can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the dispersant include sodium metaphosphate, calcium polyphosphate, silicic acid anhydride and the like. As the dispersant, one type may be used alone, or two or more types may be used in combination.
 湿潤剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。湿潤剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。湿潤剤としては、例えば、プロピレングリコール、ブチレングリコール、グリセリン、ソルビトール、乳酸ナトリウム、ヒアルロン酸ナトリウム等が挙げられる。湿潤剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The wetting agent can be appropriately selected and used from those generally used for external use. The blending amount of the wetting agent can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the wetting agent include propylene glycol, butylene glycol, glycerin, sorbitol, sodium lactate, sodium hyaluronate and the like. As the wetting agent, one type may be used alone, or two or more types may be used in combination.
 安定剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。安定剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。安定剤としては、例えば、亜硫酸水素ナトリウム、トコフェロール、エチレンジアミン四酢酸(EDTA)、クエン酸等が挙げられる。安定剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The stabilizer can be appropriately selected and used from those generally used for external use. The blending amount of the stabilizer can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the stabilizer include sodium bisulfite, tocopherol, ethylenediaminetetraacetic acid (EDTA), citric acid and the like. As the stabilizer, one type may be used alone, or two or more types may be used in combination.
 防腐剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。防腐剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。防腐剤としては、例えば、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、塩酸ベンザルコニウム、ソルビン酸等が挙げられる。防腐剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The preservative can be appropriately selected and used from those generally used for external use. The blending amount of the preservative can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the preservative include ethyl paraoxybenzoate, propyl paraoxybenzoate, benzalkonium hydrochloride, sorbic acid and the like. As the preservative, one kind may be used alone, or two or more kinds may be used in combination.
 懸濁剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。懸濁剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。懸濁剤としては、例えば、トラガント末、アラビアゴム末、ベントナイト、カルボキシメチルセルロースナトリウム等が挙げられる。懸濁剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The suspending agent can be appropriately selected and used from those generally used for external use. The blending amount of the suspending agent can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the suspending agent include tragant powder, gum arabic powder, bentonite, sodium carboxymethyl cellulose and the like. As the suspending agent, one type may be used alone, or two or more types may be used in combination.
 界面活性剤は、外用剤に一般的に使用されているものの中から適宜選択して使用することができる。界面活性剤の配合量は、剤形、基剤成分等に応じて適宜調整することができる。界面活性剤としては、例えば、ポリオキシエチレン硬化ヒマシ油、セスキオレイン酸ソルビタン等のソルビタン脂肪酸エステル、ステアリン酸ポリオキシル等が挙げられる。界面活性剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The surfactant can be appropriately selected and used from those generally used for external use. The blending amount of the surfactant can be appropriately adjusted according to the dosage form, the base component and the like. Examples of the surfactant include polyoxyethylene hydrogenated castor oil, sorbitan fatty acid ester such as sorbitan sesquioleate, and polyoxyl stearate. As the surfactant, one type may be used alone, or two or more types may be used in combination.
 本発明の医薬製剤の剤形は、鼻腔内粘膜に投与可能である限り特に限定されず、例えば、点鼻剤、スプレー剤、エアゾール剤、軟膏剤、クリーム剤、ローション剤、リニメント剤、パップ剤、プラスター剤、パッチ剤、硬膏剤、ゲル剤、液剤、テープ剤、散剤、顆粒剤等が挙げられる。所望の剤形への製剤化は、日本薬局方の製剤総則等に記載される通常の方法に従って、各剤形に適した添加剤、基剤等を使用して行うことができる。貼付剤、テープ剤等の投与剤形において使用される基材としては、例えば、綿、スフ、麻、化学繊維等の織布;レーヨン、ポリエステル、ナイロン等の不織布;軟質ポリ塩化ビニル、ポリエチレン、ポリウレタン等のプラスチックフィルム等が挙げられる。基材は、2以上の層からなる積層シートであってもよい。 The dosage form of the pharmaceutical preparation of the present invention is not particularly limited as long as it can be administered to the intranasal mucosa, and for example, nasal drops, sprays, aerosols, ointments, creams, lotions, liniments, and paps. , Plasters, patches, plasters, gels, liquids, tapes, powders, granules and the like. The formulation into a desired dosage form can be carried out by using an additive, a base or the like suitable for each dosage form according to the usual method described in the general formulation rules of the Japanese Pharmacopoeia. Examples of the base material used in the dosage form of patches, tapes, etc. include woven fabrics such as cotton, sufu, linen, and chemical fibers; non-woven fabrics such as rayon, polyester, and nylon; soft polyvinyl chloride, polyethylene, and the like. Examples thereof include plastic films such as polyurethane. The base material may be a laminated sheet composed of two or more layers.
 剤形が軟膏剤又はクリーム剤である場合、基剤としては、例えば、油脂性基剤又は乳剤性基剤を使用することができる。 When the dosage form is an ointment or a cream, for example, an oily base or an emulsion base can be used as the base.
 油脂性基剤としては、例えば、炭化水素、高級アルコール、高級脂肪酸、高級脂肪酸エステル、グリコール類、植物油、動物油等が挙げられる。油脂性基剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the oily base include hydrocarbons, higher alcohols, higher fatty acids, higher fatty acid esters, glycols, vegetable oils, animal oils and the like. The oily base may be used alone or in combination of two or more.
 油脂性基剤として使用可能な炭化水素としては、例えば、炭素数12~32の炭化水素、種々の炭化水素の混合物である流動パラフィン、分枝状パラフィン、固形パラフィン、白色ワセリン、黄色ワセリン、スクワレン、スクワラン、プラスチベース等が挙げられる。 Hydrocarbons that can be used as an oily base include, for example, hydrocarbons having 12 to 32 carbon atoms, liquid paraffin, which is a mixture of various hydrocarbons, branched paraffin, solid paraffin, white petrolatum, yellow petrolatum, and squalane. , Squalane, paraffin base, etc.
 油脂性基剤として使用可能な高級アルコールとしては、例えば、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セチルアルコール(セタノール)、ヘキサデシルアルコール、ヘプタデシルアルコール、ステアリルアルコール、オレイルアルコール、ノナデシルアルコール、エイコシルアルコール、セリルアルコール、メリシルアルコール、セトステアリルアルコール等の炭素数12~30の脂肪族1価アルコール等が挙げられる。 Higher alcohols that can be used as oily bases include, for example, lauryl alcohol, tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol (cetanol), hexadecyl alcohol, heptadecyl alcohol, stearyl alcohol, oleyl alcohol, and nona. Examples thereof include aliphatic monohydric alcohols having 12 to 30 carbon atoms such as decyl alcohol, eicosyl alcohol, ceryl alcohol, mericyl alcohol and cetostearyl alcohol.
 油脂性基剤として使用可能な高級脂肪酸としては、例えば、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、オレイン酸、ノナデカン酸、アラキン酸、アラキドン酸、リノール酸、リノレン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸、エライジン酸、ブラシジン酸等の炭素数6~32の飽和又は不飽和脂肪酸等が挙げられる。 Higher fatty acids that can be used as oily bases include, for example, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, undesic acid, lauric acid, tridecyl acid, myristic acid, pentadecic acid, palmitic acid and heptadecic acid. , Stearic acid, oleic acid, nonadecanic acid, araquinic acid, arachidonic acid, linoleic acid, linolenic acid, behenic acid, lignoseric acid, cellotic acid, heptacosanoic acid, montanic acid, melicic acid, laxeric acid, ellagic acid, brushzic acid, etc. Examples thereof include saturated or unsaturated fatty acids having 6 to 32 carbon atoms.
 油脂性基剤として使用可能な高級脂肪酸エステルとしては、例えば、パルミチン酸ミリスチル、ステアリン酸ステアリル、ミリスチン酸ミリスチル、リグノセリン酸セリル、セロチン酸ラクセリル、ラクセル酸ラクセリル等の脂肪酸エステル;ラノリン、ミツロウ、クジラロウ、セラックロウ等の動物由来の天然ロウ、カルナウバロウ、カンデリラロウ等の植物由来の天然ロウ等の炭素数10~32の脂肪酸と炭素数14~32の脂肪族1価アルコールとのエステル;グリセリルモノラウリレート、グリセリルモノミリスチレート、グリセリルモノオレート、グリセリルモノステアレート、グリセリルジラウリレート、グリセリルジミリスチレート、グリセリルジステアレート、グリセリルトリラウリレート、グリセリルトリミリスチレート、グリセリルトリステアレート等の炭素数10~22の飽和又は不飽和脂肪酸とグリセリンとのエステル又はそれらの水素添加物等が挙げられる。 Examples of higher fatty acid esters that can be used as an oily base include fatty acid esters such as myristyl palmitate, stearyl stearate, myristyl myristate, ceryl lignoserate, luxeryl serotinate, and luxeryl laxelate; Esters of fatty acids having 10 to 32 carbon atoms and fatty monovalent alcohols having 14 to 32 carbon atoms such as natural waxes derived from animals such as cellac wax, carnauba wax, and natural waxes derived from plants such as candelilla wax; glyceryl monolaurylate, glyceryl Monomyristylate, glyceryl monooleate, glyceryl monostearate, glyceryl dilaurylate, glyceryl dimyristylate, glyceryl distearate, glyceryl trilaurylate, glyceryl trimylstyrate, glyceryl tristearate, etc. 10 carbon atoms Examples thereof include esters of saturated or unsaturated fatty acids of ~ 22 and glycerin, or hydrogenated additives thereof.
 油脂性基剤として使用可能なグリコール類としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブタンジオール、ポリエチレングリコール等が挙げられる。 Examples of glycols that can be used as an oily base include ethylene glycol, diethylene glycol, propylene glycol, 1,3-butanediol, and polyethylene glycol.
 油脂性基剤として使用可能な植物油としては、例えば、ツバキ油、ヒマシ油、オリーブ油、カカオ油、ヤシ油、パーム油、マカデミアナッツ油、大豆油、茶実油、ゴマ油、ヘントウ油、サフラワー油、綿実油、テレピン油、これら植物油に水素添加した植物油脂類等が挙げられる。 Vegetable oils that can be used as oily bases include, for example, camellia oil, castor oil, olive oil, cacao oil, palm oil, palm oil, macadamia nut oil, soybean oil, brown seed oil, sesame oil, gentle oil, and saflower oil. Examples thereof include cottonseed oil, terepine oil, and vegetable oils and fats obtained by hydrogenating these vegetable oils.
 油脂性基剤として使用可能な動物油としては、例えば、ミンク油、卵黄油、スクワラン、スクワレン、ラノリン、動物油の誘導体等が挙げられる。 Examples of animal oils that can be used as oily bases include mink oil, egg yolk oil, squalane, squalene, lanolin, and animal oil derivatives.
 乳剤性基剤としては、例えば、水中油型基剤、油中水型基剤、懸濁型基剤等が挙げられる。乳剤性基剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the emulsion base include an oil-in-water base, a water-in-oil base, and a suspension base. The emulsion base may be used alone or in combination of two or more.
 水中油型基剤としては、界面活性剤の存在下又は非存在下で、ラノリン、プロピレングリコール、ステアリルアルコール、ワセリン、シリコーン油、流動パラフィン、グリセリルモノステアレート、ポリエチレングリコール等の成分を水相中に乳化、分散せしめた基剤等が挙げられる。水中油型基剤は、クリーム等を調製する際に好適に使用することができる。 As the oil-in-water base, components such as lanolin, propylene glycol, stearyl alcohol, petrolatum, silicone oil, liquid paraffin, glyceryl monostearate, and polyethylene glycol are contained in the aqueous phase in the presence or absence of a surfactant. Examples include emulsified and dispersed bases. The oil-in-water base can be suitably used when preparing a cream or the like.
 油中水型基剤としては、ワセリン、高級脂肪族アルコール、流動パラフィン等の成分に、非イオン性界面活性剤の存在下で、水を加え、乳化、分散せしめた基剤等が挙げられる。 Examples of the water-in-oil base include a base obtained by adding water to components such as petrolatum, higher fatty alcohol, and liquid paraffin in the presence of a nonionic surfactant, and emulsifying and dispersing the base.
 水中油型基剤及び油中水型基剤は、水を含む剤形、例えば、水を含有する液剤、ローション剤、パップ剤、軟膏剤等に好適に使用することができる。 The oil-in-water base and the water-in-oil base can be suitably used in a dosage form containing water, for example, a liquid containing water, a lotion, a poultice, an ointment, and the like.
 懸濁性基剤としては、水にデンプン、グリセリン、高粘度カルボキシメチルセルロース、カルボキシビニルポリマー等の懸濁化剤を加えてゲル状にした水性基剤等が挙げられる。 Examples of the suspendable base include an aqueous base obtained by adding a suspending agent such as starch, glycerin, high-viscosity carboxymethyl cellulose, and carboxyvinyl polymer to water to form a gel.
 本発明の医薬製剤は、一般に採用されている外用剤の調製方法に従って製造することができる。例えば、軟膏剤又はクリーム剤は、それぞれの剤形に応じて基剤の原料を混練、乳化又は懸濁せしめて基剤を調製した後、有効成分及び各種添加剤を加えて混合することにより製造することができる。混合に際しては、スクリューミキサー、ホモミキサー、ニーダー、ロールミル等の一般に使用されている混合機を使用することができる。 The pharmaceutical preparation of the present invention can be produced according to a generally adopted method for preparing an external preparation. For example, an ointment or cream is produced by kneading, emulsifying or suspending a base material according to each dosage form to prepare a base, and then adding an active ingredient and various additives and mixing them. can do. For mixing, a commonly used mixer such as a screw mixer, a homomixer, a kneader, or a roll mill can be used.
 剤形がローション剤である場合には、懸濁型、乳剤形及び溶液型のいずれのタイプであってもよい。 When the dosage form is a lotion, it may be any type of suspension type, emulsion type and solution type.
 懸濁型ローションの基剤としては、アラビアゴム、トラガントゴム等のゴム類、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルデンプン等のセルロース類、ベントナイト、ビーガムHV等の粘土類の懸濁剤と水の混合物等が挙げられる。懸濁型ローションの基剤は、通常、単独で又は2種以上を混合して使用することができる。 Examples of the base of the suspension type lotion include rubbers such as Arabica rubber and tragant rubber, celluloses such as methyl cellulose, hydroxyethyl cellulose and hydroxyethyl starch, and a mixture of clay suspension such as bentonite and bee gum HV and water. Can be mentioned. The base of the suspension lotion can usually be used alone or in admixture of two or more.
 乳剤形ローションの基剤としては、水とステアリン酸、ベヘン酸、オレイン酸等の脂肪酸、ステアリルアルコール、セタノール、ベヘニルアルコール等の高級アルコール等の油性物質を乳化させた基剤等が挙げられる。乳剤形ローションの基剤は、通常、単独で又は2種以上を混合して使用することができる。 Examples of the base of the emulsion-type lotion include water and a base obtained by emulsifying an oily substance such as fatty acid such as stearic acid, behenic acid and oleic acid, and higher alcohol such as stearyl alcohol, cetanol and behenic alcohol. The base of the emulsion lotion can usually be used alone or in admixture of two or more.
 溶液型ローションの基剤としては、水、エタノール、グリセリン、プロピレングリコール等のアルコール等が挙げられる。溶液型ローションの基剤は、通常、単独で又は2種以上を混合して使用することができる。 Examples of the base of the solution type lotion include water, ethanol, glycerin, alcohol such as propylene glycol, and the like. The base of the solution lotion can usually be used alone or in combination of two or more.
 ローション剤は、例えば、精製水に種々の基剤成分を添加して混合、攪拌した後、有効成分及び添加剤を加えて混合し、所望に応じて濾過を行なうことにより、製造することができる。 The lotion can be produced, for example, by adding various base components to purified water, mixing and stirring, then adding the active ingredient and additives, mixing, and filtering if desired. ..
 剤形がリニメント剤の場合には、その基剤としては、例えば、オリーブ油、ゴマ油、ヘントウ油、綿実油、テレピン油等の植物油類、エタノール、プロパノール、イソプロパノール等のアルコール類、それらと水との混合物等が挙げられる。リニメント剤の基剤は、通常、単独で又は2種以上を混合して使用することができる。 When the dosage form is a liniment agent, the base thereof is, for example, vegetable oils such as olive oil, sesame oil, prunus dulcis oil, cottonseed oil, and terepine oil, alcohols such as ethanol, propanol and isopropanol, and a mixture thereof with water. And so on. The base of the liniment agent can usually be used alone or in combination of two or more.
 リニメント剤は、基剤に有効成分を溶解し、更に所望の成分を加えて混合することにより、製造することができる。 The liniment agent can be produced by dissolving the active ingredient in the base, further adding the desired ingredient, and mixing.
 剤形がパップ剤の場合には、その基剤として、例えば、ポリアクリル酸及びその塩、ポリビニルアルコール、ポリビニルピロリドン等の水溶性高分子化合物、該水溶性高分子化合物をミョウバンなどの多価金属塩によって架橋せしめた基剤、該水溶性高分子化合物に放射線照射のような物理的処理を施し架橋せしめた基剤等の架橋体等が挙げられる。パップ剤の基剤は、通常、単独で又は2種以上を混合して使用することができる。 When the dosage form is a poultice, the base thereof is, for example, a water-soluble polymer compound such as polyacrylic acid and a salt thereof, polyvinyl alcohol, polyvinylpyrrolidone, etc., and the water-soluble polymer compound is a polyvalent metal such as myoban. Examples thereof include a base crosslinked with a salt, a crosslinked body such as a base crosslinked by subjecting the water-soluble polymer compound to a physical treatment such as irradiation. The base of the poultice can usually be used alone or in admixture of two or more.
 パップ剤は、有効成分、基剤及び所望の添加物を混合し、加熱後冷却することにより、製造することができる。 The poultice can be produced by mixing the active ingredient, the base and the desired additive, heating and then cooling.
 プラスター剤、パッチ剤及び硬膏剤の場合には、不織布等の支持体、天然ゴム、スチレン-ブタジエンゴム(SBR)、ブチルゴム、ポリイソブチレン、ポリビニルアルキルエーテル、ポリウレタン、ジメチルポリシロキサン、スチレン-イソプレン-スチレンゴム、イソプレンゴム等の弾性体、亜鉛華、酸化チタン、シリカ等の充填剤、弾性体との相溶性がよい、テルペン樹脂、ロジン又はそのエステル、フェノール樹脂等の粘着付与剤、酢酸ビニル、シリコーン樹脂、ポリ塩化ビニル等の剥離処理剤、流動パラフィン、プロセスオイル等の軟化剤、ジブチルヒドロキシトルエン(BHT)等の老化防止剤等が挙げられる。これらの成分は単独で又は2種以上を混合して使用することができる。 In the case of plasters, patches and plasters, supports such as non-woven fabrics, natural rubber, styrene-butadiene rubber (SBR), butyl rubber, polyisobutylene, polyvinyl alkyl ether, polyurethane, dimethylpolysiloxane, styrene-isoprene-styrene. Elastic materials such as rubber and isoprene rubber, fillers such as zinc flower, titanium oxide, silica, adhesives such as terpene resin, rosin or its ester, phenol resin, etc., which have good compatibility with elastic materials, vinyl acetate, silicone Examples thereof include a stripping agent such as resin and polyvinyl chloride, a softening agent such as liquid paraffin and process oil, and an antiaging agent such as dibutylhydroxytoluene (BHT). These components can be used alone or in admixture of two or more.
 プラスター剤、パッチ剤、硬膏剤等は、溶液法や熱圧法などの常法により製造することができる。具体的には、例えば、熱圧式によるときは、有効成分及び各成分をロール機などで均一に混練し、熱及び圧力を加えたカレンダーを使用して離型紙上に均一の厚さとなるよう塗布して薬物含有層を形成し、これを支持体表面へ積層し、密着させて製造することができる。 Plaster agents, patches, plasters, etc. can be manufactured by conventional methods such as solution method and thermal pressure method. Specifically, for example, in the case of a thermal pressure type, the active ingredient and each ingredient are uniformly kneaded with a roll machine or the like, and applied to a uniform thickness on a release paper using a calendar to which heat and pressure are applied. This can be used to form a drug-containing layer, which can be laminated on the surface of the support and brought into close contact with the support.
 ゲル剤、液剤、テープ剤等の場合にも、その基剤は、通常の外用剤に使用されているものであればよく、特に限定されない。 Even in the case of gels, liquids, tapes, etc., the base may be any as long as it is used as a normal external preparation, and is not particularly limited.
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description.
 以下、製造例及び試験例に基づいて本発明をさらに詳細に説明する。但し、本発明の範囲は、これらの製造例及び試験例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on manufacturing examples and test examples. However, the scope of the present invention is not limited to these production examples and test examples.
[製造例1]:複合粒子の製造
 本製造例では、酸化チタン粉末、銀粉末及びハイドロキシアパタイト粉末を原料粉末として使用し、1個以上の酸化チタン粒子、1個以上の銀粒子及び1個以上のハイドロキシアパタイト粒子を含んでなる複合粒子を製造した。
[Production Example 1]: Production of Composite Particles In this production example, titanium oxide powder, silver powder and hydroxyapatite powder are used as raw material powders, and one or more titanium oxide particles, one or more silver particles and one or more. A composite particle comprising the hydroxyapatite particles of the above was produced.
 本製造例では、2種類の複合粒子M1及びM2を製造した。複合粒子M1及びM2は、酸化チタン、銀及びハイドロキシアパタイトの含有比の点で異なる。 In this production example, two types of composite particles M1 and M2 were produced. The composite particles M1 and M2 differ in the content ratio of titanium oxide, silver and hydroxyapatite.
 表1に示す原料粉末を準備した。酸化チタン粉末の粒子径は、透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)を使用して測定された値であり、銀粉末の粒子径は、比表面積に基づいて算出された値であり、ハイドロキシアパタイト粉末の粒子径は、レーザー回折・散乱法によって測定された値である。銀粉末は使用まで冷凍保存しておいたので、銀粉末に含まれる銀粒子の凝集は抑制されていた。 The raw material powder shown in Table 1 was prepared. The particle size of the titanium oxide powder is a value measured using a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and the particle size of the silver powder is a value calculated based on the specific surface area. The particle size of the hydroxyapatite powder is a value measured by a laser diffraction / scattering method. Since the silver powder was stored frozen until use, the aggregation of silver particles contained in the silver powder was suppressed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 市販の湿式ビーズミル(アシザワ・ファインテック株式会社製「スターミルLME」)を使用して、酸化チタン粉末、銀粉末、ハイドロキシアパタイト粉末及びポリカルボン酸系分散剤を水中で混合することにより、酸化チタン粉末に含まれる1個以上の酸化チタン粒子と、銀粉末に含まれる1個以上の銀粒子と、ハイドロキシアパタイト粉末に含まれる1個以上のハイドロキシアパタイト粒子とを複合化し、複合粒子の懸濁液(スラリー)を製造した。使用した湿式ビーズミルは、原料粉末に含まれる酸化チタン粒子、銀粒子及びハイドロキシアパタイト粒子を分散させながら微粉砕し、ナノ粒子又はサブミクロン粒子まで微粒子化することができるとともに、微粒子化した粒子を複合化することができる。 Titanium oxide powder by mixing titanium oxide powder, silver powder, hydroxyapatite powder and polycarboxylic acid-based dispersant in water using a commercially available wet bead mill (“Star Mill LME” manufactured by Ashizawa Finetech Co., Ltd.). One or more titanium oxide particles contained in the above, one or more silver particles contained in the silver powder, and one or more hydroxyapatite particles contained in the hydroxyapatite powder are combined to form a suspension of the composite particles. Slurry) was produced. The wet bead mill used can be finely pulverized while dispersing titanium oxide particles, silver particles and hydroxyapatite particles contained in the raw material powder, and can be finely divided into nanoparticles or submicron particles, and the finely divided particles are combined. Can be transformed into.
 湿式ビーズミルを使用した粒子複合化の条件は、次の通りである。
 原料粉末の合計添加量:4kg以上
 シリンダー容積:3.3L
 ビーズ:ジルコニア製ビーズ(直径0.5mm、質量0.37mg)
 液の流量:2L/分
 シリンダー内の羽根の周速:540m/分
 液温:35~45℃
 原料粉末1kgあたりの混合時間:30~40分(約36分)
The conditions for particle compositing using a wet bead mill are as follows.
Total amount of raw material powder added: 4 kg or more Cylinder volume: 3.3 L
Beads: Zirconia beads (diameter 0.5 mm, mass 0.37 mg)
Liquid flow rate: 2 L / min Peripheral speed of blades in cylinder: 540 m / min Liquid temperature: 35-45 ° C
Mixing time per 1 kg of raw material powder: 30-40 minutes (about 36 minutes)
 酸化チタン粉末、銀粉末及びハイドロキシアパタイト粉末の合計配合量は、水65質量部に対して、35質量部に調整した。ポリカルボン酸系分散剤の配合量は、酸化チタン粉末、銀粉末及びハイドロキシアパタイト粉末の合計配合量35質量部に対して、0.5質量部に調整した。 The total amount of titanium oxide powder, silver powder and hydroxyapatite powder was adjusted to 35 parts by mass with respect to 65 parts by mass of water. The blending amount of the polycarboxylic acid-based dispersant was adjusted to 0.5 parts by mass with respect to 35 parts by mass of the total blending amount of titanium oxide powder, silver powder and hydroxyapatite powder.
 複合粒子M1の製造では、酸化チタン粉末の配合量を、銀粉末1質量部に対して約160質量部(155~165質量部)に調整し、ハイドロキシアパタイト粉末の配合量を、銀粉末1質量部に対して約40質量部(39~41質量部)に調整した。 In the production of the composite particle M1, the blending amount of the titanium oxide powder is adjusted to about 160 parts by mass (155 to 165 parts by mass) with respect to 1 part by mass of the silver powder, and the blending amount of the hydroxyapatite powder is 1 mass by mass of the silver powder. It was adjusted to about 40 parts by mass (39 to 41 parts by mass) with respect to the part.
 複合粒子M2の製造では、酸化チタン粉末の配合量を、銀粉末1質量部に対して約30質量部(29~31質量部)に調整し、ハイドロキシアパタイト粉末の配合量を、銀粉末1質量部に対して約3質量部(2.5~3.5質量部)に調整した。 In the production of the composite particle M2, the blending amount of the titanium oxide powder is adjusted to about 30 parts by mass (29 to 31 parts by mass) with respect to 1 part by mass of the silver powder, and the blending amount of the hydroxyapatite powder is 1 mass by mass of the silver powder. It was adjusted to about 3 parts by mass (2.5 to 3.5 parts by mass) with respect to the part.
 複合粒子の懸濁液(スラリー)を乾燥することにより、複合粒子M1及びM2を製造した。レーザー回折法により測定された複合粒子M1及びM2の粒子径は、200~500nmであった。レーザー回折法により体積基準で測定された複合粒子M1及びM2のメディアン径(d50)は、約300nmであった。レーザー回折法による粒子径の測定は、市販の粒子径分布測定装置、具体的にはレーザ回折/散乱式粒子径分布測定装置Partica(パーティカ)LA-960V2シリーズ(HORIBA社製)を使用して測定した。 Composite particles M1 and M2 were produced by drying a suspension (slurry) of composite particles. The particle diameters of the composite particles M1 and M2 measured by the laser diffraction method were 200 to 500 nm. The median diameter (d50) of the composite particles M1 and M2 measured by the laser diffraction method on a volume basis was about 300 nm. The particle size is measured by the laser diffraction method using a commercially available particle size distribution measuring device, specifically, a laser diffraction / scattering type particle size distribution measuring device Partica LA-960V2 series (manufactured by HORIBA). bottom.
[製造例2]:複合粒子付着不織布の製造
 製造例1で得られた複合粒子M1の懸濁液(スラリー)にバインダ樹脂を加えて混合液を調製した後、ポリエステル製スパンポンド不織布を混合液に浸漬し、不織布に混合液を含浸させた。浸漬後、混合液から不織布を取り出し、ローラーでプレスして余剰の混合液を絞り出した。プレス後、不織布を約130℃で約1分間乾燥して、複合粒子付着不織布A1を製造した。バインダ樹脂としては、ウレタン系樹脂(CNO/NHCOOC)を使用した。
[Production Example 2]: Production of composite particle-adhered nonwoven fabric A binder resin is added to the suspension (slurry) of the composite particles M1 obtained in Production Example 1 to prepare a mixed solution, and then a polyester spunpond nonwoven fabric is mixed. The non-woven fabric was impregnated with the mixed solution. After the immersion, the non-woven fabric was taken out from the mixed solution and pressed with a roller to squeeze out the excess mixed solution. After pressing, the nonwoven fabric was dried at about 130 ° C. for about 1 minute to produce a composite particle-adhered nonwoven fabric A1. As the binder resin, a urethane resin (C 3 H 7 NO 2 / NH 2 COOC 2 H 5 ) was used.
 混合液中の複合粒子M1及びバインダ樹脂の濃度を調整することにより、複合粒子付着不織布A1の単位面積あたりの複合粒子M1及びバインダ樹脂の合計付着量(合計固定量)を4g/mに調整した。 By adjusting the concentrations of the composite particles M1 and the binder resin in the mixed solution, the total adhesion amount (total fixed amount) of the composite particles M1 and the binder resin per unit area of the composite particle-adhered nonwoven fabric A1 is adjusted to 4 g / m 2 . bottom.
 4g/mの内訳は、酸化チタン2.27g/m、ハイドロキシアパタイト0.571g/m、銀0.014g/m、バインダ樹脂1.14g/であった。 The breakdown of 4 g / m 2 was titanium oxide 2.27 g / m 2 , hydroxyapatite 0.571 g / m 2 , silver 0.014 g / m 2 , and binder resin 1.14 g /.
 複合粒子M1の懸濁液に代えて複合粒子M2の懸濁液を使用した点を除き、上記と同様にして、複合粒子付着不織布A2を製造した。 The composite particle-adhered nonwoven fabric A2 was produced in the same manner as above, except that the suspension of the composite particles M2 was used instead of the suspension of the composite particles M1.
 混合液中の複合粒子M2及びバインダ樹脂の濃度を調整することにより、複合粒子付着不織布A2の単位面積あたりの複合粒子M2及びバインダ樹脂の合計付着量(合計固定量)を10.5g/mに調整した。 By adjusting the concentrations of the composite particles M2 and the binder resin in the mixed solution, the total adhesion amount (total fixed amount) of the composite particles M2 and the binder resin per unit area of the composite particle-adhered nonwoven fabric A2 is 10.5 g / m 2 . Adjusted to.
 10.5g/mの内訳は、酸化チタン6.525g/m、ハイドロキシアパタイト0.750g/m、銀0.225g/m、バインダ樹脂3.00g/mであった。 The breakdown of 10.5 g / m 2 was titanium oxide 6.525 g / m 2 , hydroxyapatite 0.750 g / m 2 , silver 0.225 g / m 2 , and binder resin 3.00 g / m 2 .
 複合粒子M1及びバインダ樹脂の合計付着量(合計固定量)が4g/mである複合粒子付着不織布A1を電子顕微鏡で観察した。
 電子顕微鏡観察結果の模式図を図23A、その一部拡大図を図23Bに示す。図中、白抜き部分が酸化チタン粒子であり、ハッチ部分が銀粒子である。図23A、図23Bに示されるように、複合粒子は、酸化チタン粒子の表面に銀粒子が接合されたモルフォロジーを有することが確認された。
The composite particle-adhered nonwoven fabric A1 having a total adhered amount (total fixed amount) of 4 g / m 2 of the composite particles M1 and the binder resin was observed with an electron microscope.
A schematic diagram of the electron microscope observation results is shown in FIG. 23A, and a partially enlarged view thereof is shown in FIG. 23B. In the figure, the white portion is titanium oxide particles, and the hatch portion is silver particles. As shown in FIGS. 23A and 23B, it was confirmed that the composite particles have a morphology in which silver particles are bonded to the surface of titanium oxide particles.
[製造例3]:複合粒子付着マスクの製造
 外気側から順に、ポリプロピレンスパンボンド不織布、ポリプロピレンメルトブロー不織布、複合粒子付着不織布及びポリプロピレンスパンボンド不織布を順に積層し、複合粒子付着マスクを製造した。複合粒子付着不織布としては、複合粒子M2及びバインダ樹脂の合計付着量(合計固定量)が10.5g/mである複合粒子付着不織布A2を使用した。
[Production Example 3]: Production of Composite Particle Adhesive Mask A polypropylene spunbonded nonwoven fabric, a polypropylene melt blow nonwoven fabric, a composite particle adhered nonwoven fabric, and a polypropylene spunbonded nonwoven fabric were laminated in this order from the outside air side to produce a composite particle adhesion mask. As the composite particle-adhered nonwoven fabric, the composite particle-attached nonwoven fabric A2 having a total adhered amount (total fixed amount) of 10.5 g / m 2 of the composite particles M2 and the binder resin was used.
[実施例1]
 ハイドロ銀チタン塗布物の新型コロナウイルス(SARS-CoV-2)に対する抗ウイルス活性能の評価試験を、バイオシュート株式会社に委託した。係る実験は長崎大学熱帯医学研究所新興感染症学分野安田研究室において、同大同研究室の安田二朗教授の管理下で行われた。細胞はBSL-2エリアにて、ウイルスはBSL-3エリアにて取扱った。
[Example 1]
Bioshoot Co., Ltd. was commissioned to evaluate the antiviral activity of the hydrosilver-titanium coated product against the new coronavirus (SARS-CoV-2). This experiment was conducted at the Yasuda Laboratory in the Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, under the supervision of Professor Jiro Yasuda of the same laboratory. Cells were handled in the BSL-2 area and viruses were handled in the BSL-3 area.
<材料および実験方法>
1.被験材料
 被験材料として以下の材料を用いた。
1.1 (試験材料1)
 複合粒子を備える加工不織布(以下「A1シート」ともいう)(低濃度)
(酸化チタン(79.5%)、銀(0.5%)、アパタイト(20%)、ウレタンバインダー;4g/m2
1.2 (試験材料2)
 複合粒子を備える加工不織布(以下「A2シート」ともいう)(高濃度)
(酸化チタン(87%)、銀(3%)、アパタイト(10%)、ウレタンバインダー;10.5g/m2
1.3 (参考材料1)
 ハイドロ銀チタン加工粉末(ハイドロ銀チタン粉末)(低濃度)
(酸化チタン、銀、アパタイト;4g/m2用)
1.4 (参考材料2)
 ハイドロ銀チタン加工粉末(ハイドロ銀チタン粉末)(高濃度)
(酸化チタン、銀、アパタイト;10g/m2用)
1.5 (陰性材料)
 ウレタンバインダーのみ加工不織布
1.6 (無処理群)
 ウイルス液(無血清培養);20倍希釈液(無血清培地)
 なお、ハイドロ銀チタン加工粉末(1.3及び1.4)は参考材料とする。
<Materials and experimental methods>
1. Test material The following materials were used as the test material.
1.1 (Test material 1)
Processed non-woven fabric with composite particles (hereinafter also referred to as "A1 sheet") (low concentration)
(Titanium oxide (79.5%), silver (0.5%), apatite (20%), urethane binder; 4g / m 2 )
1.2 (Test material 2)
Processed non-woven fabric with composite particles (hereinafter also referred to as "A2 sheet") (high concentration)
(Titanium oxide (87%), silver (3%), apatite (10%), urethane binder; 10.5 g / m 2 )
1.3 (Reference material 1)
Hydro Silver Titanium Processed Powder (Hydro Silver Titanium Powder) (Low Concentration)
(Titanium oxide, silver, apatite; for 4g / m 2 )
1.4 (Reference material 2)
Hydro Silver Titanium Processed Powder (Hydro Silver Titanium Powder) (High Concentration)
(Titanium oxide, silver, apatite; for 10g / m 2 )
1.5 (negative material)
Urethane binder only processed non-woven fabric
1.6 (unprocessed group)
Virus solution (serum-free culture); 20-fold diluted solution (serum-free medium)
The hydrosilver-titanium processed powder (1.3 and 1.4) is used as a reference material.
2.使用培地・試薬
 使用培地・試薬として以下のものを使用した。
2.1 血清培地(FBS添加D- MEM培地)(TMPRSS2 発現細胞継代時のみ+G418)
(追加添加;MEM 必須アミノ酸、ピルビン酸ナトリウム、抗生剤(ペニシリン/ストレプトマイシン))
 細胞継代、増殖用培地、感染価試験用培地として使用した。
2.2 無血清培地(VP-SFM培地)
(追加添加;L-グルタミン、抗生剤(ペニシリン/ストレプトマイシン))
 ウイルス培養用培地以外に浸漬法ウイルス希釈用液として使用した。
2.3 トリプシン(細胞剥離用)
2.4 アガロース(感染価試験用)
2.5 ホルマリン液(感染価試験用)
2.6 クリスタルバイオレット染色液(感染価試験用)
2. Medium / Reagent used The following medium / reagent was used.
2.1 Serum medium (FBS-added D-MEM medium) (TMPRSS2-expressing cell passage only + G418)
(Additional addition; MEM essential amino acid, sodium pyruvate, antibiotic (penicillin / streptomycin))
It was used as a cell passage medium, a growth medium, and an infectious titer test medium.
2.2 Serum-free medium (VP-SFM medium)
(Additional addition; L-glutamine, antibiotics (penicillin / streptomycin))
It was used as a diluting solution for virus by dipping method other than the medium for virus culture.
2.3 Trypsin (for cell detachment)
2.4 Agarose (for infectious titer test)
2.5 Formalin solution (for infectious titer test)
2.6 Crystal violet stain (for infectious titer test)
3. 使用細胞
3.1 VeroE6/TMPRSS2(TMPRSS2発現アフリカミドリザル腎由来細胞)およびVeroE6(アフリカミドリザル腎由来細胞)。研究室で使用中の細胞を使用した。
 ウイルスの無血清培地培養にはVeroE6/TMPRSS2を用い、感染価測定にはプラーク像が明確なVeroE6細胞を使用した。
 ウイルス培養及び感染価試験での細胞の継代数の制限は設けていない。
3. Cells used
3.1 VeroE6 / TMPRSS2 (TMPRSS2-expressing African green monkey kidney-derived cells) and VeroE6 (African green monkey kidney-derived cells). The cells used in the laboratory were used.
VeroE6 / TMPRSS2 was used for serum-free culture of the virus, and VeroE6 cells with a clear plaque image were used for infectious titer measurement.
There is no limit on the number of cell passages in virus cultures and infectious titer tests.
4. 使用ウイルス株
4.1 SARS-CoV-2_研究室分離株(野生株)
4. Used virus strain
4.1 SARS-CoV-2_Laboratory isolate (wild strain)
5. 試験方法および結果
5.1 ウイルス培養用細胞の調製
 血清培地(2.1)にてVeroE6/TMPRSS2細胞をT-75、およびT-175フラスコで継代増殖し、保存チューブ(1.5mLクライオチューブ)10本に1本あたり6×106cells/tube(1mL/tube)で凍結(-70℃以下)保存した(実験期間中保存)。そのうちの1本を復元し、保存状態が良好であることを確認した。別途T-75あるいはT-175フラスコでも細胞を継代し、SARS-CoV-2ウイルス液の調製に使用した。
 図1A,図1Bは、実験に使用した細胞(VeroE6/TMPRSS2細胞とVeroE6細胞)の顕微鏡写真である。
5. Test method and results
5.1 Preparation of cells for virus culture Subculture of VeroE6 / TMPRSS2 cells in serum medium (2.1) in T-75 and T-175 flasks, 6 × per 10 storage tubes (1.5 mL cryotubes) 10 6 cells / tube (1 mL / tube) was frozen (-70 ° C or lower) and stored (stored during the experimental period). One of them was restored and it was confirmed that the storage condition was good. The cells were separately subcultured in a T-75 or T-175 flask and used to prepare the SARS-CoV-2 virus solution.
1A and 1B are micrographs of cells (VeroE6 / TMPRSS2 cells and VeroE6 cells) used in the experiment.
5.2 被験材料溶出液の細胞増殖への影響確認
5.2.1 被験材料からの溶出物の回収
 各被験材料の内、シート材料(1.1、1.2、1.5;それぞれ3.2×3.2cm切片)を2枚ずつ(評価実験の2倍量)を直径5cmのシャーレに入れ、その上から2mLの血清培地(2.1)を入れた。また、粉末材料(1.3、1.4)200mg(評価実験の2倍量)を15mL遠心チューブに測り入れ、それぞれに血清培地(2.1)を2mL入れ振とうさせ、それぞれのシャーレ及び遠心チューブを37℃(CO2インキュベーター内)で6hr静置した。処理後シャーレからはデカントし、遠心チューブは、1,000rpm(9,100g)5分遠心分離し、それぞれの上清0.7mLを回収した。
 なお、各被験材料1.1~1.4は滅菌処理なし、1.5は殺菌用UVランプ30分の事前処理を行った。
5.2 Confirmation of the effect of test material eluate on cell proliferation
5.2.1 Recovery of eluate from test material Of each test material, two sheet materials (1.1, 1.2, 1.5; 3.2 x 3.2 cm sections each) (double the amount of the evaluation experiment) were placed in a petri dish with a diameter of 5 cm. And 2 mL of serum medium (2.1) was put on it. In addition, weigh 200 mg of powder material (1.3, 1.4) (twice the amount of the evaluation experiment) into a 15 mL centrifuge tube, add 2 mL of serum medium (2.1) to each and shake, and heat each dish and centrifuge tube to 37 ° C (2). It was allowed to stand for 6 hours in a CO 2 incubator). After the treatment, the petri dish was decanted, and the centrifuge tube was centrifuged at 1,000 rpm (9,100 g) for 5 minutes, and 0.7 mL of each supernatant was collected.
Each test material 1.1 to 1.4 was not sterilized, and 1.5 was pretreated with a UV lamp for sterilization for 30 minutes.
5.2.2 材料溶出物の細胞への影響確認
 VeroE6/TMPRSS2細胞
 細胞を6wellプレート2枚にwell当たり5×105cellsで播種し、翌日溶出物の添加を行った。溶出物液を0.3mL/well(溶出物濃度として、感染価試験の約3倍量)で培養細胞に添加した。サンプルはduplicateで実施した。添加後、培養を2日間継続し増殖状態を観察し、2日目に細胞数も計測し、陰性コントロールと比較した。また、粉末材料が1,000rpm 5分遠心分離で、微粉末の混入が多かったため、10,000rpm(9,100g)5分遠心分離した上清で再検した。
 各材料の溶出物とも1日目、2日目の細胞状態に陰性コントロールと変化がみられず、2日目の2wellの細胞数平均では、全て陰性コントロールと同等(陰性コントロール3.0×106cells/wellに対し、各被験材料で3.2~3.6×106cells/well)であった。粉末の再検についても変化は見られなかった(total感染価試験の6倍量添加)。これらの結果から、各被験材料からの溶出物が、本実験に使用するウイルス感染価測定のVeroE6/TMPRSS2細胞の形態や増殖阻害を与えないと判断した。
 また、それぞれの培養材料において、培養期間の2日間の血清培地(2.1)培養で微生物等の増殖はみられなかった。
 図2A~図2Fは溶出物添加細胞との形状比較(2日目)した結果を示す図である。
5.2.2 Confirmation of effects of material eluate on cells VeroE6 / TMPRSS2 cell cells were seeded on two 6-well plates at 5 × 10 5 cells per well, and the eluate was added the next day. The eluate solution was added to the cultured cells at 0.3 mL / well (the eluate concentration was about 3 times the amount of the infectious titer test). The sample was duplicated. After the addition, the culture was continued for 2 days, the growth state was observed, and the number of cells was also measured on the 2nd day, which was compared with the negative control. In addition, since the powder material was centrifuged at 1,000 rpm for 5 minutes and a large amount of fine powder was mixed in, the supernatant was re-examined by centrifuging at 10,000 rpm (9,100 g) for 5 minutes.
Negative control and no change were observed in the cell status on the 1st and 2nd days in the eluate of each material, and the average number of cells in the 2 wells on the 2nd day was the same as that of the negative control (negative control 3.0 × 10 6 cells). It was 3.2 to 3.6 × 10 6 cells / well for each test material against / well. No change was seen in the powder re-examination (6 times the total infectious titer test was added). From these results, it was judged that the eluate from each test material did not give morphology or growth inhibition of VeroE6 / TMPRSS2 cells for virus infectious titer measurement used in this experiment.
In addition, in each culture material, no growth of microorganisms was observed in the serum medium (2.1) culture for 2 days during the culture period.
2A to 2F are views showing the results of shape comparison (2nd day) with the eluate-added cells.
 VeroE6細胞
 細胞を6wellプレート2枚にwell当たり4×105 cellsで播種し、6時間後に溶出物の添加を行った。溶出物液を0.3mL/well(溶出物濃度として、感染価試験の約3倍量)で培養細胞に添加した。サンプルはduplicateで実施した。添加後、培養を4日間継続し増殖状態を観察し、4日目に細胞数を計測し、陰性コントロールと比較した。また、粉末材料は10,000rpm(9,100g)5分遠心分離した上清を用いた。
 各材料の溶出物とも2日目、4日目の細胞状態に陰性コントロールと変化がみられず、4日目の2wellの細胞数平均では、全て陰性コントロールと同等(陰性コントロール2.1×10cells/mLに対し、各被験材料で2.2~2.5×106 cells/mL)であった(total感染価試験の6倍量加重)。これらの結果から、各被験材料からの溶出物が、本実験に使用するウイルス感染価測定のVeroE6細胞の形態や増殖阻害を与えないと判断した。
 また、それぞれの培養材料において、培養期間の4日間の血清培地(2.1)培養で微生物等の増殖はみられなかった。
 図3A~図3Fは溶出物添加細胞との形状比較(4日目)した結果を示す図である。
VeroE6 cell cells were seeded on two 6-well plates at 4 × 10 5 cells per well, and the eluate was added 6 hours later. The eluate solution was added to the cultured cells at 0.3 mL / well (the eluate concentration was about 3 times the amount of the infectious titer test). The sample was duplicated. After the addition, the culture was continued for 4 days, the growth state was observed, and the number of cells was counted on the 4th day, which was compared with the negative control. As the powder material, the supernatant obtained by centrifuging at 10,000 rpm (9,100 g) for 5 minutes was used.
Negative control and no change were observed in the cell status on the 2nd and 4th days in the eluate of each material, and the average number of cells in the 2 wells on the 4th day was the same as that of the negative control (negative control 2.1 × 10 6 cells). It was 2.2 to 2.5 × 10 6 cells / mL for each test material per / mL (6 times the weight of the total infectious titer test). From these results, it was judged that the eluate from each test material did not give the morphology and growth inhibition of VeroE6 cells for measuring the viral infectivity used in this experiment.
In addition, in each culture material, no growth of microorganisms was observed in the serum medium (2.1) culture for 4 days during the culture period.
3A to 3F are views showing the results of shape comparison (4th day) with the eluate-added cells.
5.3 感染価試験用ウイルス液の調製
5.3.1 ウイルス液の採取
 各被験材料とのウイルスの反応に際し、たん白質による反応阻害をなくすため、極力たん白質の混入を少なくした無血清培地(2.2)でのウイルス培養を行い、感染価試験用のウイルス液を採取した。
 T-175フラスコでVeroE6/TMPRSS2細胞を血清培地(2.1)培養し、Confulentとなった細胞から培養培地を除き、無血清培地(2.2)で細胞を洗浄した後に、研究室提供のウイルス液(4.1)500μL(106pfu/mL相当でM.O.I.=0.01想定)を接種し、1hr静置した。その後、無血清培地(2.2)を20mL加えウイルス培養を開始した。ウイルス接種後2日目にpHが低下し、CPEが見られたが、生細胞がまだ残っていたことより、翌日(3日目)まで培養を実施し、培養上清(20mL)を回収し、凍結(-70℃以下)保存した。
 図4はVP-SFM培地でウイルス培養した際の、培養前(画面左)と培養後(3日目、画面右)の写真である。
5.3 Preparation of virus solution for infectious titer test
5.3.1 Collection of virus solution In order to eliminate the reaction inhibition by the protein during the virus reaction with each test material, the virus was cultured in a serum-free medium (2.2) with as little protein contamination as possible, and an infectious titer test was performed. The virus solution for this was collected.
Vero E6 / TMPRSS2 cells were cultured in a T-175 flask in serum medium (2.1), the culture medium was removed from the cells that became confulent, the cells were washed with serum-free medium (2.2), and then the virus solution (4.1) provided in the laboratory. ) 500 μL (equivalent to 10 6 pfu / mL and MOI = 0.01 assumed) was inoculated and allowed to stand for 1 hr. Then, 20 mL of serum-free medium (2.2) was added and virus culture was started. The pH dropped and CPE was observed on the second day after virus inoculation, but since live cells still remained, culture was carried out until the next day (3rd day), and the culture supernatant (20 mL) was collected. , Stored frozen (-70 ° C or lower).
FIG. 4 is a photograph before culturing (left of the screen) and after culturing (3rd day, right of the screen) when the virus was cultured in the VP-SFM medium.
5.3.2 採取ウイルス液の感染価の測定
 無血清培地(2.2)で培養したウイルス(5.3.1採取ウイルス)を用いてプラークアッセイをVeroE6/TMPRSS2細胞を用いて12wellプレートで実施した。希釈は採取ウイルス(5.3.1)を1067pfu/mLと想定して、102倍、103倍、104倍、105倍、106倍の階段希釈で12wellプレートに各希釈液を2wellずつ(Duplicate)100μL接種し、アガロース+FBS添加D-MEM培地で2日間培養し、ホルマリン不活化後、クリスタルバイオレット染色しプラークの数をカウントし、ウイルスの感染価を算出した。
 図5はウイルス感染価試験クリスタルバイオレット染色像である。接種後3日目で採取されたウイルス液の感染価は2.8×107pfu/mLであった。
5.3.2 Measurement of infectious titer of collected virus solution A plaque assay was performed on a 12-well plate using Vero E6 / TMPRSS2 cells using a virus (5.3.1 collected virus) cultured in serum-free medium (2.2). Assuming that the collected virus (5.3.1) is 10 6 to 7 pfu / mL, the dilution is 10 2 -fold, 10 3 -fold, 10 4 -fold, 10 5 -fold, 10 6 -fold step dilution to 12-well plates. 100 μL of the solution was inoculated in 2 wells (Duplicate), cultured in D-MEM medium supplemented with agarose + FBS for 2 days, inactivated by formalin, stained with crystal violet, and the number of plaques was counted to calculate the virus infectivity.
FIG. 5 is a virus infectious titer test crystal violet stained image. The infectious titer of the virus solution collected on the third day after inoculation was 2.8 × 10 7 pfu / mL.
5.4 被験材料による抗ウイルス活性能の確認実験
5.4.1 被験材料よるウイルス液の処理
 図6はウイルス液の処理条件の一覧である。
5.4 Experiment to confirm antiviral activity using test materials
5.4.1 Treatment of virus solution with test material Figure 6 is a list of virus solution treatment conditions.
 図7Aは浸漬法の概念図、図7Bは滴下法の概念図である。
 図8は浸漬法プレートの配置図である。図8に示されるように、6wellプレートの各wellに1)~5)の材料を入れたプレートを6枚作製した。無血清培地(2.2)で20倍希釈した採取ウイルス液(5.3.1)を各wellに2mLずつ入れ1)~5)の材料を浸漬させ、以下のA~Cの処理をduplicateで実施した。
 A:冷蔵24hr処理
 B:室温6hr処理
 C:室温6hr処理+UV照射
 処理後、浸漬ウイルス液を洗い出し、採取したウイルス液はウイルス感染価測定まで凍結(-70℃以下)した。
FIG. 7A is a conceptual diagram of the dipping method, and FIG. 7B is a conceptual diagram of the dropping method.
FIG. 8 is a layout drawing of the dipping method plate. As shown in FIG. 8, six plates containing the materials 1) to 5) were prepared in each well of the 6-well plate. 2 mL of the collected virus solution (5.3.1) diluted 20-fold with serum-free medium (2.2) was placed in each well, and the materials of 1) to 5) were immersed, and the following treatments A to C were performed by duplicate.
A: Refrigerated 24hr treatment B: Room temperature 6hr treatment C: Room temperature 6hr treatment + UV irradiation After washing out the soaked virus solution, the collected virus solution was frozen (-70 ° C or less) until the virus infectivity titer was measured.
 図9は滴下法プレートの配置図である。図9に示されるように、6wellプレートの各wellに6)~9)の材料を入れたプレートを6枚作製した。あらかじめ6wellプレート6枚に6),7),8)の材料に直接採取ウイルス液(5.3)を100μL滴下した。9)のwellは採取ウイルス液(5.3)を20倍希釈して2mL入れた。以下のA~Cの処理をduplicateで実施した。
 A:冷蔵24hr処理
 B:室温6hr処理
 C:室温6hr処理+UV照射
 A~C処理後、洗い出し液(FBS添加D-MEM培地)を各wellに2mLずつ加え、ウイルスを洗い出し、洗い出し溶液はウイルス感染価測定まで凍結保存(-70℃以下)した。
FIG. 9 is a layout drawing of the dropping method plate. As shown in FIG. 9, six plates containing the materials of 6) to 9) were prepared in each well of the 6-well plate. In advance, 100 μL of the collected virus solution (5.3) was dropped directly onto the materials of 6), 7), 8) on 6 6-well plates. In the well of 9), 2 mL of the collected virus solution (5.3) was diluted 20-fold. The following processes A to C were performed in duplicate.
A: Refrigerated 24hr treatment B: Room temperature 6hr treatment C: Room temperature 6hr treatment + UV irradiation After A to C treatment, add 2 mL of washout solution (FBS-added D-MEM medium) to each well to wash out the virus, and the washout solution is the virus. It was cryopreserved (-70 ° C or lower) until the infectious titer was measured.
5.4.2 検体のウイルス感染価測定
 ウイルス感染価試験の前日に細胞(細胞はVeroE6を用いた)を12wellプレートにwellあたり2×105cells播種し、翌日にウイルス接種を実施した。
 ウイルス接種は、各処理後の凍結ウイルス検体(5.5.1)を融解後、原倍、10倍、100倍、1,000倍の階段希釈したウイルス液を100μL/wellで接種した。1hr静置した後、アガロース+FBS添加D-MEM培地を加え、3日間培養後、ホルマリン不活化、クリスタルバイオレット染色後、プラークの数をカウントし、ウイルス感染価を算出した。
 図10は感染価測定ウイルス接種の配置図である。
5.4.2 Measurement of virus infectivity of specimens The day before the virus infectivity test, cells (cells using VeroE6) were seeded on a 12-well plate in 2 × 10 5 cells per well, and virus inoculation was carried out the next day.
For virus inoculation, the frozen virus sample (5.5.1) after each treatment was thawed, and then a virus solution diluted stairs at 100-fold, 10-fold, 100-fold, and 1,000-fold was inoculated at 100 μL / well. After standing for 1 hr, agarose + FBS-added D-MEM medium was added, and after culturing for 3 days, formalin inactivation, crystal violet staining, and the number of plaques were counted to calculate the virus infectivity titer.
FIG. 10 is a layout diagram of virus inoculation for measuring infectious titer.
 当初、VeroE6/TMPRSS2細胞を用いて実施する予定であったが、当該細胞はCEPが強く出すぎることより、プラーク数がわかりにくかった。そのため、プラーク像が明確なVeroE6に変更した。なお、ウイルスの検出感度が同等であることと、併せて検体による感染価の再現性を事前確認した。ウイルスサンプル(5.5.1)を融解し、原倍~1,000倍で階段希釈した。 Initially, it was planned to use VeroE6 / TMPRSS2 cells, but it was difficult to understand the number of plaques in the cells because CEP was too strong. Therefore, the plaque image was changed to Vero E6 with a clear image. In addition, it was confirmed in advance that the virus detection sensitivity was the same and that the reproducibility of the infectious titer by the sample was obtained. The virus sample (5.5.1) was thawed and serially diluted to 1,000-fold.
 図11はウイルス感染価試験プラーク像(冷蔵24hr浸漬処理)である。図11中の略語は以下の意味を有する。
 Sh-NC:対照、Sh+4:試験材料(低濃度)、Sh+10:試験材料(高濃度)
FIG. 11 is a virus infectious titer test plaque image (refrigerated 24 hr immersion treatment). The abbreviations in FIG. 11 have the following meanings.
Sh-NC: Control, Sh + 4: Test material (low concentration), Sh + 10: Test material (high concentration)
5.4.3被験材料の各処理条件におけるウイルス感染価及び抗ウイルス活性の評価
 抗ウイルス活性値は以下の方法で算出する。
 抗ウイルス活性値(M)=対照群pfu/mL値(Va)の常用対数値(log(Va))-検体群pfu/mL値(Vb)の常用対数値(log(Vb))とする。
 i)感染価はduplicateで実施した平均値を用いた。
 ii)対照群については、各処理条件において9)無添加群pfu/mL値の常用対数値と5)あるいは8)シートNC群のpfu/mL値の常用対数値と差が>1.0の場合、シートNCを対照群とする。
 iii)ハイドロ銀チタン粉末については対照材料がないため、参考値として、
 M=9)無添加群pfu/mL値の常用対数値―各群pfu/mL値の常用対数値とする。
 iV)抗ウイルス活性としては、M≧2.0のときを有意な活性ありと判定する。
5.4.3 Evaluation of viral infectious titer and antiviral activity under each treatment condition of the test material The antiviral activity value is calculated by the following method.
Antiviral activity value (M) = regular log value (log (Va)) of control group pfu / mL value (Va) -common log value (log (Vb)) of sample group pfu / mL value (Vb).
i) For the infectious titer, the average value performed by duplicate was used.
ii) For the control group, if the difference between 9) the regular logarithmic value of the pfu / mL value of the additive-free group and 5) or 8) the regular logarithmic value of the pfu / mL value of the sheet NC group is> 1.0 under each treatment condition. The sheet NC is used as a control group.
iii) As there is no control material for hydrosilver titanium powder, as a reference value,
M = 9) Common logarithmic value of pfu / mL value in the additive-free group-The regular logarithmic value of pfu / mL value in each group.
iV) As for antiviral activity, it is judged that there is significant activity when M ≧ 2.0.
 図12はウイルス感染価と抗ウイルス活性値の一覧である(浸漬法)。
 図13はウイルス感染価と抗ウイルス活性値の一覧である(滴下法)。
FIG. 12 is a list of virus infectious titers and antiviral activity values (immersion method).
FIG. 13 is a list of virus infectious titers and antiviral activity values (drop method).
6. 結果まとめ
6.1 ウイルス液調製
 シート塗布物の抗ウイルス活性を確認するには、たん白質が阻害因子となるため、SARS-CoV-2(研究室確立野生株)ウイルスをVeroE6/TRPMSS2 細胞に接種し無血清培地(2.2)で培養することにより、たん白質の混入の少ないウイルス液を取得した。また、そのウイルス感染価は、2.8×107pfu/mLと、血清培養と同等の感染価のウイルス液が得られた。
6. Summary of results
6.1 Virus solution preparation Since protein is an inhibitor to confirm the antiviral activity of the sheet coating, SARS-CoV-2 (laboratory established wild strain) virus is inoculated into VeroE6 / TRPMSS2 cells and serum-free medium. By culturing in (2.2), a virus solution with less protein contamination was obtained. The virus infectious titer was 2.8 × 10 7 pfu / mL, and a virus solution having an infectious titer equivalent to that of serum culture was obtained.
6.2被験材料による抗ウイルス活性能の確認
 図14はA1シート及びA2シートの抗ウイルス活性能の一覧である。図14中において、次式を用いて抗ウイルス活性値(M)を算出した。
 抗ウイルス活性値(M)=log(Va;対照)-log(Vb;検体)
 *:M≧2.0を有意差ありとする。
 各被験材料からの溶出物によるウイルス感染価試験への影響はないと判断された。
 本実験では、試験材料「A2シート(高濃度)」にSARS-CoV-2ウイルスに対して有意な抗ウイルス活性能があることが確認された。
 「A1シート(低濃度)」については、本実験条件で有意な抗ウイルス活性能は示されなかったが、「A2シート(高濃度)」と比較し、塗布量と抗ウイルス活性には相関があることが推定された。
 参考材料1(低濃度)、参考材料2(高濃度)は対照材料がないため、非特異吸着の程度差は不明であるが、いずれの処理条件においてもプラークが検出されず、A1、A2シートの塗布原料物として、同様に抗ウイルス活性能があることが推定された。
 本実験では、浸漬法と滴下法、併せて各処理条件にて当該試験材料のSARS-CoV-2ウイルスに対する抗ウイルス活性能を確認する系を検討したが、非特異吸着や再現性の点で浸漬法が今後の抗ウイルス活性能検討には採用できるものと判断した。なお、UV照射下での本実験の処理条件では、無処置群(ウイルスのみ)も検出以下となり、系は成立しなかった。
 浸漬法による、試験材料A2シートの新型コロナウイルスに対する活性能の確認試験において、冷蔵24時間及び室温6時間処理ともに有意な抗ウイルス活性能があることが確認された。試験材料A2シートの冷蔵24時間処理での抗ウイルス活性値(M値)は4.0以上であったことから、コントロール(無処理試験材料)の新型コロナウイルスの増殖を1とすると、A2シートでは新型コロナウイルスの増殖は0.0001以下に抑えられていたことになり、減少率99.99%以上で新型コロナウイルスを減衰できることが確認された。同様の計算により、試験材料A2シートの室温6時間処理では新型コロナウイルスを99.9%以上減衰できることが確認された。
 滴下法による、試験材料A2シートの新型コロナウイルスに対する活性能の確認試験においても、室温6時間処理により有意な抗ウイルス活性能があることが確認された。上述と同様の計算により、試験材料A2シートの室温6時間処理により新型コロナウイルスを99.9%以上減衰できることが確認された。
6.2 Confirmation of antiviral activity by test material Figure 14 is a list of antiviral activity of A1 sheet and A2 sheet. In FIG. 14, the antiviral activity value (M) was calculated using the following formula.
Antiviral activity value (M) = log (Va; control) -log (Vb; sample)
*: M ≧ 2.0 is considered to be significantly different.
It was determined that the eluate from each test material had no effect on the viral infectious titer test.
In this experiment, it was confirmed that the test material "A2 sheet (high concentration)" has significant antiviral activity against SARS-CoV-2 virus.
No significant antiviral activity was shown for "A1 sheet (low concentration)" under the experimental conditions, but there was a correlation between the application amount and antiviral activity compared to "A2 sheet (high concentration)". It was estimated that there was.
Since there is no control material for reference material 1 (low concentration) and reference material 2 (high concentration), the difference in the degree of non-specific adsorption is unknown, but plaque was not detected under any of the treatment conditions, and A1 and A2 sheets. It was presumed that it also has antiviral activity as a raw material for coating.
In this experiment, we investigated a system to confirm the antiviral activity of the test material against SARS-CoV-2 virus under each treatment condition, including the dipping method and the dropping method, but in terms of non-specific adsorption and reproducibility. It was judged that the immersion method could be adopted for future studies of antiviral activity. Under the treatment conditions of this experiment under UV irradiation, the untreated group (virus only) was below the detection level, and the system was not established.
In the confirmation test of the activity of the test material A2 sheet against the new coronavirus by the dipping method, it was confirmed that the test material had significant antiviral activity in both refrigerated 24 hours and room temperature 6 hours treatment. Since the antiviral activity value (M value) of the test material A2 sheet after refrigerated 24-hour treatment was 4.0 or more, assuming that the growth of the new coronavirus of the control (untreated test material) is 1, the new type of A2 sheet It was confirmed that the growth of coronavirus was suppressed to 0.0001 or less, and that the new coronavirus could be attenuated with a reduction rate of 99.99% or more. By the same calculation, it was confirmed that the new coronavirus can be attenuated by 99.9% or more by treating the test material A2 sheet at room temperature for 6 hours.
In the confirmation test of the activity of the test material A2 sheet against the new coronavirus by the dropping method, it was confirmed that the test material had a significant antiviral activity by treatment at room temperature for 6 hours. By the same calculation as above, it was confirmed that the new coronavirus can be attenuated by 99.9% or more by treating the test material A2 sheet at room temperature for 6 hours.
 通常、ウイルスは10の2乗数減少した場合にウイルス活性が優位差をもって減少(感染価減少に効果ある)とみなされる。そこで、浸漬法によるA2シートの新型コロナウイルスに対する活性能の確認試験において、実験開始時に10の4乗数個存在したコロナウイルスが、優位差の減少数である10の2乗数個まで減少した点を算出した。その結果、実験開始から優位差が見られるまでの時間は、0.05時間、つまり3分であった。これにより、A2シートのコロナウイルスに対する活性に即効性があることが確認された。なお、浸漬法によるA1シートについても同様に実験開始から優位差が見られるまでの時間を算出したところ、約100時間(4~5日)であった。 Normally, when the virus is reduced by the square of 10, the virus activity is considered to decrease with a dominant difference (effective for reducing the infectious titer). Therefore, in the confirmation test of the activity of the A2 sheet against the new coronavirus by the immersion method, the number of coronaviruses that existed in the 4th power of 10 at the start of the experiment decreased to the 4th power of 10 which is the decrease in the dominant difference. Calculated. As a result, the time from the start of the experiment to the time when the superiority difference was seen was 0.05 hours, that is, 3 minutes. This confirmed that the activity of the A2 sheet against coronavirus had an immediate effect. Similarly, for the A1 sheet by the immersion method, the time from the start of the experiment until the superiority difference was found was about 100 hours (4 to 5 days).
[実施例2]
 新型コロナウイルス(SARS-CoV-2)に対する、複合粒子及び複合粒子を備える加工不織布(以下「Xシート」ともいう)の不活化能の確認試験を、国立研究開発法人理化学研究所横山特別研究室に委託し、横山茂之特別研究員の管理下で行った。
 [目的]
 新型コロナウイルス(SARS-CoV-2)のウイルス粒子表面に存在する膜タンパク質(S,M,E)の試料を試験管内で調製して、Xシートによる化学的修飾・変性・分解、立体構造の損傷・変性を解析し、Xシートのウイルス不活化能を、タンパク質立体構造の観点から基礎付けた。
[Example 2]
A confirmation test of the inactivating ability of composite particles and processed non-woven particles (hereinafter also referred to as "X sheet") containing composite particles against the new coronavirus (SARS-CoV-2) was conducted at the Yokoyama Special Laboratory, RIKEN. It was outsourced to Shigeyuki Yokoyama under the supervision of Research Fellow.
[Purpose]
A sample of the membrane protein (S, M, E) present on the surface of the virus particle of the new coronavirus (SARS-CoV-2) is prepared in vitro, and chemically modified / denatured / decomposed by the X sheet to form a three-dimensional structure. Damage and denaturation were analyzed, and the virus inactivating ability of X-sheet was based on the viewpoint of protein conformation.
 [実験体制]
 実験施設:理化学研究所 横山特別研究室
 実施者:理化学研究所 横山特別研究室
[Experimental system]
Experimental facility: RIKEN Yokoyama Special Laboratory Implemented by: RIKEN Yokoyama Special Laboratory
 [実験方法]
1 材料
 試験品1:複合粒子M1(酸化チタン組成物)
 試験品2:複合粒子M2(酸化チタン組成物)
 試験品3:複合粒子M1を備える加工不織布(+4;4g/m2 塗布、以下「X1シート」ともいう)、
 試験品4:複合粒子M2を備える加工不織布(+10;10g/m2塗布、以下「X2シート」ともいう)
 対照品:ポリエステル不織布(酸化チタン組成物未加工)
 鋳型:SARS-CoV-2由来タンパク質をコードする化学合成DNA断片
 タンパク質調製:無細胞タンパク質合成試薬
[experimental method]
1 Material Test product 1: Composite particle M1 (titanium oxide composition)
Test product 2: Composite particle M2 (titanium oxide composition)
Test product 3: Processed non-woven fabric provided with composite particles M1 (+4; 4 g / m 2 coated, hereinafter also referred to as "X1 sheet"),
Test product 4: Processed non-woven fabric provided with composite particles M2 (+10; 10 g / m 2 coated, also referred to as "X2 sheet")
Control product: Polyester non-woven fabric (titanium oxide composition unprocessed)
Template: Chemically synthesized DNA fragment encoding SARS-CoV-2 derived protein Protein preparation: Cell-free protein synthesis reagent
2 実験デザイン
2.1 ウイルスタンパク質の化学的修飾・変性・分解の分析および立体構造崩壊の解析
 Xシートとウイルスタンパク質を各条件下で処理し、対照群と試験群の処理サンプルをSDS-PAGE、Native-PAGE、質量分析(MALDI-TOF/MS)、ネガティブ染色電子顕微鏡解析、クライオ電子顕微鏡解析等により分析した。立体構造の分子動力学計算により、ウイルスタンパク質の損傷によって、立体構造が崩壊する過程を詳細に解析した。
2.1.1準備
 ウイルスタンパク質の調製:3種のSARS-CoV-2タンパク質(S,M,E)について、それぞれN末FLAG-SUMOタグを付加した融合タンパク質として無細胞タンパク質合成法によって合成し、アフィニティークロマトグラフィーとゲルろ過により精製した。
 X1シート,X2シートの調製:試験品及び対照品を滅菌(乾熱、EOG)後、PBSで浸膨させた。
 用量:臨床用量(m/kg、又はm/表面積)の×1、×3、×10用量同等
2 Experimental design
2.1 Analysis of chemical modification / denaturation / degradation of viral protein and analysis of conformational disruption SDS-PAGE, Native-PAGE, mass spectrometry of treated samples of control group and test group were treated under each condition of X-sheet and viral protein. Analysis was performed by analysis (MALDI-TOF / MS), negative staining electron microscopic analysis, cryo-electron microscopic analysis, etc. By molecular dynamics calculation of the three-dimensional structure, the process of the three-dimensional structure collapse due to the damage of the viral protein was analyzed in detail.
2.1.1 Preparation Viral protein preparation: Three SARS-CoV-2 proteins (S, M, E) were synthesized by cell-free protein synthesis as fusion proteins with N-terminal FLAG-SUMO tags attached, and affinity was achieved. Purified by chromatography and gel filtration.
Preparation of X1 sheet and X2 sheet: The test product and the control product were sterilized (dry heat, EOG) and then inflated with PBS.
Dose: Equivalent to x1, x3, x10 doses of clinical dose (m 2 / kg or m 2 / surface area)
 図15に構成を示す。 FIG. 15 shows the configuration.
1.1.2検出法
 各処理液に対しSDS-PAGE、Native-PAGE、質量分析(MALDI-TOF/MS)を行った。
 PAGEはタンパク質濃度により、CBB染色またはWestern blotで検出した。電子顕微鏡解析は、主としてネガティブ染色にて行い、必要により、クライオ電子顕微鏡の平均化も行った。
1.1.3評価法
 試験群と対照群との分子量の差、存在比で評価した。
 立体構造が既知のSタンパク質とEタンパク質について、質量分析の結果から切断・修飾部位を立体構造上でマッピングした。また、電子顕微鏡解析によって、切断・修飾によってSおよびEタンパク質の立体構造がどのように変化するかを解析した。さらに、これらの切断・修飾タンパク質の立体構造が崩壊していく過程を、分子動力学計算によってシミュレーションし、コンピュータ・グラフィックスの動画を作成して、詳細に解析した。
 分子動力学計算では、立体構造が既知のSタンパク質について、これらの切断・修飾タンパク質の立体構造が崩壊していく過程を、東京大学大学院農学生命科学研究科 応用生命工学専攻の寺田透准教授の支援(BINDS)により、分子動力学シミュレーション、すなわち分子の動きをコンピューターで計算して視覚化した。Sタンパク質はサイズが非常に大きいため、4つ程度の原子(水素原子を除く)をまとめて1つの粒子として扱う粗視化モデルを使用した。
1.1.2 Detection method SDS-PAGE, Native-PAGE and mass spectrometry (MALDI-TOF / MS) were performed on each treatment solution.
PAGE was detected by CBB staining or Western blot depending on the protein concentration. Electron microscopic analysis was performed mainly by negative staining, and if necessary, averaging of cryo-electron microscopy was also performed.
1.1.3 Evaluation method The evaluation was based on the difference in molecular weight and abundance between the test group and the control group.
For S protein and E protein whose three-dimensional structure is known, the cleavage / modification sites were mapped on the three-dimensional structure from the results of mass spectrometry. In addition, electron microscopic analysis was used to analyze how the three-dimensional structures of S and E proteins change due to cleavage and modification. Furthermore, the process of disruption of the three-dimensional structure of these cleaved / modified proteins was simulated by molecular dynamics calculation, and a movie of computer graphics was created and analyzed in detail.
In molecular dynamics calculations, the process of disruption of the three-dimensional structure of these cleavage / modification proteins for S proteins with known three-dimensional structures is described by Toru Terada, Associate Professor, Department of Applied Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo. With the support (BINDS), molecular dynamics simulation, that is, the movement of molecules was calculated and visualized by a computer. Since the S protein is very large in size, we used a coarse-grained model that treats about four atoms (excluding hydrogen atoms) as one particle.
 図16、図17は評価法のイメージ図である。 16 and 17 are image diagrams of the evaluation method.
 [実験結果]
 SDS-PAGEの結果と、分子動力学(MD)シミュレーションの結果を示す。
[Experimental result]
The results of SDS-PAGE and the results of molecular dynamics (MD) simulation are shown.
 1.1 SDS-PAGEの結果(複合粒子M1、複合粒子M2)
 図18は、複合粒子M1、複合粒子M2の存在下でSドメイン試料溶液に人工太陽光を照射した際の電気泳動である、SDS-PAGE(+βME)の結果を示す図である。図18より1分後にSドメインの切断が始まっていることが示された。なお、図18中の略語の意味は以下の通りである。C:コントロール(複合粒子M1、M2なし)、+4: 複合粒子M1(低濃度)、+10: 複合粒子M2(高濃度)
1.1 SDS-PAGE results (composite particle M1, composite particle M2)
FIG. 18 is a diagram showing the results of SDS-PAGE (+ βME), which is electrophoresis when the S domain sample solution is irradiated with artificial sunlight in the presence of composite particles M1 and composite particles M2. From FIG. 18, it was shown that the disconnection of the S domain started 1 minute later. The meanings of the abbreviations in FIG. 18 are as follows. C: Control (without composite particles M1 and M2), +4: Composite particle M1 (low concentration), +10: Composite particle M2 (high concentration)
 1.2 SDS-PAGEの結果(X1シート、X2シート)
 図19は、X1シート、X2シートの存在下でSドメイン試料溶液に人工太陽光を照射した際の電気泳動である、SDS-PAGE(+βME)の結果を示す図である。図19より3分後にSドメインの切断が始まっていることが示された。なお、図中の略語の意味は以下の通りである。C:コントロール(X1、X2シートなし)、+4: X1シート、+10: X2シート
1.2 SDS-PAGE results (X1 sheet, X2 sheet)
FIG. 19 is a diagram showing the results of SDS-PAGE (+ βME), which is an electrophoresis when an S domain sample solution is irradiated with artificial sunlight in the presence of an X1 sheet and an X2 sheet. From FIG. 19, it was shown that the disconnection of the S domain started 3 minutes later. The meanings of the abbreviations in the figure are as follows. C: Control (without X1, X2 sheet), +4: X1 sheet, +10: X2 sheet
 1.3 SDS-PAGEの結果(崩壊したタンパク量の経時的割合)
 図20Aは、複合粒子M1、M2を用いた際のコントロールに対して崩壊したタンパク量の経時的割合を示す図である。図20Bは、X1、X2シートを用いた際のコントロールに対して崩壊したタンパク量の経時的割合を示す図である。
1.3 SDS-PAGE results (percentage of disrupted protein over time)
FIG. 20A is a diagram showing the ratio of the amount of disintegrated protein over time to the control when the composite particles M1 and M2 are used. FIG. 20B is a diagram showing the ratio of the amount of disintegrated protein over time to the control when using the X1 and X2 sheets.
 図20Aより、複合粒子M1、M2では1分後に切断が始まり、6分後には10%程度までSドメインが崩壊することが示された。図20Bより、X1、X2シートでは3分後に切断が始まり、10分後には20%以下までSドメインが崩壊することが示された。 From FIG. 20A, it was shown that in the composite particles M1 and M2, cleavage started after 1 minute, and the S domain collapsed to about 10% after 6 minutes. From FIG. 20B, it was shown that in the X1 and X2 sheets, cleavage started after 3 minutes and the S domain was disrupted to 20% or less after 10 minutes.
 2.1 分子動力学(MD)シミュレーション
 図21は、新型コロナウイルス スパイクタンパク質の分子動力学(MD)シミュレーション図である。図21A~図21Cは、横から見た図を示し、図21D~図21Fは、上(外側)から見た図を示す。図21A、図21Dに示されるように、天然状態のスパイクタンパク質3量体は安定で、立体構造は維持されていた。図21B、図21Eに示されるように、タンパク質のループが切断されると、立体構造は瞬時に劣化して崩壊を始めた。そして、図21C、図21Fに示されるように、立体構造は速やかに劣化して崩壊した。切断されたSタンパク質の分子動力学シミュレーションにより、ほぼ瞬時(2マイクロ秒;2×10―6秒)に立体構造の崩壊が引き起こされる過程が動画で示された。
2.1 Molecular Dynamics (MD) Simulation Figure 21 is a molecular dynamics (MD) simulation diagram of the new coronavirus spike protein. 21A to 21C show a view seen from the side, and FIGS. 21D to 21F show a view seen from above (outside). As shown in FIGS. 21A and 21D, the peplomer trimer in the native state was stable and the three-dimensional structure was maintained. As shown in FIGS. 21B and 21E, when the protein loop was cleaved, the three-dimensional structure instantly deteriorated and began to disintegrate. Then, as shown in FIGS. 21C and 21F, the three-dimensional structure rapidly deteriorated and collapsed. Molecular dynamics simulations of the cleaved S protein showed in a video the process by which the conformational collapse was triggered almost instantly (2 microseconds; 2 × 10-6 seconds).
 2.2 分子動力学(MD)シミュレーション
 図22A~図22Dは、スパイクタンパク質SドメインとACE2受容体に注目した分子動力学(MD)シミュレーション図である。図22Aに示されるようにスパイクタンパク質SドメインとACE2受容体が結合していた。図22Bに示されるように天然状態のSドメインは安定で、立体構造は維持されていた。図22Cに示されるようにタンパク質のループが切断されると、立体構造は瞬時に劣化して崩壊が始まった。そして、図22Dに示されるように立体構造は速やかに劣化して崩壊した。
2.2 Molecular Dynamics (MD) Simulation Figures 22A to 22D are molecular dynamics (MD) simulation diagrams focusing on the peplomer protein S domain and ACE2 receptor. As shown in FIG. 22A, the peplomer protein S domain was bound to the ACE2 receptor. As shown in FIG. 22B, the native S domain was stable and the three-dimensional structure was maintained. When the protein loop was cleaved as shown in FIG. 22C, the three-dimensional structure instantly deteriorated and began to disintegrate. Then, as shown in FIG. 22D, the three-dimensional structure rapidly deteriorated and collapsed.
 3.小括
 以上より、複合粒子M1、M2、及びX1、X2シートによる切断は、速やかに立体構造の劣化・崩壊を引き起こした。そのため、SドメインはACE2に結合できなくなることが示された。
 また、複合粒子M1、M2、及びX1、X2シートは、人工的に合成された新型コロナウイルスのスパイクタンパク質を3~10分の間に複数箇所で切断することを、生化学的解析により実証した。この切断により、ヒト細胞受容体であるACE2への結合に必要なスパイクタンパク質立体構造を崩壊させることが、分子動力学シミュレーションにより確認された。
 なお、無細胞タンパク質合成法で、エンベロープタンパク質(E)およびマトリックスタンパク質(M)についても調製し、Sタンパク質と同様の方法で、生化学的解析を行ったところ、同様の結果が得られた。
3. Summary From the above, cutting with composite particles M1, M2, and X1, X2 sheets promptly caused deterioration and collapse of the three-dimensional structure. Therefore, it was shown that the S domain cannot bind to ACE2.
In addition, it was demonstrated by biochemical analysis that the composite particles M1, M2, and X1, X2 sheets cleave the artificially synthesized new coronavirus spike protein at multiple sites in 3 to 10 minutes. .. Molecular dynamics simulations confirmed that this cleavage disrupts the peplomer conformation required for binding to the human cell receptor ACE2.
Envelope protein (E) and matrix protein (M) were also prepared by the cell-free protein synthesis method, and biochemical analysis was performed by the same method as S protein, and the same results were obtained.
 本発明に係る殺コロナウイルス剤は、簡易かつ経済的に、新型コロナウイルスを死滅させることができる。また本発明に係る殺コロナウイルス剤は、新型コロナウイルスを短時間で死滅させることができる。本発明に係る殺コロナウイルス剤は、種々の部材に適用可能である。そのため、新型コロナウイルスの感染症対策の一つとして、飛沫感染や接触感染が想定される部材に本発明に係る殺コロナウイルス剤を適用することにより、新型コロナウイルスを短時間で死滅させることができるので、新型コロナウイルスの感染拡大を効果的に防止できる。 The coronavirus killing agent according to the present invention can easily and economically kill a new type of coronavirus. Further, the coronavirus killing agent according to the present invention can kill the new coronavirus in a short time. The coronavirus killing agent according to the present invention can be applied to various members. Therefore, as one of the countermeasures against infectious diseases of the new coronavirus, it is possible to kill the new coronavirus in a short time by applying the coronavirus killing agent according to the present invention to a member which is expected to be infected by droplets or contact. Therefore, it is possible to effectively prevent the spread of the new coronavirus.

Claims (14)

  1.  複合粒子を備える殺コロナウイルス剤であって、
     殺コロナウイルス剤は、殺コロナウイルス剤の全質量基準で、酸化チタン粒子の含有量が70質量%~96質量%、銀粒子の含有量が0.5質量%を超え3.6質量%以下含む殺コロナウイルス剤。
    A coronavirus killing agent with composite particles
    The coronavirus killing agent has a titanium oxide particle content of 70% by mass to 96% by mass and a silver particle content of more than 0.5% by mass and 3.6% by mass or less based on the total mass of the coronavirus killing agent. Including coronavirus killing agent.
  2.  前記複合粒子は、酸化チタン粒子の表面に銀粒子が接合された、レーザー回折法で測定したときの粒子径が0.1μmを超え0.3μm未満である、請求項1記載の殺コロナウイルス剤。 The coronavirus killing agent according to claim 1, wherein the composite particles have a particle size of more than 0.1 μm and less than 0.3 μm as measured by a laser diffraction method, in which silver particles are bonded to the surface of titanium oxide particles. ..
  3.  殺コロナウイルス剤の全質量基準で、酸化チタン粒子の含有量が78~96質量%、銀粒子の含有量が0.5質量%を超え3.3質量%以下である請求項1又は2に記載の殺コロナウイルス剤。 Claim 1 or 2 in which the content of titanium oxide particles is 78 to 96% by mass and the content of silver particles is more than 0.5% by mass and 3.3% by mass or less based on the total mass of the coronavirus-killing agent. The listed coronavirus killing agent.
  4.  前記コロナウイルスがCOVID-19である請求項1~3のいずれか1項に記載の殺コロナウイルス剤。 The coronavirus killing agent according to any one of claims 1 to 3, wherein the coronavirus is COVID-19.
  5.  殺コロナウイルス剤は、さらに、リン酸カルシウム粒子を含む請求項1~4のいずれか1項に記載の殺コロナウイルス剤。 The coronavirus killing agent is the coronavirus killing agent according to any one of claims 1 to 4, further comprising calcium phosphate particles.
  6.  前記複合粒子の前記粒子径が0.2μm以上0.29μm以下である請求項1~5のいずれか1項に記載の殺コロナウイルス剤。 The coronavirus killing agent according to any one of claims 1 to 5, wherein the particle size of the composite particle is 0.2 μm or more and 0.29 μm or less.
  7.  前記複合粒子の前記粒子径が0.24μm以上0.27μm以下である請求項1~6のいずれか1項に記載の殺コロナウイルス剤。 The coronavirus killing agent according to any one of claims 1 to 6, wherein the particle size of the composite particle is 0.24 μm or more and 0.27 μm or less.
  8.  請求項1~7のいずれか1項に記載の前記殺コロナウイルス剤を含む部材。 A member containing the coronavirus-killing agent according to any one of claims 1 to 7.
  9.  前記部材が、不織布、織布、編物、樹脂フィルム、プラスチック、金属、セラミックス、エアーフィルターからなる群から選択されるいずれか1つである請求項8に記載の部材。 The member according to claim 8, wherein the member is any one selected from the group consisting of non-woven fabric, woven fabric, knitted fabric, resin film, plastic, metal, ceramics, and air filter.
  10.  請求項1~7のいずれか1項に記載の前記殺コロナウイルス剤を含む医療用器具。 A medical device containing the coronavirus-killing agent according to any one of claims 1 to 7.
  11.  請求項1~7のいずれか1項に記載の前記殺コロナウイルス剤を含むマスク。 A mask containing the coronavirus killing agent according to any one of claims 1 to 7.
  12.  請求項1~7のいずれか1項に記載の前記殺コロナウイルス剤を含む医療用シート。 A medical sheet containing the coronavirus-killing agent according to any one of claims 1 to 7.
  13.  酸化チタン粒子の表面に銀粒子が接合された、レーザー回折法で測定したときの粒子径が0.1μmを超0.3μm未満の複合粒子を備える殺コロナウイルス剤又はそれを含む部材を、コロナウイルスの存在が想定される箇所に配置する、殺コロナウイルス方法。 A coronavirus agent containing composite particles having a particle size of more than 0.1 μm and less than 0.3 μm as measured by a laser diffraction method, or a member containing the same, in which silver particles are bonded to the surface of titanium oxide particles. A coronavirus killing method that is placed where the virus is expected to be present.
  14.  殺コロナウイルス剤又はそれを含む部材が、請求項8又は9に記載のものである、請求項13記載の、コロナウイルスの増殖防止方法。 The method for preventing the growth of coronavirus according to claim 13, wherein the coronavirus killing agent or a member containing the agent is the one according to claim 8 or 9.
PCT/JP2021/030071 2020-10-15 2021-08-17 Anti-coronavirus virucide and method and usage employing same WO2022079997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021549398A JPWO2022079997A1 (en) 2020-10-15 2021-08-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173650 2020-10-15
JP2020-173650 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022079997A1 true WO2022079997A1 (en) 2022-04-21

Family

ID=81207919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030071 WO2022079997A1 (en) 2020-10-15 2021-08-17 Anti-coronavirus virucide and method and usage employing same

Country Status (2)

Country Link
JP (1) JPWO2022079997A1 (en)
WO (1) WO2022079997A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037296A1 (en) * 2003-10-16 2005-04-28 Toagosei Co., Ltd. Anti-coronavirus agent
JP2013166122A (en) * 2012-02-16 2013-08-29 Sumitomo Chemical Co Ltd Photocatalyst structure, and photocatalyst functional product using the same, and antiviral functional product
WO2018105131A1 (en) * 2016-12-09 2018-06-14 Dr.C医薬株式会社 Pharmaceutical preparation and medical instrument
JP2019127468A (en) * 2018-01-26 2019-08-01 Dr.C医薬株式会社 Pharmaceutical preparation and medical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037296A1 (en) * 2003-10-16 2005-04-28 Toagosei Co., Ltd. Anti-coronavirus agent
JP2013166122A (en) * 2012-02-16 2013-08-29 Sumitomo Chemical Co Ltd Photocatalyst structure, and photocatalyst functional product using the same, and antiviral functional product
WO2018105131A1 (en) * 2016-12-09 2018-06-14 Dr.C医薬株式会社 Pharmaceutical preparation and medical instrument
JP2019127468A (en) * 2018-01-26 2019-08-01 Dr.C医薬株式会社 Pharmaceutical preparation and medical device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "STUDY OF NEW CORONAVIRUS SPIKE PROTEIN DISRUPTION BY DR.C20 ", 13 January 2021 (2021-01-13), XP055921124, Retrieved from the Internet <URL:http://drciyaku.co.jp/topic_2012_01_covid19.html> *
DJELLABI RIDHA, BASILICO NICOLETTA, DELBUE SERENA, D’ALESSANDRO SARAH, PARAPINI SILVIA, CERRATO GIUSEPPINA, LAURENTI ENZO, FALLETT: "Oxidative Inactivation of SARS-CoV-2 on Photoactive AgNPs@TiO2 Ceramic Tiles", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 16, 1 January 2021 (2021-01-01), pages 8836, XP055921127, DOI: 10.3390/ijms22168836 *
MLCOCHOVA P, CHADHA A, HESSELHOJ T, FRATERNALI F, RAMSDEN JJ, GUPTA RK: "Extended in vitro inactivation of SARS-CoV-2 by titanium dioxide surface coating", BIORXIV, 8 December 2020 (2020-12-08), XP055921125, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.12.08.415018v1.full.pdf> DOI: 10.1101/2020.12.08.415018 *
NARUMI OKAZAKI, HOSHI TANJI: "An Analysis of the Clinical Benefits of Hydroxyl Ag Titan Sheet (HATS) in 12 Adults with Hay Fever", PUBLIC HEALTH RESEARCH, vol. 6, no. 6, 1 January 2016 (2016-01-01), pages 168 - 176, XP055729360, ISSN: 2167-7263, DOI: 10.5923/j.phr.20160606.04 *
OKAZAKI, NARUMI: "An analysis of the clinical benefit of Hydroxyapatite-binding silver/titanium dioxide ceramic composite sheets (HATS) against hay fever", BULLETIN OF SOCIAL MEDICINE, vol. 34, 2017, pages 55 - 64, XP055729357 *

Also Published As

Publication number Publication date
JPWO2022079997A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Huggins et al. Ribavirin therapy for Hantaan virus infection in suckling mice
JP6055861B2 (en) Airborne virus countermeasures
Vaze et al. Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers
CA2761710C (en) Methods of treating or preventing influenza associated illness with oxidative reductive potential water solutions
WO2019146186A1 (en) Medicinal preparation and medical instrument
EP2249866B1 (en) Use of an acetylsalicylic acid salt for the treatment of viral infections
US20100040703A1 (en) Use of nitric oxide
WO2022079997A1 (en) Anti-coronavirus virucide and method and usage employing same
JP6371014B1 (en) Pharmaceutical preparations and medical devices
JP2012526857A (en) Electrostatically charged multi-action nasal application, product and method
Zhang et al. Aerosol transmission of the pandemic SARS-CoV-2 and influenza a virus was blocked by negative ions
EP3934653B1 (en) Azelastine as antiviral treatment
KR101602516B1 (en) Electrostatically charged multi-acting nasal application, product, and method
JP2023522424A (en) Antiviral and antibacterial compositions
Hanyanunt et al. Effects of ultraviolet C (uvc) light and dry heat on filtration performance of N95 respirator mask
JP4004987B2 (en) Sanitary or medical anti-influenza virus mask
US20230294026A1 (en) Anti-viral compositions and method of killing virus
Rubino Salt Functionalization System for Protection against Airborne Diseases
WO2010082587A1 (en) Adsorbent for suspension in air
Rajapakse Role of a Chemist in a Pandemic Situation
Fabian et al. Modes of transmission of respiratory viral infections
Lurie Control of airborne contagion of tuberculosis
Schulze Post-operative wound infection
Nakagawa et al. Evaluation of the effect of catechin inhalation treatment on MRSA elimination
GB2435421A (en) Method for disabling influenza virus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549398

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879739

Country of ref document: EP

Kind code of ref document: A1