WO2010082414A1 - Organic thin film transistor, method for manufacturing same, and device equipped with same - Google Patents

Organic thin film transistor, method for manufacturing same, and device equipped with same Download PDF

Info

Publication number
WO2010082414A1
WO2010082414A1 PCT/JP2009/070650 JP2009070650W WO2010082414A1 WO 2010082414 A1 WO2010082414 A1 WO 2010082414A1 JP 2009070650 W JP2009070650 W JP 2009070650W WO 2010082414 A1 WO2010082414 A1 WO 2010082414A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
thin film
film transistor
silica
organic thin
Prior art date
Application number
PCT/JP2009/070650
Other languages
French (fr)
Japanese (ja)
Inventor
敦 下嶋
隆司 関谷
Original Assignee
出光興産株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 国立大学法人東京大学 filed Critical 出光興産株式会社
Publication of WO2010082414A1 publication Critical patent/WO2010082414A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the present invention relates to an organic thin film transistor, a method for manufacturing the same, and an apparatus including the organic thin film transistor, and in particular, an organic thin film transistor having excellent device characteristics such as response speed, operating voltage, on / off ratio, and reliability by improving an insulating layer,
  • the present invention relates to a manufacturing method and an apparatus including the manufacturing method.
  • TFTs Thin film transistors
  • CVD devices used for manufacturing TFTs using such silicon are expensive and large-sized display devices using TFTs or the like.
  • the production is accompanied by a significant increase in manufacturing cost.
  • the process of depositing amorphous or polycrystalline silicon is performed at a very high temperature, so the types of materials that can be used as a substrate are limited, light weight and flexibility can be imparted.
  • a resin substrate or the like that can be designed in shape cannot be used.
  • a TFT can be manufactured on a lightweight resin substrate, it is expected that it can be applied to a portable electronic device.
  • a TFT using an organic semiconductor hereinafter sometimes abbreviated as an organic TFT
  • Vacuum deposition and coating methods are known as film formation methods used when forming TFTs with organic semiconductors. According to these film formation methods, the device can be enlarged while suppressing an increase in manufacturing cost. Therefore, the process temperature required for film formation can be made relatively low.
  • TFTs using organic substances have the advantage that there are few restrictions when selecting materials used for the substrate, and their practical application is expected.
  • a top contact type, a bottom contact type, a bottom contact / top gate type, and the like are known.
  • the insulator layer is an important configuration that affects the performance of the organic thin film transistor. Is an element.
  • various insulator materials have been studied.
  • the inorganic insulating film material examples include SiO 2 , Si 3 N 4 , Al 2 O 3 , BZT, Ta 2 O 5 , and TiO 2 .
  • the thermally oxidized SiO 2 film on the surface thereof is an excellent insulating film, and is widely used in the evaluation of organic semiconductor materials.
  • Si—OH defects and water are present on the surface of the thermally oxidized SiO 2 film, and the surface levels caused by these defects become charge traps, which reduce field effect mobility, hysteresis, threshold Adversely affects voltage.
  • HMDS hexamethyldisilazane
  • OTS octadecyltrichlorosilane
  • polymer materials have been actively studied from the expectation that they are compatible with solution processes such as coating and film formation, and that cost reduction is possible.
  • Typical polymer materials are polypropylene, polyvinyl alcohol (PVA), polyvinylphenol (PVP), polyisobutylene, polymethyl methacrylate (PMMA), polyparaxylylene, polyethylene terephthalate (PET), polyimide, and the like.
  • the polymer insulating film generally has a smooth surface, but has a relative dielectric constant of about 3. If the film thickness is increased in order to ensure insulation, the gate capacitance decreases and the operation of the thin film transistor element tends to increase in voltage. .
  • Patent Document 1 relates to an invention of an organic semiconductor element containing a resin component having a ladder-type silsesquioxane skeleton in an insulator layer.
  • This insulator layer is formed at a low temperature by a simple process such as printing or spin coating. It is disclosed that the element can be driven at a low voltage and operates stably.
  • the uniformity of the film is not sufficient. For this reason, the performance of the obtained organic transistor was insufficient particularly in the on / off current ratio.
  • Patent Document 2 relates to an invention of an organic semiconductor element containing a resin component having a silsesquioxane skeleton in an insulator layer, and an active group (hydroxyl group or a hydrogen atom of a hydroxyl group is substituted with a hydrophobic group in a side chain structure.
  • an active group such as a hydroxyl group enters the side chain structure
  • the surface of the insulating film has a low surface energy, which hinders the crystal growth of the organic semiconductor material formed on the film and lowers the transistor characteristics. It was.
  • Patent Document 3 discloses an organic TFT using a polymer of methacryloxypropyltrimethoxysilane which is an organic-inorganic hybrid substance as an insulating film material.
  • Patent Document 4 discloses an organic TFT using a dielectric material prepared from a siloxy / metal oxide hybrid composition as an insulating film.
  • Siloxy components of the siloxy / metal oxide hybrid composition include siloxane.
  • silsesquioxane or the like is described, and as the metal oxide, oxides such as titanium, aluminum, zirconium, hafnium, tantalum, strontium, yttrium, and lanthanum are described.
  • Patent Document 5 discloses a gate insulating layer of a thin film transistor comprising a sol-gel silica-containing compound processed at a temperature of less than about 250 ° C.
  • Patent Document 6 discloses an organic device using a highly aligned siloxane-based molecular film, and is said to exhibit high stability.
  • Patent Document 7 discloses a semiconductor element using an amino group-containing polysiloxane as an insulating film.
  • Non-Patent Document 2 describes a TFT using polysilsesquioxane having a methyl group and a cyanoethyl group in the side chain as an insulating film.
  • Non-Patent Document 3 describes a TFT using polysilsesquioxane in which various functional groups are introduced into the side chain.
  • Non-Patent Document 4 describes a TFT using polysilsesquioxane in which an epoxy group is introduced into a side chain.
  • JP 2004-304121 JP 2007-258663 A JP 2005-120371 A JP 2006-135327 A JP 2008-124431 A JP 2007-145984 A JP 2007-103921 A
  • the present invention has been made to solve the above problems, and can be easily formed by a coating method, a printing method, or the like, and has a low surface energy, a high dielectric constant, which are required for an insulator material for organic transistors, Provided is an excellent organic insulator material having characteristics such as good insulation and good surface flatness, and by applying the material, an organic thin film transistor having a low threshold voltage and a high field effect mobility, a manufacturing method thereof, and the same An object is to provide an apparatus.
  • the present inventors have obtained a thin film of an amphiphilic oligomer obtained by (co) hydrolysis / condensation polymerization of a chain hydrocarbon group-containing alkoxysilane. It discovered that the silica type organic-inorganic hybrid film
  • this silica-based organic-inorganic hybrid film self-organization occurs due to the interaction between the hydrophilic group and the hydrophobic group in the process of forming the film by the amphiphilic oligomer, and a long-range order is brought about in the film. Further, the order distance can be controlled (amorphous structure) by selecting the polymerization conditions.
  • An organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, wherein the insulator layer is a chain hydrocarbon represented by the following general formula (1-a) Silica-based organic-inorganic hybrid obtained by forming a thin film of an amphiphilic oligomer obtained by cohydrolysis and condensation polymerization of a group-containing alkoxysilane A and a tetraalkoxysilane represented by the following general formula (2)
  • An organic thin film transistor characterized by being a film, Wherein R 1 is a chain hydrocarbon group having 6 or more carbon atoms, R 2 is a linear or branched alkyl group having 1 to 3 carbon atoms, and R 3 and R 4 are each independently And a straight-chain or branched alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.) Si (OR 5 ) 4 (2) (In the formula, R 5
  • An organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, wherein the insulator layer is a chain hydrocarbon represented by the following general formula (1-b)
  • An organic thin film transistor characterized by being a silica-based organic-inorganic hybrid film obtained by thin-film formation of an amphiphilic oligomer obtained by hydrolysis / condensation polymerization of a group-containing alkoxysilane B; (Wherein R 6 is a chain hydrocarbon group having 6 or more carbon atoms, and R 7 to R 9 are each independently a linear or branched alkyl group having 1 to 3 carbon atoms.
  • R 7 , R 8 and R 9 may be the same or different from each other.
  • the organic thin film transistor of the present invention can be easily formed by a coating method, a printing method, and the like, and an insulating layer having excellent characteristics such as low surface energy, high dielectric constant, good insulation, and good surface smoothness. Therefore, it has a low threshold voltage and a high field effect mobility.
  • FIG. It is a schematic diagram which shows the layered structure of the amphiphilic oligomer obtained from chain hydrocarbon group containing alkoxysilane B. It is a schematic diagram which shows the layered silica type
  • FIG. It is a schematic diagram which shows an amorphous silica type hybrid membrane. It is a schematic diagram which shows the cylindrical aggregate
  • the present invention relates to an organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, and the insulator layer is obtained by forming an amphiphilic oligomer into a thin film.
  • An organic thin-film transistor characterized by being a silica-based organic-inorganic hybrid film.
  • the organic thin film transistor according to the present invention has an element configuration having at least a gate electrode, an insulator layer, a source electrode, a drain electrode, and an organic semiconductor layer on a substrate, and the insulator layer is obtained by hydrolytic condensation polymerization of organosilane molecules. It is composed of a silica-based organic-inorganic hybrid film obtained by forming a thin film of an amphiphilic oligomer. 1 to 3 show cross-sectional configurations of typical organic thin film transistors. FIG.
  • TC type organic thin film transistor has a gate electrode 1, an insulator layer 5 and an organic semiconductor layer 4 in this order on a substrate 6, and further a source electrode 2 formed on the organic semiconductor layer 4 with a predetermined interval. And a drain electrode 3.
  • the organic semiconductor layer 4 forms a channel region, and the current flowing between the source electrode 2 and the drain electrode 3 can be controlled by the voltage applied to the gate electrode 1.
  • an organic semiconductor layer 4 is formed on a substrate on which a substrate 6 / gate electrode 1 / insulator layer 5 is formed by a solution coating process such as vacuum deposition, spin coating / dip coating / casting, and the like.
  • the source electrode 2 and the drain electrode 3 can be formed by, for example, vacuum vapor deposition using a vapor deposition mask.
  • FIG. 2 shows a bottom contact (BC) type device structure having an organic semiconductor layer 4 on the source electrode 2 and the drain electrode 3.
  • the BC type organic thin film transistor first has a gate electrode 1 and an insulator layer 5 on a substrate 6, has a circuit pattern of a source electrode 2 and a drain electrode 3 thereon, and further has an organic semiconductor layer 4 thereon. Have.
  • FIG. 3 shows a bottom contact / top gate type device structure having a source electrode 2 and a drain electrode 3, an organic semiconductor layer 4, and an insulator layer 5 in this order on a substrate 6, and a gate electrode 1 thereon. Show.
  • the organic thin film transistor of the present invention is characterized by the structure of the insulator layer and the manufacturing method thereof, and the element structure is shown in the top contact type shown in FIG. 1, the bottom contact type shown in FIG. It is not limited to the bottom contact / top gate type, and the organic semiconductor layer, the source electrode and the drain electrode formed so as to face each other with a predetermined interval, and the source electrode and the drain electrode respectively And a gate electrode formed at a distance, and the current flowing between the source and drain electrodes can be controlled by applying a voltage to the gate electrode.
  • the distance between the source electrode and the drain electrode is determined by the use of the organic thin film transistor of the present invention, and is usually about 0.1 ⁇ m to 1 mm, preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m.
  • the source electrode and the drain electrode are not particularly limited as long as they are conductive materials such as metal materials and alloy materials generally used as source / drain electrodes in organic thin film transistors.
  • conductive materials such as metal materials and alloy materials generally used as source / drain electrodes in organic thin film transistors.
  • Examples of the method for forming the electrode include vapor deposition, electron beam vapor deposition, sputtering, atmospheric pressure plasma, ion plating, chemical vapor deposition, electrodeposition, electroless plating, spin coating, Means such as printing or inkjet may be mentioned.
  • a method of patterning as necessary a method of forming a conductive thin film formed by using the above method using a known photolithography method or a lift-off method, on a metal foil such as aluminum or copper
  • the film thickness of the electrode formed in this way is not particularly limited as long as current conduction is possible, but is preferably in the range of 0.2 nm to 10 ⁇ m, more preferably 4 nm to 300 nm.
  • the film thickness is 0.2 nm or more, the resistance is increased due to the thin film thickness, and a voltage drop does not occur.
  • the film thickness is 10 ⁇ m or less, the film formation does not take time, and when other layers such as a protective layer and an organic semiconductor layer are laminated, there is no step and the lamination can be performed smoothly.
  • the electrode may have a stacked structure of the metal layer and the oxide layer.
  • Any material can be used for the oxide layer as long as it has electrical conductivity and exhibits a charge injection function with respect to the organic semiconductor layer.
  • GeO 2, SiO 2, MoO 3, V 2 O 5, VO 2, V 2 O 3, MnO, Mn 3 O 4, ZrO 2, WO 3, TiO 2, In 2 O 3, ZnO, NiO, HfO 2 , metal oxides such as Ta 2 O 5 , ReO 3 and PbO 2 are desirable.
  • GeO x (1 ⁇ x ⁇ 2), SnO 2 , PbO, ZnO, GaO, CdO, ZnOS, MgInO, CdInO, MgZnO, and the like are also suitable.
  • oxides such as indium tin oxide (ITO), indium oxide zinc (IZO), indium tin oxide zinc (ITZO), and oxides such as Ce, Nd, Sm, Eu, Tb, Ho, etc. What added the element can also be used suitably.
  • the oxide layer is formed by means such as vapor deposition, electron beam vapor deposition, sputtering, atmospheric pressure plasma, ion plating, chemical vapor deposition, spin coating, dip coating, printing, or inkjet.
  • a post-treatment such as a heat treatment is used in combination as necessary.
  • a method of patterning the oxide layer formed using the above method a method using a metal mask at the time of vapor deposition or sputtering, a pattern using a known photolithographic method or a lift-off method for a formed thin film is used. There are a method of forming a pattern, a method of directly forming a pattern by ink jet or the like.
  • the thickness of the oxide layer thus formed is not particularly limited, but is preferably in the range of 0.2 nm to 100 nm, more preferably 1 nm to 10 nm.
  • the film thickness is 0.2 nm or more, the charge injection effect of the oxide layer appears.
  • the film thickness is 100 nm or less, the internal resistance interposed in the source / drain electrodes becomes small, and the threshold voltage tends to decrease.
  • the metal surface may be modified for the purpose of improving the electrical contact between the electrode and the organic semiconductor layer described later.
  • various materials having affinity with the metal electrode and capable of surface modification by covering the metal layer particularly materials known as self-assembled monolayer (SAMs) agents are suitable.
  • SAMs self-assembled monolayer
  • thiophenols such as pentafluorothiophenol (PFTF), fluorothiophenol, trifluoromethylthiophenol (TFMTP), nitrothiophenol (NTP), chlorothiophenol (CTP), and methoxythiophenol (MOTP)
  • Fluorinated alkanethiols such as tridecafluoro-1-octanethiol (TDFOT), and aromatic alkanethiols such as ( ⁇ - (biphenyl-4-yl) alkanethiol), but are not limited thereto
  • the organic thin film layer can be formed on the metal layer by dissolving the material in a solvent such as dichloromethane or ethanol and immersing the substrate on which the metal layer is formed.
  • concentration of the solution is 0.1 to 100 mM, more preferably 0.1 to 10 mM.
  • the immersion time depends on the material used and the temperature of the solution, but it is 1 minute to 24 hours, preferably 10 minutes to 6 hours at room temperature.
  • Organic semiconductor layer The organic semiconductor used in the organic TFT of the present invention is not particularly limited. Organic semiconductors used for generally disclosed organic thin film transistors can be widely used. Examples thereof include organic semiconductor materials described in Chemical Review, 107, 1066, 2007. In the present invention, the organic semiconductor layer may be combined with a plurality of materials selected from the above organic semiconductor materials, and the plurality of materials may be mixed or stacked. Specific examples include the following, but are not limited thereto.
  • Acenes which may have a substituent such as naphthalene, anthracene, tetracene, pentacene, hexacene, heptacene, etc.
  • these F, CF 3, C 2 F 5 or fluorine compounds substituted with a fluoroalkyl group.
  • n-type organic semiconductor For example, tetracyanoquinodimethane (TCNQ), 11, 11, 12, 12-tetracyanonaphtho-2,6-quinodimethane (TCNNQ), which is known as an n-type semiconductor alone Quinoid oligomers, fullerenes such as C60, C70, PCBM and derivatives thereof, N, N′-diphenyl-3,4,9,10-perylenetetracarboxylic acid diimide, N, N′-dioctyl-3,4,9 , 10-perylenetetracarboxylic acid diimide (C8-PTCDI), N, N′-ditridecyl-3,4,9,10-perylenetetracarboxylic acid diimide (C13-PTCDI), NTCDA, 1,4,5,8- Tetracarboxylic acids such as naphthalenetetracarboxyldiimide (NTCDI), tetrathiafulvalen
  • a device having a high field effect mobility and a high on / off ratio can be obtained by using a high-purity organic semiconductor. Therefore, it is desirable to add purification by techniques such as column chromatography, recrystallization, distillation, sublimation, etc. as necessary. Preferably, it is possible to improve the purity by repeatedly using these purification methods or combining a plurality of methods. Furthermore, it is desirable to repeat sublimation purification at least twice as a final step of purification. By using these methods, it is preferable to use a material having a purity of 90% or more measured by HPLC, more preferably 95% or more, and particularly preferably 99% or more. In addition, the on / off ratio can be increased and the performance inherent to the material can be extracted.
  • the thickness of the organic semiconductor layer in the organic thin film transistor of the present invention is not particularly limited, but is usually 0.5 nm to 1 ⁇ m, and more preferably 2 nm to 250 nm.
  • the film thickness is 0.5 nm or more, a channel for transporting charges is effectively formed. If the film thickness is 1 ⁇ m or less, there will be no inconveniences such as growth of crystal grains and easy peeling.
  • a method for forming the organic semiconductor layer is not particularly limited, and a known method can be applied.
  • a molecular beam deposition method MBE method
  • a vacuum deposition method a chemical vapor deposition method
  • a dipping method in which a material is dissolved in a solvent
  • spin coating, casting, bar coating, roll coating, etc. printing, coating and baking electropolymerization, molecular beam deposition, self assembly from solution, and combinations thereof.
  • It is made of a material of an organic semiconductor layer.
  • the field effect mobility is improved. Therefore, it is also effective to maintain the substrate temperature during film formation at a high temperature when film formation from the gas phase (evaporation, sputtering, etc.) is used. It is.
  • the temperature is preferably 40 to 250 ° C., more preferably 70 to 150 ° C. Regardless of the film formation method, it is preferable to perform annealing after film formation because a high-performance device can be obtained.
  • the annealing temperature is preferably 50 to 200 ° C., more preferably 70 to 200 ° C., and the time is preferably 10 minutes to 12 hours, more preferably 1 to 10 hours.
  • Gate electrode As the gate electrode, in general, a thin film having conductivity and forming a film, such as a metal material, an alloy material, or a metal oxide material used as a source / drain electrode and a gate electrode in an organic thin film transistor, is widely used. it can. Specifically, the same material as that of the source / drain electrodes can be preferably used. Particularly preferred are metals such as Au, Ag, Cu and Al, alloy materials and paste materials containing them, and oxide transparent electrodes such as ITO and IZO. The patterning of the gate electrode can also be performed by the same method as that for the source / drain electrodes.
  • the substrate in the organic thin film transistor of the present invention plays a role of supporting the structure of the organic thin film transistor.
  • a material in addition to glass, inorganic compounds such as metal oxides and nitrides, plastic films (PET, PES, PC) It is also possible to use metal substrates or composites or laminates thereof. Further, when the structure of the organic thin film transistor can be sufficiently supported by the components other than the substrate, it is possible not to use the substrate. Further, a silicon (Si) wafer is often used as a material for the substrate. In this case, Si itself can be used as a gate electrode / substrate.
  • the insulator layer in the organic thin film transistor of the present invention is composed of a silica-based organic-inorganic hybrid film obtained by forming an amphiphilic oligomer.
  • the silica-based organic-inorganic hybrid film is described in A. It is described in detail in SHIMOJIMA, Journal of the Ceramic Society of Japan, 116, 278 (2008).
  • a typical method for producing the amphiphilic oligomer is shown below.
  • Method 1 for producing amphiphilic oligomer A chain hydrocarbon group-containing alkoxysilane A represented by the following general formula (1-a) and a tetraalkoxysilane represented by the following general formula (2) are cohydrolyzed and polycondensed.
  • R 1 is a chain hydrocarbon group having 6 or more carbon atoms
  • R 2 is a linear or branched alkyl group having 1 to 3 carbon atoms
  • R 3 and R 4 are each independently And a straight-chain or branched alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.
  • Si (OR 5 ) 4 (2) In the formula, R 5 is a methyl group or an ethyl group.)
  • R 1 is preferably a chain hydrocarbon group having 6 to 18 carbon atoms, and more preferably a chain hydrocarbon group having 8 to 12 carbon atoms.
  • the number of carbon atoms of the chain hydrocarbon group is within the above range, self-organization is promoted during the formation of the insulator layer, and the film quality is improved.
  • the crystal arrangement of the organic semiconductor material becomes uniform, the characteristics of the organic thin film transistor of the present invention are improved, pinholes are less likely to occur in the silica-based organic-inorganic hybrid film, and the dielectric strength is improved.
  • the chain hydrocarbon group represented by R 1 may be a saturated chain hydrocarbon group or an unsaturated chain hydrocarbon group.
  • saturated chain hydrocarbon group examples include a methylene chain represented by C n H 2n + 1 .
  • R 1 an unsaturated chain hydrocarbon group having one or more double bonds, it is possible to give thermal polymerizability and improve film strength, or to give photopolymerizability and thereby by photolithography. Patterning can be enabled.
  • a highly polar group such as —CN, —OH, —NH 2 , —SH, and —NCO can be introduced.
  • the linear or branched alkyl group having 1 to 3 carbon atoms is represented by C n H 2n + 1 (n is an integer of 1 to 3), and specific examples thereof include a methyl group, an ethyl group, n -Propyl and isopropyl groups.
  • the alkoxy group having 1 to 3 carbon atoms is represented by OC m H 2m + 1 (m is an integer of 1 to 3), and specific examples thereof include methoxy group, ethoxy group, n-propoxy group and isopropyl group. Is mentioned.
  • R 1 Si (OCH 3 ) 3 (1-a-1) R 1 Si (OCH 2 CH 3 ) 3 (1-a-2)
  • R 1 Si (CH 2 CH 3 ) (OCH 3 ) 2 (1-a-5) R 1 Si (CH 2 CH 3 ) 2 (OCH 3 ) (1-a-6)
  • chain hydrocarbon group-containing alkoxysilane A represented by the general formula (1-a) include decyltrimethoxysilane and decyltriethoxysilane.
  • tetraalkoxysilane represented by the general formula (2) include tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), ethoxytrimethoxysilane, diethoxymethoxysilane, and triethoxymethoxysilane. Tetramethoxysilane and tetraethoxysilane are particularly preferably used.
  • the chain hydrocarbon group-containing alkoxysilane B represented by the following general formula (1-b) is hydrolyzed and polycondensed.
  • R 6 is a chain hydrocarbon group having 6 or more carbon atoms
  • R 7 to R 9 are each independently a linear or branched alkyl group having 1 to 3 carbon atoms.
  • R 7 , R 8 and R 9 may be the same or different from each other.
  • R 6 is preferably a chain hydrocarbon group having 6 to 18 carbon atoms, and more preferably a chain hydrocarbon group having 10 to 16 carbon atoms.
  • the chain hydrocarbon group represented by R 6 may be a saturated chain hydrocarbon group or an unsaturated chain hydrocarbon group.
  • saturated chain hydrocarbon groups include methylene chains represented by C m H 2m + 1.
  • R 6 an unsaturated chain hydrocarbon group having one or more double bonds, it is possible to give thermal polymerizability and improve film strength, or to give photopolymerizability and to perform photolithography. Patterning can be enabled. (Furthermore, a highly polar group can be introduced for the purpose of improving the dielectric constant.)
  • the chain hydrocarbon group represented by R 6 by setting the number of carbon atoms to 14 or more, a layered silica-based hybrid film described later is used, and by setting the carbon number to 13 or less, a rod-like aggregate structure silica-based hybrid film is formed. Obtainable.
  • chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b) those having the following structures are preferably used.
  • chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b) are shown below.
  • silica-based organic-inorganic hybrid film examples include (1) layered silica-based hybrid film, (2) amorphous silica-based hybrid film, and (3) rod-like aggregated-structure silica-based hybrid film described below. Is not to be done.
  • (1) Layered silica-based hybrid membrane A specific method for producing a layered silica-based hybrid membrane is described below. About 1 to 20 moles (preferably 3 to 6 moles) of tetraalkoxysilane, 5 to 100 moles of THF (preferably 15 to 50 moles), 5 to 5 moles of water with respect to 1 mole of the alkoxysilane A containing chain hydrocarbon group.
  • a chain hydrocarbon group-containing alkoxysilane A for example, C 10 H 21 Si (OMe) 3
  • a tetraalkoxysilane for example, Si (OMe) 4
  • This solution is diluted with THF so that the THF: Si ratio is about 1: 2 to 20 (molar ratio), preferably 1: 3 to 10 (molar ratio), and spin coating is performed using the obtained diluted solution.
  • the film is formed on the substrate by the method, it is dried. At this time, drying can be promoted by heating to about 40 to 120 ° C.
  • a solvent ethanol or the like may be used instead of THF.
  • the amphiphilic oligomer formed on the substrate is self-assembled by the interaction between the hydrophilic portion and the hydrophobic portion, and as shown in FIG. 4, from the hydrophilic portion containing the silanol terminal and the chain hydrocarbon group.
  • a layered structure is formed by alternately stacking hydrophobic portions.
  • passing through this oligomerization step is important for obtaining a uniform film.
  • phase separation occurs between the chain hydrocarbon group-containing alkoxysilane A and the tetraalkoxysilane in thinning, and a uniform film cannot be obtained.
  • the siloxane network layer has a network structure based on a repeating unit of —Si—O—Si— siloxane bond, and the thickness thereof is a two-dimensional structure of about several silicon layers (1 to 1.5 nm). . Formation of the layer structure can be confirmed by observing a diffraction peak corresponding to the layer interval by X-ray analysis. Further, the layered structure can be directly confirmed by observation with an electron microscope.
  • a layered silica-based hybrid film can be obtained as follows. About 5 to 100 moles of THF (preferably with respect to 1 mole of the chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b), wherein R 6 is a chain hydrocarbon group having 14 or more carbon atoms) 15 to 50 mol), about 5 to 80 mol (preferably 15 to 30 mol) of water and about 0.0001 to 0.1 mol (preferably 0.001 to 0.01 mol) of HCl and 0.5 to 0.5 mol. Stir for about 24 hours, preferably 1-12 hours. Then, the chain hydrocarbon group-containing alkoxysilane B (for example, C 16 H 33 Si (OMe) 3 ) is hydrolyzed to form an amphiphilic oligomer (for example, a compound represented by the following formula).
  • THF preferably with respect to 1 mole of the chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b), wherein R 6 is a chain hydrocarbon
  • This solution is diluted with THF so that the THF: Si ratio is about 1: 2 to 20 (molar ratio), preferably 1: 3 to 10 (molar ratio), and spin coating is performed using the obtained diluted solution.
  • the film is formed on the substrate by the dip coating method or the dip coating method, it is dried. At this time, drying can be promoted by heating to about 40 to 120 ° C.
  • a solvent ethanol or the like may be used instead of THF.
  • the amphiphilic oligomer formed on the substrate is self-organized by the interaction between the hydrophilic part and the hydrophobic part, and as shown in FIG. 6, from the hydrophilic part containing the silanol terminal and the chain hydrocarbon group.
  • a layered structure is formed by alternately stacking hydrophobic portions. Here, passing through this oligomerization step is important for obtaining a uniform film.
  • the difference from the layered structure obtained from the chain hydrocarbon group-containing alkoxysilane A is the difference in whether the chain hydrocarbon sites are mutually
  • the amphiphilic oligomer is in a liquid crystal state having an arrangement structure as shown in FIG. 6, but the polycondensation of the silanol portion further progresses with time, and a siloxane network layer is formed, which is strong.
  • a solid film is formed (see FIG. 7). Formation of the layer structure can be confirmed by observing a diffraction peak corresponding to the layer interval by X-ray analysis. Moreover, a layered structure can be confirmed by electron microscope observation.
  • Amorphous silica-based hybrid film With respect to 1 mol of chain hydrocarbon group-containing alkoxysilane A, about 1 to 20 mol (preferably 3 to 6 mol) of tetraalkoxysilane, about 5 to 100 mol of THF (preferably 15 to 50 mol), about 5 to 80 mol (preferably 15 to 30 mol) of water and 0.1 to 5.0 mol (preferably 0.1 to 1.0 mol) of HCl and 0.5 to 24 hours. Stir to a degree, preferably 5-12 hours.
  • a chain hydrocarbon group-containing alkoxysilane A for example, C 10 H 21 Si (OMe) 3
  • a tetraalkoxysilane for example, Si (OMe) 4
  • An oligomer eg, C 10 H 21 Si (OSi (OH) 3 ) 3
  • the polycondensation of the amphiphilic oligomer proceeds to some extent at this stage, and a siloxane network is partially formed.
  • This solution is further diluted with THF so that the THF: Si ratio is about 1: 2 to 20 (molar ratio), preferably 1: 3 to 10 (molar ratio), and spin coating is performed using the obtained diluted solution.
  • the film is formed on the substrate by the method, it is dried.
  • As the solvent ethanol or the like may be used instead of THF. At this time, drying can be promoted by heating to about 40 to 120 ° C.
  • the network siloxane network and the hydrophobic hydrocarbon chain part are partially mixed to form an amorphous layer in which the partially ordered layers are randomly stacked.
  • the X-ray analysis when there is no diffraction peak corresponding to the layer spacing, it can be confirmed that the film is in an amorphous state.
  • the formation of the siloxane network further progresses with time, and a solid solid film is formed.
  • the above-mentioned chain hydrocarbon group-containing alkoxysilane A and tetraalkoxysilane are used, whether the finally formed film is in a layered state or an amorphous state depends on whether it is an oligomer-formed state or a partial siloxane It depends on how far the network is formed. Specifically, this progress process can be controlled by the amount of HCl added. By increasing the amount of HCl added, the formation of a partial siloxane network proceeds faster, and the finally formed film becomes amorphous.
  • a layered silica-based hybrid film is obtained by using less than 0.1 mol of HCl with respect to 1 mol of chain hydrocarbon group-containing alkoxysilane A, and amorphous by using 0.1 mol or more.
  • a silica-based hybrid membrane is obtained.
  • Rod-like aggregated silica-based hybrid film With respect to 1 mol of a chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b), wherein R 6 is a chain hydrocarbon group having 13 or less carbon atoms About 5 to 100 mol of THF (preferably 15 to 50 mol), about 5 to 80 mol of water (preferably 15 to 30 mol) and about 0.0001 to 0.1 mol of HCl (preferably 0.001 to 0). .01 mol) and the mixture is stirred for about 0.5 to 24 hours, preferably 1 to 12 hours.
  • THF preferably 15 to 50 mol
  • water preferably 15 to 30 mol
  • HCl preferably 0.001 to 0
  • the chain hydrocarbon group-containing alkoxysilane B (for example, C 12 H 25 Si (OSi (OCH 3 ) 3 ) 3 undergoes hydrolysis / condensation polymerization, and the chain hydrocarbon group-containing alkoxysilane B molecule is silanolated.
  • an amphiphilic oligomer for example, C 12 H 25 Si (OSi (OH) 3 ) 3
  • this solution is further added to a THF: Si ratio of about 1: 2 to 20 (molar ratio)
  • THF: Si ratio of about 1: 2 to 20 (molar ratio) Preferably, it is diluted with THF to a ratio of 1: 3 to 10 (molar ratio), and the resulting diluted solution is used to form a film on a substrate by spin coating, followed by drying.
  • a silica skeleton having a hexagonal cross section is formed, and a thin film having a structure in which a chain hydrocarbon group is filled in the inside and the surface is formed (see FIG. 10).
  • the diffraction peak corresponding to the repetitive period in the direction perpendicular to the substrate surface is obtained, so it can be confirmed that this form is achieved.
  • the cross section has a hexagonal structure, and the hexagonal columnar structure is laminated so that its long axis is parallel to the substrate from SEM observation etc. I understand that.
  • the silica-based hybrid film is formed on a glass substrate with an ITO electrode, a laminated body in which gold is deposited using a metal mask as a counter electrode, and an LCR meter is used.
  • the dielectric constant was measured, it was an element having a film thickness of 500 nm and the relative dielectric constant was 6 to 8 (value at a frequency of 2 kHz). Compared with the relative dielectric constant of a typical polymer insulating film being around 3, this is a very large value.
  • a silica-based organic-inorganic hybrid film obtained by forming an amphiphilic oligomer This is a very desirable characteristic for an insulating film of an organic thin film transistor, which results in low voltage operation of the transistor.
  • the outermost surface of the silica-based hybrid film is covered with a chain hydrocarbon group that forms a hydrophobic site of the amphiphilic oligomer, it exhibits high water repellency.
  • the water contact angle of ultrapure water is about 100 to 110 with respect to these film surfaces formed on a glass substrate by spin coating.
  • the surface energy of these silica-based hybrid films is low, and when an organic semiconductor material is formed, it is possible to promote good crystal growth of the organic semiconductor and to exhibit excellent field effect characteristics.
  • the silica-based hybrid film can be easily formed by coating with a solution, and has a high dielectric constant and high water repellency as a single film. This improves the manufacturing throughput of the insulating film for organic semiconductors and is very advantageous for cost reduction.
  • This invention also provides the manufacturing method of the said organic thin-film transistor which apply
  • the thickness of the silica-based hybrid film is not particularly limited, but the insulating film for an organic transistor preferably has a thickness of 50 to 5000 nm, and more preferably 100 to 1500 nm. If the film thickness is less than 50 nm, the insulation is insufficient, and a leakage current is generated between the source / drain electrodes and the gate electrode, leading to deterioration of transistor characteristics. On the other hand, when the film thickness exceeds 1500 nm, the gate capacitance becomes small, and an undesirable effect such as an increase in threshold voltage is exerted.
  • the present invention also provides an apparatus comprising the organic thin film transistor.
  • the device of the present invention is not particularly limited as long as it uses the above-described organic thin film transistor, and specific examples thereof include a circuit, a personal computer, a display, a mobile phone and the like.
  • Example 1 [Formation of insulator layer] First, a glass substrate with an ITO transparent electrode manufactured by Geomatic was prepared. The glass substrate had a shape of 25 mm ⁇ 20 mm ⁇ 0.7 mm, an ITO film thickness of 120 nm, and ITO was processed into a stripe shape using a photolithography method, and this was used as a gate electrode. This substrate was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • Decyltrimethoxysilane C 10 H 21 Si (OMe) 3
  • tetramethoxysilane Si (OMe) 4
  • tetrahydrofuran THF
  • water HCl in a molar ratio of 1: 4: 15: 19: 0
  • This amphiphilic oligomer solution was applied on the above glass substrate using a spin coating method (3000 rpm, 10 seconds), and then dried at room temperature for 1 day to form an insulator layer.
  • an insulator layer was formed on a plurality of substrates, and the following insulator layer evaluation and organic thin film transistor element production were performed. As a result of the following X-ray analysis and transmission electron microscope observation, it was found that the insulator layer had a layered structure with a layer interval of about 3.3 nm.
  • a gold electrode (with a thickness of 80 nm) is formed on the insulator layer through a metal mask, and is opposed to the ITO electrode with the insulator layer interposed therebetween.
  • An LCR meter (HP4284A, manufactured by Hewlett-Packard Company) ) was used to measure the dielectric constant of the insulator layer at a frequency of 2 kHz.
  • X-ray analysis X-ray analysis was performed using M03X-HF (manufactured by Bruker AXS), and the interlayer distance of the layered silica-based hybrid film or the repetition period distance of the rod-like aggregated structure silica-based hybrid film was derived from the diffraction peak position. Those having no peak corresponding to these distances were made amorphous.
  • Transmission electron microscope observation Observation was performed using JEOL JEM2010 (manufactured by JEOL Ltd.).
  • the electrodes were set to have a gap (channel length L) of 75 ⁇ m and a width (channel width W) of 5 mm.
  • a gate voltage of 0 to ⁇ 100 V was applied to the gate electrode of the obtained organic thin film transistor, and a current was applied by applying a voltage between the source and drain electrodes. In this case, holes were induced in the channel region (between the source and drain electrodes) of the organic semiconductor layer and operated as a p-type transistor.
  • the field effect mobility ⁇ and the threshold voltage V T were calculated to be 5.0 cm 2 / Vs and +4.0 V, respectively. Compared to an element using a parylene insulator layer (Comparative Example 1, which will be described later), the mobility was high and the threshold voltage was low.
  • Example 2 An organic thin film transistor was manufactured by forming an insulating layer in the same manner as in Example 1 except that the insulating layer was formed as follows.
  • the amphiphilic oligomer solution prepared in the same manner as in Example 1 was further diluted with THF so that the THF: Si ratio was 40: 5 (molar ratio).
  • This diluted amphiphilic oligomer solution was applied on a glass substrate using a spin coating method (3000 rpm, 10 seconds), and then dried at room temperature for 1 day to form an insulating layer.
  • the insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of X-ray analysis and transmission electron microscope observation, it was found that the insulator layer had the same layered structure as in Example 1.
  • Example 3 An organic thin film transistor was manufactured by forming an insulating layer in the same manner as in Example 1 except that the insulating layer was formed as follows. Decyltrimethoxysilane, tetramethoxysilane, THF, water and HCl were mixed at a molar ratio of 1: 4: 15: 19: 0.2 and stirred at room temperature for 6 hours to prepare an amphiphilic oligomer solution. . This solution was further diluted with THF so that the THF: Si ratio was 40: 5 (molar ratio). This diluted amphiphilic oligomer solution was applied on the previous glass substrate using a spin coating method (3000 rpm, 10 seconds) and then dried at room temperature for 1 day to form an insulator layer. The insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of X-ray analysis, it was found that the insulator layer was in an amorphous state having no long-range structure.
  • Example 4 An organic thin film transistor was manufactured by forming an insulating layer in the same manner as in Example 1 except that the insulating layer was formed as follows. Dodecyltris (trimethoxysiloxy) silane, THF, water, and HCl were mixed at a molar ratio of 1: 50: 18: 0.002 and stirred at room temperature for 6 hours to prepare an amphiphilic oligomer solution. This amphiphilic oligomer solution was further diluted with water so that the water: Si ratio was 50: 4 (molar ratio). This solution was applied on the above glass substrate using a spin coating method (3000 rpm, 10 seconds), and then dried at room temperature for 1 day to form an insulator layer. The insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. Also, X-ray analysis and transmission electron microscope observation revealed that this insulator layer has a rod-like aggregate structure.
  • Example 5 Except that 1,4-bis (3-methylstyryl) benzene (4MSB) was used as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 1. did. The evaluation results are shown in Table 1.
  • Example 6 Except for using 4MSB as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1.
  • Example 7 Except for using 4MSB as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 1.
  • Example 8 An insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 4 except that 4MSB was used as the organic semiconductor material. The evaluation results are shown in Table 1.
  • Comparative Example 1 An organic thin film transistor was manufactured in the same manner as in Example 1 except that the insulator layer was formed as follows.
  • a glass substrate with ITO prepared and cleaned in the same manner as in Example 1 was set in a film forming section of a thermal CVD apparatus.
  • the raw material evaporation section 250 mg of polyparaxylene derivative [polyparaxylene chloride (parylene)] (trade name; diX-C, manufactured by Sansei Kasei Co., Ltd.) is placed in a petri dish as a raw material for the insulator layer. did.
  • the thermal CVD apparatus was evacuated with a vacuum pump and depressurized to 5 Pa, and then the evaporation part was heated to 180 ° C.
  • Comparative Example 2 Except that 4MSB was used as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Comparative Example 1. The evaluation results are shown in Table 1.
  • the organic TFT of the present invention is useful as a transistor because it has high mobility and low threshold voltage.
  • Gate electrode 2 Source electrode 3: Drain electrode 4: Organic semiconductor layer 5: Insulator layer 6: Substrate

Abstract

Disclosed is an organic thin film transistor characterized by comprising at least a gate electrode, a source electrode, a drain electrode, an insulating layer and an organic semiconductor layer all arranged on a support, wherein the insulating layer is a silica-type organic-inorganic hybrid film produced by shaping an amphipathic oligomer into a thin film, wherein the amphipathic oligomer is produced by the cohydrolysis/polycondensation of an alkoxysilane containing a linear hydrocarbon group and a tetraalkoxysilane or the hydrolysis/polycondensation of an alkoxysilane containing a linear hydrocarbon group.  Also disclosed is a method for manufacturing the organic thin film transistor.  Further disclosed is a device equipped with the organic thin film transistor.  It becomes possible to provide an organic insulating material which can be shaped into a film conveniently by means of a coating technique, a printing technique or the like and has excellent characteristics required for an insulating material for an organic transistor such as a low surface energy, a high dielectric constant, good insulation properties and good surface flatness, and therefore it becomes possible to provide an organic thin film transistor having a low threshold voltage and a high field effect mobility by utilizing the insulating material.

Description

有機薄膜トランジスタ、その製造方法及びそれを備える装置ORGANIC THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DEVICE PROVIDED WITH THE SAME
 本発明は、有機薄膜トランジスタ、その製造方法及びそれを備える装置に関し、特に、絶縁体層を改良することで、応答速度、動作電圧、オン/オフ比、信頼性等の素子特性に優れる有機薄膜トランジスタ、その製造方法及びそれを備える装置に関する。 The present invention relates to an organic thin film transistor, a method for manufacturing the same, and an apparatus including the organic thin film transistor, and in particular, an organic thin film transistor having excellent device characteristics such as response speed, operating voltage, on / off ratio, and reliability by improving an insulating layer, The present invention relates to a manufacturing method and an apparatus including the manufacturing method.
 薄膜トランジスタ(以下、TFTと略記する場合がある。)は、液晶表示装置等の表示用のスイッチング素子として広く用いられている。
 従来、TFTは、アモルファスや多結晶のシリコンを用いて作製されていたが、このようなシリコンを用いたTFTの作製に用いられるCVD装置は、高額であり、TFTを用いた表示装置等の大型化は、製造コストの大幅な増加を伴うという問題点があった。また、アモルファスや多結晶のシリコンを成膜するプロセスは非常に高い温度下で行われるので、基板として使用可能な材料の種類が限られてしまい、軽量で、且つ柔軟性の付与が可能で自由に形状設計ができる樹脂基板等は使用できないという問題があった。軽量の樹脂基板の上にTFTの製造が可能になると携帯用電子デバイスへの応用が可能になると期待される。
 このような問題を解決するために、有機半導体を用いたTFT(以下、有機TFTと略記する場合がある。)が提案されている。有機半導体でTFTを形成する際に用いる成膜方法として真空蒸着法や塗布法等が知られているが、これらの成膜方法によれば、製造コストの上昇を抑えつつ素子の大型化が実現可能になり、成膜時に必要となるプロセス温度を比較的低温にすることができる。また、有機物を用いたTFTでは、基板に用いる材料の選択時の制限が少ないといった利点があり、その実用化が期待されている。
 有機薄膜トランジスタの素子構成としては、トップコンタクト型、ボトムコンタクト型、ボトムコンタクト・トップゲート型等が知られているが、いずれの構成においても、絶縁体層は有機薄膜トランジスタの性能を左右する重要な構成要素である。有機薄膜トランジスタの望ましい特性、すなわち大きな取出し電流、低動作電圧、高オン/オフ電流比、高信頼性を実現するために、様々な絶縁体材料が検討されている。
Thin film transistors (hereinafter sometimes abbreviated as TFTs) are widely used as display switching elements in liquid crystal display devices and the like.
Conventionally, TFTs have been manufactured using amorphous or polycrystalline silicon. However, CVD devices used for manufacturing TFTs using such silicon are expensive and large-sized display devices using TFTs or the like. There has been a problem that the production is accompanied by a significant increase in manufacturing cost. In addition, the process of depositing amorphous or polycrystalline silicon is performed at a very high temperature, so the types of materials that can be used as a substrate are limited, light weight and flexibility can be imparted. However, there is a problem that a resin substrate or the like that can be designed in shape cannot be used. If a TFT can be manufactured on a lightweight resin substrate, it is expected that it can be applied to a portable electronic device.
In order to solve such a problem, a TFT using an organic semiconductor (hereinafter sometimes abbreviated as an organic TFT) has been proposed. Vacuum deposition and coating methods are known as film formation methods used when forming TFTs with organic semiconductors. According to these film formation methods, the device can be enlarged while suppressing an increase in manufacturing cost. Therefore, the process temperature required for film formation can be made relatively low. In addition, TFTs using organic substances have the advantage that there are few restrictions when selecting materials used for the substrate, and their practical application is expected.
As an element configuration of an organic thin film transistor, a top contact type, a bottom contact type, a bottom contact / top gate type, and the like are known. In any configuration, the insulator layer is an important configuration that affects the performance of the organic thin film transistor. Is an element. In order to achieve the desirable characteristics of organic thin film transistors, ie, high extraction current, low operating voltage, high on / off current ratio, and high reliability, various insulator materials have been studied.
 このような状況下、有機TFTの絶縁体層について様々な材料が検討されている。
 無機系の絶縁膜材料としては、SiO2、Si34、Al23、BZT、Ta25、TiO2などが上げられる。ヘビードープされたシリコン基板をゲート電極として用いる場合、その表面の熱酸化SiO2膜は優れた絶縁膜となり、有機半導体材料の評価では広く用いられている。一般に、熱酸化SiO2膜の表面には、Si-OH欠陥や、水が存在しており、これらのもたらす表面準位が、電荷トラップとなって、電界効果移動度の低下や、ヒステリシス、閾値電圧に悪影響を及ぼす。上記の問題を回避するために、ヘキサメチルジシラザン(HMDS)やオクタデシルトリクロロシラン(OTS)などによって表面処理を行い、表面エネルギーの低い撥水性表面にする(水接触角を大きくする)手法が検討されている(例えば、非特許文献1参照)。無機系の材料の成膜には、蒸着やスパッタ、CVDなどの成膜プロセスが用いられるが、これらは真空槽を必要とするため高コストであり、かつ、運転コストも高いというデメリットがある。また、良好な膜質を得るのに、高温での成膜が必要である場合もあり、フレキシブルなフィルム基板などへの適用は難しい。
 また、ポリマー系材料は、塗布成膜などの溶液プロセスとの相性が良く、低コスト化が可能との期待から、盛んに検討されている。代表的なポリマー材料は、ポリプロピレン、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリイソブチレン、ポリメチルメタクリレート(PMMA)、ポリパラキシリレン、ポリエチレンテレフタレート(PET)、ポリイミドなどである。ポリマー絶縁膜は、概して平滑な表面が得られるが、比誘電率は3程度であり、絶縁性を確保するために膜厚を厚くするとゲート容量が小さくなり、薄膜トランジスタ素子の動作が高電圧化しやすい。極性が強く、比誘電率の大きな材料、例えば、シアノプルランなども提案されている。しかし極性の高いポリマーは、概して表面に存在するトラップによりFET性能が低下させたり、ヒステリシスを誘発したりするため、好ましくないとされている。
 以上のように様々な絶縁体材料やその構成が検討されているが、一種類の絶縁体材料で所望の特性を得るのは困難である。そこで、複数の絶縁体材料の組み合わせ使用や無機微粒子と有機材料の混合、表面処理による絶縁体表面の改質などを組み合わせて用いることが試みられているが、製造プロセスが煩雑となり、コスト的にも不利である。
Under such circumstances, various materials have been studied for the insulator layer of the organic TFT.
Examples of the inorganic insulating film material include SiO 2 , Si 3 N 4 , Al 2 O 3 , BZT, Ta 2 O 5 , and TiO 2 . When a heavily doped silicon substrate is used as the gate electrode, the thermally oxidized SiO 2 film on the surface thereof is an excellent insulating film, and is widely used in the evaluation of organic semiconductor materials. In general, Si—OH defects and water are present on the surface of the thermally oxidized SiO 2 film, and the surface levels caused by these defects become charge traps, which reduce field effect mobility, hysteresis, threshold Adversely affects voltage. In order to avoid the above problems, a method of surface treatment with hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) to make the surface water-repellent with low surface energy (increase the water contact angle) is studied. (For example, refer nonpatent literature 1). Film formation processes such as vapor deposition, sputtering, and CVD are used for the film formation of the inorganic material, but these have a demerit that they are expensive because they require a vacuum chamber and the operation cost is also high. In addition, in order to obtain good film quality, film formation at a high temperature may be necessary, and application to a flexible film substrate or the like is difficult.
In addition, polymer materials have been actively studied from the expectation that they are compatible with solution processes such as coating and film formation, and that cost reduction is possible. Typical polymer materials are polypropylene, polyvinyl alcohol (PVA), polyvinylphenol (PVP), polyisobutylene, polymethyl methacrylate (PMMA), polyparaxylylene, polyethylene terephthalate (PET), polyimide, and the like. The polymer insulating film generally has a smooth surface, but has a relative dielectric constant of about 3. If the film thickness is increased in order to ensure insulation, the gate capacitance decreases and the operation of the thin film transistor element tends to increase in voltage. . Materials having a strong polarity and a large relative dielectric constant, such as cyanopullulan, have been proposed. However, highly polar polymers are generally considered undesirable because traps present on the surface can degrade FET performance and induce hysteresis.
As described above, various insulator materials and their configurations have been studied, but it is difficult to obtain desired characteristics with one kind of insulator material. Thus, attempts have been made to use a combination of a plurality of insulator materials, a combination of inorganic fine particles and organic materials, and a modification of the insulator surface by surface treatment, but the manufacturing process becomes complicated and costly. Is also disadvantageous.
 上記の課題を解決するために、シロキサンネットワークを基礎とする有機・無機ハイブリッド膜を絶縁体層に用いる試みがなされている。
 例えば、特許文献1は絶縁体層にラダー型のシルセスキオキサン骨格を有する樹脂成分を含有する有機半導体素子の発明に関し、この絶縁体層は印刷やスピンコートなどの簡易な工程により低温成膜可能であり、その素子は低電圧駆動が可能であり、安定動作することが開示されている。しかしながら、上記樹脂成分の構造では、側鎖が短いため、膜の均一性が十分でない。このため、得られた有機トランジスタの性能は、特にオン/オフ電流比において不十分であった。また、比誘電率も3.8であり、素子の低電圧化に寄与するには、不十分な値である。
 また、特許文献2は絶縁体層にシルセスキオキサン骨格を有する樹脂成分を含有する有機半導体素子の発明に関し、側鎖構造に活性基(水酸基、または水酸基の水素原子を疎水性基で置換した基)を導入することで、緻密な膜を得たとしており、これにより低電圧駆動が可能で、かつ、駆動電圧値が安定した有機半導体素子を製造できるとしている。しかしながら、側鎖構造に水酸基等の活性基が入ることで、絶縁膜表面は低表面エネルギー化し、その膜上に形成される有機半導体材料の結晶成長を阻害し、トランジスタ特性を下げるという問題があった。
In order to solve the above problems, an attempt has been made to use an organic / inorganic hybrid film based on a siloxane network as an insulator layer.
For example, Patent Document 1 relates to an invention of an organic semiconductor element containing a resin component having a ladder-type silsesquioxane skeleton in an insulator layer. This insulator layer is formed at a low temperature by a simple process such as printing or spin coating. It is disclosed that the element can be driven at a low voltage and operates stably. However, in the structure of the resin component, since the side chain is short, the uniformity of the film is not sufficient. For this reason, the performance of the obtained organic transistor was insufficient particularly in the on / off current ratio. Also, the relative dielectric constant is 3.8, which is insufficient to contribute to lowering the voltage of the device.
Patent Document 2 relates to an invention of an organic semiconductor element containing a resin component having a silsesquioxane skeleton in an insulator layer, and an active group (hydroxyl group or a hydrogen atom of a hydroxyl group is substituted with a hydrophobic group in a side chain structure. In other words, it is said that a dense film can be obtained by introducing a base), whereby an organic semiconductor element capable of being driven at a low voltage and having a stable driving voltage value can be manufactured. However, when an active group such as a hydroxyl group enters the side chain structure, the surface of the insulating film has a low surface energy, which hinders the crystal growth of the organic semiconductor material formed on the film and lowers the transistor characteristics. It was.
 その他、特許文献3には、絶縁膜材料に、有機-無機ハイブリッド物質であるメタクリルオキシプロピルトリメトキシシランの重合体を使用してなる有機TFTが開示されている。
 特許文献4には、絶縁膜として、シロキシ/金属酸化物ハイブリッド組成物から調製した誘電材料を用いた有機TFTが開示されており、該シロキシ/金属酸化物ハイブリッド組成物のシロキシ成分としては、シロキサン又はシルセスキオキサンなどが記載されており、金属酸化物としては、チタン、アルミニウム、ジルコニウム、ハフニウム、タンタル、ストロンチウム、イットリウム、ランタンなどの酸化物が記載されている。
 特許文献5には、約250℃未満の温度で処理されたゾルゲルシリカ含有配合物を含んでなる、薄膜トランジスタのゲート絶縁層が開示されている。
 特許文献6には、高度に配列制御されたシロキサン系分子膜を用いてなる有機デバイスが開示されており、高い安定性が発現するとされている。
 特許文献7には、絶縁膜として、アミノ基含有のポリシロキサンを用いてなる半導体素子が開示されている。
 さらに、非特許文献2には、側鎖にメチル基とシアノエチル基を有するポリシルセスキオキサンを絶縁膜に用いたTFTが記載されている。
 非特許文献3には、側鎖に種々の官能基を導入したポリシルセスキオキサンを用いたTFTが記載されている。
 非特許文献4には、側鎖にエポキシ基を導入したポリシルセスキオキサンを用いたTFTが記載されている。
In addition, Patent Document 3 discloses an organic TFT using a polymer of methacryloxypropyltrimethoxysilane which is an organic-inorganic hybrid substance as an insulating film material.
Patent Document 4 discloses an organic TFT using a dielectric material prepared from a siloxy / metal oxide hybrid composition as an insulating film. Siloxy components of the siloxy / metal oxide hybrid composition include siloxane. Alternatively, silsesquioxane or the like is described, and as the metal oxide, oxides such as titanium, aluminum, zirconium, hafnium, tantalum, strontium, yttrium, and lanthanum are described.
Patent Document 5 discloses a gate insulating layer of a thin film transistor comprising a sol-gel silica-containing compound processed at a temperature of less than about 250 ° C.
Patent Document 6 discloses an organic device using a highly aligned siloxane-based molecular film, and is said to exhibit high stability.
Patent Document 7 discloses a semiconductor element using an amino group-containing polysiloxane as an insulating film.
Further, Non-Patent Document 2 describes a TFT using polysilsesquioxane having a methyl group and a cyanoethyl group in the side chain as an insulating film.
Non-Patent Document 3 describes a TFT using polysilsesquioxane in which various functional groups are introduced into the side chain.
Non-Patent Document 4 describes a TFT using polysilsesquioxane in which an epoxy group is introduced into a side chain.
特開2004-304121号公報JP 2004-304121 A 特開2007-258663号公報JP 2007-258663 A 特開2005-120371号公報JP 2005-120371 A 特開2006-135327号公報JP 2006-135327 A 特開2008-124431号公報JP 2008-124431 A 特開2007-145984号公報JP 2007-145984 A 特開2007-103921号公報JP 2007-103921 A
 しかしながら、3官能トリメトキシシランを加水分解・縮重合を行って得られるポリシルセスキオキサン系絶縁では、本質的に側鎖のアルキル鎖構造を長くすることは困難であり、また、側鎖構造を長くすると、シロキサンネットワークと有機側鎖のバランスが悪化し、膜の均一性が損なわれ、半導体材料の結晶化に悪影響をおよぼし、トランジスタとしての性能を低下させていた。また、得られる膜は、本質的にアモルファスの膜で、秩序を持たない構造であった。 However, with polysilsesquioxane insulation obtained by hydrolysis / condensation polymerization of trifunctional trimethoxysilane, it is essentially difficult to lengthen the alkyl chain structure of the side chain. When the length is increased, the balance between the siloxane network and the organic side chain deteriorates, the uniformity of the film is impaired, the crystallization of the semiconductor material is adversely affected, and the performance as a transistor is degraded. The obtained film was essentially an amorphous film and had no order.
 本発明は、前記の課題を解決するためになされたもので、塗布法や印刷法などによって簡便に成膜することができ、有機トランジスタ用絶縁体材料に求められる低表面エネルギー、高誘電率、良絶縁性、良表面平坦性などの特徴を有する優れた有機絶縁体材料を提供し、これを適用することで、低閾値電圧、高電界効果移動度の有機薄膜トランジスタ、その製造方法及びそれを備える装置を提供することを目的とする。 The present invention has been made to solve the above problems, and can be easily formed by a coating method, a printing method, or the like, and has a low surface energy, a high dielectric constant, which are required for an insulator material for organic transistors, Provided is an excellent organic insulator material having characteristics such as good insulation and good surface flatness, and by applying the material, an organic thin film transistor having a low threshold voltage and a high field effect mobility, a manufacturing method thereof, and the same An object is to provide an apparatus.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、鎖状炭化水素基含有アルコキシシランを、(共)加水分解・縮重合して得られる両親媒性オリゴマーを、薄膜に成膜して得られるシリカ系有機無機ハイブリッド膜を用いることを見出した。このシリカ系有機無機ハイブリッド膜においては、両親媒性オリゴマーが膜を形成する過程において、親水性基と疎水性基の相互作用によって自己組織化が起こり、膜中に長距離の秩序がもたらされる。また、重合条件を選ぶことで、秩序のおよぶ距離を制御する(アモルファス構造にする)こともできる。これによって、低表面エネルギー、高誘電率、良絶縁性、良表面平坦性などの望ましい特性が同時に満たされ、有機薄膜トランジスタの絶縁膜に適用した場合、有機半導体材料の性能を引き出し、すぐれたトランジスタ特性を実現できることを見出し、本発明を完成した。
 すなわち、本発明は、
1.少なくとも基板上にゲート電極、ソース電極、ドレイン電極、絶縁体層及び有機半導体層を有する有機薄膜トランジスタであって、該絶縁体層が、下記一般式(1-a)で表される鎖状炭化水素基含有アルコキシシランAと、下記一般式(2)で表されるテトラアルコキシシランとを共加水分解・縮重合して得られる両親媒性オリゴマーを、薄膜成膜して得られるシリカ系有機無機ハイブリッド膜であることを特徴とする有機薄膜トランジスタ、
Figure JPOXMLDOC01-appb-C000003
(式中、R1は炭素数6以上の鎖状炭化水素基であり、R2は、炭素数1~3の直鎖状又は分岐状アルキル基であり、R3及びR4は、それぞれ独立に、炭素数1~3の直鎖状又は分岐状アルキル基あるいは炭素数1~3のアルコキシ基である。)
  Si(OR54   (2)
(式中、R5はメチル基又はエチル基である。)
2.少なくとも基板上にゲート電極、ソース電極、ドレイン電極、絶縁体層及び有機半導体層を有する有機薄膜トランジスタであって、該絶縁体層が、下記一般式(1-b)で表される鎖状炭化水素基含有アルコキシシランBを加水分解・縮重合して得られる両親媒性オリゴマーを、薄膜成膜して得られるシリカ系有機無機ハイブリッド膜であることを特徴とする有機薄膜トランジスタ、
Figure JPOXMLDOC01-appb-C000004
(式中、R6は炭素数6以上の鎖状炭化水素基であり、R7~R9は、それぞれ独立に、炭素数1~3の直鎖状又は分岐状アルキル基である。3つのR7、R8及びR9は、それぞれにおいて互いに同一であっても異なっていてもよい。)
3.前記シリカ系有機無機ハイブリッド膜が、層状シリカ系ハイブリッド膜である上記1又は2記載の有機薄膜トランジスタ、
4.前記シリカ系有機無機ハイブリッド膜が、アモルファスシリカ系ハイブリッド膜である上記1又は2記載の有機薄膜トランジスタ、
5.前記シリカ系有機無機ハイブリッド膜が、棒状集合構造シリカ系ハイブリッド膜である上記2記載の有機薄膜トランジスタ、
6.前記一般式(1-b)におけるR6が炭素数14~18の鎖状炭化水素基であり、前記シリカ系有機無機ハイブリッド膜が、層状シリカ系ハイブリッド膜である上記2記載の有機薄膜トランジスタ、
7.前記一般式(1-b)におけるR6が炭素数6~13の鎖状炭化水素基であり、前記シリカ系有機無機ハイブリッド膜が、棒状集合構造シリカ系ハイブリッド膜である上記2記載の有機薄膜トランジスタ、
8.両親媒性オリゴマーを塗布してシリカ系有機無機ハイブリッド膜を形成することを特徴とする上記1~7のいずれかに記載の有機薄膜トランジスタの製造方法、及び
9.上記1~7のいずれかに記載の有機薄膜トランジスタを備える装置、
を提供する。
As a result of intensive studies to achieve the above object, the present inventors have obtained a thin film of an amphiphilic oligomer obtained by (co) hydrolysis / condensation polymerization of a chain hydrocarbon group-containing alkoxysilane. It discovered that the silica type organic-inorganic hybrid film | membrane obtained by forming into a film was used. In this silica-based organic-inorganic hybrid film, self-organization occurs due to the interaction between the hydrophilic group and the hydrophobic group in the process of forming the film by the amphiphilic oligomer, and a long-range order is brought about in the film. Further, the order distance can be controlled (amorphous structure) by selecting the polymerization conditions. As a result, desirable characteristics such as low surface energy, high dielectric constant, good insulation, and good surface flatness are satisfied at the same time. When applied to the insulation film of organic thin film transistors, the performance of organic semiconductor materials is extracted, and excellent transistor characteristics. The present invention has been completed.
That is, the present invention
1. An organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, wherein the insulator layer is a chain hydrocarbon represented by the following general formula (1-a) Silica-based organic-inorganic hybrid obtained by forming a thin film of an amphiphilic oligomer obtained by cohydrolysis and condensation polymerization of a group-containing alkoxysilane A and a tetraalkoxysilane represented by the following general formula (2) An organic thin film transistor characterized by being a film,
Figure JPOXMLDOC01-appb-C000003
Wherein R 1 is a chain hydrocarbon group having 6 or more carbon atoms, R 2 is a linear or branched alkyl group having 1 to 3 carbon atoms, and R 3 and R 4 are each independently And a straight-chain or branched alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.)
Si (OR 5 ) 4 (2)
(In the formula, R 5 is a methyl group or an ethyl group.)
2. An organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, wherein the insulator layer is a chain hydrocarbon represented by the following general formula (1-b) An organic thin film transistor characterized by being a silica-based organic-inorganic hybrid film obtained by thin-film formation of an amphiphilic oligomer obtained by hydrolysis / condensation polymerization of a group-containing alkoxysilane B;
Figure JPOXMLDOC01-appb-C000004
(Wherein R 6 is a chain hydrocarbon group having 6 or more carbon atoms, and R 7 to R 9 are each independently a linear or branched alkyl group having 1 to 3 carbon atoms. R 7 , R 8 and R 9 may be the same or different from each other.)
3. The organic thin-film transistor according to 1 or 2 above, wherein the silica-based organic-inorganic hybrid film is a layered silica-based hybrid film,
4). 3. The organic thin film transistor according to 1 or 2 above, wherein the silica-based organic-inorganic hybrid film is an amorphous silica-based hybrid film,
5). 3. The organic thin film transistor according to 2 above, wherein the silica-based organic-inorganic hybrid film is a rod-like aggregate structure silica-based hybrid film,
6). 3. The organic thin film transistor according to 2 above, wherein R 6 in the general formula (1-b) is a chain hydrocarbon group having 14 to 18 carbon atoms, and the silica-based organic-inorganic hybrid film is a layered silica-based hybrid film;
7). 3. The organic thin film transistor according to 2 above, wherein R 6 in the general formula (1-b) is a chain hydrocarbon group having 6 to 13 carbon atoms, and the silica-based organic-inorganic hybrid film is a rod-like aggregated-structure silica-based hybrid film. ,
8). 8. The method for producing an organic thin film transistor according to any one of 1 to 7 above, wherein an amphiphilic oligomer is applied to form a silica-based organic-inorganic hybrid film; An apparatus comprising the organic thin film transistor according to any one of 1 to 7 above,
I will provide a.
 本発明の有機薄膜トランジスタは、塗布法や印刷法などによって簡便に成膜可能であり、かつ、低表面エネルギー、高誘電率、良絶縁性、良表面平滑性などの特性に優れた絶縁体層を有するため、低閾値電圧及び高電界効果移動度を有する。 The organic thin film transistor of the present invention can be easily formed by a coating method, a printing method, and the like, and an insulating layer having excellent characteristics such as low surface energy, high dielectric constant, good insulation, and good surface smoothness. Therefore, it has a low threshold voltage and a high field effect mobility.
トップコンタクト型有機薄膜トランジスタの一例を示す断面図である。It is sectional drawing which shows an example of a top contact type organic thin-film transistor. ボトムコンタクト型有機薄膜トランジスタの一例を示す断面図である。It is sectional drawing which shows an example of a bottom contact type organic thin-film transistor. ボトムコンタクト・トップゲート型有機薄膜トランジスタの一例を示す断面図である。It is sectional drawing which shows an example of a bottom contact top gate type organic thin-film transistor. 鎖状炭化水素基含有アルコキシシランA及びテトラアルコキシシランから得られる両親媒性オリゴマーの層状構造を示す模式図である。It is a schematic diagram which shows the layered structure of the amphiphilic oligomer obtained from chain | strand-shaped hydrocarbon group containing alkoxysilane A and tetraalkoxysilane. 鎖状炭化水素基含有アルコキシシランA及びテトラアルコキシシランを用いてなる層状シリカ系ハイブリッド膜を示す模式図である。It is a schematic diagram which shows the layered silica type hybrid film | membrane which uses chain | strand-shaped hydrocarbon group containing alkoxysilane A and tetraalkoxysilane. 鎖状炭化水素基含有アルコキシシランBから得られる両親媒性オリゴマーの層状構造を示す模式図である。It is a schematic diagram which shows the layered structure of the amphiphilic oligomer obtained from chain hydrocarbon group containing alkoxysilane B. 鎖状炭化水素基含有アルコキシシランBを用いてなる層状シリカ系ハイブリッド膜を示す模式図である。It is a schematic diagram which shows the layered silica type | system | group hybrid film | membrane formed using the linear hydrocarbon group containing alkoxysilane B. FIG. アモルファスシリカ系ハイブリッド膜を示す模式図である。It is a schematic diagram which shows an amorphous silica type hybrid membrane. 両親媒性オリゴマーのシリンダー状の集合体を示す模式図である。It is a schematic diagram which shows the cylindrical aggregate | assembly of an amphiphilic oligomer. 棒状集合構造シリカ系ハイブリッド膜を示す模式図である。It is a schematic diagram which shows a rod-shaped aggregate structure silica type hybrid membrane.
 本発明は、少なくとも基板上にゲート電極、ソース電極、ドレイン電極、絶縁体層及び有機半導体層を有する有機薄膜トランジスタであって、該絶縁体層が、両親媒性オリゴマーを、薄膜成膜して得られるシリカ系有機無機ハイブリッド膜であることを特徴とする有機薄膜トランジスタを提供する。 The present invention relates to an organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, and the insulator layer is obtained by forming an amphiphilic oligomer into a thin film. An organic thin-film transistor characterized by being a silica-based organic-inorganic hybrid film.
 以下、本発明の有機TFTの詳細について説明する。
(素子構成)
 本発明の有機薄膜トランジスタの素子構成としては、少なくとも基板上にゲート電極、絶縁体層、ソース電極、ドレイン電極、有機半導体層を有し、絶縁体層が有機シラン分子を加水分解縮重合して得られる両親媒性オリゴマーを薄膜成膜して得られるシリカ系有機無機ハイブリッド膜で構成される。
 図1~3に、代表的な有機薄膜トランジスタの断面構成を示す。
 図1は、有機半導体層4を介して、ソース電極2及びドレイン電極3と基板6が対向しているトップコンタクト(TC)型の素子構成を示す。TC型の有機薄膜トランジスタは、基板6上にゲート電極1、絶縁体層5および有機半導体層4をこの順に有し、さらに有機半導体層4上に、所定の間隔をあけて形成されたソース電極2及びドレイン電極3を有する。このような構成の有機薄膜トランジスタでは、有機半導体層4がチャネル領域を成しており、ゲート電極1に印加される電圧によってソース電極2とドレイン電極3の間を流れる電流を制御することができる。この構成は、基板6/ゲート電極1/絶縁体層5を形成した基板の上に、有機半導体層4を真空蒸着や、スピンコート・ディップコート・キャスティングなどの溶液塗布プロセスによって形成し、その上にソース電極2及びドレイン電極3を、例えば蒸着マスクを用いた真空蒸着によって形成することで実現できる。
 図2は、ソース電極2及びドレイン電極3上に有機半導体層4を有するボトムコンタクト(BC)型の素子構成を示す。BC型の有機薄膜トランジスタは、まず基板6上にゲート電極1及び絶縁体層5を有し、その上にソース電極2及びドレイン電極3の回路パターンを有し、さらにその上に有機半導体層4を有する。この場合、電極の形成には従来のフォトリソグラフィー法などを適用することができるため、高精細で大面積の回路パターンを容易に作製することができる。また、あらかじめ形成された回路パターン上に有機半導体層4を形成するので、電極形成に伴う物理的・化学的ストレスによって有機半導体材料4を劣化させることがないという利点を有する。
 図3は、基板6上に、ソース電極2及びドレイン電極3、有機半導体層4、絶縁体層5をこの順に有し、その上にゲート電極1を有するボトムコンタクト・トップゲート型の素子構成を示す。
Hereinafter, the details of the organic TFT of the present invention will be described.
(Element structure)
The organic thin film transistor according to the present invention has an element configuration having at least a gate electrode, an insulator layer, a source electrode, a drain electrode, and an organic semiconductor layer on a substrate, and the insulator layer is obtained by hydrolytic condensation polymerization of organosilane molecules. It is composed of a silica-based organic-inorganic hybrid film obtained by forming a thin film of an amphiphilic oligomer.
1 to 3 show cross-sectional configurations of typical organic thin film transistors.
FIG. 1 shows a top contact (TC) type element structure in which a source electrode 2 and a drain electrode 3 are opposed to a substrate 6 with an organic semiconductor layer 4 interposed therebetween. The TC type organic thin film transistor has a gate electrode 1, an insulator layer 5 and an organic semiconductor layer 4 in this order on a substrate 6, and further a source electrode 2 formed on the organic semiconductor layer 4 with a predetermined interval. And a drain electrode 3. In the organic thin film transistor having such a configuration, the organic semiconductor layer 4 forms a channel region, and the current flowing between the source electrode 2 and the drain electrode 3 can be controlled by the voltage applied to the gate electrode 1. In this configuration, an organic semiconductor layer 4 is formed on a substrate on which a substrate 6 / gate electrode 1 / insulator layer 5 is formed by a solution coating process such as vacuum deposition, spin coating / dip coating / casting, and the like. Further, the source electrode 2 and the drain electrode 3 can be formed by, for example, vacuum vapor deposition using a vapor deposition mask.
FIG. 2 shows a bottom contact (BC) type device structure having an organic semiconductor layer 4 on the source electrode 2 and the drain electrode 3. The BC type organic thin film transistor first has a gate electrode 1 and an insulator layer 5 on a substrate 6, has a circuit pattern of a source electrode 2 and a drain electrode 3 thereon, and further has an organic semiconductor layer 4 thereon. Have. In this case, since a conventional photolithography method or the like can be applied to the formation of the electrode, a high-definition and large-area circuit pattern can be easily manufactured. In addition, since the organic semiconductor layer 4 is formed on a circuit pattern formed in advance, there is an advantage that the organic semiconductor material 4 is not deteriorated by physical / chemical stress accompanying electrode formation.
FIG. 3 shows a bottom contact / top gate type device structure having a source electrode 2 and a drain electrode 3, an organic semiconductor layer 4, and an insulator layer 5 in this order on a substrate 6, and a gate electrode 1 thereon. Show.
 本発明の有機薄膜トランジスタは、絶縁体層の構成およびその製造方法に特徴を有するものであって、その素子構成は、図1に示すトップコンタクト型、図2に示すボトムコンタクト型、図3に示すボトムコンタクト・トップゲート型に限定されるものではなく、有機半導体層と、相互に所定の間隔をあけて対向するように形成されたソース電極及びドレイン電極と、ソース電極、ドレイン電極からそれぞれ所定の距離をあけて形成されたゲート電極とを有し、ゲート電極に電圧を印加することによってソース-ドレイン電極間に流れる電流を制御するものであればよい。ここで、ソース電極とドレイン電極の間隔は本発明の有機薄膜トランジスタを用いる用途によって決定され、通常は0.1μm~1mm程度であり、好ましくは1μm~100μm、さらに好ましくは5μm~100μmである。 The organic thin film transistor of the present invention is characterized by the structure of the insulator layer and the manufacturing method thereof, and the element structure is shown in the top contact type shown in FIG. 1, the bottom contact type shown in FIG. It is not limited to the bottom contact / top gate type, and the organic semiconductor layer, the source electrode and the drain electrode formed so as to face each other with a predetermined interval, and the source electrode and the drain electrode respectively And a gate electrode formed at a distance, and the current flowing between the source and drain electrodes can be controlled by applying a voltage to the gate electrode. Here, the distance between the source electrode and the drain electrode is determined by the use of the organic thin film transistor of the present invention, and is usually about 0.1 μm to 1 mm, preferably 1 μm to 100 μm, more preferably 5 μm to 100 μm.
(ソース電極及びドレイン電極)
 ソース電極及びドレイン電極には、一般的に有機薄膜トランジスタにおいて、ソース・ドレイン電極として用いられる金属材料、合金材料等の導電性材料であれば特に限定されず、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、亜鉛、銀ペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム-カリウム合金、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等が用いられる。
(Source electrode and drain electrode)
The source electrode and the drain electrode are not particularly limited as long as they are conductive materials such as metal materials and alloy materials generally used as source / drain electrodes in organic thin film transistors. For example, platinum, gold, silver, nickel, Chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, zinc, silver paste, lithium, beryllium, sodium, magnesium, potassium, calcium, Scandium, titanium, manganese, zirconium, gallium, niobium, sodium-potassium alloy, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / acid Aluminum mixture, a lithium / aluminum mixture, or the like is used.
 前記電極の形成方法としては、例えば、蒸着法、電子ビーム蒸着法、スパッタリング法、大気圧プラズマ法、イオンプレーティング法、化学気相蒸着法、電着法、無電解メッキ法、スピンコーティング法、印刷又はインクジェット等の手段が挙げられる。また、必要に応じてパターニングする方法としては、上記の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によりレジストを形成しエッチングする方法がある。このようにして形成された電極の膜厚は電流の導通さえあれば特に制限はないが、好ましくは0.2nm~10μm、さらに好ましくは4nm~300nmの範囲である。膜厚が0.2nm以上であれば、膜厚が薄いことにより抵抗が高くなり電圧降下を生じることがない。また、膜厚が10μm以下であれば、膜形成に時間がかからず、保護層や有機半導体層など他の層を積層する場合に、段差が生じることが無く積層が円滑にできる。 Examples of the method for forming the electrode include vapor deposition, electron beam vapor deposition, sputtering, atmospheric pressure plasma, ion plating, chemical vapor deposition, electrodeposition, electroless plating, spin coating, Means such as printing or inkjet may be mentioned. Moreover, as a method of patterning as necessary, a method of forming a conductive thin film formed by using the above method using a known photolithography method or a lift-off method, on a metal foil such as aluminum or copper There is a method of forming and etching a resist by thermal transfer, ink jet, or the like. The film thickness of the electrode formed in this way is not particularly limited as long as current conduction is possible, but is preferably in the range of 0.2 nm to 10 μm, more preferably 4 nm to 300 nm. When the film thickness is 0.2 nm or more, the resistance is increased due to the thin film thickness, and a voltage drop does not occur. In addition, when the film thickness is 10 μm or less, the film formation does not take time, and when other layers such as a protective layer and an organic semiconductor layer are laminated, there is no step and the lamination can be performed smoothly.
 また、電極が、上記金属層と、酸化物層の積層構造をとってもよい。酸化物層には、電気伝導性を有し、有機半導体層に対して電荷注入機能を発現するものであれば、各種の材料を用いることができる。例えば、GeO2、SiO2、MoO3、V25、VO2、V23、MnO、Mn34、ZrO2、WO3、TiO2、In23、ZnO、NiO、HfO2、Ta25、ReO3、PbO2などの金属酸化物が望ましい。また、GeOx(1≦x≦2)、SnO2、PbO、ZnO、GaO、CdO、ZnOS、MgInO,CdInO,MgZnOなども好適である。
 また、酸化インジウム・スズ(ITO)、酸化インジウム・亜鉛(IZO)、酸化インジウム・スズ・亜鉛(ITZO)などの酸化物や、それら酸化物にCe、Nd、Sm、Eu、Tb、Hoなどの元素を添加したものも、好適に用いることができる。
The electrode may have a stacked structure of the metal layer and the oxide layer. Any material can be used for the oxide layer as long as it has electrical conductivity and exhibits a charge injection function with respect to the organic semiconductor layer. For example, GeO 2, SiO 2, MoO 3, V 2 O 5, VO 2, V 2 O 3, MnO, Mn 3 O 4, ZrO 2, WO 3, TiO 2, In 2 O 3, ZnO, NiO, HfO 2 , metal oxides such as Ta 2 O 5 , ReO 3 and PbO 2 are desirable. Further, GeO x (1 ≦ x ≦ 2), SnO 2 , PbO, ZnO, GaO, CdO, ZnOS, MgInO, CdInO, MgZnO, and the like are also suitable.
Also, oxides such as indium tin oxide (ITO), indium oxide zinc (IZO), indium tin oxide zinc (ITZO), and oxides such as Ce, Nd, Sm, Eu, Tb, Ho, etc. What added the element can also be used suitably.
 前記酸化物層は、例えば、蒸着法、電子ビーム蒸着法、スパッタリング法、大気圧プラズマ法、イオンプレーティング法、化学気相蒸着法、スピンコーティング法、ディップコーティング法、印刷又はインクジェット等の手段により形成され、必要に応じて熱処理等の後処理を併用する。また、上記の方法を用いて形成した酸化物層をパターニングする方法としては、蒸着やスパッタリング時に金属マスクを用いる方法、製膜された薄膜に対し公知のフォトリソグラフ法やリフトオフ法を用いてパターンを形成する方法、インクジェット等によりパターンを直に形成する方法などがある。
 このようにして形成された酸化物層の膜厚は特に制限はないが、好ましくは0.2nm~100nm、さらに好ましくは1nm~10nmの範囲である。膜厚が0.2nm以上であると、酸化物層の電荷注入効果が発現する。膜厚が100nm以下であると、ソース・ドレイン電極に介在する内部抵抗が小さくなり、閾値電圧が低下しやすい。
 また、電極と後述する有機半導体層の電気的接触を改善する目的で、金属表面を表面修飾してもよい。表面修飾の材料としては、前記金属電極と親和性を有し、この金属層を覆って表面修飾を施すことのできる各種材料、特に自己組織化単分子膜(SAMs)剤として知られる材料を好適に用いることができるが、特にカップリング反応により金属層表面に付着し得る末端基を有するものがより好適である。
 具体的には、ペンタフルオロチオフェノール(PFTF)、フルオロチオフェノール、トリフルオロメチルチオフェノール(TFMTP)、ニトロチオフェノール(NTP)、クロロチオフェノール(CTP)、メトキシチオフェノール(MOTP)などのチオフェノール類、ペンタンチオール(PT)、オクタンチオール(OT)、デカンチオール(DT)、ステアリルメルカプタン(SM)などのアルカンチオール類、またはそれらを部分フッ素化した、ヘプタデカフルオロ-1-デカンチオール(HDFDT),トリデカフルオロ-1-オクタンチオール(TDFOT)などのフッ素化アルカンチオール、(ω-(ビフェニル-4-イル)アルカンチオール)などの芳香族アルカンチオール類などであるが、これらには限定されない。
 有機薄膜層の金属層上への形成は、当該材料をジクロロメタンやエタノールといった溶媒に溶解させ、金属層が形成された基板を浸漬することによって行うことができる。溶液の濃度は0.1~100mM、より好ましくは0.1~10mMである。浸漬時間は用いる材料や溶液の温度によるが、室温で1分から24時間の間、好ましくは10分から6時間である。
The oxide layer is formed by means such as vapor deposition, electron beam vapor deposition, sputtering, atmospheric pressure plasma, ion plating, chemical vapor deposition, spin coating, dip coating, printing, or inkjet. A post-treatment such as a heat treatment is used in combination as necessary. In addition, as a method of patterning the oxide layer formed using the above method, a method using a metal mask at the time of vapor deposition or sputtering, a pattern using a known photolithographic method or a lift-off method for a formed thin film is used. There are a method of forming a pattern, a method of directly forming a pattern by ink jet or the like.
The thickness of the oxide layer thus formed is not particularly limited, but is preferably in the range of 0.2 nm to 100 nm, more preferably 1 nm to 10 nm. When the film thickness is 0.2 nm or more, the charge injection effect of the oxide layer appears. When the film thickness is 100 nm or less, the internal resistance interposed in the source / drain electrodes becomes small, and the threshold voltage tends to decrease.
Further, the metal surface may be modified for the purpose of improving the electrical contact between the electrode and the organic semiconductor layer described later. As the material for surface modification, various materials having affinity with the metal electrode and capable of surface modification by covering the metal layer, particularly materials known as self-assembled monolayer (SAMs) agents are suitable. In particular, those having end groups that can be attached to the surface of the metal layer by a coupling reaction are more preferable.
Specifically, thiophenols such as pentafluorothiophenol (PFTF), fluorothiophenol, trifluoromethylthiophenol (TFMTP), nitrothiophenol (NTP), chlorothiophenol (CTP), and methoxythiophenol (MOTP) , Pentanethiol (PT), octanethiol (OT), decanethiol (DT), alkanethiols such as stearyl mercaptan (SM), or partially fluorinated heptadecafluoro-1-decanethiol (HDFDT), Fluorinated alkanethiols such as tridecafluoro-1-octanethiol (TDFOT), and aromatic alkanethiols such as (ω- (biphenyl-4-yl) alkanethiol), but are not limited thereto.
The organic thin film layer can be formed on the metal layer by dissolving the material in a solvent such as dichloromethane or ethanol and immersing the substrate on which the metal layer is formed. The concentration of the solution is 0.1 to 100 mM, more preferably 0.1 to 10 mM. The immersion time depends on the material used and the temperature of the solution, but it is 1 minute to 24 hours, preferably 10 minutes to 6 hours at room temperature.
(有機半導体層)
 本発明の有機TFTで用いられる有機半導体としては特に制限を受けるものではない。一般に開示されている有機薄膜トランジスタに用いられる有機半導体を広く用いることができる。例えば、Chemical Review、107巻、1066頁、2007年に記載の有機半導体材料などが挙げられる。また、本発明において、有機半導体層には、上記有機半導体材料から選ばれる複数の材料を組み合わせても良く、複数の材料は混合しても、積層しても良い。具体的には、以下にあげるようなものを例示することができるが、これに限定されるものではない。
(Organic semiconductor layer)
The organic semiconductor used in the organic TFT of the present invention is not particularly limited. Organic semiconductors used for generally disclosed organic thin film transistors can be widely used. Examples thereof include organic semiconductor materials described in Chemical Review, 107, 1066, 2007. In the present invention, the organic semiconductor layer may be combined with a plurality of materials selected from the above organic semiconductor materials, and the plurality of materials may be mixed or stacked. Specific examples include the following, but are not limited thereto.
(1)ナフタレン、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン等の、置換基のついてもよいアセン類
 具体的には、1,4-ビススチリルベンゼン、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン(4MSB)、1,4-ビス(4-メチルスチリル)ベンゼン、ポリフェニレンビニレンなどC65-CH=CH-C65で表されるスチリル構造を有する化合物、このような化合物のオリゴマーやポリマー。また、これらをF,CF3,C25等のフッ素,フルオロアルキル基で置換した化合物。
(1) Acenes which may have a substituent such as naphthalene, anthracene, tetracene, pentacene, hexacene, heptacene, etc. Specifically, 1,4-bisstyrylbenzene, 1,4-bis (2-methylstyryl) benzene 1,4-bis (3-methylstyryl) benzene (4MSB), 1,4-bis (4-methylstyryl) benzene, polyphenylene vinylene, etc. represented by C 6 H 5 —CH═CH—C 6 H 5 Compounds having a styryl structure, oligomers and polymers of such compounds. Further, these F, CF 3, C 2 F 5 or fluorine, compounds substituted with a fluoroalkyl group.
(2)チオフェン環を含む化合物
i)α-4T、α-5T、α-6T、α-7T、α-8Tの誘導体等の置換基を有してもよいチオフェンオリゴマー
ii)ポリヘキシルチオフェン、ポリ(9,9-ジオクチルフルオレニル-2,7-ジイル-コ-ビチオフェン)等のチオフェン系高分子
iii)ビスベンゾチオフェン誘導体、α,α’-ビス(ジチエノ[3,2-b:2’,3’-d]チオフェン)、ジチエノチオフェン-チオフェンのコオリゴマー、ペンタチエノアセン等の縮合オリゴチオフェン特にチエノベンゼン骨格またはジチエノベンゼン骨格を有する化合物、ジベンゾチエノベンゾチオフェン誘導体が好ましい。
 また、上記i~iiiの化合物をF,CF3,C25等のフッ素,フルオロアルキル基で置換した化合物。
(2) Compound containing thiophene ring i) Thiophene oligomer which may have a substituent such as α-4T, α-5T, α-6T, α-7T, α-8T derivatives, etc. ii) Polyhexylthiophene, poly Thiophene-based polymers such as (9,9-dioctylfluorenyl-2,7-diyl-co-bithiophene) iii) bisbenzothiophene derivatives, α, α'-bis (dithieno [3,2-b: 2 ' , 3′-d] thiophene), dithienothiophene-thiophene co-oligomers, condensed oligothiophenes such as pentathienoacene, particularly compounds having a thienobenzene skeleton or a dithienobenzene skeleton, and dibenzothienobenzothiophene derivatives are preferred.
A compound obtained by substituting the above compounds i to iii with a fluorine or fluoroalkyl group such as F, CF 3 , C 2 F 5 or the like.
(3)セレノフェンオリゴマー、無金属フタロシアニン、銅フタロシアニン、鉛フタロシアニン、チタニルフタロシアニン、白金ポルフィリン、ポルフィリン、ベンゾポルフィリンなどのポルフィリン類、テトラチアフルバレン(TTF)及びその誘導体、ルブレン及びその誘導体など。
 また、これらをF,CF3,C25等のフッ素,フルオロアルキル基で置換した化合物。
(3) Selenophen oligomer, metal-free phthalocyanine, copper phthalocyanine, lead phthalocyanine, titanyl phthalocyanine, porphyrins such as platinum porphyrin, porphyrin, benzoporphyrin, tetrathiafulvalene (TTF) and its derivatives, rubrene and its derivatives, and the like.
Further, these F, CF 3, C 2 F 5 or fluorine, compounds substituted with a fluoroalkyl group.
(4)n型有機半導体
 例えば、単独でn型半導体として知られている、テトラシアノキノジメタン(TCNQ),11,11,12,12-テトラシアノナフト-2,6-キノジメタン(TCNNQ)らのキノイドオリゴマー,C60,C70,PCBM等のフラーレン類及びその誘導体,N,N’-ジフェニル-3,4,9,10-ペリレンテトラカルボン酸ジイミド,N,N’-ジオクチル-3,4,9,10-ペリレンテトラカルボン酸ジイミド(C8-PTCDI),N,N’-ジトリデシル-3,4,9,10-ペリレンテトラカルボン酸ジイミド(C13-PTCDI),NTCDA,1,4,5,8-ナフタレンテトラカルボキシルジイミド(NTCDI)等のテトラカルボン酸類,テトラチアフルバレン(TTF)及びその誘導体。
(4) n-type organic semiconductor For example, tetracyanoquinodimethane (TCNQ), 11, 11, 12, 12-tetracyanonaphtho-2,6-quinodimethane (TCNNQ), which is known as an n-type semiconductor alone Quinoid oligomers, fullerenes such as C60, C70, PCBM and derivatives thereof, N, N′-diphenyl-3,4,9,10-perylenetetracarboxylic acid diimide, N, N′-dioctyl-3,4,9 , 10-perylenetetracarboxylic acid diimide (C8-PTCDI), N, N′-ditridecyl-3,4,9,10-perylenetetracarboxylic acid diimide (C13-PTCDI), NTCDA, 1,4,5,8- Tetracarboxylic acids such as naphthalenetetracarboxyldiimide (NTCDI), tetrathiafulvalene (TTF) and derivatives thereof .
 有機半導体には、材料の純度の高いものを用いることにより電界効果移動度やオン/オフ比の高いデバイスを得ることができる。したがって必要に応じて、カラムクロマトグラフィー、再結晶、蒸留、昇華などの手法により精製を加えることが望ましい。好ましくはこれらの精製方法を繰り返し用いたり、複数の方法を組み合わせたりすることにより純度を向上させることが可能である。さらに精製の最終工程として昇華精製を少なくとも2回以上繰り返すことが望ましい。これらの手法を用いることによりHPLCで測定した純度90%以上の材料を用いることが好ましく、さらに好ましくは95%以上、特に好ましくは99%以上の材料を用いることにより、有機薄膜トランジスタの電界効果移動度やオン/オフ比を高め、本来材料の持っている性能を引き出すことができる。
 本発明の有機薄膜トランジスタにおける有機半導体層の膜厚は、特に制限されることはないが、通常、0.5nm~1μmであり、2nm~250nmがより好ましい。膜厚が0.5nm以上であると、電荷を輸送するチャネルが有効に形成される。膜厚が1μm以下であると、結晶粒塊が発達して剥離しやすくなるなどの不具合が生じない。
 有機半導体層の形成方法は特に限定されることはなく公知の方法を適用でき、例えば、分子線蒸着法(MBE法)、真空蒸着法、化学蒸着、材料を溶媒に溶かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の印刷、塗布法及びベーキング、エレクトロポリマラインゼーション、分子ビーム蒸着、溶液からのセルフ・アセンブリ、及びこれらの組合せた手段により、前記したような有機半導体層の材料で形成される。有機半導体層の結晶性を向上させると電界効果移動度が向上するため、気相からの成膜(蒸着、スパッタ等)を用いる場合は成膜中の基板温度を高温で保持することも効果的である。その温度は40~250℃が好ましく、70~150℃であるとさらに好ましい。また、成膜方法に関わらず、成膜後にアニーリングを実施すると高性能デバイスが得られるため好ましい。アニーリングの温度は50~200℃が好ましく、70~200℃であるとさらに好ましく、時間は10分~12時間が好ましく、1~10時間であるとさらに好ましい。
A device having a high field effect mobility and a high on / off ratio can be obtained by using a high-purity organic semiconductor. Therefore, it is desirable to add purification by techniques such as column chromatography, recrystallization, distillation, sublimation, etc. as necessary. Preferably, it is possible to improve the purity by repeatedly using these purification methods or combining a plurality of methods. Furthermore, it is desirable to repeat sublimation purification at least twice as a final step of purification. By using these methods, it is preferable to use a material having a purity of 90% or more measured by HPLC, more preferably 95% or more, and particularly preferably 99% or more. In addition, the on / off ratio can be increased and the performance inherent to the material can be extracted.
The thickness of the organic semiconductor layer in the organic thin film transistor of the present invention is not particularly limited, but is usually 0.5 nm to 1 μm, and more preferably 2 nm to 250 nm. When the film thickness is 0.5 nm or more, a channel for transporting charges is effectively formed. If the film thickness is 1 μm or less, there will be no inconveniences such as growth of crystal grains and easy peeling.
A method for forming the organic semiconductor layer is not particularly limited, and a known method can be applied. For example, a molecular beam deposition method (MBE method), a vacuum deposition method, a chemical vapor deposition method, a dipping method in which a material is dissolved in a solvent, As described above by spin coating, casting, bar coating, roll coating, etc. printing, coating and baking, electropolymerization, molecular beam deposition, self assembly from solution, and combinations thereof. It is made of a material of an organic semiconductor layer. When the crystallinity of the organic semiconductor layer is improved, the field effect mobility is improved. Therefore, it is also effective to maintain the substrate temperature during film formation at a high temperature when film formation from the gas phase (evaporation, sputtering, etc.) is used. It is. The temperature is preferably 40 to 250 ° C., more preferably 70 to 150 ° C. Regardless of the film formation method, it is preferable to perform annealing after film formation because a high-performance device can be obtained. The annealing temperature is preferably 50 to 200 ° C., more preferably 70 to 200 ° C., and the time is preferably 10 minutes to 12 hours, more preferably 1 to 10 hours.
(ゲート電極)
 ゲート電極には、一般的に有機薄膜トランジスタにおいて、ソース・ドレイン電極、ゲート電極として用いられる金属材料、合金材料、金属酸化物材料等、導電性を有し、膜を形成するものを広く用いることができる。
 具体的には、前記ソース・ドレイン電極の材料と同様の材料を好適に用いることができる。特に好ましいのは、Au、Ag、Cu、Alなどの金属、それらを含む合金材料やペースト材料、ITOやIZOなどの酸化物透明電極である。ゲート電極のパターンニングも、前記ソース・ドレイン電極と同様の方法で行うことができる。
(Gate electrode)
As the gate electrode, in general, a thin film having conductivity and forming a film, such as a metal material, an alloy material, or a metal oxide material used as a source / drain electrode and a gate electrode in an organic thin film transistor, is widely used. it can.
Specifically, the same material as that of the source / drain electrodes can be preferably used. Particularly preferred are metals such as Au, Ag, Cu and Al, alloy materials and paste materials containing them, and oxide transparent electrodes such as ITO and IZO. The patterning of the gate electrode can also be performed by the same method as that for the source / drain electrodes.
(基板)
 本発明の有機薄膜トランジスタにおける基板は、有機薄膜トランジスタの構造を支持する役目を担うものであり、材料としてはガラスの他、金属酸化物や窒化物などの無機化合物、プラスチックフィルム(PET、PES、PC)や金属基板又はこれら複合体や積層体なども用いることが可能である。また、基板以外の構成要素により有機薄膜トランジスタの構造を十分に支持し得る場合には、基板を使用しないことも可能である。また、基板の材料としてはシリコン(Si)ウエハが用いられることが多い。この場合、Si自体をゲート電極兼基板として用いることができる。
(substrate)
The substrate in the organic thin film transistor of the present invention plays a role of supporting the structure of the organic thin film transistor. As a material, in addition to glass, inorganic compounds such as metal oxides and nitrides, plastic films (PET, PES, PC) It is also possible to use metal substrates or composites or laminates thereof. Further, when the structure of the organic thin film transistor can be sufficiently supported by the components other than the substrate, it is possible not to use the substrate. Further, a silicon (Si) wafer is often used as a material for the substrate. In this case, Si itself can be used as a gate electrode / substrate.
(絶縁体層)
 本発明の有機薄膜トランジスタにおける絶縁体層は、両親媒性オリゴマーを成膜して得られるシリカ系有機無機ハイブリッド膜で構成される。なお、このシリカ系有機無機ハイブリッド膜については、A. SHIMOJIMA, Journal of the Ceramic Society of Japan,116,278(2008)に詳しく記載されている。
(Insulator layer)
The insulator layer in the organic thin film transistor of the present invention is composed of a silica-based organic-inorganic hybrid film obtained by forming an amphiphilic oligomer. The silica-based organic-inorganic hybrid film is described in A. It is described in detail in SHIMOJIMA, Journal of the Ceramic Society of Japan, 116, 278 (2008).
 上記両親媒性オリゴマーの代表的製法を、以下に示す。
(両親媒性オリゴマーの製造方法1)
 下記一般式(1-a)で表される鎖状炭化水素基含有アルコキシシランAと、下記一般式(2)で表されるテトラアルコキシシランとを共加水分解・縮重合する。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は炭素数6以上の鎖状炭化水素基であり、R2は、炭素数1~3の直鎖状又は分岐状アルキル基であり、R3及びR4は、それぞれ独立に、炭素数1~3の直鎖状又は分岐状アルキル基あるいは炭素数1~3のアルコキシ基である。)
  Si(OR54   (2)
(式中、R5はメチル基又はエチル基である。)
A typical method for producing the amphiphilic oligomer is shown below.
(Method 1 for producing amphiphilic oligomer)
A chain hydrocarbon group-containing alkoxysilane A represented by the following general formula (1-a) and a tetraalkoxysilane represented by the following general formula (2) are cohydrolyzed and polycondensed.
Figure JPOXMLDOC01-appb-C000005
Wherein R 1 is a chain hydrocarbon group having 6 or more carbon atoms, R 2 is a linear or branched alkyl group having 1 to 3 carbon atoms, and R 3 and R 4 are each independently And a straight-chain or branched alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.)
Si (OR 5 ) 4 (2)
(In the formula, R 5 is a methyl group or an ethyl group.)
 上記一般式(1-a)において、R1は、好ましくは炭素数6~18の鎖状炭化水素基であり、より好ましくは炭素数8~12の鎖状炭化水素基である。鎖状炭化水素基の炭素数が上記範囲内にあると、絶縁体層の形成時に自己組織化が促進され、膜質が改善する。これによって有機半導体材料の結晶配列が均一となり、本発明の有機薄膜トランジスタの特性が改善し、シリカ系有機無機ハイブリッド膜にピンホールなどが生じにくくなり、絶縁耐電圧が向上する。
 また、R1で表わされる鎖状炭化水素基は、飽和鎖状炭化水素基であってもよく、また、不飽和鎖状炭化水素基であってもよい。飽和鎖状炭化水素基の具体例としては、Cn2n+1で表されるメチレン鎖が挙げられる。また、R1を1つ以上の二重結合を有する不飽和鎖状炭化水素基とすることで、熱重合性を持たせて膜強度を向上させたり、光重合性を持たせてフォトリソグラフィによるパターニングを可能にすることができる。さらに、誘電率を向上させる目的で、-CN、-OH、-NH2、-SH、-NCOなどの極性の高い基を導入することもできる。
In the above general formula (1-a), R 1 is preferably a chain hydrocarbon group having 6 to 18 carbon atoms, and more preferably a chain hydrocarbon group having 8 to 12 carbon atoms. When the number of carbon atoms of the chain hydrocarbon group is within the above range, self-organization is promoted during the formation of the insulator layer, and the film quality is improved. As a result, the crystal arrangement of the organic semiconductor material becomes uniform, the characteristics of the organic thin film transistor of the present invention are improved, pinholes are less likely to occur in the silica-based organic-inorganic hybrid film, and the dielectric strength is improved.
Further, the chain hydrocarbon group represented by R 1 may be a saturated chain hydrocarbon group or an unsaturated chain hydrocarbon group. Specific examples of the saturated chain hydrocarbon group include a methylene chain represented by C n H 2n + 1 . Further, by making R 1 an unsaturated chain hydrocarbon group having one or more double bonds, it is possible to give thermal polymerizability and improve film strength, or to give photopolymerizability and thereby by photolithography. Patterning can be enabled. Furthermore, for the purpose of improving the dielectric constant, a highly polar group such as —CN, —OH, —NH 2 , —SH, and —NCO can be introduced.
 上記炭素数1~3の直鎖状又は分岐状アルキル基は、Cn2n+1(nは1~3の整数)で表わされ、その具体例としては、メチル基、エチル基、n-プロピル基及びイソプロピル基が挙げられる。
 上記炭素数1~3のアルコキシ基は、OCm2m+1(mは1~3の整数)で表わされ、その具体例としては、メトキシ基、エトキシ基、n-プロポキシ基及びイソプロピル基が挙げられる。
The linear or branched alkyl group having 1 to 3 carbon atoms is represented by C n H 2n + 1 (n is an integer of 1 to 3), and specific examples thereof include a methyl group, an ethyl group, n -Propyl and isopropyl groups.
The alkoxy group having 1 to 3 carbon atoms is represented by OC m H 2m + 1 (m is an integer of 1 to 3), and specific examples thereof include methoxy group, ethoxy group, n-propoxy group and isopropyl group. Is mentioned.
 上記一般式(1-a)で表わされる鎖状炭化水素基含有アルコキシシランAとしては、以下に示す構造のものが好ましく用いられる。
  R1Si(OCH33   (1-a-1)
  R1Si(OCH2CH33   (1-a-2)
  R1Si(CH3)(OCH32   (1-a-3)
  R1Si(CH32(OCH3)   (1-a-4)
  R1Si(CH2CH3)(OCH32   (1-a-5)
  R1Si(CH2CH32(OCH3) (1-a-6)
  R1Si(CH3)(OCH2CH32   (1-a-7)
  R1Si(CH32(OCH2CH3)   (1-a-8)
  R1Si(CH2CH3)(OCH2CH32   (1-a-9)
  R1Si(CH2CH32(OCH2CH3)   (1-a-10)
As the chain hydrocarbon group-containing alkoxysilane A represented by the general formula (1-a), those having the following structures are preferably used.
R 1 Si (OCH 3 ) 3 (1-a-1)
R 1 Si (OCH 2 CH 3 ) 3 (1-a-2)
R 1 Si (CH 3 ) (OCH 3 ) 2 (1-a-3)
R 1 Si (CH 3 ) 2 (OCH 3 ) (1-a-4)
R 1 Si (CH 2 CH 3 ) (OCH 3 ) 2 (1-a-5)
R 1 Si (CH 2 CH 3 ) 2 (OCH 3 ) (1-a-6)
R 1 Si (CH 3 ) (OCH 2 CH 3 ) 2 (1-a-7)
R 1 Si (CH 3 ) 2 (OCH 2 CH 3 ) (1-a-8)
R 1 Si (CH 2 CH 3 ) (OCH 2 CH 3 ) 2 (1-a-9)
R 1 Si (CH 2 CH 3 ) 2 (OCH 2 CH 3 ) (1-a-10)
 上記一般式(1-a)で表わされる鎖状炭化水素基含有アルコキシシランAの具体例としては、デシルトリメトキシシラン、デシルトリエトキシシラン等が挙げられる。 Specific examples of the chain hydrocarbon group-containing alkoxysilane A represented by the general formula (1-a) include decyltrimethoxysilane and decyltriethoxysilane.
 上記一般式(2)で表されるテトラアルコキシシランの具体例としては、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、エトキシトリメトキシシラン、ジエトキシメトキシシラン、トリエトキシメトキシシラン等が好適に用いることができ、テトラメトキシシラン、テトラエトキシシランが特に好適に用いられる。 Specific examples of the tetraalkoxysilane represented by the general formula (2) include tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), ethoxytrimethoxysilane, diethoxymethoxysilane, and triethoxymethoxysilane. Tetramethoxysilane and tetraethoxysilane are particularly preferably used.
(両親媒性オリゴマーの製造方法2)
 下記一般式(1-b)で表される鎖状炭化水素基含有アルコキシシランBを加水分解・縮重合する。
Figure JPOXMLDOC01-appb-C000006
(式中、R6は炭素数6以上の鎖状炭化水素基であり、R7~R9は、それぞれ独立に、炭素数1~3の直鎖状又は分岐状アルキル基である。3つのR7、R8及びR9は、それぞれにおいて互いに同一であっても異なっていてもよい。)
(Method 2 for producing amphiphilic oligomer)
The chain hydrocarbon group-containing alkoxysilane B represented by the following general formula (1-b) is hydrolyzed and polycondensed.
Figure JPOXMLDOC01-appb-C000006
(Wherein R 6 is a chain hydrocarbon group having 6 or more carbon atoms, and R 7 to R 9 are each independently a linear or branched alkyl group having 1 to 3 carbon atoms. R 7 , R 8 and R 9 may be the same or different from each other.)
 上記一般式(1-b)において、R6は、好ましくは炭素数6~18の鎖状炭化水素基であり、より好ましくは炭素数10~16の鎖状炭化水素基である。鎖状炭化水素基の炭素数が上記範囲内にあると、絶縁体層の形成時に自己組織化が促進され、膜質が改善する。これによって有機半導体材料の結晶配列が均一となり、本発明の有機薄膜トランジスタの特性が改善し、シリカ系有機無機ハイブリッド膜にピンホールなどが生じにくくなり、絶縁耐電圧が向上する。
 また、R6で表わされる鎖状炭化水素基は、飽和鎖状炭化水素基であってもよく、また、不飽和鎖状炭化水素基であってもよい。飽和鎖状炭化水素基の具体例としては、Cm2m+1で表されるメチレン鎖が挙げられる。また、R6を1つ以上の二重結合を有する不飽和鎖状炭化水素基とすることで、熱重合性を持たせて膜強度を向上させたり、光重合性を持たせてフォトリソグラフィによるパターニングを可能にすることができる。(さらに、誘電率を向上させる目的で、極性の高い基を導入することもできる。)
 R6で表わされる鎖状炭化水素基において、炭素数を14以上とすることで、あとに述べる層状シリカ系ハイブリッド膜を、炭素数を13以下とすることで、棒状集合構造シリカ系ハイブリッド膜を得ることができる。
In the above general formula (1-b), R 6 is preferably a chain hydrocarbon group having 6 to 18 carbon atoms, and more preferably a chain hydrocarbon group having 10 to 16 carbon atoms. When the number of carbon atoms of the chain hydrocarbon group is within the above range, self-organization is promoted during the formation of the insulator layer, and the film quality is improved. As a result, the crystal arrangement of the organic semiconductor material becomes uniform, the characteristics of the organic thin film transistor of the present invention are improved, pinholes are less likely to occur in the silica-based organic-inorganic hybrid film, and the dielectric strength is improved.
The chain hydrocarbon group represented by R 6 may be a saturated chain hydrocarbon group or an unsaturated chain hydrocarbon group. Specific examples of the saturated chain hydrocarbon groups include methylene chains represented by C m H 2m + 1. Further, by making R 6 an unsaturated chain hydrocarbon group having one or more double bonds, it is possible to give thermal polymerizability and improve film strength, or to give photopolymerizability and to perform photolithography. Patterning can be enabled. (Furthermore, a highly polar group can be introduced for the purpose of improving the dielectric constant.)
In the chain hydrocarbon group represented by R 6 , by setting the number of carbon atoms to 14 or more, a layered silica-based hybrid film described later is used, and by setting the carbon number to 13 or less, a rod-like aggregate structure silica-based hybrid film is formed. Obtainable.
 上記一般式(1-b)で表わされる鎖状炭化水素基含有アルコキシシランBとしては、以下に示す構造のものが好ましく用いられる。
  R6Si[OSi(OCH333  (1-b-1)
  R6Si[OSi(OC2533 (1-b-2)
  R6Si[OSi(OCH33][OSi(OC2532 (1-b-3)
  R6Si[OSi(OCH332[OSi(OC253] (1-b-4)
As the chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b), those having the following structures are preferably used.
R 6 Si [OSi (OCH 3 ) 3 ] 3 (1-b-1)
R 6 Si [OSi (OC 2 H 5 ) 3 ] 3 (1-b-2)
R 6 Si [OSi (OCH 3 ) 3 ] [OSi (OC 2 H 5 ) 3 ] 2 (1-b-3)
R 6 Si [OSi (OCH 3 ) 3 ] 2 [OSi (OC 2 H 5 ) 3 ] (1-b-4)
 上記一般式(1-b)で表わされる鎖状炭化水素基含有アルコキシシランBの具体例を以下に示す。
  C1021Si[OSi(OCH333
  C1021Si[OSi(OC2533
  C1021Si[OSi(OCH33][OSi(OC2532
  C1021Si[OSi(OCH332[OSi(OC253
  C817Si[OSi(OCH333
  C817Si[OSi(OC2533
  C817Si[OSi(OCH33][OSi(OC2532
  C817Si[OSi(OCH332[OSi(OC253
Specific examples of the chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b) are shown below.
C 10 H 21 Si [OSi (OCH 3 ) 3 ] 3
C 10 H 21 Si [OSi (OC 2 H 5 ) 3 ] 3
C 10 H 21 Si [OSi (OCH 3 ) 3 ] [OSi (OC 2 H 5 ) 3 ] 2
C 10 H 21 Si [OSi (OCH 3 ) 3 ] 2 [OSi (OC 2 H 5 ) 3 ]
C 8 H 17 Si [OSi (OCH 3 ) 3 ] 3
C 8 H 17 Si [OSi (OC 2 H 5 ) 3 ] 3
C 8 H 17 Si [OSi (OCH 3 ) 3 ] [OSi (OC 2 H 5 ) 3 ] 2
C 8 H 17 Si [OSi (OCH 3 ) 3 ] 2 [OSi (OC 2 H 5 ) 3 ]
(シリカ系有機無機ハイブリッド膜)
 上記シリカ系有機無機ハイブリッド膜としては、以下に説明する(1)層状シリカ系ハイブリッド膜、(2)アモルファスシリカ系ハイブリッド膜及び(3)棒状集合構造シリカ系ハイブリッド膜が挙げられるが、これらに限定されるものではない。
(1)層状シリカ系ハイブリッド膜
 以下に層状シリカ系ハイブリッド膜の具体的な製造方法を説明する。
 前記鎖状炭化水素基含有アルコキシシランA 1モルに対して、テトラアルコキシシラン1~20モル程度(好ましくは3~6モル)、THF5~100モル程度(好ましくは15~50モル)、水5~80モル程度(好ましくは15~30モル)及びHClを0.0001モル以上0.1モル未満(好ましくは0.001~0.01モル)混合し、0.5~24時間程度、好ましくは1~12時間攪拌する。
 すると、鎖状炭化水素基含有アルコキシシランA(例えば、C1021Si(OMe)3)とテトラアルコキシシラン(例えば、Si(OMe)4)が共加水分解・縮重合を起こし、両親媒性オリゴマー(例えば、C1021Si(OSi(OH)33)が形成される。
 この溶液を、THF:Si比が1:2~20程度(モル比)、好ましくは1:3~10(モル比)となるようにTHFで希釈し、得られた希釈溶液を用いてスピンコート法により基板上に成膜したあと、乾燥させる。このとき、40~120℃程度に加熱して、乾燥を促進することができる。溶媒としては、THFの代わりにエタノールなどを用いても良い。
 基板上に成膜された両親媒性オリゴマーは、親水性部位と疎水性部位の相互作用により自己組織化され、図4に示すようにシラノール末端を含む親水性部位と、鎖状炭化水素基からなる疎水性部位が交互に積層してなる層状構造を形成する。ここで、このオリゴマー化のステップを経ることが、均一な膜を得る上で重要である。オリゴマーの形態を経ない場合は、薄膜化において鎖状炭化水素基含有アルコキシシランAとテトラアルコキシシランとの相分離が起こり、均一な膜が得られない。
(Silica-based organic-inorganic hybrid film)
Examples of the silica-based organic-inorganic hybrid film include (1) layered silica-based hybrid film, (2) amorphous silica-based hybrid film, and (3) rod-like aggregated-structure silica-based hybrid film described below. Is not to be done.
(1) Layered silica-based hybrid membrane A specific method for producing a layered silica-based hybrid membrane is described below.
About 1 to 20 moles (preferably 3 to 6 moles) of tetraalkoxysilane, 5 to 100 moles of THF (preferably 15 to 50 moles), 5 to 5 moles of water with respect to 1 mole of the alkoxysilane A containing chain hydrocarbon group. About 80 mol (preferably 15 to 30 mol) and HCl are mixed at 0.0001 mol or more and less than 0.1 mol (preferably 0.001 to 0.01 mol), and about 0.5 to 24 hours, preferably 1 Stir for ~ 12 hours.
Then, a chain hydrocarbon group-containing alkoxysilane A (for example, C 10 H 21 Si (OMe) 3 ) and a tetraalkoxysilane (for example, Si (OMe) 4 ) cause cohydrolysis and polycondensation, resulting in amphiphilic properties. An oligomer (eg, C 10 H 21 Si (OSi (OH) 3 ) 3 ) is formed.
This solution is diluted with THF so that the THF: Si ratio is about 1: 2 to 20 (molar ratio), preferably 1: 3 to 10 (molar ratio), and spin coating is performed using the obtained diluted solution. After the film is formed on the substrate by the method, it is dried. At this time, drying can be promoted by heating to about 40 to 120 ° C. As a solvent, ethanol or the like may be used instead of THF.
The amphiphilic oligomer formed on the substrate is self-assembled by the interaction between the hydrophilic portion and the hydrophobic portion, and as shown in FIG. 4, from the hydrophilic portion containing the silanol terminal and the chain hydrocarbon group. A layered structure is formed by alternately stacking hydrophobic portions. Here, passing through this oligomerization step is important for obtaining a uniform film. In the case of not passing through the oligomer form, phase separation occurs between the chain hydrocarbon group-containing alkoxysilane A and the tetraalkoxysilane in thinning, and a uniform film cannot be obtained.
 成膜直後は、両親媒性オリゴマーは、図4に示すように配列構造をとった液晶状態にあるが、経時的にシラノール部の縮重合がさらに進んで、シロキサンネットワーク層が形成され、強固な固体膜を形成する(図5参照)。
 シロキサンネットワーク層は、-Si-O-Si-のシロキサン結合の繰り返し単位を基本とする網目状構造をとるが、その厚みはケイ素数原子層程度(1~1.5nm)の2次元構造である。層構造の形成は、X線解析により、層間隔に相当する回折ピークが観察されることで確認できる。また、電子顕微鏡観察により、層状の構造を直接確認することができる。
Immediately after the film formation, the amphiphilic oligomer is in a liquid crystal state having an array structure as shown in FIG. 4, but the polycondensation of the silanol portion further progresses over time, and a siloxane network layer is formed, which is strong. A solid film is formed (see FIG. 5).
The siloxane network layer has a network structure based on a repeating unit of —Si—O—Si— siloxane bond, and the thickness thereof is a two-dimensional structure of about several silicon layers (1 to 1.5 nm). . Formation of the layer structure can be confirmed by observing a diffraction peak corresponding to the layer interval by X-ray analysis. Further, the layered structure can be directly confirmed by observation with an electron microscope.
 また、次のようにして、層状シリカ系ハイブリッド膜を得ることもできる。前記一般式(1-b)で表され、R6が炭素数14以上の鎖状炭化水素基である鎖状炭化水素基含有アルコキシシランB 1モルに対して、THF5~100モル程度(好ましくは15~50モル)、水5~80モル程度(好ましくは15~30モル)及びHClを0.0001~0.1モル程度(好ましくは0.001~0.01モル)混合し、0.5~24時間程度、好ましくは1~12時間攪拌する。
 すると、鎖状炭化水素基含有アルコキシシランB(例えば、C1633Si(OMe)3)が加水分解を起こし、両親媒性オリゴマー(例えば、下記式で示される化合物)が形成される。
In addition, a layered silica-based hybrid film can be obtained as follows. About 5 to 100 moles of THF (preferably with respect to 1 mole of the chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b), wherein R 6 is a chain hydrocarbon group having 14 or more carbon atoms) 15 to 50 mol), about 5 to 80 mol (preferably 15 to 30 mol) of water and about 0.0001 to 0.1 mol (preferably 0.001 to 0.01 mol) of HCl and 0.5 to 0.5 mol. Stir for about 24 hours, preferably 1-12 hours.
Then, the chain hydrocarbon group-containing alkoxysilane B (for example, C 16 H 33 Si (OMe) 3 ) is hydrolyzed to form an amphiphilic oligomer (for example, a compound represented by the following formula).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 この溶液を、THF:Si比が1:2~20程度(モル比)、好ましくは1:3~10(モル比)となるようにTHFで希釈し、得られた希釈溶液を用いてスピンコート法、またはディップコート法により基板上に成膜したあと、乾燥させる。このとき、40~120℃程度に加熱して、乾燥を促進することができる。溶媒としては、THFの代わりにエタノールなどを用いても良い。基板上に成膜された両親媒性オリゴマーは、親水性部位と疎水性部位の相互作用により自己組織化され、図6に示すようにシラノール末端を含む親水性部位と、鎖状炭化水素基からなる疎水性部位が交互に積層してなる層状構造を形成する。ここで、このオリゴマー化のステップを経ることが、均一な膜を得る上で重要である。鎖状炭化水素基含有アルコキシシランAから得られる層状構造との違いは、鎖状炭化水素部位が、互いに入れ子状の構造になるかどうかの違いである。 This solution is diluted with THF so that the THF: Si ratio is about 1: 2 to 20 (molar ratio), preferably 1: 3 to 10 (molar ratio), and spin coating is performed using the obtained diluted solution. After the film is formed on the substrate by the dip coating method or the dip coating method, it is dried. At this time, drying can be promoted by heating to about 40 to 120 ° C. As a solvent, ethanol or the like may be used instead of THF. The amphiphilic oligomer formed on the substrate is self-organized by the interaction between the hydrophilic part and the hydrophobic part, and as shown in FIG. 6, from the hydrophilic part containing the silanol terminal and the chain hydrocarbon group. A layered structure is formed by alternately stacking hydrophobic portions. Here, passing through this oligomerization step is important for obtaining a uniform film. The difference from the layered structure obtained from the chain hydrocarbon group-containing alkoxysilane A is the difference in whether the chain hydrocarbon sites are mutually nested structures.
 成膜直後は、両親媒性オリゴマーは、図6に示すように配列構造をとった液晶状態にあるが、経時的にシラノール部の縮重合がさらに進んで、シロキサンネットワーク層が形成され、強固な固体膜を形成する(図7参照)。
 層構造の形成は、X線解析により、層間隔に相当する回折ピークが観察されることで確認できる。また、電子顕微鏡観察により、層状の構造を確認することができる。
Immediately after the film formation, the amphiphilic oligomer is in a liquid crystal state having an arrangement structure as shown in FIG. 6, but the polycondensation of the silanol portion further progresses with time, and a siloxane network layer is formed, which is strong. A solid film is formed (see FIG. 7).
Formation of the layer structure can be confirmed by observing a diffraction peak corresponding to the layer interval by X-ray analysis. Moreover, a layered structure can be confirmed by electron microscope observation.
(2)アモルファスシリカ系ハイブリッド膜
 鎖状炭化水素基含有アルコキシシランA 1モルに対して、テトラアルコキシシラン1~20モル程度(好ましくは3~6モル)、THF5~100モル程度(好ましくは15~50モル)、水5~80モル程度(好ましくは15~30モル)及びHClを0.1~5.0モル(好ましくは0.1~1.0モル)混合し、0.5~24時間程度、好ましくは5~12時間攪拌する。
 すると、鎖状炭化水素基含有アルコキシシランA(例えば、C1021Si(OMe)3)とテトラアルコキシシラン(例えば、Si(OMe)4)が共加水分解・縮重合を起こし、両親媒性オリゴマー(例えば、C1021Si(OSi(OH)33)が形成される。この条件では、この段階で両親媒性オリゴマーの縮重合もある程度進んで、部分的にシロキサンネットワークが形成される。
 この溶液をさらにTHF:Si比が1:2~20程度(モル比)、好ましくは1:3~10(モル比)となるようにTHFで希釈し、得られた希釈溶液を用いてスピンコート法により基板上に成膜したあと、乾燥させる。溶媒としては、THFの代わりにエタノールなどを用いても良い。このとき、40~120℃程度に加熱して、乾燥を促進することができる。すると、図8に示すように、網目状シロキサンネットワークと疎水性炭化水素鎖部とが部分的に混ざり合い、部分的秩序層がランダムに積み重なったアモルファス層が形成される。X線解析において、層間隔に相当する回折ピークが存在しない場合、膜はアモルファス状態にあると確認できる。
 基板上への塗布成膜後、経時的にシロキサンネットワークの形成がさらに進行し、強固な固体膜が形成される。
 上記鎖状炭化水素基含有アルコキシシランA及びテトラアルコキシシランを用いた場合、最終的に形成された膜が、層状態になるか、アモルファス状態になるかは、オリゴマー形成状態で、部分的なシロキサンネットワークの形成をどこまで進行させるかで決まる。具体的には、HClの添加量によって、この進行過程を制御することができる。HClの添加量を増やすことで、部分的なシロキサンネットワークの形成がより速く進行し、最終的に形成される膜は、アモルファス状態となる。すなわち、上述のように、鎖状炭化水素基含有アルコキシシランA 1モルに対してHClを0.1モル未満用いることで、層状シリカ系ハイブリッド膜が得られ、0.1モル以上用いることでアモルファスシリカ系ハイブリッド膜が得られる。
(2) Amorphous silica-based hybrid film With respect to 1 mol of chain hydrocarbon group-containing alkoxysilane A, about 1 to 20 mol (preferably 3 to 6 mol) of tetraalkoxysilane, about 5 to 100 mol of THF (preferably 15 to 50 mol), about 5 to 80 mol (preferably 15 to 30 mol) of water and 0.1 to 5.0 mol (preferably 0.1 to 1.0 mol) of HCl and 0.5 to 24 hours. Stir to a degree, preferably 5-12 hours.
Then, a chain hydrocarbon group-containing alkoxysilane A (for example, C 10 H 21 Si (OMe) 3 ) and a tetraalkoxysilane (for example, Si (OMe) 4 ) cause cohydrolysis and polycondensation, resulting in amphiphilic properties. An oligomer (eg, C 10 H 21 Si (OSi (OH) 3 ) 3 ) is formed. Under this condition, the polycondensation of the amphiphilic oligomer proceeds to some extent at this stage, and a siloxane network is partially formed.
This solution is further diluted with THF so that the THF: Si ratio is about 1: 2 to 20 (molar ratio), preferably 1: 3 to 10 (molar ratio), and spin coating is performed using the obtained diluted solution. After the film is formed on the substrate by the method, it is dried. As the solvent, ethanol or the like may be used instead of THF. At this time, drying can be promoted by heating to about 40 to 120 ° C. Then, as shown in FIG. 8, the network siloxane network and the hydrophobic hydrocarbon chain part are partially mixed to form an amorphous layer in which the partially ordered layers are randomly stacked. In the X-ray analysis, when there is no diffraction peak corresponding to the layer spacing, it can be confirmed that the film is in an amorphous state.
After the coating film formation on the substrate, the formation of the siloxane network further progresses with time, and a solid solid film is formed.
When the above-mentioned chain hydrocarbon group-containing alkoxysilane A and tetraalkoxysilane are used, whether the finally formed film is in a layered state or an amorphous state depends on whether it is an oligomer-formed state or a partial siloxane It depends on how far the network is formed. Specifically, this progress process can be controlled by the amount of HCl added. By increasing the amount of HCl added, the formation of a partial siloxane network proceeds faster, and the finally formed film becomes amorphous. That is, as described above, a layered silica-based hybrid film is obtained by using less than 0.1 mol of HCl with respect to 1 mol of chain hydrocarbon group-containing alkoxysilane A, and amorphous by using 0.1 mol or more. A silica-based hybrid membrane is obtained.
(3)棒状集合構造シリカ系ハイブリッド膜
 前記一般式(1-b)で表され、R6が炭素数13以下の鎖状炭化水素基である鎖状炭化水素基含有アルコキシシランB 1モルに対して、THF5~100モル程度(好ましくは15~50モル)、水5~80モル程度(好ましくは15~30モル)及びHClを0.0001~0.1モル程度(好ましくは0.001~0.01モル)混合し、0.5~24時間程度、好ましくは1~12時間攪拌する。すると、鎖状炭化水素基含有アルコキシシランB(例えば、C1225Si(OSi(OCH333が加水分解・縮重合を起こし、鎖状炭化水素基含有アルコキシシランB分子のシラノール化が進行し、両親媒性オリゴマー(例えば、C1225Si(OSi(OH)33)が形成される。この溶液をさらにTHF:Si比が1:2~20程度(モル比)、好ましくは1:3~10(モル比)となるようにTHFで希釈し、得られた希釈溶液を用いてスピンコート法により基板上に成膜したあと、乾燥させる。溶媒としては、THFの代わりにエタノールなどを用いても良い。このとき、40~120℃程度に加熱して、乾燥を促進することができる。この場合、疎水性基を形成するテイルグループの長さ、および占有体積が小さく、親水性基を形成するヘッドグループのサイズが大きいため、(1)の層状シリカ系ハイブリッド膜の場合のようなラメラ構造をとることができず、シラノール部が集合してシリンダー状の壁を形成し、最終的に棒状の秩序化された集合体を形成する(図9参照)。この集合体においては、経時的にシラノール部の縮重合がさらに進んで、シロキサンネットワーク層が形成され、強固な固体膜を形成する。このとき断面が六角形状のシリカ骨格が形成され、その内部および表面を鎖状炭化水素基が埋めた構造の薄膜が形成される(図10参照)。X線解析より、棒状形状の基板表面に対して垂直方向の繰り返し周期に相当する回折ピークが得られることから、この形態を成すことを確かめることができる。また、透過型電子顕微鏡を用いた観察からも、断面が六角形状の構造になっていることを確かめることができる。また、SEM観察などから、六角形状の柱構造は、その長軸が基板に対して平行になるように積層していることがわかる。
(3) Rod-like aggregated silica-based hybrid film With respect to 1 mol of a chain hydrocarbon group-containing alkoxysilane B represented by the general formula (1-b), wherein R 6 is a chain hydrocarbon group having 13 or less carbon atoms About 5 to 100 mol of THF (preferably 15 to 50 mol), about 5 to 80 mol of water (preferably 15 to 30 mol) and about 0.0001 to 0.1 mol of HCl (preferably 0.001 to 0). .01 mol) and the mixture is stirred for about 0.5 to 24 hours, preferably 1 to 12 hours. Then, the chain hydrocarbon group-containing alkoxysilane B (for example, C 12 H 25 Si (OSi (OCH 3 ) 3 ) 3 undergoes hydrolysis / condensation polymerization, and the chain hydrocarbon group-containing alkoxysilane B molecule is silanolated. Proceeds to form an amphiphilic oligomer (for example, C 12 H 25 Si (OSi (OH) 3 ) 3 ), and this solution is further added to a THF: Si ratio of about 1: 2 to 20 (molar ratio), Preferably, it is diluted with THF to a ratio of 1: 3 to 10 (molar ratio), and the resulting diluted solution is used to form a film on a substrate by spin coating, followed by drying. In this case, it is possible to promote drying by heating to about 40 to 120 ° C. In this case, the length of the tail group forming the hydrophobic group and the occupied volume are small. ,parent Since the size of the head group forming the functional group is large, the lamellar structure as in the case of the layered silica-based hybrid film of (1) cannot be taken, and the silanol parts gather to form a cylindrical wall, Finally, a rod-like ordered aggregate is formed (see Fig. 9) In this aggregate, the polycondensation of the silanol part further progresses with time, and a siloxane network layer is formed, and a solid solid film is formed. At this time, a silica skeleton having a hexagonal cross section is formed, and a thin film having a structure in which a chain hydrocarbon group is filled in the inside and the surface is formed (see FIG. 10). The diffraction peak corresponding to the repetitive period in the direction perpendicular to the substrate surface is obtained, so it can be confirmed that this form is achieved. In addition, it can be confirmed that the cross section has a hexagonal structure, and the hexagonal columnar structure is laminated so that its long axis is parallel to the substrate from SEM observation etc. I understand that.
 上記シリカ系ハイブリッド膜の最大の特徴は、誘電率が大きいことである。後述の実施例中で詳細に示すように、ITO電極付ガラス基板に前記シリカハイブリッド膜を成膜し、対向電極として金属マスクを用いて金を蒸着した積層体を形成し、LCRメーターを用いて誘電率を測定したところ、膜厚500nmの素子で、比誘電率は6~8(周波数2kHzでの値)である。通常のポリマー絶縁膜の比誘電率が3前後であるのに比べると、非常に大きな値である。これは、両親媒性オリゴマーを成膜して得られるシリカ系有機無機ハイブリッド膜によって発現した予期せぬ性質であると言える。これは有機薄膜トランジスタの絶縁膜として非常に望ましい特性であり、トランジスタの低電圧動作をもたらす。
 また、上記シリカ系ハイブリッド膜の最表面は、両親媒性オリゴマーの疎水性部位を形成する鎖状炭化水素基で覆われているため、高撥水性を示す。実際、ガラス基板上にスピンコート法で作製したこれらの膜面に対する、超純水の水接触角は100~110程度である。したがって、これらのシリカ系ハイブリッド膜の表面エネルギーは低く、有機半導体材料を成膜した時、有機半導体の良好な結晶成長を促し、優れた電界効果特性を発揮することができる。こうした高い撥水性を得るには、通常、フッ素系のポリマー絶縁膜を用いたり、SAM膜などによる付加的な表面処理を行うことが必要である。
 上記シリカ系ハイブリッド膜は、溶液の塗布成膜で容易に形成可能であり、単独膜で高い誘電率と高撥水性を兼ね備える。このことは、有機半導体用絶縁膜の製造スループットを向上させ、コストダウンに非常に有利である。
 本発明は、上述のように両親媒性オリゴマーを溶液状などとして塗布し、シリカ系有機無機ハイブリッド膜を形成する上記有機薄膜トランジスタの製造方法をも提供する。
The greatest feature of the silica-based hybrid film is that the dielectric constant is large. As will be described in detail in the examples below, the silica hybrid film is formed on a glass substrate with an ITO electrode, a laminated body in which gold is deposited using a metal mask as a counter electrode, and an LCR meter is used. When the dielectric constant was measured, it was an element having a film thickness of 500 nm and the relative dielectric constant was 6 to 8 (value at a frequency of 2 kHz). Compared with the relative dielectric constant of a typical polymer insulating film being around 3, this is a very large value. This can be said to be an unexpected property expressed by a silica-based organic-inorganic hybrid film obtained by forming an amphiphilic oligomer. This is a very desirable characteristic for an insulating film of an organic thin film transistor, which results in low voltage operation of the transistor.
Moreover, since the outermost surface of the silica-based hybrid film is covered with a chain hydrocarbon group that forms a hydrophobic site of the amphiphilic oligomer, it exhibits high water repellency. Actually, the water contact angle of ultrapure water is about 100 to 110 with respect to these film surfaces formed on a glass substrate by spin coating. Accordingly, the surface energy of these silica-based hybrid films is low, and when an organic semiconductor material is formed, it is possible to promote good crystal growth of the organic semiconductor and to exhibit excellent field effect characteristics. In order to obtain such high water repellency, it is usually necessary to use a fluorine-based polymer insulating film or to perform additional surface treatment with a SAM film or the like.
The silica-based hybrid film can be easily formed by coating with a solution, and has a high dielectric constant and high water repellency as a single film. This improves the manufacturing throughput of the insulating film for organic semiconductors and is very advantageous for cost reduction.
This invention also provides the manufacturing method of the said organic thin-film transistor which apply | coats an amphiphilic oligomer as a solution form etc. as mentioned above, and forms a silica type organic-inorganic hybrid film | membrane.
 上記シリカ系ハイブリッド膜の厚みは、特に限定されないが、有機トランジスタ用の絶縁膜としては、膜厚50~5000nmが好ましく、100~1500nmがより好ましい。膜厚が50nm未満であると、絶縁性が不足して、ソース・ドレイン電極と、ゲート電極の間に漏れ電流が生じ、トランジスタ特性の低下を招く。また、膜厚が1500nmを超えると、ゲート容量が小さくなり、閾値電圧の増加等の望ましくない効果をおよぼす。 The thickness of the silica-based hybrid film is not particularly limited, but the insulating film for an organic transistor preferably has a thickness of 50 to 5000 nm, and more preferably 100 to 1500 nm. If the film thickness is less than 50 nm, the insulation is insufficient, and a leakage current is generated between the source / drain electrodes and the gate electrode, leading to deterioration of transistor characteristics. On the other hand, when the film thickness exceeds 1500 nm, the gate capacitance becomes small, and an undesirable effect such as an increase in threshold voltage is exerted.
(装置)
 本発明はまた、上記有機薄膜トランジスタを備える装置をも提供する。
 本発明の装置は、上記有機薄膜トランジスタを用いる装置であれば特に限定されず、その具体例としては、回路、パーソナルコンピュータ、ディスプレイ、携帯電話機等が挙げられる。
(apparatus)
The present invention also provides an apparatus comprising the organic thin film transistor.
The device of the present invention is not particularly limited as long as it uses the above-described organic thin film transistor, and specific examples thereof include a circuit, a personal computer, a display, a mobile phone and the like.
実施例1
[絶縁体層の形成]
 まずジオマティック社製のITO透明電極付ガラス基板を用意した。ガラス基板の形状は、25mm×20mm×0.7mm厚であり、ITO膜厚は120nmであり、ITOはフォトリソグラフィ法を用いてストライプ状に加工されており、これをゲート電極とした。この基板をイソプロピルアルコール中で5分間超音波洗浄した後、UVオゾン洗浄を30分間行なった。
 デシルトリメトキシシラン(C1021Si(OMe)3)、テトラメトキシシラン(Si(OMe)4)、テトラヒドロフラン(THF)、水、HClを、モル比で、1:4:15:19:0.002で混合し、室温で6時間攪拌し、両親媒性オリゴマー溶液を調製した。この両親媒性オリゴマー溶液を、スピンコート法(3000rpm、10秒)を用いて上述のガラス基板上に塗布したあと、室温で1日乾燥させ、絶縁体層を形成した。同条件で複数枚の基板上に絶縁体層を形成し、以下の絶縁体層の評価と、有機薄膜トランジスタ素子の作製に供した。
 下記X線解析及び透過型電子顕微鏡観察の結果、絶縁体層が層間隔約3.3nmの層状構造を成すことがわかった。
Example 1
[Formation of insulator layer]
First, a glass substrate with an ITO transparent electrode manufactured by Geomatic was prepared. The glass substrate had a shape of 25 mm × 20 mm × 0.7 mm, an ITO film thickness of 120 nm, and ITO was processed into a stripe shape using a photolithography method, and this was used as a gate electrode. This substrate was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
Decyltrimethoxysilane (C 10 H 21 Si (OMe) 3 ), tetramethoxysilane (Si (OMe) 4 ), tetrahydrofuran (THF), water, HCl in a molar ratio of 1: 4: 15: 19: 0 The mixture was mixed at 0.002 and stirred at room temperature for 6 hours to prepare an amphiphilic oligomer solution. This amphiphilic oligomer solution was applied on the above glass substrate using a spin coating method (3000 rpm, 10 seconds), and then dried at room temperature for 1 day to form an insulator layer. Under the same conditions, an insulator layer was formed on a plurality of substrates, and the following insulator layer evaluation and organic thin film transistor element production were performed.
As a result of the following X-ray analysis and transmission electron microscope observation, it was found that the insulator layer had a layered structure with a layer interval of about 3.3 nm.
[絶縁体層の評価]
 上述のようにして形成した絶縁体層について、以下の測定を行った。結果を表1に示す。
(膜厚測定)
 触針式膜厚計(ET3000、小坂研究所製)で絶縁体層の膜厚を測定した。
(表面粗さ測定)
 また、AFM(エスアイアイ・ナノテクノロジー社製)を用い、10μm角の領域の表面粗さ(RMS)を測定した。
(水接触角)
 水接触角計(DropMaster 500、協和界面科学社製)を用い、超純水に対する絶縁膜表面の水接触角を測定した。
(比誘電率)
 蒸着法を用い、絶縁体層上に金属マスクを通して金電極(厚さを80nm)を成膜し、絶縁体層を挟んでITO電極と対向するようにし、LCRメーター(HP4284A、ヒューレット・パッカード社製)を用いて、周波数2kHzにおける絶縁体層の比誘電率を測定した。
(X線解析)
 M03X-HF (Bruker AXS社製)を用いてX線解析を行い、回折ピーク位置から層状シリカ系ハイブリッド膜の層間距離又は棒状集合構造シリカ系ハイブリッド膜の繰り返し周期の距離を導出した。これらの距離に相当するピークを有しないものはアモルファス状とした。
(透過型電子顕微鏡観察)
 JEOL JEM2010(日本電子社製)を用いて観察した。
[Evaluation of insulator layer]
The following measurements were performed on the insulator layer formed as described above. The results are shown in Table 1.
(Film thickness measurement)
The film thickness of the insulator layer was measured with a stylus type film thickness meter (ET3000, manufactured by Kosaka Laboratory).
(Surface roughness measurement)
Moreover, the surface roughness (RMS) of a 10 micrometer square area | region was measured using AFM (made by SII nanotechnology company).
(Water contact angle)
Using a water contact angle meter (DropMaster 500, manufactured by Kyowa Interface Science Co., Ltd.), the water contact angle of the surface of the insulating film with respect to ultrapure water was measured.
(Relative permittivity)
Using a vapor deposition method, a gold electrode (with a thickness of 80 nm) is formed on the insulator layer through a metal mask, and is opposed to the ITO electrode with the insulator layer interposed therebetween. An LCR meter (HP4284A, manufactured by Hewlett-Packard Company) ) Was used to measure the dielectric constant of the insulator layer at a frequency of 2 kHz.
(X-ray analysis)
X-ray analysis was performed using M03X-HF (manufactured by Bruker AXS), and the interlayer distance of the layered silica-based hybrid film or the repetition period distance of the rod-like aggregated structure silica-based hybrid film was derived from the diffraction peak position. Those having no peak corresponding to these distances were made amorphous.
(Transmission electron microscope observation)
Observation was performed using JEOL JEM2010 (manufactured by JEOL Ltd.).
[有機薄膜トランジスタの製造]
 前述のようにして絶縁体層を形成した基板を、真空蒸着装置(EX-400、ULVAC社製)内に設置し、ペンタセンを蒸着速度0.05nm/sで膜厚50nmになるように成膜して、有機半導体層を形成した。さらに金属マスクを通して、金を蒸着速度0.05nm/sで膜厚50nmになるように成膜して、ソース電極及びドレイン電極とし、トップコンタクト型有機薄膜トランジスタ素子を得た(図1参照)。電極は、間隔(チャンネル長L)が75μm、幅(チャンネル幅W)が5mmとなるようにした。
 得られた有機薄膜トランジスタのゲート電極に0~-100Vのゲート電圧を印加し、ソース-ドレイン電極間に電圧を印加して電流を流した。この場合、正孔が有機半導体層のチャンネル領域(ソース-ドレイン電極間)に誘起され、p型トランジスタとして動作した。
 下記式(A)を用い、電界効果移動度μと閾値電圧VTを算出したところ、それぞれ5.0cm2/Vs、+4.0Vであった。パリレン絶縁体層を用いた素子(比較例1、後述)と比較して、高移動度、低閾値電圧であった。結果を表1に示す。
     ID=(W/2L)・Cμ・(VG-VT2  (A)
(式中、IDはソース-ドレイン間電流、Wはチャンネル幅、Lはチャンネル長、Cはゲート絶縁体層の単位面積あたりの電気容量、VTはゲート閾値電圧、VGはゲート電圧である。)
[Manufacture of organic thin-film transistors]
The substrate on which the insulator layer is formed as described above is placed in a vacuum deposition apparatus (EX-400, manufactured by ULVAC), and pentacene is deposited to a film thickness of 50 nm at a deposition rate of 0.05 nm / s. Thus, an organic semiconductor layer was formed. Further, through a metal mask, gold was deposited at a deposition rate of 0.05 nm / s to a film thickness of 50 nm to obtain a top contact type organic thin film transistor element as a source electrode and a drain electrode (see FIG. 1). The electrodes were set to have a gap (channel length L) of 75 μm and a width (channel width W) of 5 mm.
A gate voltage of 0 to −100 V was applied to the gate electrode of the obtained organic thin film transistor, and a current was applied by applying a voltage between the source and drain electrodes. In this case, holes were induced in the channel region (between the source and drain electrodes) of the organic semiconductor layer and operated as a p-type transistor.
Using the following formula (A), the field effect mobility μ and the threshold voltage V T were calculated to be 5.0 cm 2 / Vs and +4.0 V, respectively. Compared to an element using a parylene insulator layer (Comparative Example 1, which will be described later), the mobility was high and the threshold voltage was low. The results are shown in Table 1.
I D = (W / 2L) · Cμ · (V G −V T ) 2 (A)
(Where ID is the source-drain current, W is the channel width, L is the channel length, C is the capacitance per unit area of the gate insulator layer, V T is the gate threshold voltage, and V G is the gate voltage. is there.)
実施例2
 絶縁体層を以下のようにして形成した以外は、実施例1と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造した。
 実施例1と同様にして調製した両親媒性オリゴマー溶液を、さらに、THF:Si比が40:5(モル比)となるようにTHFで希釈した。この希釈両親媒性オリゴマー溶液を、スピンコート法(3000rpm、10秒)を用いてガラス基板上に塗布したあと、室温で1日乾燥させ、絶縁体層を形成した。
 実施例1と同様にして絶縁体層及び有機薄膜トランジスタを評価した。結果を表1に示す。また、X線解析及び透過型電子顕微鏡観察の結果、絶縁体層は実施例1と同様の層状構造であることがわかった。
Example 2
An organic thin film transistor was manufactured by forming an insulating layer in the same manner as in Example 1 except that the insulating layer was formed as follows.
The amphiphilic oligomer solution prepared in the same manner as in Example 1 was further diluted with THF so that the THF: Si ratio was 40: 5 (molar ratio). This diluted amphiphilic oligomer solution was applied on a glass substrate using a spin coating method (3000 rpm, 10 seconds), and then dried at room temperature for 1 day to form an insulating layer.
The insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of X-ray analysis and transmission electron microscope observation, it was found that the insulator layer had the same layered structure as in Example 1.
実施例3
 絶縁体層を以下のようにして形成した以外は、実施例1と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造した。
 デシルトリメトキシシラン、テトラメトキシシラン、THF、水、HClを、モル比で、1:4:15:19:0.2で混合し、室温で6時間攪拌し、両親媒性オリゴマー溶液を調製した。この溶液をさらにTHF:Si比が40:5(モル比)となるようにTHFで希釈した。この希釈両親媒性オリゴマー溶液を、スピンコート法(3000rpm、10秒)を用いて先のガラス基板上に塗布したあと、室温で1日乾燥させ、絶縁体層を形成した。
 実施例1と同様にして絶縁体層及び有機薄膜トランジスタを評価した。結果を表1に示す。また、X線解析の結果、絶縁体層は、長距離構造を持たないアモルファス状態であることがわかった。
Example 3
An organic thin film transistor was manufactured by forming an insulating layer in the same manner as in Example 1 except that the insulating layer was formed as follows.
Decyltrimethoxysilane, tetramethoxysilane, THF, water and HCl were mixed at a molar ratio of 1: 4: 15: 19: 0.2 and stirred at room temperature for 6 hours to prepare an amphiphilic oligomer solution. . This solution was further diluted with THF so that the THF: Si ratio was 40: 5 (molar ratio). This diluted amphiphilic oligomer solution was applied on the previous glass substrate using a spin coating method (3000 rpm, 10 seconds) and then dried at room temperature for 1 day to form an insulator layer.
The insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of X-ray analysis, it was found that the insulator layer was in an amorphous state having no long-range structure.
実施例4
 絶縁体層を以下のようにして形成した以外は、実施例1と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造した。
 ドデシルトリス(トリメトキシシロキシ)シラン、THF、水、HClを、モル比で、1:50:18:0.002で混合し、室温で6時間攪拌し、両親媒性オリゴマー溶液を調製した。この両親媒性オリゴマー溶液をさらに水:Si比が50:4(モル比)となるように水で希釈した。この溶液を、スピンコート法(3000rpm、10秒)を用いて上述のガラス基板上に塗布したあと、室温で1日乾燥させ、絶縁体層を形成した。
 実施例1と同様にして絶縁体層及び有機薄膜トランジスタを評価した。結果を表1に示す。また、X線解析および透過型電子顕微鏡観察により、本絶縁体層は棒状集合構造を持つことがわかった。
Example 4
An organic thin film transistor was manufactured by forming an insulating layer in the same manner as in Example 1 except that the insulating layer was formed as follows.
Dodecyltris (trimethoxysiloxy) silane, THF, water, and HCl were mixed at a molar ratio of 1: 50: 18: 0.002 and stirred at room temperature for 6 hours to prepare an amphiphilic oligomer solution. This amphiphilic oligomer solution was further diluted with water so that the water: Si ratio was 50: 4 (molar ratio). This solution was applied on the above glass substrate using a spin coating method (3000 rpm, 10 seconds), and then dried at room temperature for 1 day to form an insulator layer.
The insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. Also, X-ray analysis and transmission electron microscope observation revealed that this insulator layer has a rod-like aggregate structure.
実施例5
 有機半導体材料として、1,4-ビス(3-メチルスチリル)ベンゼン(4MSB)を用いた以外は、実施例1と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造し、それぞれを評価した。評価結果を表1に示す。
Example 5
Except that 1,4-bis (3-methylstyryl) benzene (4MSB) was used as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 1. did. The evaluation results are shown in Table 1.
実施例6
 有機半導体材料として、4MSBを用いた以外は、実施例2と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造し、それぞれを評価した。評価結果を表1に示す。
Example 6
Except for using 4MSB as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1.
実施例7
 有機半導体材料として、4MSBを用いた以外は、実施例3と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造し、それぞれを評価した。評価結果を表1に示す。
Example 7
Except for using 4MSB as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 1.
実施例8
 有機半導体材料として、4MSBを用いた以外は、実施例4と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造し、それぞれを評価した。評価結果を表1に示す。
Example 8
An insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Example 4 except that 4MSB was used as the organic semiconductor material. The evaluation results are shown in Table 1.
比較例1
 絶縁体層の形成を以下のようにした以外は、実施例1と同様にして有機薄膜トランジスタを製造した。
 実施例1と同様にして準備、洗浄したITO付ガラス基板を、熱CVD装置の成膜部にセットした。一方、原料の蒸発部には、絶縁体層の原料として、ポリパラキシレン誘導体[ポリパラ塩化キシレン(パリレン)](商品名;diX-C,第三化成株式会社製)250mgをシャーレに入れて設置した。熱CVD装置を真空ポンプで真空に引き、5Paまで減圧した後、蒸発部を180℃、重合部を680℃まで加熱して2時間放置しゲート電極上に厚さ800nmの絶縁体層を形成した。
 実施例1と同様にして絶縁体層及び有機薄膜トランジスタを評価した。結果を表1に示す。また、X線解析の結果、パリレンの結晶に起因する弱い回折ピークが観測されたが、層構造のような明確な構造は観測されなかった。
Comparative Example 1
An organic thin film transistor was manufactured in the same manner as in Example 1 except that the insulator layer was formed as follows.
A glass substrate with ITO prepared and cleaned in the same manner as in Example 1 was set in a film forming section of a thermal CVD apparatus. On the other hand, in the raw material evaporation section, 250 mg of polyparaxylene derivative [polyparaxylene chloride (parylene)] (trade name; diX-C, manufactured by Sansei Kasei Co., Ltd.) is placed in a petri dish as a raw material for the insulator layer. did. The thermal CVD apparatus was evacuated with a vacuum pump and depressurized to 5 Pa, and then the evaporation part was heated to 180 ° C. and the polymerization part was heated to 680 ° C. and left for 2 hours to form an insulator layer having a thickness of 800 nm on the gate electrode. .
The insulator layer and the organic thin film transistor were evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of X-ray analysis, a weak diffraction peak due to the parylene crystal was observed, but a clear structure such as a layer structure was not observed.
比較例2
 有機半導体材料として、4MSBを用いた以外は、比較例1と同様にして、絶縁体層を形成し、有機薄膜トランジスタを製造し、それぞれを評価した。評価結果を表1に示す。
Comparative Example 2
Except that 4MSB was used as the organic semiconductor material, an insulator layer was formed and an organic thin film transistor was manufactured and evaluated in the same manner as in Comparative Example 1. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上詳細に説明したように、本発明の有機TFTは、高い移動度と低閾値電圧を有するため、トランジスタとして有用である。 As described in detail above, the organic TFT of the present invention is useful as a transistor because it has high mobility and low threshold voltage.
1:ゲート電極
2:ソース電極
3:ドレイン電極
4:有機半導体層
5:絶縁体層
6:基板
1: Gate electrode 2: Source electrode 3: Drain electrode 4: Organic semiconductor layer 5: Insulator layer 6: Substrate

Claims (9)

  1.  少なくとも基板上にゲート電極、ソース電極、ドレイン電極、絶縁体層及び有機半導体層を有する有機薄膜トランジスタであって、該絶縁体層が、下記一般式(1-a)で表される鎖状炭化水素基含有アルコキシシランAと、下記一般式(2)で表されるテトラアルコキシシランとを共加水分解・縮重合して得られる両親媒性オリゴマーを、薄膜成膜して得られるシリカ系有機無機ハイブリッド膜であることを特徴とする有機薄膜トランジスタ。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数6以上の鎖状炭化水素基であり、R2は、炭素数1~3の直鎖状又は分岐状アルキル基であり、R3及びR4は、それぞれ独立に、炭素数1~3の直鎖状又は分岐状アルキル基あるいは炭素数1~3のアルコキシ基である。)
      Si(OR54   (2)
    (式中、R5はメチル基又はエチル基である。)
    An organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, wherein the insulator layer is a chain hydrocarbon represented by the following general formula (1-a) Silica-based organic-inorganic hybrid obtained by forming a thin film of an amphiphilic oligomer obtained by cohydrolysis and condensation polymerization of a group-containing alkoxysilane A and a tetraalkoxysilane represented by the following general formula (2) An organic thin film transistor characterized by being a film.
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is a chain hydrocarbon group having 6 or more carbon atoms, R 2 is a linear or branched alkyl group having 1 to 3 carbon atoms, and R 3 and R 4 are each independently And a straight-chain or branched alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.)
    Si (OR 5 ) 4 (2)
    (In the formula, R 5 is a methyl group or an ethyl group.)
  2.  少なくとも基板上にゲート電極、ソース電極、ドレイン電極、絶縁体層及び有機半導体層を有する有機薄膜トランジスタであって、該絶縁体層が、下記一般式(1-b)で表される鎖状炭化水素基含有アルコキシシランBを加水分解・縮重合して得られる両親媒性オリゴマーを、薄膜成膜して得られるシリカ系有機無機ハイブリッド膜であることを特徴とする有機薄膜トランジスタ。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R6は炭素数6以上の鎖状炭化水素基であり、R7~R9は、それぞれ独立に、炭素数1~3の直鎖状又は分岐状アルキル基である。3つのR7、R8及びR9は、それぞれにおいて互いに同一であっても異なっていてもよい。)
    An organic thin film transistor having at least a gate electrode, a source electrode, a drain electrode, an insulator layer, and an organic semiconductor layer on a substrate, wherein the insulator layer is a chain hydrocarbon represented by the following general formula (1-b) An organic thin film transistor characterized by being a silica-based organic-inorganic hybrid film obtained by forming a thin film of an amphiphilic oligomer obtained by hydrolysis / condensation polymerization of a group-containing alkoxysilane B.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 6 is a chain hydrocarbon group having 6 or more carbon atoms, and R 7 to R 9 are each independently a linear or branched alkyl group having 1 to 3 carbon atoms. R 7 , R 8 and R 9 may be the same or different from each other.)
  3.  前記シリカ系有機無機ハイブリッド膜が、層状シリカ系ハイブリッド膜である請求項1又は2記載の有機薄膜トランジスタ。 The organic thin-film transistor according to claim 1 or 2, wherein the silica-based organic-inorganic hybrid film is a layered silica-based hybrid film.
  4.  前記シリカ系有機無機ハイブリッド膜が、アモルファスシリカ系ハイブリッド膜である請求項1又は2記載の有機薄膜トランジスタ。 3. The organic thin-film transistor according to claim 1, wherein the silica-based organic-inorganic hybrid film is an amorphous silica-based hybrid film.
  5.  前記シリカ系有機無機ハイブリッド膜が、棒状集合構造シリカ系ハイブリッド膜である請求項2記載の有機薄膜トランジスタ。 3. The organic thin film transistor according to claim 2, wherein the silica-based organic-inorganic hybrid film is a rod-like aggregated-structure silica-based hybrid film.
  6.  前記一般式(1-b)におけるR6が炭素数14~18の鎖状炭化水素基であり、前記シリカ系有機無機ハイブリッド膜が、層状シリカ系ハイブリッド膜である請求項2記載の有機薄膜トランジスタ。 3. The organic thin film transistor according to claim 2, wherein R 6 in the general formula (1-b) is a chain hydrocarbon group having 14 to 18 carbon atoms, and the silica-based organic-inorganic hybrid film is a layered silica-based hybrid film.
  7.  前記一般式(1-b)におけるR6が炭素数6~13の鎖状炭化水素基であり、前記シリカ系有機無機ハイブリッド膜が、棒状集合構造シリカ系ハイブリッド膜である請求項2記載の有機薄膜トランジスタ。 3. The organic material according to claim 2, wherein R 6 in the general formula (1-b) is a chain hydrocarbon group having 6 to 13 carbon atoms, and the silica-based organic-inorganic hybrid film is a rod-like aggregate structure silica-based hybrid film. Thin film transistor.
  8.  両親媒性オリゴマーを塗布してシリカ系有機無機ハイブリッド膜を形成することを特徴とする請求項1又は2に記載の有機薄膜トランジスタの製造方法。 3. The method for producing an organic thin film transistor according to claim 1, wherein an amphiphilic oligomer is applied to form a silica-based organic-inorganic hybrid film.
  9.  請求項1又は2に記載の有機薄膜トランジスタを備える装置。 An apparatus comprising the organic thin film transistor according to claim 1.
PCT/JP2009/070650 2009-01-16 2009-12-10 Organic thin film transistor, method for manufacturing same, and device equipped with same WO2010082414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009007871A JP2010165930A (en) 2009-01-16 2009-01-16 Organic thin-film transistor, manufacturing method thereof and device equipped with the same
JP2009-007871 2009-01-16

Publications (1)

Publication Number Publication Date
WO2010082414A1 true WO2010082414A1 (en) 2010-07-22

Family

ID=42339671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070650 WO2010082414A1 (en) 2009-01-16 2009-12-10 Organic thin film transistor, method for manufacturing same, and device equipped with same

Country Status (2)

Country Link
JP (1) JP2010165930A (en)
WO (1) WO2010082414A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096927A (en) * 2007-10-18 2009-05-07 Tdk Corp Active energy ray-curable resin composition and laminated body thereof
JP5950399B2 (en) * 2011-09-14 2016-07-13 国立研究開発法人産業技術総合研究所 Organic-inorganic transparent hybrid film and production method thereof
KR101960622B1 (en) * 2015-01-14 2019-03-20 닛뽕소다 가부시키가이샤 Organic thin-film transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161876A (en) * 2002-11-13 2004-06-10 Shin Etsu Chem Co Ltd Composition for forming porous film, porous film, method for producing the same, interlayer insulating film and semiconductor apparatus
JP2006111533A (en) * 2004-10-12 2006-04-27 Shin Etsu Chem Co Ltd Organoxysilane compound having siloxane bond and method for producing the same
JP2007311377A (en) * 2006-05-16 2007-11-29 Sony Corp Manufacturing method of thin-film transistor, thin-film transistor, and display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161876A (en) * 2002-11-13 2004-06-10 Shin Etsu Chem Co Ltd Composition for forming porous film, porous film, method for producing the same, interlayer insulating film and semiconductor apparatus
JP2006111533A (en) * 2004-10-12 2006-04-27 Shin Etsu Chem Co Ltd Organoxysilane compound having siloxane bond and method for producing the same
JP2007311377A (en) * 2006-05-16 2007-11-29 Sony Corp Manufacturing method of thin-film transistor, thin-film transistor, and display

Also Published As

Publication number Publication date
JP2010165930A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5148211B2 (en) Organic thin film transistor and organic thin film light emitting transistor
US7875878B2 (en) Thin film transistors
US8373161B2 (en) Organic thin film transistor
US20060273303A1 (en) Organic thin film transistors with multilayer electrodes
JP5124520B2 (en) Thin film transistor
JP5470763B2 (en) Carbon nanotube dispersion solution, organic semiconductor composite solution, organic semiconductor thin film, and organic field effect transistor
TWI549327B (en) Organic field effect transistor and organic semiconductor material
WO2003023877A2 (en) Surface modifying layers for organic thin film transistors
KR101192615B1 (en) Field effect transistor
US20080121869A1 (en) Organic thin film transistor with dual layer electrodes
US8748873B2 (en) Electronic device with dual semiconducting layer
US20140353647A1 (en) Organic Thin Film Transistors And Method of Making Them
US8319206B2 (en) Thin film transistors comprising surface modified carbon nanotubes
EP2117059B1 (en) Organic Thin Film Transistors
WO2011036866A1 (en) Organic thin-film transistor
JP2009246342A (en) Field-effect transistor, method of manufacturing the same, and image display apparatus
US8471253B2 (en) Crosslinked hybrid gate dielectric materials and electronic devices incorporating same
US7863694B2 (en) Organic thin film transistors
JP2010034394A (en) Organic thin film transistor
WO2010082414A1 (en) Organic thin film transistor, method for manufacturing same, and device equipped with same
JP2007188923A (en) Field effect transistor and picture display device
WO2014047647A1 (en) Organic thin film transistors and methods of making the same
Wang et al. Fluorosurfactant-Improved Wettability of Low-Viscosity Organic Semiconductor Solution on Hydrophobic Surfaces for High-Mobility Solution-Processed Organic Transistors
WO2007132845A1 (en) Organic semiconductor device and method for manufacturing same
WO2021172185A1 (en) Fused polycyclic aromatic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838379

Country of ref document: EP

Kind code of ref document: A1