WO2007132845A1 - Organic semiconductor device and method for manufacturing same - Google Patents

Organic semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2007132845A1
WO2007132845A1 PCT/JP2007/059959 JP2007059959W WO2007132845A1 WO 2007132845 A1 WO2007132845 A1 WO 2007132845A1 JP 2007059959 W JP2007059959 W JP 2007059959W WO 2007132845 A1 WO2007132845 A1 WO 2007132845A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
film
self
semiconductor device
group
Prior art date
Application number
PCT/JP2007/059959
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Imada
Hiroyuki Hanato
Toshihiro Tamura
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007132845A1 publication Critical patent/WO2007132845A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic semiconductor device and a manufacturing method thereof. More specifically, the present invention relates to an organic semiconductor device having an organic semiconductor film in a predetermined region and a method for manufacturing the same.
  • the transistor has the advantage that it can be easily manufactured and a flexible substrate can be used. Transistors with these advantages are expected to reduce costs when used in applications such as smart cards, electronic tags and displays.
  • TFT thin film transistor
  • the dry process is not preferred because it requires a vacuum line in the process.
  • the wet process is a simple, low-temperature process and low-cost process, and therefore, the above advantages of the organic semiconductor film can be utilized.
  • an organic semiconductor film is formed as a gate insulating film by depositing an organic semiconductor material such as pentacene on the gate insulating film.
  • the gate insulating film is treated with octadecyltrichlorosilane (OTCS) to adjust the surface energy of the gate insulating film.
  • OTCS octadecyltrichlorosilane
  • the organic semiconductor film is produced by vapor deposition, but as described above, the gate insulating film is treated with a surface treatment agent such as OTCS, so that the crystallinity and TFT characteristics of the organic semiconductor film are obtained. It has become clear that this can be improved.
  • Patent Document 1 Patent Document 1
  • ink jet method and a dispense method because of excellent material recoverability and high selectivity of film forming position.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-253375
  • Non-Patent Document 1 IEEE Electron Device Lett., 18, 606, 1997
  • the inkjet and dispensing methods are methods in which a nozzle head is moved to a desired position and a solution of several pL to several / zL is ejected electrically and mechanically.
  • the nozzle head can be mechanically powered arbitrarily, the film forming position of the organic semiconductor film can be controlled.
  • the solution discharged from the nozzle head is affected by the surrounding atmosphere, temperature, and pressure, and may develop without staying at the discharge position on the substrate.
  • the substrate may be heated in order to improve the crystallinity of the organic semiconductor film or promote the evaporation of the solvent in the solution.
  • This heating reduces the viscosity of the solution by activating the thermal mobility of the solution. Therefore, the solution develops on the substrate without staying at the discharge position. In other words, despite the solution being discharged between the source Z and drain electrodes, the solution spreads to a position other than between the source Z and drain electrodes, and the film is formed at that position. There was a problem of being done.
  • a method of providing a bank is not preferable because the number of substrate processing processes increases.
  • the method of treating the gate insulating film only in a predetermined region is a method in which only a predetermined region of a substrate surface-treated with OTCS or the like is exposed with ultraviolet rays or the like (hereinafter, this method is a one-component nodule). Called turning).
  • this method the film-forming surface of the organic semiconductor film, that is, the channel is exposed to a gate insulating film that has not been treated with OTCS or the like. Therefore, the effect of improving the crystallinity of the organic semiconductor film by the surface treatment of the gate insulating film such as OTCS cannot be obtained.
  • the surface of the gate insulating film has dangling bonds of oxygen and the like, and has various chemical states. For this reason, the crystal growth of the organic semiconductor film is hindered. Therefore, the adhesion at the interface between the gate insulating film and the organic semiconductor film has been reduced, and the film uniformity of the organic semiconductor film has been reduced. These reductions have the problem of lowering the crystallinity and carrier transfer characteristics of the organic semiconductor film.
  • an object of the present invention is to provide an organic semiconductor device having a structure capable of improving the carrier transfer characteristic of an organic semiconductor film and maximizing the carrier transfer characteristic of the organic semiconductor film. Furthermore, an object of the present invention is to make it possible to control the formation position of an organic semiconductor film formed by a coating method. It is an object of the present invention to provide a method for controlling the materials and interface conditions used in the present invention.
  • the present inventors have completed the present invention by finding a method for greatly improving crystallinity and electrical properties in an organic semiconductor film.
  • an organic semiconductor device that includes a substrate and an organic semiconductor film formed in a predetermined region on the substrate, wherein the substrate on which the organic semiconductor film is formed.
  • An organic semiconductor characterized in that the surface of the plate has a surface free energy difference of 5 mjZm 2 or more larger than the surface of the substrate on which the organic semiconductor film is not formed, and is lyophobic due to the surface free energy.
  • the predetermined region where the organic semiconductor film is formed on the substrate surface has a surface free energy difference of 5 mjZm 2 or more larger than the region where the organic semiconductor film is not formed.
  • an organic semiconductor device including an organic semiconductor film that is accurately patterned by a simple method using the difference in surface free energy.
  • the patterning is, for example, applying two different types of surface treatment agents (for example, organosilane compounds) to a predetermined region where the organic semiconductor film is formed and a region other than the predetermined region. Then, it can be carried out by forming a self-assembled film comprising these surface treatment agents.
  • surface treatment agents for example, organosilane compounds
  • the application position of the solution containing the compound for forming the organic semiconductor film can be strictly controlled. Control is possible. Furthermore, the formation position of the organic semiconductor film and the size of the organic semiconductor film can be easily controlled by the shape of the mask used for patterning.
  • FIG. 1 is a schematic configuration diagram of an organic thin film transistor of the present invention.
  • the present invention can be used for any organic semiconductor device as long as it includes a substrate and an organic semiconductor film formed in a predetermined region on the substrate. Furthermore, in the present invention, the surface of the substrate on which the organic semiconductor film is formed has a difference in surface free energy that is 5 mjZm 2 or more larger than the surface of the substrate, as opposed to the formation of the organic semiconductor film. Such surface free energy imparts lyophobic properties to the substrate surface.
  • the upper limit of the difference in surface free energy is preferably 50 mjZm 2 . A more preferable difference in surface free energy is 5 to 35 mjZm 2 .
  • liquid repellency used in the present invention means that the surface of the substrate and the liquid are difficult to adapt, and “liquid repellency” means that the surface of the substrate has the above surface free energy. Based on the difference, it means that it is more difficult to blend with liquid compared to the above “liquid repellency”.
  • liquid repellency used in the present invention means having both liquid repellency and liquid repellency. Furthermore, the predetermined region has liquid repellency by having a surface free energy larger than that of other regions. The predetermined region has liquid repellency and thus has a property of preventing the organic semiconductor film from being formed in a region other than the predetermined region.
  • a predetermined region where the organic semiconductor film is formed on the substrate surface is subjected to a lyophobic liquid treatment so that the surface free energy difference is 5 mjZm 2 or more larger than the region where the organic semiconductor film is not formed. Subsequently, it can be manufactured by including a step of forming an organic semiconductor film in a predetermined region of the substrate surface.
  • organic semiconductor devices include organic TFTs, organic capacitors, organic capacitors, and organic solar cells. Of these, the present invention is preferably applied to organic TFTs.
  • the substrate includes a gate electrode and a gate insulating film thereon. Therefore, the predetermined region is on the gate insulating film. Further, the self-assembled film is formed on the gate insulating film, and the organic semiconductor film is formed on the self-assembled film. Source Z Drain electrode 1S Formed on the gate insulating film to sandwich the organic semiconductor film before forming the organic semiconductor film Or formed on the organic semiconductor film.
  • the first self-assembled film is formed on a region other than the predetermined region, and the first self-assembled film is formed on the predetermined region by 5 mJ Zm.
  • One example is a method of forming a second self-assembled film that gives a difference in surface free energy of 2 or more. Due to such first and second self-assembled films, the entire film is lyophobic and the second self-assembled film is lyophobic, so that an organic semiconductor film is efficiently formed in a predetermined region. Can be made.
  • the thicknesses of the first and second self-assembled capsules vary depending on the material constituting them, but are preferably lOnm or less. If it is thicker than lOnm, the gate voltage applied to the organic semiconductor film coated on the self-assembled film is affected, which is not preferable. Therefore, the film thickness is more preferably 0.5 ⁇ m to 10nm, and further preferably 0.5nm to 5nm.
  • FIG. 1 is a conceptual diagram of an example of an organic TFT.
  • 1 is a substrate
  • 2 is a gate electrode
  • 3 is a gate insulating film
  • 4 and 5 are source Z drain electrodes
  • 6 and 7 are self-organized from the first and second organosilane compounds.
  • Each means a film
  • 8 means an organic semiconductor film.
  • the organic TFT in Fig. 1 has a bottom gate and bottom contact structure.
  • the organic TFT of FIG. 1 includes two self-organized film 6 and 7 having different components on a gate insulating film 3, and an organic semiconductor film 8 is formed through the self-assembled film 7.
  • the structure has a structure in which a gate insulating film, two kinds of self-assembled films of different components, and an organic semiconductor film are laminated in this order. As long as this is done, the structure is not limited to that shown in FIG.
  • a structure in which a gate electrode, a gate insulating film, two self-assembled films having different components, an organic semiconductor film, and a source Z drain electrode are provided in this order on a substrate.
  • This structure is an example in which a source Z drain electrode is formed on the upper surface of an organic semiconductor film.
  • a source Z drain electrode is formed on the lower surface of the organic semiconductor film.
  • the organic TFT according to the present invention includes an organic semiconductor between a gate insulating film and an organic semiconductor film.
  • an organic semiconductor between a gate insulating film and an organic semiconductor film.
  • two self-assembled film films having different components may be provided in a predetermined pattern.
  • These two self-assembled films not only have the function of controlling the formation position of the organic semiconductor film, but also the function of controlling crystallinity and the device characteristics of the organic semiconductor film (carrier mobility, on-Z-off ratio, threshold voltage, etc.) It has a function to improve.
  • the former function is a function exhibited when the gate insulating film, the self-assembled film, and the organic semiconductor film are formed in this order.
  • the latter function is a function achieved by providing a self-organizing capsule.
  • the function of controlling the crystallinity of the organic semiconductor film is achieved by the two self-assembled films adjusting the surface free energy of the gate insulating film.
  • the solution containing the organic semiconductor film material can be uniformly adsorbed.
  • an organic semiconductor film having a large grain size and improved crystallinity can be formed.
  • the material of the gate and source Z drain electrodes is not particularly limited, and any material known in the art can be used. Specifically, metals such as gold, platinum, silver, copper and aluminum; refractory metals such as titanium, tantalum and tungsten; silicides and polycides with refractory metals; p-type or n-type highly doped silicon; ITO, Examples include conductive metal oxides such as NESA; conductive polymers such as polyethylene dioxythiophene (PEDOT).
  • PEDOT polyethylene dioxythiophene
  • the film thickness is not particularly limited, and can be appropriately adjusted to a film thickness (for example, 30 to 60 nm) used for a normal transistor.
  • the method for producing these electrodes can be appropriately selected depending on the electrode material.
  • Examples of the manufacturing method include vapor deposition, sputtering, and coating.
  • the gate insulating film is not particularly limited, and any film known in the art can be used. Specifically, silicon oxide film (thermal acid film, low-temperature acid film: LTO film, etc., high-temperature oxide film: HTO film), silicon nitride film, SOG film, PSG film, BSG film, BPSG Insulating films such as films; PZT, PLZ IV, ferroelectric or antiferroelectric films; SiOF-based films, SiOC-based films or CF-based films, or HSQ (hydrogen silsesquioxane) -based films (inorganic) that are formed by coating, MSQ (methvl sil sesquioxane) -based films, PAE (polyarylene ether) -based films, BCB-based films, porous-based films, CF-based films, and other low dielectric films.
  • silicon oxide film thermal acid film, low-temperature acid film: LTO film, etc., high-temperature oxide film: HTO film
  • the film thickness is not particularly limited, and is normally used for a transistor (for example, 5
  • the method for producing the gate insulating film can be appropriately selected depending on the type thereof, and examples thereof include vapor deposition, sputtering, and coating.
  • R 1 is a linear or branched unsubstituted alkyl group, or a fluorine atom, a hydroxyl group, a thiol group, an amino group, a silyl group, a phenyl group, or a chenyl group.
  • the organosilane compound represented by these can be used.
  • the alkyl group R 1 means the above formula (1), preferably 3 to 30 carbon atoms, more preferably an alkyl group having 8 to 18 carbon atoms.
  • halogen atom represented by X 1 , X 2 and X 3 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom.
  • Examples of the alkoxy group having 1 to 5 carbon atoms represented by X 1 , X 2 and X 3 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a pentoxy group, and structural isomers thereof.
  • the liquid repellency of the self-assembled film is controlled by selecting the type and length of the functional group bonded to the silyl group of the silane compound used as a material for forming the film. It can be done.
  • the first self-assembled film has an R 1 composed of an alkyl group having 8 to 18 carbon atoms and a fluoroalkyl group having 8 to 18 carbon atoms.
  • Organic system An organosilane compound having a R 1 derived from a orchid compound, wherein the second self-assembled film comprises a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group or a condensed heterocyclic group. It is preferable that the film is derived.
  • the R 1 group of the organosilane compound for the second self-assembled film is preferably a group containing a ⁇ -electron conjugated molecule.
  • Such a self-assembled film derived from an organic silane compound can have carrier mobility not only by the organic semiconductor film formed thereon but also by the self-assembled film itself.
  • Such a group containing a ⁇ -electron conjugated molecule is, for example, a group containing a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group, a condensed heterocyclic group, or the like.
  • a self-assembled film having an organic group exhibiting insulating properties can also act as part of the gate insulating film.
  • organic group exhibiting insulating properties include an alkyl group and a fluoroalkyl group.
  • alkyl groups or fluoroalkyl groups include groups having 3 to 30 carbon atoms.
  • Examples of the method for forming the self-assembled film include gas phase and liquid phase adsorption methods.
  • the gas-phase adsorption method is a Teflon (registered trademark) crucible or glass sealed container in which a self-organized film raw material (for example, an organic silane compound) and a substrate are placed together, at a high temperature of 100 ° C or higher, 2 to This is a method of heat treatment for 3 hours and adsorbing to the substrate surface.
  • a self-organized film raw material for example, an organic silane compound
  • the self-assembled film may be a monomolecular film or a cumulative film in which monomolecular films are laminated.
  • Si-O-Si networks can also be formed between adjacent organic silane compounds.
  • the raw material of the self-assembled film is dissolved in a solvent such as toluene, ethanol, chloroform, etc. to prepare a solution of about 20 mM of the raw material, and the substrate is placed in this solution. Is immersed in the substrate surface for about 24 hours. At this time, in order to shorten the reaction time, the solution in which the substrate is immersed may be heated to a temperature below the boiling point of the solvent. You can also.
  • Other examples of the liquid phase reaction include spin coating, ink jet, dispensation, and dip coating.
  • the material is the above organic silane compound
  • hydrophilization treatment method there are a method in which the substrate is irradiated with ultraviolet rays or plasma, and a method in which the substrate is immersed in a mixed solvent of sulfuric acid Z hydrogen peroxide.
  • the second self-assembled film is hydrophilized as follows in addition to the hydrophilization treatment.
  • a force may also be formed upon treatment. That is, by irradiating the predetermined region of the first self-organized film with ultraviolet rays or plasma with a mask pattern having an opening in the predetermined region, the first self-organized film is peeled from the region. This peeling is performed under the condition that only R 1 is removed and the component derived from the silyl group remains in a predetermined region. This component hydrophilizes the predetermined area.
  • the second self-assembled film formed is so that the hydrophilic silyl group side faces the substrate side.
  • the coating solution containing the organic semiconductor film material can be applied by using the difference in surface energy between the two self-assembled films (this coating can be divided into two components). Called turning). Therefore, the organic semiconductor film can be formed by a simple method.
  • the inventors of the present invention have a surface freeness between the second self-assembled film other than the region where the organic semiconductor film is formed and the predetermined region where the organic semiconductor film is formed, that is, the first self-assembled film. This is based on the finding that when the energy difference is 5 miZm 2 or more, the coating solution containing the organic semiconductor film material can be applied separately.
  • the organosilane compound constituting the first self-assembled film exhibiting lyophobic properties is specifically preferably a silane compound containing an alkyl group or a fluoroalkyl group. More preferably, the fluoroalkyl group has 8 or more carbon atoms.
  • the organosilane compound includes n-octadecyltriethoxysila. (OTES) (CAS.No. (hereinafter the same): 7399—00—0, manufactured by Alphamax Co., Ltd.), n—otadecyltrichlorosilane (112—04—9, manufactured by Alphamax Co., Ltd.), n —Decyltrichlorosilane (13829—21—5, manufactured by AMAX Co., Ltd.), (Heptadecafluor mouth 1, 1, 2, 2-tetrahydrodecyl) triethoxysilane (HFTHTES) (101947—16—4, AMAX Co., Ltd.) Manufactured).
  • OFTES n-octadecyltriethoxysila.
  • the organic silane compound constituting the second self-assembled film exhibiting liquid repellency is specifically a silane compound containing a phenyl group, a chael group, an amino group, or a hydroxyl group. It is preferable that it exists.
  • the organosilane compound includes p-aminophenol trimethoxysilane (33976-43-1, manufactured by AMAX Co., Ltd.), phenol triethoxysilane (PTES) (780 69-8).
  • the organosilane compound can be synthesized using, for example, a silly cocoon by the following Grignard reaction.
  • R 3 is a hydrogen atom, a halogen atom or a lower alkoxy group, and X 5 , X 6 and X 7 may be the same or different from each other, and a hydrogen atom, a halogen atom or an alkoxy group having 1 to 5 carbon atoms. It is a group that can give a hydroxyl group by hydrolysis like a group)
  • X 5 to X 7 can be halogen atoms such as chlorine and bromine, alkoxy groups having 1 to 5 carbon atoms such as methoxy groups, ethoxy groups, and butoxy groups. Furthermore, as long as any one of X 5 to X 7 gives a hydroxyl group, the other may be an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, or a butyl group! /.
  • organic silane compound obtained by the Grignard reaction examples include biphenylene triethoxysilane (2PTES), terferene triethoxysilane (3PTES), quater terferene triethoxysilane ( 4PTES), quinkefene-lentriethoxysilane (5P TES), tert-off-entry ethoxysilane (3TTES), quaternary-off-entry ethoxysilane (4TTES), quinquethiophenetriethoxysilane (5TTES), naphthalene entroxysilane (NTES) ) And anthralene triethoxysilane (ATES).
  • 2PTES biphenylene triethoxysilane
  • 3PTES terferene triethoxysilane
  • 4PTES quater terferene triethoxysilane
  • TTES tert-off-ent
  • the organosilane compound can also be obtained by the methods described in JP-A-2004-277413, JP-A-2005-298485, and the like.
  • reaction solution was filtered under reduced pressure to remove magnesium chloride, and then the filtrate was concentrated under reduced pressure to remove toluene and unreacted tetraethoxysilane, and the resulting solution was distilled.
  • 3PTE 3PTE
  • the synthesized product obtained here was confirmed to be 3PTES by measuring —NMR and 13 C-NMR.
  • Biphenyl-triethoxysilane (2PTES) was obtained in a yield of 50% in exactly the same manner as in Production Example 1 except that 1.5 mol of biphenyl was used in place of the terphenyl of Production Example 1.
  • the synthesized product obtained here was confirmed to be 2PTES by measuring —NMR and 13 C-NMR.
  • TTES Tertoffene ethoxysilane
  • Naphthalene 1.5 mol was used instead of terphenyl of Production Example 1, and naphthalene triethoxysilane (NTES) was obtained in a yield of 40% in exactly the same manner as Production Example 1.
  • NTES naphthalene triethoxysilane
  • Anthralene triethoxysilane (ATES) was obtained in a yield of 40% in exactly the same manner as in Production Example 1, except that 1.5 mol of anthracene was used in place of the terfal of Production Example 1.
  • the surface free energy of the self-assembled film formed on each Si wafer obtained in Test Examples 1 to 14 above was determined using pure water and iodine using MCA-2 (manufactured by Kyowa Interface Chemical Co., Ltd.).
  • the surface of the self-assembled film derived from each organosilane compound obtained in Production Examples 1 to 9 obtained above based on the Zisman method based on the value of the contact angle with methylene chloride The measurement results of free energy are shown in the following table.
  • organic semiconductor film formed on the self-assembled film a film made of a material known in the art can be used.
  • the organic semiconductor material include the following low-molecular compounds and high-molecular compounds in consideration of transistor driving or material supply.
  • the low molecular weight compound for organic semiconductor film materials a compound having a molecular weight of less than 1,000 is preferred.
  • oligocenes condensed with 3 to 10 benzene rings oligothiophenes with 3 to 10 repeats of thiophene, oligoligene with 3 to 10 repeats of benzene, benzene and bilene.
  • examples thereof include oligophenol-lentiophene compounds having 1 to 10 repeating oligophenol-lylene-benzenes, benzene and thiophene repeating 1 to 10 compounds, and derivatives thereof.
  • fullerene compounds such as fullerene (C60) and [6,6] -phenol C61 butanoic acid methyl ester (PCBM) can also be used.
  • the polymer compound for organic semiconductor film material is preferably a compound having a number average molecular weight of 10,000 or more.
  • thiophene, phenylene bilene, phenylene type, and derivatives thereof are compounds having a repeating unit force selected.
  • P3HT poly-3-hexylthiophene
  • PV polyphenylene-lene
  • derivatives thereof are particularly preferable.
  • a solvent having high solubility and boiling point for the material of the organic semiconductor film is preferable.
  • aromatic hydrocarbons such as benzene, toluene, and p-xylene
  • aliphatic halogenated hydrocarbons such as chloroform, formaldehyde, dichloroethylene, trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene
  • Aromatic halogenated hydrocarbons such as dichroic benzene and 1,2,4 triclonal benzene
  • the organic semiconductor film As a method for producing the organic semiconductor film, all coating methods such as the LB method, the dip method, and the casting method (spin coating method, ink jet method, and dispense method) can be applied. Of these, the casting method (inkjet method, dispense method) is preferable in consideration of material and mass production costs.
  • the LB method is an abbreviation of the Langmuir-Blodgett method.
  • An amphiphilic substance in which a hydrophobic group and a hydrophilic group are balanced is developed on the water surface to produce a single-layer film called a monomolecular film.
  • the dip method is a method of forming a film by immersing a substrate in a solution and then pulling it up. In the case of a material having crystallinity, a crystal having a specific structure can be grown. .
  • the casting method means a method of forming a film by dropping a solution containing a raw material at a desired position and drying, and includes a spin coating method, an ink jet method, and a dispensing method.
  • OTES organic silane compound for forming the first self-organized film (lyophobic component), and an organic silane compound for forming the second self-organized film (liquid repellent).
  • PTES obtained in Production Example 1 as a component
  • the organosilane compound obtained in Production Examples 2 to 9 was used in place of PTES.
  • a first self-assembled film derived from OTES was formed on a Si wafer by the method described in Test Example 1 using OTES.
  • the Si mask obtained above was fixed with a metal mask having a hole of 0.8 mm diameter, irradiated with 172 nm vacuum ultraviolet light for 20 minutes, and the first self-organization of the region corresponding to the hole was performed.
  • the formed film was peeled off and hydrophilized.
  • each second self-assembled film was formed in the region using PTES by the method described in Test Example 1.
  • a solution of an organic semiconductor film material was prepared using an organic semiconductor film material using black mouth form, toluene, p-xylene, benzene, and 1,2,4-trichloro mouth benzene as solvents.
  • the following table shows the results of examining the application of the organic semiconductor film material solution on the Si wafer obtained above.
  • evaluation 1 means that the second self-organization is performed on all the solutions of the organic semiconductor film material using chloroform-form, toluene, p-xylene, benzene, 1,2,4 trichloro-benzene as a solvent. This means that the organic semiconductor film can be formed only on the film.
  • evaluation 2 means that an organic semiconductor film can be formed only on the second self-assembled film with a solution using 1,2,4 trichlorobenzene, among the above solvents. This means that the second self-assembled force cannot be formed only on the capsule.
  • the surface free energy difference between the two self-assembled films is required to be about 5 mjZm 2 in order to pattern the solvent.
  • chromium was vapor-deposited on a substrate 1 having a silicon force to form a gate electrode 2.
  • a gate insulating film 3 made of a silicon thermal oxide film After baking at 1200 ° C. to form a gate insulating film 3 made of a silicon thermal oxide film, chromium and gold are vapor-deposited in this order, and source and drain electrodes (4, 5) was formed.
  • a metal mask with a diameter of 0.8 mm was fixed on the treated substrate so as to fit the channel, and then 172 nm vacuum ultraviolet light was irradiated for 20 minutes to hydrophilize only the channel.
  • the hydrophilized substrate was treated with ferretrioxysilane (PTES) in the same manner as the HFTHTES treatment method, and PTES was adsorbed only to the channel hydrophilized by the patterning treatment.
  • PTES ferretrioxysilane
  • the Si wafer was placed in a Teflon (registered trademark) crucible for contact angle evaluation.
  • the contact angle values of toluene solvent for HFTHTES and PTES were 102 ° and 65 °, respectively.
  • the contact angle was measured by MCA-2 (manufactured by Kyowa Interface Chemical Co., Ltd.).
  • the organic thin film transistor obtained above was measured for transistor characteristics using a three-probe method (4200—SCS, manufactured by Keithley Instruments Co., Ltd.).
  • the field effect mobility was 2.2 ⁇ 10 2 cm 2.
  • ZVs the on / off ratio was about 5 digits, and it was found that good performance was obtained.
  • Example 1 As in Example 1, a gate electrode, a gate insulating film, a source and a drain electrode are formed on the substrate.
  • a toluene solution of HP naphthacene was dropped onto an untreated substrate that had been formed and had no surface hydrophilization treatment, to produce an organic semiconductor film.
  • the organic thin film transistor thus obtained was measured for XRD, field effect mobility and on-Z off ratio in the same manner as in Example 1.
  • a gate electrode, a gate insulating film, a source and a drain electrode are formed on a substrate in the same manner as in Example 1, and the surface is subjected to a hydrophilic treatment, and then the entire surface is treated with HFTHTES. A toluene solution was dropped to prepare an organic semiconductor film.
  • the organic thin-film transistor thus obtained was measured for XRD, electrolytic effect mobility, and on-Z off ratio in the same manner as in Example 1.
  • Example 2 In the same manner as in Example 1, a gate electrode, a gate insulating film, a source and a drain electrode were formed on a substrate, and the surface was hydrophilized, and the entire surface was treated with PTES. A toluene solution was dropped to prepare an organic semiconductor film.
  • the gate electrode, gate insulating film, source and drain electrodes were formed on the substrate in the same manner as in Example 1, and the surface was hydrophilized, and the entire surface of the HFTHTES was treated in the same manner as in Example 1.
  • a solution of HP naphthacene in toluene was dropped onto a one-component patterning substrate that had been hydrophilized with a 0.8 mm ⁇ mask to produce an organic semiconductor film.
  • the organic thin-film transistor thus obtained was measured for XRD, electrolytic effect mobility, and on-Z off ratio in the same manner as in Example 1.
  • Example 2 In the same manner as in Example 1, a gate electrode, a gate insulating film, a source and a drain electrode are formed on a substrate, and the surface is subjected to a hydrophilic treatment. After the entire surface is treated with PTES as in Example 1, in Example 1, Toluene solution of HP naphthacene was dropped onto the 1-component patterning substrate that was hydrophilized with the 0.8mm ⁇ mask used, as in Example 1. An organic thin film transistor thus obtained was prepared.
  • the formation position of the organic semiconductor film could be strictly controlled by the one-component patterning treatment, and the coating film was formed in the channel.
  • a high crystalline film cannot be obtained, and the off-current is 10 times larger than that of a substrate in which the surface of the gate insulating film is treated with an organosilane compound. It has been found.

Abstract

An organic semiconductor device includes a substrate, and an organic semiconductor film formed in a prescribed region on the substrate. The organic semiconductor device is characterized in that the surface of the substrate whereupon the organic semiconductor film is formed has a surface free energy difference 5mJ/m2 or more larger than that of the surface of the substrate whereupon no organic semiconductor film is formed. The organic semiconductor device is also characterized in having lyophobic characteristics and liquid repellency brought by the surface free energy.

Description

明 細 書  Specification
有機半導体デバイス及びその製造方法  Organic semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、有機半導体デバイス及びその製造方法に関する。更に詳しくは、本発 明は、所定領域に有機半導体膜を備えた有機半導体デバイス及びその製造方法に 関する。  The present invention relates to an organic semiconductor device and a manufacturing method thereof. More specifically, the present invention relates to an organic semiconductor device having an organic semiconductor film in a predetermined region and a method for manufacturing the same.
背景技術  Background art
[0002] 近年、有機半導体膜を利用したトランジスタを使用する IC技術が提案されている。  In recent years, IC technology using a transistor using an organic semiconductor film has been proposed.
前記トランジスタは、簡単に製造できると共に、柔軟な基板を使用することができると いう利点を有する。これらの利点を有するトランジスタは、スマート 'カード、電子タグ 及びディスプレイのような用途に使用した際のコストの低減が期待される。  The transistor has the advantage that it can be easily manufactured and a flexible substrate can be used. Transistors with these advantages are expected to reduce costs when used in applications such as smart cards, electronic tags and displays.
[0003] ここで、上記トランジスタ中、例えば薄膜トランジスタ (TFT)を構成する部材は、真 空蒸着法のようなドライプロセスや、インクジェット法のようなウエットプロセスで形成さ れている。し力しながら、ドライプロセスは工程に真空ラインが必要となる点から好まし くない。一方、ウエットプロセスは、簡便、低温処理かつ低コストプロセスであることから 、有機半導体膜の上記利点を活かすことができる。  [0003] Here, among the transistors, for example, members constituting a thin film transistor (TFT) are formed by a dry process such as a vacuum evaporation method or a wet process such as an inkjet method. However, the dry process is not preferred because it requires a vacuum line in the process. On the other hand, the wet process is a simple, low-temperature process and low-cost process, and therefore, the above advantages of the organic semiconductor film can be utilized.
[0004] なお、実際に有機 TFTを作製し、評価して!/ヽる例では、 SiOのような無機酸ィ匕物を  [0004] It should be noted that in an example of actually producing and evaluating an organic TFT!
2  2
ゲート絶縁膜として用い、そのゲート絶縁膜上にペンタセンのような有機半導体材料 を蒸着させることで有機半導体膜を形成して!/、る場合が多!、。  In many cases, an organic semiconductor film is formed as a gate insulating film by depositing an organic semiconductor material such as pentacene on the gate insulating film.
[0005] し力しながら、ペンタセンのような材料は、ゲート絶縁膜を構成する無機酸ィ匕物表面 の影響を強く受け易い。そのため、有機物特有のスタツキング性が妨げられ、ゲート 絶縁膜界面近傍、つまりはキャリアの蓄積層における有機半導体膜の結晶性が大き く低下すると 、う問題があった。 However, a material such as pentacene is strongly affected by the surface of the inorganic oxide constituting the gate insulating film. Therefore, the stacking property peculiar to organic substances is hindered, and there is a problem that the crystallinity of the organic semiconductor film in the vicinity of the gate insulating film interface, that is, in the carrier accumulation layer, is greatly reduced.
[0006] すなわち、無機酸ィ匕物力 なるゲート絶縁膜の表面エネルギーは大きいため、これ により前記有機半導体材料の薄膜成長過程における、基板上の分子の拡散が抑制 される。そのため、吸着サイトが多く生じ、結果としてグレインサイズの小さい結晶性の 低い膜し力得られな力つた。 この有機半導体膜の結晶性の低下は、有機 TFTのようなデバイスの特性に大きな 影響を及ぼす要因となっている。 [0006] That is, since the surface energy of the gate insulating film, which is an inorganic acid / physical force, is large, this suppresses the diffusion of molecules on the substrate during the thin film growth process of the organic semiconductor material. As a result, many adsorption sites were generated, and as a result, a film with a small grain size and low crystallinity could not be obtained. This decrease in crystallinity of the organic semiconductor film is a factor that greatly affects the characteristics of devices such as organic TFTs.
[0007] 近年、結晶性の低下を抑制するため、ォクタデシルトリクロロシラン (OTCS)でゲー ト絶縁膜を処理して、ゲート絶縁膜の表面エネルギーを調整することで、大きなグレイ ンサイズの有機半導体膜が作製されたとの報告がある (IEEE Electron Device[0007] In recent years, in order to suppress the deterioration of crystallinity, the gate insulating film is treated with octadecyltrichlorosilane (OTCS) to adjust the surface energy of the gate insulating film. There is a report that a film was made (IEEE Electron Device
Lett., 18、 606、 1997 :非特許文献: 0。 Lett., 18, 606, 1997: Non-patent literature: 0.
[0008] 有機半導体膜を蒸着法で作製した有機 TFTに関してではあるが、前記したように、 ゲート絶縁膜を OTCSのような表面処理剤で処理することによって、有機半導体膜の 結晶性及び TFT特性を向上できることが明らかになつている。 [0008] As described above, the organic semiconductor film is produced by vapor deposition, but as described above, the gate insulating film is treated with a surface treatment agent such as OTCS, so that the crystallinity and TFT characteristics of the organic semiconductor film are obtained. It has become clear that this can be improved.
[0009] 一方、前記したウエットプロセスで有機半導体膜を製膜する方法としては、スピンコ ート法、ディップコート法、インクジェット法、デイスペンス法等が挙げられる(特開 200On the other hand, as a method for forming an organic semiconductor film by the above-described wet process, a spin coat method, a dip coat method, an ink jet method, a dispense method, and the like can be given (Japanese Patent Laid-Open No. 200).
4 253375号公報:特許文献 1)。これらウエットプロセスの内、材料の回収性に優 れていること、また製膜位置の選択性'再現性が高いことからインクジェット及びディス ペンス法を用いるのが好まし 、。 4 No. 253375: Patent Document 1). Among these wet processes, it is preferable to use an ink jet method and a dispense method because of excellent material recoverability and high selectivity of film forming position.
[0010] 特許文献 1:特開 2004— 253375号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-253375
非特許文献 1 :IEEE Electron Device Lett.、 18、 606、 1997  Non-Patent Document 1: IEEE Electron Device Lett., 18, 606, 1997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 上記インクジェット及びディスペンス法は、ノズルヘッドを所望の位置に動かし、電 気的、力学的に数 pL〜数/ z Lの溶液を吐出させる方法である。これらの方法では、ノ ズルヘッドを任意で機械的に動力ゝせることから、有機半導体膜の製膜位置を制御で きる。し力しながら、ノズルヘッドから吐出した溶液は、周囲の雰囲気、温度、圧力に 影響を受けて、基板上の吐出位置に留まることなぐ展開することがある。  [0011] The inkjet and dispensing methods are methods in which a nozzle head is moved to a desired position and a solution of several pL to several / zL is ejected electrically and mechanically. In these methods, since the nozzle head can be mechanically powered arbitrarily, the film forming position of the organic semiconductor film can be controlled. However, the solution discharged from the nozzle head is affected by the surrounding atmosphere, temperature, and pressure, and may develop without staying at the discharge position on the substrate.
[0012] 例えば、有機半導体膜の結晶性の向上や溶液中の溶媒の蒸発を促進させるため に、基板を加熱することがある。この加熱によって溶液の熱運動性が活性ィ匕されるこ とで、溶液の粘度が低下する。そのため、基板上で溶液は、吐出位置に留まらずに 展開してしまう。言い換えると、ソース Zドレイン電極間に溶液を吐出したにも関わら ず、ソース Zドレイン電極間以外の位置にまで上記溶液が展開し、その位置で製膜 されるという課題があった。 For example, the substrate may be heated in order to improve the crystallinity of the organic semiconductor film or promote the evaporation of the solvent in the solution. This heating reduces the viscosity of the solution by activating the thermal mobility of the solution. Therefore, the solution develops on the substrate without staying at the discharge position. In other words, despite the solution being discharged between the source Z and drain electrodes, the solution spreads to a position other than between the source Z and drain electrodes, and the film is formed at that position. There was a problem of being done.
[0013] この問題を解決するために、所定領域を囲うバンクを設ける方法、ゲート絶縁膜の 処理を所定領域のみに行う方法等が提案されている。  [0013] In order to solve this problem, a method of providing a bank surrounding a predetermined region, a method of processing a gate insulating film only in a predetermined region, and the like have been proposed.
[0014] バンクを設ける方法は、基板の加工プロセスが増えてしまうことから好ましくない。ゲ ート絶縁膜の処理を所定領域のみに行う方法は、あら力じめ OTCS等で表面処理し た基板の所定領域のみを紫外線等で露光する方法である(以下、この方法を 1成分 ノターニングと称する)。しかしながらこの方法では、有機半導体膜の製膜面すなわ ちチャネルが OTCS等で処理されていないゲート絶縁膜むき出しの状態となってしま う。そのため、 OTCS等のゲート絶縁膜表面処理による有機半導体膜の結晶性向上 の効果を得ることができな 、。  [0014] A method of providing a bank is not preferable because the number of substrate processing processes increases. The method of treating the gate insulating film only in a predetermined region is a method in which only a predetermined region of a substrate surface-treated with OTCS or the like is exposed with ultraviolet rays or the like (hereinafter, this method is a one-component nodule). Called turning). However, with this method, the film-forming surface of the organic semiconductor film, that is, the channel is exposed to a gate insulating film that has not been treated with OTCS or the like. Therefore, the effect of improving the crystallinity of the organic semiconductor film by the surface treatment of the gate insulating film such as OTCS cannot be obtained.
[0015] また、ゲート絶縁膜表面は、酸素ゃケィ素のダングリングボンド等が存在し、種々の 化学状態を有している。そのため、有機半導体膜の結晶成長が阻害されてしまうこと 力 Sある。ゆえに、ゲート絶縁膜と有機半導体膜との界面での接着性が低下したり、有 機半導体膜の膜均一性が低下したりしていた。これらの低下は、有機半導体膜の結 晶性、キャリア移動特性等を低下させるという問題があった。  [0015] The surface of the gate insulating film has dangling bonds of oxygen and the like, and has various chemical states. For this reason, the crystal growth of the organic semiconductor film is hindered. Therefore, the adhesion at the interface between the gate insulating film and the organic semiconductor film has been reduced, and the film uniformity of the organic semiconductor film has been reduced. These reductions have the problem of lowering the crystallinity and carrier transfer characteristics of the organic semiconductor film.
[0016] すなわち、本発明は、有機半導体膜のキャリア移動特性を向上し、その有機半導 体膜のキャリア移動特性を最大限に発揮できる構造を有する有機半導体デバイスを 提供することを目的とする。更に、本発明は、塗布法によって作製する有機半導体膜 の形成位置を制御可能とすることを目的とする。カロえて、本発明に用いる材料、界面 条件を制御する方法を提供することを目的とする。 That is, an object of the present invention is to provide an organic semiconductor device having a structure capable of improving the carrier transfer characteristic of an organic semiconductor film and maximizing the carrier transfer characteristic of the organic semiconductor film. . Furthermore, an object of the present invention is to make it possible to control the formation position of an organic semiconductor film formed by a coating method. It is an object of the present invention to provide a method for controlling the materials and interface conditions used in the present invention.
課題を解決するための手段  Means for solving the problem
[0017] 本発明者らは、鋭意検討の結果、有機半導体膜中の結晶性及び電気的性質を大 きく向上させる方法を見出すことにより本発明を完成するに至った。  As a result of intensive studies, the present inventors have completed the present invention by finding a method for greatly improving crystallinity and electrical properties in an organic semiconductor film.
[0018] カゝくして、本発明によれば、基板と、該基板上の所定領域に形成された有機半導体 膜とを含む有機半導体デバイスであって、前記有機半導体膜が形成された前記基 板の表面が、前記有機半導体膜が形成されていない前記基板の表面より 5mjZm2 以上大きい表面自由エネルギーの差を有し、前記表面自由エネルギーによる疎撥 液性を有することを特徴とする有機半導体デバイスが提供される。 [0019] 更に、本発明によれば、基板表面の有機半導体膜を形成する所定領域を、前記有 機半導体膜を形成しない領域より 5mjZm2以上大きい表面自由エネルギーの差を 有するように疎撥液処理し、次 ヽで前記基板表面の所定領域に有機半導体膜を形 成する工程を含むことを特徴とする有機半導体デバイスの製造方法が提供される。 発明の効果 [0018] According to the present invention, it is an organic semiconductor device that includes a substrate and an organic semiconductor film formed in a predetermined region on the substrate, wherein the substrate on which the organic semiconductor film is formed. An organic semiconductor characterized in that the surface of the plate has a surface free energy difference of 5 mjZm 2 or more larger than the surface of the substrate on which the organic semiconductor film is not formed, and is lyophobic due to the surface free energy. A device is provided. Furthermore, according to the present invention, the predetermined region where the organic semiconductor film is formed on the substrate surface has a surface free energy difference of 5 mjZm 2 or more larger than the region where the organic semiconductor film is not formed. There is provided a method of manufacturing an organic semiconductor device, which includes a step of processing and then forming an organic semiconductor film in a predetermined region of the substrate surface. The invention's effect
[0020] 本発明によれば、表面自由エネルギーの差を利用して、簡便な方法で精度よくパ ターユングされた有機半導体膜を備えた有機半導体デバイスを提供できる。  According to the present invention, it is possible to provide an organic semiconductor device including an organic semiconductor film that is accurately patterned by a simple method using the difference in surface free energy.
また、上記パターユングは、例えば、有機半導体膜を形成する所定領域と、この所 定領域以外の領域とに、異なる 2種の表面処理剤 (例えば、有機シランィ匕合物)を塗 布することで、これら表面処理剤からなる自己組織ィ匕膜を形成させることによって行う ことができる。このパターユングにより形成された 2種の自己組織ィ匕膜の表面自由ェ ネルギ一の差による疎撥液性を利用することで、有機半導体膜形成用の化合物を含 む溶液の塗布位置の厳密な制御が可能となる。更に、パターユングする際に用いる マスクの形状により、有機半導体膜の形成位置及び有機半導体膜の大きさの制御を 容易に行うことができる。  The patterning is, for example, applying two different types of surface treatment agents (for example, organosilane compounds) to a predetermined region where the organic semiconductor film is formed and a region other than the predetermined region. Then, it can be carried out by forming a self-assembled film comprising these surface treatment agents. By utilizing the lyophobic property due to the difference in surface free energy between the two types of self-assembled film formed by this patterning, the application position of the solution containing the compound for forming the organic semiconductor film can be strictly controlled. Control is possible. Furthermore, the formation position of the organic semiconductor film and the size of the organic semiconductor film can be easily controlled by the shape of the mask used for patterning.
また、酸ィ匕シリコンのような無機系のゲート絶縁膜表面に有機シランィ匕合物に由来 する自己組織ィ匕膜を形成していることから、有機半導体膜とゲート絶縁膜との親和性 を向上させることができる。  In addition, since a self-organized film derived from an organic silane compound is formed on the surface of an inorganic gate insulating film such as silicon oxide, the affinity between the organic semiconductor film and the gate insulating film is increased. Can be improved.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の有機薄膜トランジスタの概略構成図である。 FIG. 1 is a schematic configuration diagram of an organic thin film transistor of the present invention.
符号の説明  Explanation of symbols
[0022] 1 基板 [0022] 1 substrate
2 ゲート電極  2 Gate electrode
3 ゲート絶縁膜  3 Gate insulation film
4、 5 ソース Zドレイン電極  4, 5 source Z drain electrode
6、 7 自己組織化膜  6, 7 Self-assembled film
8 有機半導体膜 発明を実施するための最良の形態 8 Organic semiconductor film BEST MODE FOR CARRYING OUT THE INVENTION
[0023] (1)構成及び駆動原理  [0023] (1) Configuration and driving principle
本発明は、基板と、該基板上の所定領域に形成された有機半導体膜とを備えてい さえすれば、どのような有機半導体デバイスにも使用できる。更に、本発明では、有 機半導体膜が形成された基板の表面が、有機半導体膜が形成されて ゝな 、基板の 表面より 5mjZm2以上大きい表面自由エネルギーの差を有している。このような表面 自由エネルギーにより、基板表面に疎撥液性が付与されている。なお、表面自由ェ ネルギ一の差の上限は、 50mjZm2であることが好ましい。より好ましい表面自由ェ ネルギ一の差は、 5〜35mjZm2である。 The present invention can be used for any organic semiconductor device as long as it includes a substrate and an organic semiconductor film formed in a predetermined region on the substrate. Furthermore, in the present invention, the surface of the substrate on which the organic semiconductor film is formed has a difference in surface free energy that is 5 mjZm 2 or more larger than the surface of the substrate, as opposed to the formation of the organic semiconductor film. Such surface free energy imparts lyophobic properties to the substrate surface. The upper limit of the difference in surface free energy is preferably 50 mjZm 2 . A more preferable difference in surface free energy is 5 to 35 mjZm 2 .
[0024] ここで、本発明で用いられる用語「撥液性」とは、基板表面と液体とのなじみ難さを 意味し、「疎液性」とは、基板表面が、上記表面自由エネルギーの差に基づいて、上 記「撥液性」と比べ、より液体となじみ難 、ことを意味する。  [0024] Here, the term "liquid repellency" used in the present invention means that the surface of the substrate and the liquid are difficult to adapt, and "liquid repellency" means that the surface of the substrate has the above surface free energy. Based on the difference, it means that it is more difficult to blend with liquid compared to the above “liquid repellency”.
したがって、本発明で用いられる用語「疎撥液性」とは疎液性と撥液性の両方の性 質を有することを意味している。更に、所定領域は、他の領域より大きい表面自由ェ ネルギーを有することで、撥液性を有することになる。所定領域は、撥液性を有するこ とで、所定領域以外の領域へ有機半導体膜が形成されることを防止する性質を有す ることになる。  Therefore, the term “liquid repellency” used in the present invention means having both liquid repellency and liquid repellency. Furthermore, the predetermined region has liquid repellency by having a surface free energy larger than that of other regions. The predetermined region has liquid repellency and thus has a property of preventing the organic semiconductor film from being formed in a region other than the predetermined region.
上記のような有機半導体デバイスは、基板表面の有機半導体膜を形成する所定領 域を、有機半導体膜を形成しない領域より 5mjZm2以上大きい表面自由エネルギー の差を有するように疎撥液処理し、次いで基板表面の所定領域に有機半導体膜を 形成する工程を含むことにより製造できる。 In the organic semiconductor device as described above, a predetermined region where the organic semiconductor film is formed on the substrate surface is subjected to a lyophobic liquid treatment so that the surface free energy difference is 5 mjZm 2 or more larger than the region where the organic semiconductor film is not formed. Subsequently, it can be manufactured by including a step of forming an organic semiconductor film in a predetermined region of the substrate surface.
[0025] 有機半導体デバイスの具体例としては、有機 TFT、有機コンデンサー、有機キャパ シタ、有機太陽電池等が挙げられる。この内、本発明は、有機 TFTに適用することが 好ましい。 [0025] Specific examples of organic semiconductor devices include organic TFTs, organic capacitors, organic capacitors, and organic solar cells. Of these, the present invention is preferably applied to organic TFTs.
有機 TFTでは、基板が、ゲート電極とその上にゲート絶縁膜を備えている。そのた め、所定領域は、ゲート絶縁膜上となる。更に、上記自己組織ィ匕膜がゲート絶縁膜上 に形成され、有機半導体膜が自己組織ィ匕膜上に形成される。ソース Zドレイン電極 1S 有機半導体膜を形成する前に有機半導体膜を挟むようにゲート絶縁膜上に形成 されるか、又は有機半導体膜上に形成される。 In the organic TFT, the substrate includes a gate electrode and a gate insulating film thereon. Therefore, the predetermined region is on the gate insulating film. Further, the self-assembled film is formed on the gate insulating film, and the organic semiconductor film is formed on the self-assembled film. Source Z Drain electrode 1S Formed on the gate insulating film to sandwich the organic semiconductor film before forming the organic semiconductor film Or formed on the organic semiconductor film.
[0026] 上記特定の表面自由エネルギーの差を付与する方法としては、例えば、所定領域 以外の領域の上に第 1自己組織化膜を、所定領域の上に第 1自己組織化膜より 5mJ Zm2以上大きい表面自由エネルギーの差を与える第 2自己組織ィ匕膜を形成する方 法が挙げられる。このような第 1と第 2自己組織ィ匕膜により、膜全体は疎液性を有し、 第 2自己組織化膜は撥液性を有するため、所定領域に有機半導体膜を効率よく形 成させることができる。 [0026] As a method of giving the specific surface free energy difference, for example, the first self-assembled film is formed on a region other than the predetermined region, and the first self-assembled film is formed on the predetermined region by 5 mJ Zm. One example is a method of forming a second self-assembled film that gives a difference in surface free energy of 2 or more. Due to such first and second self-assembled films, the entire film is lyophobic and the second self-assembled film is lyophobic, so that an organic semiconductor film is efficiently formed in a predetermined region. Can be made.
[0027] 第 1と第 2自己組織ィ匕膜の厚さは、それを構成する材料により異なるが、 lOnm以下 が好ましい。 lOnmより厚い場合、自己組織ィ匕膜上に塗布する有機半導体膜にかか るゲート電圧が影響を受けるようになるので好ましくない。したがって、膜厚は、 0.5η m〜10nmであることがより好ましぐ 0. 5nm〜5nmであることが更に好ましい。  [0027] The thicknesses of the first and second self-assembled capsules vary depending on the material constituting them, but are preferably lOnm or less. If it is thicker than lOnm, the gate voltage applied to the organic semiconductor film coated on the self-assembled film is affected, which is not preferable. Therefore, the film thickness is more preferably 0.5ηm to 10nm, and further preferably 0.5nm to 5nm.
[0028] 上記 2つの自己組織ィ匕膜を備えた有機半導体デバイスを、有機 TFTを一例として 、図 1に従って説明する。  [0028] The organic semiconductor device provided with the two self-assembled films will be described with reference to FIG. 1, taking an organic TFT as an example.
図 1は、有機 TFTの一例の概念図である。図 1中、 1は基板、 2はゲート電極、 3は ゲート絶縁膜、 4及び 5はソース Zドレイン電極を意味し、 6及び 7は第 1及び第 2有機 シランィ匕合物由来の自己組織化膜をそれぞれ意味し、 8は有機半導体膜を意味する 。図 1の有機 TFTは、ボトムゲート及びボトムコンタクト型の構造である。図 1の有機 T FTは、ゲート絶縁膜 3上に成分の異なる 2つの自己組織ィ匕膜 6及び 7を備え、自己 組織ィ匕膜 7を介して有機半導体膜 8が形成されて 、る。  FIG. 1 is a conceptual diagram of an example of an organic TFT. In FIG. 1, 1 is a substrate, 2 is a gate electrode, 3 is a gate insulating film, 4 and 5 are source Z drain electrodes, 6 and 7 are self-organized from the first and second organosilane compounds. Each means a film, and 8 means an organic semiconductor film. The organic TFT in Fig. 1 has a bottom gate and bottom contact structure. The organic TFT of FIG. 1 includes two self-organized film 6 and 7 having different components on a gate insulating film 3, and an organic semiconductor film 8 is formed through the self-assembled film 7.
[0029] なお、本発明を有機 TFTに使用する場合、その構造は、ゲート絶縁膜、異なる成 分の 2種の自己組織ィ匕膜及び有機半導体膜がこの順で積層された構成を有しさえ すれば、図 1の構造に限定されない。  [0029] When the present invention is used for an organic TFT, the structure has a structure in which a gate insulating film, two kinds of self-assembled films of different components, and an organic semiconductor film are laminated in this order. As long as this is done, the structure is not limited to that shown in FIG.
他の構造としては、例えば、基板上にゲート電極、ゲート絶縁膜、成分の異なる 2つ 自己組織化膜、有機半導体膜及びソース Zドレイン電極をこの順で備えた構造が挙 げられる。この構造は、有機半導体膜上面にソース Zドレイン電極が形成された例で ある。なお、図 1の構造では、有機半導体膜下面にソース Zドレイン電極が形成され ている。  As another structure, for example, a structure in which a gate electrode, a gate insulating film, two self-assembled films having different components, an organic semiconductor film, and a source Z drain electrode are provided in this order on a substrate. This structure is an example in which a source Z drain electrode is formed on the upper surface of an organic semiconductor film. In the structure of FIG. 1, a source Z drain electrode is formed on the lower surface of the organic semiconductor film.
[0030] ここで、本発明による有機 TFTは、ゲート絶縁膜と有機半導体膜との間に、有機半 導体膜材料を含む塗膜の形成位置を制御するために、成分の異なる 2つの自己組 織ィ匕膜を所定のパターンで備えて 、てもよ 、。 Here, the organic TFT according to the present invention includes an organic semiconductor between a gate insulating film and an organic semiconductor film. In order to control the formation position of the coating film containing the conductive film material, two self-assembled film films having different components may be provided in a predetermined pattern.
この 2つの自己組織化膜は、有機半導体膜の形成位置を制御する機能だけでなく 、結晶性を制御する機能及び有機半導体膜のデバイス特性 (キャリア移動度、オン Zオフ比、閾値電圧等)を向上する機能等を有している。  These two self-assembled films not only have the function of controlling the formation position of the organic semiconductor film, but also the function of controlling crystallinity and the device characteristics of the organic semiconductor film (carrier mobility, on-Z-off ratio, threshold voltage, etc.) It has a function to improve.
なお、前者の機能は、ゲート絶縁膜、自己組織化膜及び有機半導体膜をこの順で 形成した場合に奏される機能である。また、後者の機能は、自己組織ィ匕膜を備えるこ とで奏される機能である。  The former function is a function exhibited when the gate insulating film, the self-assembled film, and the organic semiconductor film are formed in this order. In addition, the latter function is a function achieved by providing a self-organizing capsule.
[0031] 有機半導体膜の結晶性を制御する機能は、 2つの自己組織ィ匕膜が、ゲート絶縁膜 の表面自由エネルギーを調整することから奏される。言い換えると、自己組織化膜を 介在させることにより、有機半導体膜材料を含む溶液の均一な吸着が可能になる。そ の結果、グレインサイズが大きぐ結晶性が向上した有機半導体膜を形成できる。  [0031] The function of controlling the crystallinity of the organic semiconductor film is achieved by the two self-assembled films adjusting the surface free energy of the gate insulating film. In other words, by interposing the self-assembled film, the solution containing the organic semiconductor film material can be uniformly adsorbed. As a result, an organic semiconductor film having a large grain size and improved crystallinity can be formed.
[0032] (ゲート、ソース Zドレイン電極)  [0032] (Gate, source Z drain electrode)
ゲート、ソース Zドレイン電極材料は、特に限定されず、当該分野で公知の材料を いずれも使用できる。具体的には、金、白金、銀、銅、アルミニウム等の金属;チタン、 タンタル、タングステン等の高融点金属;高融点金属とのシリサイド、ポリサイド等; p型 又は n型ハイドープシリコン; ITO、 NESA等の導電性金属酸化物;ポリエチレンジォ キシチォフェン (PEDOT)のような導電性高分子が挙げられる。  The material of the gate and source Z drain electrodes is not particularly limited, and any material known in the art can be used. Specifically, metals such as gold, platinum, silver, copper and aluminum; refractory metals such as titanium, tantalum and tungsten; silicides and polycides with refractory metals; p-type or n-type highly doped silicon; ITO, Examples include conductive metal oxides such as NESA; conductive polymers such as polyethylene dioxythiophene (PEDOT).
[0033] 膜厚は、特に限定されるものではなぐ通常トランジスタに使用される膜厚 (例えば 3 0〜60nm)に適宜調整することができる。  [0033] The film thickness is not particularly limited, and can be appropriately adjusted to a film thickness (for example, 30 to 60 nm) used for a normal transistor.
[0034] これら電極の製造方法は、電極材料に応じて適宜選択できる。製造方法としては、 例えば蒸着、スパッタ、塗布等が挙げられる。  [0034] The method for producing these electrodes can be appropriately selected depending on the electrode material. Examples of the manufacturing method include vapor deposition, sputtering, and coating.
[0035] (ゲート絶縁膜)  [0035] (Gate insulating film)
ゲート絶縁膜は、特に限定されず、当該分野で公知の膜をいずれも使用できる。具 体的には、シリコン酸ィ匕膜 (熱酸ィ匕膜、低温酸ィ匕膜: LTO膜等、高温酸化膜: HTO 膜)、シリコン窒化膜、 SOG膜、 PSG膜、 BSG膜、 BPSG膜等の絶縁膜; PZT、 PLZ Τ、強誘電体又は反強誘電体膜; SiOF系膜、 SiOC系膜もしくは CF系膜又は塗布 で开成する HSQ (hydrogen silsesquioxane)系膜(無機系)、 MSQ (methvl sil sesquioxane)系膜、 PAE (polyarylene ether)系膜、 BCB系膜、ポーラス系膜も しくは CF系膜等の低誘電体膜等が挙げられる。 The gate insulating film is not particularly limited, and any film known in the art can be used. Specifically, silicon oxide film (thermal acid film, low-temperature acid film: LTO film, etc., high-temperature oxide film: HTO film), silicon nitride film, SOG film, PSG film, BSG film, BPSG Insulating films such as films; PZT, PLZ IV, ferroelectric or antiferroelectric films; SiOF-based films, SiOC-based films or CF-based films, or HSQ (hydrogen silsesquioxane) -based films (inorganic) that are formed by coating, MSQ (methvl sil sesquioxane) -based films, PAE (polyarylene ether) -based films, BCB-based films, porous-based films, CF-based films, and other low dielectric films.
[0036] 膜厚は、特に限定されるものではなぐ通常トランジスタに使用される膜厚 (例えば 5[0036] The film thickness is not particularly limited, and is normally used for a transistor (for example, 5
0〜500nm)に適宜調整することができる。 0 to 500 nm) can be appropriately adjusted.
[0037] ゲート絶縁膜の製造方法としては、その種類に応じて適宜選択でき、例えば蒸着、 スパッタ、塗布等が挙げられる。 [0037] The method for producing the gate insulating film can be appropriately selected depending on the type thereof, and examples thereof include vapor deposition, sputtering, and coating.
[0038] (自己組織化膜) [0038] (Self-assembled film)
自己組織化膜用の材料としては、式(1)  As a material for self-assembled film, the formula (1)
R'-Six'x'x3 (1) R'-Six'x'x 3 (1)
(式中、 R1は、直鎖又は分枝鎖状の無置換アルキル基であるか、又はフッ素原子、ヒ ドロキシ基、チオール基、アミノ基、シリル基、フエニル基もしくはチェニル基力 なる 群力 選択される 1以上の同一又は異なる基で置換されたアルキル基、単環式芳香 族基、縮合型芳香族基、単環式複素環基又は縮合型複素環基を意味し、 X1、 X2及 び X3は、互いに同一又は異なって、ハロゲン原子もしくは炭素数 1〜5のアルコキシ 基を意味する) (In the formula, R 1 is a linear or branched unsubstituted alkyl group, or a fluorine atom, a hydroxyl group, a thiol group, an amino group, a silyl group, a phenyl group, or a chenyl group. Means an alkyl group, a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group or a condensed heterocyclic group substituted with one or more selected same or different groups, X 1 , X 2 and X 3 are the same or different from each other, and represent a halogen atom or an alkoxy group having 1 to 5 carbon atoms)
で表される有機シラン化合物を使用できる。  The organosilane compound represented by these can be used.
[0039] 上記式(1)における R1が意味するアルキル基としては、好ましくは炭素数 3〜30、 より好ましくは炭素数 8〜18のアルキル基が挙げられる。 [0039] The alkyl group R 1 means the above formula (1), preferably 3 to 30 carbon atoms, more preferably an alkyl group having 8 to 18 carbon atoms.
X1、 X2及び X3が意味するハロゲン原子としては、フッ素原子、塩素原子、臭素原子 、ヨウ素原子等が挙げられ、好ましくは塩素原子である。 Examples of the halogen atom represented by X 1 , X 2 and X 3 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom.
また、 X1、 X2及び X3が意味する炭素数 1〜5のアルコキシ基としては、メトキシ基、ェ トキシ基、プロポキシ基、ブトキシ基及びペントキシ基ならびにこれらの構造異性体が 挙げられる。 Examples of the alkoxy group having 1 to 5 carbon atoms represented by X 1 , X 2 and X 3 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a pentoxy group, and structural isomers thereof.
[0040] 自己組織化膜の疎撥液性は、該膜の形成用材料として用いられる、上記シランィ匕 合物のシリル基に結合している官能基の種類及び長さを選択することによって制御さ れ得る。  [0040] The liquid repellency of the self-assembled film is controlled by selecting the type and length of the functional group bonded to the silyl group of the silane compound used as a material for forming the film. It can be done.
[0041] また、第 1及び第 2の自己組織化膜を備える場合、第 1自己組織ィ匕膜が、炭素数 8 〜18のアルキル基、炭素数 8〜 18のフルォロアルキル基からなる R1を備えた有機シ ラン化合物に由来し、第 2自己組織化膜が、単環式芳香族基、縮合型芳香族基、単 環式複素環基又は縮合型複素環基からなる R1を備えた有機シラン化合物に由来す る膜であることが好ましい。 [0041] In the case where the first and second self-assembled films are provided, the first self-assembled film has an R 1 composed of an alkyl group having 8 to 18 carbon atoms and a fluoroalkyl group having 8 to 18 carbon atoms. Organic system An organosilane compound having a R 1 derived from a orchid compound, wherein the second self-assembled film comprises a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group or a condensed heterocyclic group. It is preferable that the film is derived.
[0042] また、第 2自己組織ィ匕膜用有機シランィ匕合物の R1基が π電子共役系分子を含む 基であることが好ましい。 [0042] Further, the R 1 group of the organosilane compound for the second self-assembled film is preferably a group containing a π-electron conjugated molecule.
このような有機シラン化合物由来の自己組織化膜は、その上に形成される有機半 導体膜だけでなぐそれ自体にも自己組織ィ匕膜自体もキャリア移動性を担わせること ができる。  Such a self-assembled film derived from an organic silane compound can have carrier mobility not only by the organic semiconductor film formed thereon but also by the self-assembled film itself.
そのような π電子共役系分子を含む基は、例えば、単環式芳香族基、縮合型芳香 族基、単環式複素環基又は縮合型複素環基等を含む基である。  Such a group containing a π-electron conjugated molecule is, for example, a group containing a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group, a condensed heterocyclic group, or the like.
逆に、絶縁性を示す有機基を有する自己組織化膜は、ゲート絶縁膜の一部として 作用させることもできる。このような絶縁性を示す有機基としては、例えばアルキル基 、フルォロアルキル基等が挙げられる。これらのアルキル基又はフルォロアルキル基 としては、炭素数 3〜30の基が挙げられる。  On the other hand, a self-assembled film having an organic group exhibiting insulating properties can also act as part of the gate insulating film. Examples of such an organic group exhibiting insulating properties include an alkyl group and a fluoroalkyl group. Examples of these alkyl groups or fluoroalkyl groups include groups having 3 to 30 carbon atoms.
[0043] 自己組織ィ匕膜の製膜方法としては、気相及び液相吸着法が挙げられる。 [0043] Examples of the method for forming the self-assembled film include gas phase and liquid phase adsorption methods.
気相吸着法とは、テフロン (登録商標)製るつぼやガラス密閉容器に、自己組織ィ匕 膜の原料 (例えば、有機シラン化合物)と基板を共に入れ、 100°C以上の高温で、 2 〜3時間熱処理して基板表面に吸着させる方法である。  The gas-phase adsorption method is a Teflon (registered trademark) crucible or glass sealed container in which a self-organized film raw material (for example, an organic silane compound) and a substrate are placed together, at a high temperature of 100 ° C or higher, 2 to This is a method of heat treatment for 3 hours and adsorbing to the substrate surface.
有機シランィ匕合物を原料とした場合、末端のシリル基により、ゲート絶縁膜と自己組 織ィ匕膜との間に Si— O— Siネットワークが形成される。このネットワークにより、ゲート 絶縁膜と共有結合した有機シランィ匕合物の膜を形成することができる。なお、自己組 織ィ匕膜は、単分子膜でも、単分子膜を積層した累積膜であってもよい。  When an organic silane compound is used as a raw material, a Si—O—Si network is formed between the gate insulating film and the self-assembled film due to the terminal silyl group. With this network, an organic silane compound film covalently bonded to the gate insulating film can be formed. The self-assembled film may be a monomolecular film or a cumulative film in which monomolecular films are laminated.
また、互いに隣接する有機シランィ匕合物同士間でも、 Si-O— Siネットワークを形 成できる。  Si-O-Si networks can also be formed between adjacent organic silane compounds.
[0044] 液相吸着法とは、自己組織化膜の原料を、例えばトルエン、エタノール、クロ口ホル ム等の溶媒に溶解して、原料の 20mM程度の溶液を調整し、この溶液中に基板を 2 4時間程度浸漬させて基板表面に吸着させる方法である。また、この際、反応時間を 短縮させるために、基板を浸漬させた溶液を溶媒の沸点以下の温度に加熱させるこ ともできる。また、液相力 反応させる方法として他には、スピンコート法、インクジエツ ト法、デイスペンス法、ディップコート法等が挙げられる。 [0044] In the liquid phase adsorption method, the raw material of the self-assembled film is dissolved in a solvent such as toluene, ethanol, chloroform, etc. to prepare a solution of about 20 mM of the raw material, and the substrate is placed in this solution. Is immersed in the substrate surface for about 24 hours. At this time, in order to shorten the reaction time, the solution in which the substrate is immersed may be heated to a temperature below the boiling point of the solvent. You can also. Other examples of the liquid phase reaction include spin coating, ink jet, dispensation, and dip coating.
[0045] 吸着後は、上記気相及び液相のいずれの手法の場合も、上記溶媒で超音波洗浄 し、基板上に吸着されずに残留する材料を除去することが好ましい。  [0045] After the adsorption, in both the gas phase and liquid phase methods, it is preferable to ultrasonically wash with the solvent to remove the material that remains without being adsorbed on the substrate.
なお、材料が上記有機シランィ匕合物の場合、該化合物を吸着させる前に、予め基 板を親水化処理した方が、効率よく吸着できるので好ましい。  When the material is the above organic silane compound, it is preferable to hydrophilize the substrate in advance before the compound is adsorbed, because it can be adsorbed efficiently.
親水化処理法としては、紫外線やプラズマを基板に照射による方法や、硫酸 Z過 酸化水素水混合溶媒に基板を浸漬する方法がある。  As the hydrophilization treatment method, there are a method in which the substrate is irradiated with ultraviolet rays or plasma, and a method in which the substrate is immersed in a mixed solvent of sulfuric acid Z hydrogen peroxide.
[0046] 自己組織ィ匕膜が上記有機シラン化合物力 なる第 1及び第 2自己組織ィ匕膜である 場合、第 2自己組織化膜は、上記親水化処理に加えて次のような親水化処理に付し て力も形成してもよい。すなわち、所定領域が開口したマスクパターンによって、第 1 自己組織ィ匕膜の所定領域に紫外線やプラズマを照射することにより、該領域から第 1 自己組織ィ匕膜を剥離する。この剥離は、 R1のみが除去され、シリル基由来の成分が 所定領域に残存する条件で行われる。この成分は、所定領域を親水化する。 [0046] When the self-assembled film is the first and second self-assembled films having the above-mentioned organosilane compound force, the second self-assembled film is hydrophilized as follows in addition to the hydrophilization treatment. A force may also be formed upon treatment. That is, by irradiating the predetermined region of the first self-organized film with ultraviolet rays or plasma with a mask pattern having an opening in the predetermined region, the first self-organized film is peeled from the region. This peeling is performed under the condition that only R 1 is removed and the component derived from the silyl group remains in a predetermined region. This component hydrophilizes the predetermined area.
次いで形成される第 2自己組織ィ匕膜は、親水性のシリル基側が基板側に向くように Next, the second self-assembled film formed is so that the hydrophilic silyl group side faces the substrate side.
、親水化された所定領域に優先的に形成される。その後、上記所定領域のみに、表 面自由エネルギーの違いにより有機半導体膜が形成される。 , It is preferentially formed in a predetermined hydrophilic region. Thereafter, an organic semiconductor film is formed only in the predetermined region due to the difference in surface free energy.
[0047] 上記方法では、 2つの自己組織ィ匕膜の表面エネルギーの差を利用することで、有 機半導体膜材料を含む塗布溶液の塗りわけを行うことができる (この塗りわけを 2成分 ノターニングと称する)。従って、簡便な方法で有機半導体膜を形成できる。  [0047] In the above method, the coating solution containing the organic semiconductor film material can be applied by using the difference in surface energy between the two self-assembled films (this coating can be divided into two components). Called turning). Therefore, the organic semiconductor film can be formed by a simple method.
[0048] これは、本発明者らが、有機半導体膜を形成する領域以外の第 2自己組織化膜と 、有機半導体膜を形成させる所定領域、すなわち第 1自己組織化膜との表面自由ェ ネルギ一の差が 5miZm2以上であれば、有機半導体膜材料を含む塗布溶液の塗り わけができることを見出したことに基づいている。 [0048] This is because the inventors of the present invention have a surface freeness between the second self-assembled film other than the region where the organic semiconductor film is formed and the predetermined region where the organic semiconductor film is formed, that is, the first self-assembled film. This is based on the finding that when the energy difference is 5 miZm 2 or more, the coating solution containing the organic semiconductor film material can be applied separately.
[0049] なお、疎液性を示す第 1自己組織化膜を構成する有機シラン化合物としては、具体 的には、アルキル基、フルォロアルキル基を含むシランィ匕合物であることが好ましぐ 更にアルキル基、フルォロアルキル基の炭素数が 8以上であることがより好まし 、。  [0049] Note that the organosilane compound constituting the first self-assembled film exhibiting lyophobic properties is specifically preferably a silane compound containing an alkyl group or a fluoroalkyl group. More preferably, the fluoroalkyl group has 8 or more carbon atoms.
[0050] より具体的には、上記有機シラン化合物としては、 n—ォクタデシルトリエトキシシラ ン(OTES) (CAS.No. (以下、同様): 7399— 00— 0、ァヅマックス (株)製)、 n—オタ タデシルトリクロロシラン(112— 04— 9、ァヅマックス(株)製)、 n—デシルトリクロロシ ラン(13829— 21— 5、ァヅマックス(株)製)、(ヘプタデカフルォ口 1, 1, 2, 2— テトラヒドロデシル)トリエトキシシラン(HFTHTES) (101947— 16— 4、ァヅマックス (株)製)等が挙げられる。 [0050] More specifically, the organosilane compound includes n-octadecyltriethoxysila. (OTES) (CAS.No. (hereinafter the same): 7399—00—0, manufactured by Alphamax Co., Ltd.), n—otadecyltrichlorosilane (112—04—9, manufactured by Alphamax Co., Ltd.), n —Decyltrichlorosilane (13829—21—5, manufactured by AMAX Co., Ltd.), (Heptadecafluor mouth 1, 1, 2, 2-tetrahydrodecyl) triethoxysilane (HFTHTES) (101947—16—4, AMAX Co., Ltd.) Manufactured).
[0051] なお、撥液性を示す第 2自己組織化膜を構成する有機シラン化合物としては、具体 的には、フエニル基、チェ-ル基、アミノ基、ヒドロキシル基を含むシランィ匕合物であ ることが好ましい。 [0051] The organic silane compound constituting the second self-assembled film exhibiting liquid repellency is specifically a silane compound containing a phenyl group, a chael group, an amino group, or a hydroxyl group. It is preferable that it exists.
[0052] より具体的には、上記有機シラン化合物としては、 p ァミノフエ-ルトリメトキシシラ ン(33976— 43— 1、ァヅマックス (株)製)、フエ-ルトリエトキシシラン(PTES) (780 69— 8、ァヅマックス (株)製)、フエネチルトリクロロシラン(940— 41— 0、ァヅマツ タス (株)製)、 2 チェ-ルトリメチルシラン(18245— 28— 8、ァヅマックス (株)製)、 n - (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン(1760— 24— 3、ァヅマツ タス(株)製)、アミノメチルトリメチルシラン(AMTMS) (18166— 02— 4、ァヅマック ス (株)製)、 3 ァミノプロピルトリエトキシシラン(919— 30— 2、ァヅマックス (株)製) 及びヒドロキシメチルトリメチルシラン(HMTMS) (3319— 63— 4、ァヅマックス(株) 製)等が挙げられる。  [0052] More specifically, the organosilane compound includes p-aminophenol trimethoxysilane (33976-43-1, manufactured by AMAX Co., Ltd.), phenol triethoxysilane (PTES) (780 69-8). (Manufactured by AMAX Co., Ltd.), phenethyltrichlorosilane (940-41-0, manufactured by Amatsu Tas Co., Ltd.), 2-channel trimethylsilane (18245-28-8, manufactured by AMAX Co., Ltd.), n- (2 aminoethyl) 3 aminopropyltrimethoxysilane (1760-24-3, manufactured by Amatsu Tas Co., Ltd.), aminomethyltrimethylsilane (AMTMS) (18166-02-02, manufactured by Amax Co., Ltd.), 3 Examples include aminopropyltriethoxysilane (919-30-2, manufactured by AMAX Co., Ltd.) and hydroxymethyltrimethylsilane (HMTMS) (3319-6-4, manufactured by AMAX Co., Ltd.).
[0053] ここで、上記有機シランィ匕合物は、例えば以下のようなグリニャール反応によるシリ ルイ匕を利用して合成できる。  [0053] Here, the organosilane compound can be synthesized using, for example, a silly cocoon by the following Grignard reaction.
例えば、次式:  For example:
R2— MgX4 R 2 — MgX 4
(式中、 R2は、上記式 (1)における R1と同じ意味を有し、 X4はハロゲン原子である) で表される化合物と、次式: (Wherein R 2 has the same meaning as R 1 in the above formula (1), and X 4 is a halogen atom), and a compound represented by the following formula:
[0054] R'-SiX'x [0054] R'-SiX'x
(式中、 R3は水素原子、ハロゲン原子又は低級アルコシキ基であり、 X5、 X6及び X7は 、互いに同一又は異なってよい、水素原子、ハロゲン原子又は炭素原子 1〜5のアル コキシ基のような加水分解により水酸基を与え得る基である) (Wherein R 3 is a hydrogen atom, a halogen atom or a lower alkoxy group, and X 5 , X 6 and X 7 may be the same or different from each other, and a hydrogen atom, a halogen atom or an alkoxy group having 1 to 5 carbon atoms. It is a group that can give a hydroxyl group by hydrolysis like a group)
で表される化合物を、グリニャール反応に付して、次式: R'-SiX'x Is subjected to Grignard reaction to give the following formula: R'-SiX'x
(式中、 R2、 X5、 X6及び X7は上記と同じ意味を有する) (Wherein R 2 , X 5 , X 6 and X 7 have the same meaning as above)
で有機シランィ匕合物を形成できる。  Can form organosilane compounds.
[0055] また、これら有機シランィ匕合物において、 X5〜X7は、塩素、臭素等のハロゲン原子 、メトキシ基、エトキシ基、ブトキシ基の炭素数 1〜5のアルコキシ基を使用できる。更 に、 X5〜X7のいずれかが水酸基を与えさえすれば、他はメチル基、ェチル基、ブチ ル基などの炭素数 1〜5のアルキル基でもよ!/、。 [0055] In these organosilane compounds, X 5 to X 7 can be halogen atoms such as chlorine and bromine, alkoxy groups having 1 to 5 carbon atoms such as methoxy groups, ethoxy groups, and butoxy groups. Furthermore, as long as any one of X 5 to X 7 gives a hydroxyl group, the other may be an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, or a butyl group! /.
[0056] 上記のグリニャール反応で得られる有機シランィ匕合物の具体例としては、ビフエ- レントリエトキシシラン(2PTES)、ターフェ-レントリエトキシシラン(3PTES)、クオ一 ターフェ-レントリエトキシシラン(4PTES)、クインケフエ-レントリエトキシシラン(5P TES)、ターチオフエントリエトキシシラン(3TTES)、クオ一ターチオフエントリエトキシ シラン(4TTES)、クインケチォフェントリエトキシシラン(5TTES)、ナフタレントリエト キシシラン(NTES)、アントラレントリエトキシシラン (ATES)が挙げられる。  [0056] Specific examples of the organic silane compound obtained by the Grignard reaction include biphenylene triethoxysilane (2PTES), terferene triethoxysilane (3PTES), quater terferene triethoxysilane ( 4PTES), quinkefene-lentriethoxysilane (5P TES), tert-off-entry ethoxysilane (3TTES), quaternary-off-entry ethoxysilane (4TTES), quinquethiophenetriethoxysilane (5TTES), naphthalene entroxysilane (NTES) ) And anthralene triethoxysilane (ATES).
なお、有機シラン化合物は、特開 2004— 277413号公報、特開 2005— 298485 号公報等に記載された方法でも得ることができる。  The organosilane compound can also be obtained by the methods described in JP-A-2004-277413, JP-A-2005-298485, and the like.
[0057] 製造例 1  [0057] Production Example 1
3PTESの合成  Synthesis of 3PTES
攪拌機、還流冷却器、温度計、滴下ロートを備えた 500ml四頸フラスコに、ターフ ェ-ル 1.5モルを四塩化炭素 300mlに溶解させた後、 2,2'—ァゾビスイソブチ口-トリ ル(AIBN) l. 5モル及び N—ブロモスクシンイミド(NBS) l. 5モルを加え、 65。Cで 3 時間攪拌し、冷却後に減圧濾過し、溶媒を減圧留去して、ブロモターフェ-ルを得た  In a 500 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer, and dropping funnel, 1.5 mol of turf was dissolved in 300 ml of carbon tetrachloride, and then 2,2'-azobisisobuty-trill (AIBN) l. 5 moles and N-bromosuccinimide (NBS) l. The mixture was stirred at C for 3 hours, cooled and filtered under reduced pressure, and the solvent was distilled off under reduced pressure to obtain bromoterphel.
[0058] 続 、て、攪拌機、還流冷却器、温度計、滴下ロートを備えた 500ml四頸フラスコに 、金属マグネシウム 0.5モル、テトラヒドロフラン (THF) 300mlを仕込み、上記で得た ブロモターフェ-ル 0.5モルを、 50〜60°Cに維持しながら撹拌下に 2時間かけて滴 下し、滴下終了後 65°Cにて更に 2時間撹拌を継続してグリニャール試薬を調製した [0058] Subsequently, 0.5 mol of magnesium metal and 300 ml of tetrahydrofuran (THF) were charged into a 500 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a dropping funnel, and 0.5 mol of bromoterphel obtained above was added. The mixture was added dropwise with stirring over 2 hours while maintaining the temperature at 50 to 60 ° C. After completion of the addition, stirring was continued for another 2 hours at 65 ° C to prepare a Grignard reagent.
[0059] 攪拌機、還流冷却器、温度計、滴下ロートを備えた 1リットル四頸フラスコに、 Si (0 C H ) (テトラエトキシシラン) 1.0モル、トルエン 300mlを仕込み、氷冷し、内温 20°C[0059] In a 1-liter four-necked flask equipped with a stirrer, reflux condenser, thermometer, and dropping funnel, Si (0 CH) (Tetraethoxysilane) 1.0mol, 300ml toluene, ice-cooled, internal temperature 20 ° C
2 5 4 2 5 4
以下に維持しながら、撹拌下に上記で得たグリニャール試薬を 2時間かけて加え、滴 下終了後、 30°Cにて 1時間撹拌を継続した。  While maintaining the following, the Grignard reagent obtained above was added over 2 hours with stirring, and after completion of the dropwise addition, stirring was continued for 1 hour at 30 ° C.
[0060] 次 、で、反応液を減圧ろ過し、塩ィ匕マグネシウムを除 、た後、ろ液を減圧濃縮し、ト ルェン及び未反応のテトラエトキシシランを除去し、得られた溶液を蒸留して、 3PTE[0060] Next, the reaction solution was filtered under reduced pressure to remove magnesium chloride, and then the filtrate was concentrated under reduced pressure to remove toluene and unreacted tetraethoxysilane, and the resulting solution was distilled. 3PTE
Sを 50%の収率で得た。 S was obtained in 50% yield.
なお、ここに得られた合成物が 3PTESであることは、 — NMR、 13C— NMRを測 定することで確認した。 The synthesized product obtained here was confirmed to be 3PTES by measuring —NMR and 13 C-NMR.
[0061] 製造例 2 [0061] Production Example 2
製造例 1のターフェニルの代わりにビフエニル 1. 5モルを用い、製造例 1と全く同様 にして、ビフエ-レントリエトキシシラン(2PTES)を 50%の収率で得た。  Biphenyl-triethoxysilane (2PTES) was obtained in a yield of 50% in exactly the same manner as in Production Example 1 except that 1.5 mol of biphenyl was used in place of the terphenyl of Production Example 1.
なお、ここに得られた合成物が 2PTESであることは、 — NMR、 13C— NMRを測 定することで確認した。 The synthesized product obtained here was confirmed to be 2PTES by measuring —NMR and 13 C-NMR.
[0062] 製造例 3 [0062] Production Example 3
製造例 1のターフェ-ルの代わりにクォーターフエ-ル 1. 5モルを用い、製造例 1と 全く同様にして、クォーターフエ-レントリエトキシシラン(4PTES)を 40%の収率で 得た。  Quarter-phenol triethoxysilane (4PTES) was obtained in a yield of 40% in exactly the same manner as in Production Example 1 except that 1.5 mol of quarter-fouling was used instead of the terfal of Production Example 1.
なお、ここに得られた合成物力 4PTESであることは、 — NMR、 13C— NMRを 測定することで確認した。 In addition, it was confirmed by measuring —NMR and 13 C—NMR that the resultant compound force was 4PTES.
[0063] 製造例 4 [0063] Production Example 4
製造例 1のターフェ-ルの代わりにクインケフエ-ル 1. 5モルを用い、製造例 1と全 く同様にして、クインケフエ-レントリエトキシシラン(5PTES)を 35%の収率で得た。 なお、ここに得られた合成物力 5PTESであることは、 — NMR、 13C— NMRを 測定することで確認した。 Quinchephe-lentriethoxysilane (5PTES) was obtained in 35% yield in exactly the same manner as in Production Example 1 except that 1.5 mol of quinkefel was used in place of the terferol of Production Example 1. In addition, it was confirmed by measuring —NMR and 13 C—NMR that the resultant compound strength was 5PTES.
[0064] 製造例 5 [0064] Production Example 5
製造例 1のターフェ-ルの代わりにターチォフェン 1. 5モルを用い、製造例 1と全く 同様にして、ターチオフエントリエトキシシラン(3TTES)を 40%の収率で得た。 なお、ここに得られた合成物力 3TTESであることは、 — NMR、 13C— NMRを 測定することで確認した。 Tertoffene ethoxysilane (3TTES) was obtained in 40% yield in exactly the same manner as in Production Example 1 except that 1.5 mol of terthiophene was used in place of the terferol of Production Example 1. Note that it is a composite force 3TTES obtained here, - the NMR, 13 C-NMR Confirmed by measuring.
[0065] 製造例 6  [0065] Production Example 6
製造例 1のターフェ-ルの代わりにクォーターチォフェンモル 1. 5モルを用い、製 造例 1と全く同様にして、クオ一ターチオフエントリエトキシシラン (4TTES)を 40%の 収率で得た。  Quotathiophene mole 1.5 mol was used in place of the terferol of Production Example 1, and Quarti-Off-Entry ethoxysilane (4TTES) was obtained in 40% yield exactly as in Production Example 1. .
なお、ここに得られた合成物力 4TTESであることは、 — NMR、 13C— NMRを 測定することで確認した。 In addition, it was confirmed by measuring —NMR and 13 C—NMR that the resultant compound strength was 4TTES.
[0066] 製造例 7 [0066] Production Example 7
製造例 1のターフェ-ルの代わりにクインケチォフェン 1. 5モルを用い、製造例 1と 全く同様にして、クインケチォフェントリエトキシシラン(5TTES)を 40%の収率で得た なお、ここに得られた合成物力 5TTESであることは、 — NMR、 13C— NMRを 測定することで確認した。 Quinquetiophene triethoxysilane (5TTES) was obtained in 40% yield exactly as in Production Example 1 using 1.5 moles of Quinquetiophene instead of the terferol of Production Example 1. It was confirmed by measuring NMR and 13 C-NMR that the resultant compound strength was 5TTES.
[0067] 製造例 8 [0067] Production Example 8
製造例 1のターフェニルの代わりにナフタレン 1. 5モルを用い、製造例 1と全く同様 にして、ナフタレントリエトキシシラン(NTES)を 40%の収率で得た。  Naphthalene 1.5 mol was used instead of terphenyl of Production Example 1, and naphthalene triethoxysilane (NTES) was obtained in a yield of 40% in exactly the same manner as Production Example 1.
なお、ここに得られた合成物力 NTESであることは、 'H-NMR, 13C— NMRを測 定することで確認した。 It was confirmed by measuring 'H-NMR, 13 C-NMR that the compound strength NTES obtained here was NTES.
[0068] 製造例 9 [0068] Production Example 9
製造例 1のターフェ-ルの代わりにアントラセン 1. 5モルを用い、製造例 1と全く同 様にして、アントラレントリエトキシシラン (ATES)を 40%の収率で得た。  Anthralene triethoxysilane (ATES) was obtained in a yield of 40% in exactly the same manner as in Production Example 1, except that 1.5 mol of anthracene was used in place of the terfal of Production Example 1.
なお、ここに得られた合成物力 ATESであることは、 — NMR、 13C— NMRを測 定することで確認した。 In addition, it was confirmed by measuring —NMR, 13 C—NMR that the resultant compound strength was ATES.
[0069] 試験例 1〜14 [0069] Test Examples 1 to 14
前記の OTES、 AMTMS、 HMTMS、 HFTHTES及び PTES、ならびに上記製 造例 1〜9で得られた各有機シランィ匕合物を用い、それぞれ前記気相吸着法にて、 過酸化水素と濃硫酸の混合溶液で親水化処理した Siウェハー上に自己組織化膜を 形成させた。 すなわち、予め 80°Cに加熱した過酸ィ匕水素及び濃硫酸の混合溶液(3 : 7)中に 20 分間浸漬し、その後水洗し、乾燥して、親水化処理した Siウェハーと、上記製造例 1 〜9で得られた各有機シランィ匕合物 lmlとをテフロン (登録商標)製るつぼに入れて、 120°Cで 2時間加熱処理し、各有機シラン化合物の自己組織ィ匕膜を Siウェハー上に 形成させた。 Using the above OTES, AMTMS, HMTMS, HFTHTES and PTES, and each organosilane compound obtained in the above Production Examples 1 to 9, mixing hydrogen peroxide and concentrated sulfuric acid by the gas phase adsorption method. A self-assembled film was formed on a Si wafer hydrophilized with the solution. That is, a Si wafer that has been preliminarily heated to 80 ° C and immersed in a mixed solution of hydrogen peroxide and concentrated sulfuric acid (3: 7) for 20 minutes, then washed with water, dried, and hydrophilized, and the above production Each of the organosilane compounds lml obtained in Examples 1 to 9 was placed in a Teflon (registered trademark) crucible and heat-treated at 120 ° C. for 2 hours to form a self-organized film of each organosilane compound on Si. It was formed on the wafer.
上記試験例 1〜14で得られたそれぞれの Siウェハー上に形成された自己組織ィ匕 膜の表面自由エネルギーを、 MCA— 2 (協和界面化学 (株)製)を用いて、純水及び ヨウ化メチレンに対する接触角の値を基に、ジスマン (Zisman)法で算出して求めた 上記で得られた製造例 1〜9で得られた各有機シランィ匕合物由来の自己組織化膜 の表面自由エネルギーの測定結果を以下の表に示す。  The surface free energy of the self-assembled film formed on each Si wafer obtained in Test Examples 1 to 14 above was determined using pure water and iodine using MCA-2 (manufactured by Kyowa Interface Chemical Co., Ltd.). The surface of the self-assembled film derived from each organosilane compound obtained in Production Examples 1 to 9 obtained above based on the Zisman method based on the value of the contact angle with methylene chloride The measurement results of free energy are shown in the following table.
[0070] [表 1] [0070] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0071] (有機半導体膜)  [0071] (Organic semiconductor film)
自己組織化膜上に形成される有機半導体膜としては、当該分野で公知の材料から なる膜を使用できる。有機半導体材料としては、トランジスタ駆動又は材料供給を考 慮すると以下の低分子化合物ならびに高分子化合物が挙げられる。  As the organic semiconductor film formed on the self-assembled film, a film made of a material known in the art can be used. Examples of the organic semiconductor material include the following low-molecular compounds and high-molecular compounds in consideration of transistor driving or material supply.
[0072] 有機半導体膜材料用低分子化合物としては、分子量 1,000未満の化合物が好ま しぐ具体的には、 3〜 10個のベンゼン環を縮合させたオリゴァセン、チォフェンを 3 〜 10個繰り返したオリゴチォフェン、ベンゼンを 3〜 10個繰り返したォリゴフヱ-レン 、ベンゼン及びビ-レンを 1〜10個繰り返したオリゴフエ-レンビ-レン、ベンゼン及 びチォフェンを 1〜10個繰り返したオリゴフエ-レンチォフェンの化合物及びそれら の誘導体が挙げられる。 [0072] As the low molecular weight compound for organic semiconductor film materials, a compound having a molecular weight of less than 1,000 is preferred. Specifically, oligocenes condensed with 3 to 10 benzene rings, oligothiophenes with 3 to 10 repeats of thiophene, oligoligene with 3 to 10 repeats of benzene, benzene and bilene. Examples thereof include oligophenol-lentiophene compounds having 1 to 10 repeating oligophenol-lylene-benzenes, benzene and thiophene repeating 1 to 10 compounds, and derivatives thereof.
また、フラーレン(C60)、 [6,6]—フエ-ル C61 ブタン酸メチルエステル(PCBM )等のフラーレン系化合物も使用できる。  Further, fullerene compounds such as fullerene (C60) and [6,6] -phenol C61 butanoic acid methyl ester (PCBM) can also be used.
[0073] 有機半導体膜材料用高分子化合物としては、数平均分子量 10,000以上の化合 物が好ましい。例えば、チォフェン、フエ-レンビ-レン、フエ-レン系及びその誘導 体力 選択される繰り返し単位力 なる化合物が挙げられる。具体的には、ポリ 3— へキシルチオフェン(P3HT)、ポリフエ-レンビ-レン(PPV)及びそれらの誘導体が 特に好ましい。  [0073] The polymer compound for organic semiconductor film material is preferably a compound having a number average molecular weight of 10,000 or more. For example, thiophene, phenylene bilene, phenylene type, and derivatives thereof are compounds having a repeating unit force selected. Specifically, poly-3-hexylthiophene (P3HT), polyphenylene-lene (PPV), and derivatives thereof are particularly preferable.
[0074] (有機半導体膜形成用溶媒)  [0074] (Solvent for forming organic semiconductor film)
有機半導体膜形成用の溶媒としては、有機半導体膜の材料に対する溶解性及び 沸点が高いものが好ましい。具体的には、ベンゼン、トルエン、 p キシレン等の芳香 族炭化水素、クロ口ホルム、ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン 、 1,2—ジクロ口エチレン等の脂肪族ハロゲン化炭化水素、クロ口ベンゼン、 0-ジクロ 口ベンゼン、 1,2,4 トリクロ口ベンゼン等の芳香族ハロゲン化炭化水素が挙げられる  As the solvent for forming the organic semiconductor film, a solvent having high solubility and boiling point for the material of the organic semiconductor film is preferable. Specific examples include aromatic hydrocarbons such as benzene, toluene, and p-xylene, aliphatic halogenated hydrocarbons such as chloroform, formaldehyde, dichloroethylene, trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, Aromatic halogenated hydrocarbons such as dichroic benzene and 1,2,4 triclonal benzene
[0075] (有機半導体膜の製造方法) [0075] (Method for producing organic semiconductor film)
有機半導体膜の製造方法としては、 LB法、ディップ法、キャスト法 (スピンコート法、 インクジヱット法、デイスペンス法)等のような塗布法がすべて適用できる。この内、材 料 ·量産のコストを勘案して、キャスト法 (インクジェット法、デイスペンス法)が好ましい  As a method for producing the organic semiconductor film, all coating methods such as the LB method, the dip method, and the casting method (spin coating method, ink jet method, and dispense method) can be applied. Of these, the casting method (inkjet method, dispense method) is preferable in consideration of material and mass production costs.
[0076] なお、本明細書における、 LB法、ディップ法、キャスト法の定義を下記する。 [0076] The definitions of the LB method, the dip method, and the casting method in this specification are as follows.
[0077] LB法は、 Langmuir— Blodgett法の略であり、疎水基と親水基のバランスのとれ た両親媒性の物質を水面上に展開して単分子膜といわれる分子一層の膜を作製し[0077] The LB method is an abbreviation of the Langmuir-Blodgett method. An amphiphilic substance in which a hydrophobic group and a hydrophilic group are balanced is developed on the water surface to produce a single-layer film called a monomolecular film.
、更にそれを基板に転写する手法である。 [0078] ディップ法は、ある溶液に対して、基板を漬け、次いで引上げることで膜を形成する 方法であり、結晶性を有する材料の場合、特有の構造の結晶を成長させることができ る。 Further, it is a method of transferring it to the substrate. [0078] The dip method is a method of forming a film by immersing a substrate in a solution and then pulling it up. In the case of a material having crystallinity, a crystal having a specific structure can be grown. .
[0079] キャスト法は、原料を含む溶液を所望の位置に滴下、乾燥することにより膜を形成 する方法を意味し、スピンコート法、インクジェット法、デイスペンス法も含まれる。  [0079] The casting method means a method of forming a film by dropping a solution containing a raw material at a desired position and drying, and includes a spin coating method, an ink jet method, and a dispensing method.
[0080] 試験例 15〜24  [0080] Test Examples 15-24
次いで、表 1の結果を基に、異なる成分力もなる 2つの自己組織ィ匕膜に対する有機 半導体膜材料の溶液の塗りわけ性を検討した。  Next, based on the results shown in Table 1, we examined the application of the organic semiconductor film material solution to two self-assembled film films with different component forces.
すなわち、試験例 15として、第 1自己組織ィ匕膜形成用の有機シランィ匕合物 (疎液 成分)として OTESを用い、第 2自己組織ィ匕膜形成用の有機シランィ匕合物 (撥液成分 )として製造例 1で得た PTESを用い、第 1及び第 2自己組織ィ匕膜が形成された基板 での有機半導体膜材料の溶液の塗りわけ性を検討した。試験例 16〜24では、製造 例 2〜9で得られた有機シランィ匕合物を PTESの代わりに使用した。  That is, as Test Example 15, OTES was used as an organic silane compound for forming the first self-organized film (lyophobic component), and an organic silane compound for forming the second self-organized film (liquid repellent). Using PTES obtained in Production Example 1 as a component), we examined the coating properties of the organic semiconductor film material solution on the substrate on which the first and second self-assembled films were formed. In Test Examples 16 to 24, the organosilane compound obtained in Production Examples 2 to 9 was used in place of PTES.
具体的には、まず、 OTESを用いて、試験例 1に記載の方法で Siウェハー上に、 O TES由来の第 1自己組織ィ匕膜を形成させた。  Specifically, first, a first self-assembled film derived from OTES was formed on a Si wafer by the method described in Test Example 1 using OTES.
[0081] 次いで、上記で得られた Siウェハーに 0.8mm φの穴があいたメタルマスクを固定 し、 172nmの真空紫外光を 20分間照射して、上記穴に対応する領域の第 1自己組 織化膜を剥離すると共に、親水化処理した。次いで、 PTESを用いて、試験例 1に記 載の方法により、上記領域に各第 2自己組織化膜を形成させた。  [0081] Next, the Si mask obtained above was fixed with a metal mask having a hole of 0.8 mm diameter, irradiated with 172 nm vacuum ultraviolet light for 20 minutes, and the first self-organization of the region corresponding to the hole was performed. The formed film was peeled off and hydrophilized. Next, each second self-assembled film was formed in the region using PTES by the method described in Test Example 1.
[0082] 溶媒として、クロ口ホルム、トルエン、 p—キシレン、ベンゼン、 1,2,4—トリクロ口ベン ゼンをそれぞれ用い、有機半導体膜材料を用いて有機半導体膜材料の溶液を調製 した。上記で得られた Siウェハーの有機半導体膜材料の溶液の塗りわけ性をそれぞ れ検討した結果を、以下の表に示す。  [0082] A solution of an organic semiconductor film material was prepared using an organic semiconductor film material using black mouth form, toluene, p-xylene, benzene, and 1,2,4-trichloro mouth benzene as solvents. The following table shows the results of examining the application of the organic semiconductor film material solution on the Si wafer obtained above.
[0083] [表 2] 試験例 f機シランィ匕^ 1 表面自巾; Ε·^ノレギー 評価 1 評価 2 [0083] [Table 2] Test example f machine Silane 匕 ^ 1 surface self-width; Ε · ^ noregy evaluation 1 evaluation 2
(m j/m2) (mj / m 2 )
1 5 PTES 39. 1 〇  1 5 PTES 39. 1 〇
1 6 2PTES 3 7. 7 〇  1 6 2PTES 3 7. 7 〇
1 7 3 PTES 3 7.4 〇  1 7 3 PTES 3 7.4 〇
1 8 4 PTES 34. 8 〇  1 8 4 PTES 34. 8 〇
1 9 5 PTES 30.4 o  1 9 5 PTES 30.4 o
20 3TTES 3 3. 7 〇  20 3TTES 3 3. 7 〇
2 1 TTES 28. 7 〇  2 1 TTES 28. 7 〇
22 5TTES 3 1. 7 〇  22 5TTES 3 1. 7 〇
23 NTES 38. 7 〇  23 NTES 38. 7 〇
24 ATES 3 7. 9 〇  24 ATES 3 7. 9 〇
[0084] 上記表において、評価 1とは、クロ口ホルム、トルエン、 p キシレン、ベンゼン、 1,2, 4 トリクロ口ベンゼンを溶媒として用いた上記有機半導体膜材料の溶液全てに第 2 自己組織化膜上にのみ有機半導体膜を形成できたことを意味する。 [0084] In the above table, evaluation 1 means that the second self-organization is performed on all the solutions of the organic semiconductor film material using chloroform-form, toluene, p-xylene, benzene, 1,2,4 trichloro-benzene as a solvent. This means that the organic semiconductor film can be formed only on the film.
一方、評価 2とは、上記溶媒のうち、 1,2,4 トリクロ口ベンゼンを用いた溶液で第 2 自己組織化膜上にのみ有機半導体膜を形成でき、他の溶媒を用いた溶液に対して 第 2自己組織ィ匕膜上のみには形成できな力 たことを意味する。  On the other hand, evaluation 2 means that an organic semiconductor film can be formed only on the second self-assembled film with a solution using 1,2,4 trichlorobenzene, among the above solvents. This means that the second self-assembled force cannot be formed only on the capsule.
[0085] この結果、溶媒をパターニングさせるためには、 2つの自己組織化膜の表面自由ェ ネルギー差が 5mjZm2程度必要であることが経験的に判った。 As a result, it has been empirically found that the surface free energy difference between the two self-assembled films is required to be about 5 mjZm 2 in order to pattern the solvent.
実施例  Example
[0086] 以下の実施例は、本発明を説明するためであり、本発明をなんら制限するものでは ない。  The following examples are for explaining the present invention and are not intended to limit the present invention in any way.
実施例 1  Example 1
図 1に示す有機薄膜トランジスタを作製するために、まず、シリコン力もなる基板 1上 にクロムを蒸着し、ゲート電極 2を形成した。  In order to fabricate the organic thin film transistor shown in FIG. 1, first, chromium was vapor-deposited on a substrate 1 having a silicon force to form a gate electrode 2.
[0087] 次に、 1200°Cで焼成してシリコン熱酸ィ匕膜からなるゲート絶縁膜 3を形成した後、 クロム、金の順に蒸着を行い、通常のリソグラフィー技術によりソース ドレイン電極( 4、 5)を形成した。 Next, after baking at 1200 ° C. to form a gate insulating film 3 made of a silicon thermal oxide film, chromium and gold are vapor-deposited in this order, and source and drain electrodes (4, 5) was formed.
[0088] 続!/ヽて、得られた基板を、 80°Cに加熱した過酸ィ匕水素及び濃硫酸の混合溶液 (3: 7)中に 20分間浸漬し、ゲート絶縁膜 3表面を親水化処理し、水洗して乾燥した。処 理した基板を (ヘプタデカフルオロー 1, 1, 2, 2—テトラヒドロデシル)トリエトキシシラン( HFTHTES) 0.5mlとともにテフロン (登録商標)製るつぼに入れて 120°C、 2時間加 熱して基板全面に HFTHTESを吸着させた。処理基板上にチャネルに適合するよう に 0.8mm φあいたメタルマスクを固定化してから、 172nmの真空紫外光を 20分間 照射してチャネルのみを親水化処理した。親水化処理した該基板をフエ-ルトリエト キシシラン(PTES)と共に前記 HFTHTES処理法と同様に処理して、パターユング 処理で親水化処理したチャネルのみに PTESを吸着させた。以上の方法で、 HFTH TES,PTESの 2成分パターユング基板を得た。 [0088] Continued! Soak the resulting substrate in a mixed solution of hydrogen peroxide and concentrated sulfuric acid (3: 7) heated to 80 ° C for 20 minutes to hydrophilize the surface of the gate insulating film 3. Washed with water and dried. place The treated substrate is placed in a Teflon (registered trademark) crucible with 0.5 ml of (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane (HFTHTES) and heated at 120 ° C for 2 hours to heat the entire surface of the substrate HFTHTES was adsorbed on the surface. A metal mask with a diameter of 0.8 mm was fixed on the treated substrate so as to fit the channel, and then 172 nm vacuum ultraviolet light was irradiated for 20 minutes to hydrophilize only the channel. The hydrophilized substrate was treated with ferretrioxysilane (PTES) in the same manner as the HFTHTES treatment method, and PTES was adsorbed only to the channel hydrophilized by the patterning treatment. By the above method, a two-component patterning substrate of HFTH TES and PTES was obtained.
[0089] また、それぞれのシランィ匕合物を吸着させるときに、接触角評価用として Siウェハー をテフロン(登録商標)製るつぼ内にお 、てお 、た。 HFTHTES及び PTESのトルェ ン溶媒の接触角の値は、それぞれ 102° 及び 65° であった。接触角は、 MCA— 2 ( 協和界面化学 (株)製)により測定した。  [0089] Further, when adsorbing each Silane compound, the Si wafer was placed in a Teflon (registered trademark) crucible for contact angle evaluation. The contact angle values of toluene solvent for HFTHTES and PTES were 102 ° and 65 °, respectively. The contact angle was measured by MCA-2 (manufactured by Kyowa Interface Chemical Co., Ltd.).
[0090] 1,2,3,4,6,11—へキサプロピルナフタセン(HPナフタセン)〔18155— 96〕(関東 化学製)の 0.2重量%トルエン溶液を 80°Cに加熱した前記処理基板に、デイスペン サー (武蔵エンジニアリング社製)を用いて 500nl滴下することで、有機半導体膜を得 た。  [0090] 1,2,3,4,6,11-Hexapropylnaphthacene (HP naphthacene) [18155-96] (manufactured by Kanto Kagaku) 0.2 wt% toluene solution heated to 80 ° C. In addition, an organic semiconductor film was obtained by dropping 500 nl using a dispenser (manufactured by Musashi Engineering Co., Ltd.).
[0091] 上記で形成した有機半導体膜につ!ヽて、光学顕微鏡による形状観察を行ったとこ ろ、 PTESでパターユング処理したチャネルのみに HPナフタセン膜が形成されて!ヽ ることが確認できた。  [0091] When the organic semiconductor film formed above was observed with an optical microscope, it was confirmed that an HP naphthacene film was formed only on the channel patterned with PTES. It was.
[0092] また、 X線回折 (XRD)測定から (RINT2000、(株)リガク)有機半導体膜の結晶性 を評価したところ、 2 Θ =6.9 (面間隔 d= 1.28nm)、 13.8° (d=0.64nm)に(001) 、 (002)回折が観測され高度に結晶化していることがわ力つた。  [0092] Further, when the crystallinity of the organic semiconductor film was evaluated by X-ray diffraction (XRD) measurement (RINT2000, Rigaku Co., Ltd.), 2Θ = 6.9 (plane spacing d = 1.28nm), 13.8 ° (d = (001) and (002) diffractions were observed at 0.64 nm), indicating that the crystals were highly crystallized.
[0093] また、上記で得られた有機薄膜トランジスタは、 3探針式 (4200— SCS、ケースレー インスツルメンッ (株)製)でトランジスタ特性を測定したところ、電界効果移動度が 2.2 X 10— 2cm2ZVsで、オン/オフ比が約 5桁であり、良好な性能が得られることが判明 した。 [0093] The organic thin film transistor obtained above was measured for transistor characteristics using a three-probe method (4200—SCS, manufactured by Keithley Instruments Co., Ltd.). The field effect mobility was 2.2 × 10 2 cm 2. With ZVs, the on / off ratio was about 5 digits, and it was found that good performance was obtained.
[0094] 比較例 1  [0094] Comparative Example 1
実施例 1と同様に基板上に、ゲート電極、ゲート絶縁膜、ソース及びドレイン電極を 形成し、表面の親水化処理を全く施していない未処理基板に、実施例 1と同様に HP ナフタセンのトルエン溶液を滴下し、有機半導体膜を作製した。 As in Example 1, a gate electrode, a gate insulating film, a source and a drain electrode are formed on the substrate. In the same manner as in Example 1, a toluene solution of HP naphthacene was dropped onto an untreated substrate that had been formed and had no surface hydrophilization treatment, to produce an organic semiconductor film.
このようにして得られた有機薄膜トランジスタについて、実施例 1と同様に XRD、電 界効果移動度及びオン Zオフ比を測定したところ、 2 Θ =6.9° に (001)の回折が 観測され、また、電界移動度は 3.7 X 10— 4cm2ZVsで、オン/オフ比は約 3桁であつ た。 The organic thin film transistor thus obtained was measured for XRD, field effect mobility and on-Z off ratio in the same manner as in Example 1. As a result, (001) diffraction was observed at 2 Θ = 6.9 °, and , field mobility is 3.7 X 10- 4 cm 2 ZVs, on / off ratio was filed in about three orders of magnitude.
[0095] 比較例 2  [0095] Comparative Example 2
実施例 1と同様に基板上に、ゲート電極、ゲート絶縁膜、ソース及びドレイン電極を 形成し、表面の親水化処理を施し、 HFTHTESで全面処理した基板に、実施例 1と 同様に HPナフタセンのトルエン溶液を滴下し、有機半導体膜を作製した。  A gate electrode, a gate insulating film, a source and a drain electrode are formed on a substrate in the same manner as in Example 1, and the surface is subjected to a hydrophilic treatment, and then the entire surface is treated with HFTHTES. A toluene solution was dropped to prepare an organic semiconductor film.
このようにして得られた有機薄膜トランジスタについて、実施例 1と同様に XRD、電 解効果移動度及びオン Zオフ比を測定したところ、 2 0 =6.9° に (001)の回折が 観測され、電界効果移動度が 6.1 X 10— 4cm2ZVsで、オン/オフ比が約 3桁であつ た。 The organic thin-film transistor thus obtained was measured for XRD, electrolytic effect mobility, and on-Z off ratio in the same manner as in Example 1. As a result, (001) diffraction was observed at 20 = 6.9 °, and the electric field effect mobility in 6.1 X 10- 4 cm 2 ZVs, on / off ratio is filed in about three orders of magnitude.
[0096] 比較例 3  [0096] Comparative Example 3
実施例 1と同様に基板上に、ゲート電極、ゲート絶縁膜、ソース及びドレイン電極を 形成し、表面の親水化処理を施し、 PTESで全面処理した基板に、実施例 1と同様 に HPナフタセンのトルエン溶液を滴下し、有機半導体膜を作製した。  In the same manner as in Example 1, a gate electrode, a gate insulating film, a source and a drain electrode were formed on a substrate, and the surface was hydrophilized, and the entire surface was treated with PTES. A toluene solution was dropped to prepare an organic semiconductor film.
このようにして得られた有機薄膜トランジスタについて、実施例 1と同様に XRD、電 解効果移動度及びオン/オフ比を測定したところ、 2 Θ =6.9° 、 13.8° にそれぞれ (001)、 (002)の回折が観測され、電界効果移動度が 4.8 X 10— 3cm2ZVsで、オン Zオフ比が約 5桁であった。 The organic thin film transistor thus obtained was measured for XRD, electrolytic effect mobility, and on / off ratio in the same manner as in Example 1, and was found to be (001) and (002) at 2 Θ = 6.9 ° and 13.8 °, respectively. ) diffraction is observed, the field effect mobility in 4.8 X 10- 3 cm 2 ZVs, on Z off ratio of about 5 orders of magnitude.
[0097] 比較例 4 [0097] Comparative Example 4
実施例 1と同様に基板上に、ゲート電極、ゲート絶縁膜、ソース及びドレイン電極を 形成し、表面の親水化処理を施し、実施例 1と同様に HFTHTES全面処理した後に 実施例 1で用いた 0.8mm φマスクで親水化処理した 1成分パターユング処理基板に 、実施例 1と同様に HPナフタセンのトルエン溶液を滴下し、有機半導体膜を作製し このようにして得られた有機薄膜トランジスタについて、実施例 1と同様に XRD、電 解効果移動度及びオン Zオフ比を測定したところ、 2 0 =6.9° に (001)の回折が 観測され、電界効果移動度が 8.1 X 10— 4cm2ZVsで、オン/オフ比が約 3桁であつ た。 The gate electrode, gate insulating film, source and drain electrodes were formed on the substrate in the same manner as in Example 1, and the surface was hydrophilized, and the entire surface of the HFTHTES was treated in the same manner as in Example 1. In the same way as in Example 1, a solution of HP naphthacene in toluene was dropped onto a one-component patterning substrate that had been hydrophilized with a 0.8 mm φ mask to produce an organic semiconductor film. The organic thin-film transistor thus obtained was measured for XRD, electrolytic effect mobility, and on-Z off ratio in the same manner as in Example 1. As a result, (001) diffraction was observed at 20 = 6.9 °, and the electric field effect mobility in 8.1 X 10- 4 cm 2 ZVs, on / off ratio is filed in about three orders of magnitude.
[0098] 比較例 5  [0098] Comparative Example 5
実施例 1と同様に基板上に、ゲート電極、ゲート絶縁膜、ソース及びドレイン電極を 形成し、表面の親水化処理を施し、実施例 1と同様に PTESで全面処理した後に実 施例 1で用いた 0.8mm φマスクで親水化処理した 1成分パターユング処理基板に、 実施例 1と同様に HPナフタセンのトルエン溶液を滴下し、有機半導体膜を作製した このようにして得られた有機薄膜トランジスタについて、実施例 1と同様に XRD、電 解効果移動度及びオン Zオフ比を測定したところ、 2 0 =6.9° に (001)の回折が 観測され、電界効果移動度が 8.6 X 10— 4cm2ZVsで、オン/オフ比が約 3桁であつ た。 In the same manner as in Example 1, a gate electrode, a gate insulating film, a source and a drain electrode are formed on a substrate, and the surface is subjected to a hydrophilic treatment. After the entire surface is treated with PTES as in Example 1, in Example 1, Toluene solution of HP naphthacene was dropped onto the 1-component patterning substrate that was hydrophilized with the 0.8mm φ mask used, as in Example 1. An organic thin film transistor thus obtained was prepared. , it was measured in the same manner as XRD, electrolytic effect mobility and on Z off ratio as in example 1, diffraction to 2 0 = 6.9 ° (001) is observed, the field-effect mobility 8.6 X 10- 4 cm At 2 ZVs, the on / off ratio was about 3 digits.
[0099] 上記の比較例 1〜5の結果から、パターユング処理していない基板では、トルエン 溶液がチャネルに留まらずに動 、たために形成した膜はチャネルを完全に覆って ヽ なかった。そのため、結晶性が高くても電界効果移動度及びオン Zオフ比が低下し たものと考えられる。  [0099] From the results of the above Comparative Examples 1 to 5, in the substrate that was not subjected to the patterning treatment, the toluene solution moved without staying in the channel, so that the formed film did not completely cover the channel. Therefore, even if the crystallinity is high, the field effect mobility and the on-Z off ratio are considered to have decreased.
[0100] また、 1成分パターユング処理することで、有機半導体膜の形成位置を厳密に制御 でき、塗布膜はチャネルに形成された。しかし、高結晶性の膜が得られないこと、オフ 電流がゲート絶縁膜表面を有機シランィ匕合物で処理した基板と比べて 10倍大きい ため、電界高度移動度及びオン Zオフ比が低下することが判明した。  [0100] Further, the formation position of the organic semiconductor film could be strictly controlled by the one-component patterning treatment, and the coating film was formed in the channel. However, a high crystalline film cannot be obtained, and the off-current is 10 times larger than that of a substrate in which the surface of the gate insulating film is treated with an organosilane compound. It has been found.
[0101] 以上から、 2成分パターユングによって高度に結晶化した塗布膜の形成箇所を厳 密に制御でき、またオフ電流を低減させることがわ力つた。  [0101] From the above, it was proved that the formation position of the coating film highly crystallized by the two-component patterning can be strictly controlled and the off-current can be reduced.

Claims

請求の範囲 The scope of the claims
[1] 基板と、該基板上の所定領域に形成された有機半導体膜とを含む有機半導体デ バイスであって、前記有機半導体膜が形成された前記基板の表面が、前記有機半 導体膜が形成されていない前記基板の表面より 5mjZm2以上大きい表面自由エネ ルギ一の差を有し、前記表面自由エネルギーによる疎撥液性を有することを特徴と する有機半導体デバイス。 [1] An organic semiconductor device including a substrate and an organic semiconductor film formed in a predetermined region on the substrate, wherein the surface of the substrate on which the organic semiconductor film is formed is the organic semiconductor film An organic semiconductor device characterized by having a surface free energy difference of 5 mjZm 2 or more larger than the surface of the substrate that is not formed and lyophobic due to the surface free energy.
[2] 前記所定領域以外の領域が、第 1自己組織ィ匕膜を備え、前記所定領域が、第 2自 己組織ィ匕膜を備え、前記第 2自己組織ィ匕膜が、第 1自己組織ィ匕膜より 5mjZm2以上 大き!/、表面自由エネルギーを有する請求項 1に記載の有機半導体デバイス。 [2] A region other than the predetermined region includes a first self-organizing membrane, the predetermined region includes a second self-organizing membrane, and the second self-organizing membrane is a first self-organizing membrane. 2. The organic semiconductor device according to claim 1, wherein the organic semiconductor device has a surface free energy that is 5 mjZm 2 or more larger than the tissue film.
[3] 前記第 1及び第 2自己組織化膜が lOnm以下の厚さを有する請求項 2に記載の有 機半導体デバイス。  [3] The organic semiconductor device according to [2], wherein the first and second self-assembled films have a thickness of lOnm or less.
[4] 前記第 1及び第 2自己組織化膜が、式 (1)  [4] The first and second self-assembled films have the formula (1)
R'-SiX'x'x3 (1) R'-SiX'x'x 3 (1)
(式中、 R1は、直鎖又は分枝鎖状の無置換アルキル基であるか、又はフッ素原子、ヒ ドロキシ基、チオール基、アミノ基、シリル基、フエニル基もしくはチェニル基力 なる 群力 選択される 1以上の同一又は異なる基で置換されたアルキル基、単環式芳香 族基、縮合型芳香族基、単環式複素環基又は縮合型複素環基を意味し、 X1、 X2及 び X3は、互いに同一又は異なって、ハロゲン原子もしくは炭素数 1〜5のアルコキシ 基を意味する) (In the formula, R 1 is either a linear or branched unsubstituted alkyl group, or a fluorine atom, arsenic Dorokishi group, a thiol group, an amino group, a silyl group, the group force consisting phenyl group or thienyl group force Means an alkyl group, a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group or a condensed heterocyclic group substituted with one or more selected same or different groups, X 1 , X 2 and X 3 are the same as or different from each other and represent a halogen atom or an alkoxy group having 1 to 5 carbon atoms)
で表される有機シラン化合物における R1を選択することによりそれぞれ形成される膜 である請求項 2に記載の有機半導体デバイス。 3. The organic semiconductor device according to claim 2, which is a film formed by selecting R 1 in the organosilane compound represented by the formula:
[5] 前記有機半導体膜が、 π電子共役系化合物からなる膜である請求項 1に記載の有 機半導体デバイス。 5. The organic semiconductor device according to claim 1, wherein the organic semiconductor film is a film made of a π electron conjugated compound.
[6] 前記第 1自己組織ィ匕膜が、炭素数 3〜30の無置換あるいは置換アルキル基力もな る R1を備えた有機シランィ匕合物に由来し、前記第 2自己組織ィ匕膜が、単環式芳香族 基、縮合型芳香族基、単環式複素環基又は縮合型複素環基からなる R1を備えた有 機シラン化合物に由来する請求項 4に記載の有機半導体デバイス。 [6] The first self-assembled film is derived from an organic silane compound having R 1 having an unsubstituted or substituted alkyl group having 3 to 30 carbon atoms, and the second self-assembled film 5. The organic semiconductor device according to claim 4, wherein the organic semiconductor device is derived from an organic silane compound having R 1 composed of a monocyclic aromatic group, a condensed aromatic group, a monocyclic heterocyclic group, or a condensed heterocyclic group. .
[7] 基板表面の有機半導体膜を形成する所定領域を、前記有機半導体膜を形成しな い領域より 5mjZm2以上大きい表面自由エネルギーの差を有するように疎撥液処理 し、次 ヽで前記基板表面の所定領域に有機半導体膜を形成する工程を含むことを 特徴とする有機半導体デバイスの製造方法。 [7] A predetermined region for forming the organic semiconductor film on the substrate surface is not formed on the organic semiconductor film. An organic semiconductor device comprising a step of performing a lyophobic treatment so as to have a surface free energy difference of 5 mjZm 2 or more larger than a region having a large area, and then forming an organic semiconductor film in a predetermined region on the substrate surface. Production method.
[8] 前記有機半導体膜を形成しな!ヽ領域と前記所定領域とが、それぞれ異なる有機シ ランィ匕合物に由来する膜からなる第 1及び第 2自己組織ィ匕膜で覆われ、前記第 1及 び第 2自己組織ィ匕膜が、前記所定領域に前記有機半導体膜を形成しない領域より 5 mjZm2以上大きい表面自由エネルギーの差を与える膜の組み合わせであり、 前記疎撥液処理が、基板全面に第 1自己組織化膜を形成する工程と、前記所定領 域に紫外線又はプラズマを照射することにより第 1自己組織ィ匕膜を剥離することで所 定領域を親水化する工程と、第 1自己組織ィ匕膜を剥離した所定領域に第 2自己組織 化膜を形成する工程とを含む請求項 7に記載の有機半導体デバイスの製造方法。 [8] The organic semiconductor film is not formed and the predetermined region and the predetermined region are covered with first and second self-assembled film made of films derived from different organic silane compounds, The first and second self-assembled films are a combination of films that give a difference in surface free energy that is 5 mjZm 2 or more larger than a region where the organic semiconductor film is not formed in the predetermined region, A step of forming a first self-assembled film on the entire surface of the substrate, and a step of hydrophilizing a predetermined region by peeling off the first self-assembled film by irradiating the predetermined region with ultraviolet light or plasma. And a step of forming a second self-assembled film in a predetermined region from which the first self-assembled film has been peeled off.
[9] 前記有機半導体膜が、有機半導体材料と溶媒とを含む溶液の塗布法により前記表 面自由エネルギーの差を利用して所定領域に形成される請求項 7に記載の有機半 導体デバイスの製造方法。  [9] The organic semiconductor device according to [7], wherein the organic semiconductor film is formed in a predetermined region using a difference in surface free energy by a coating method of a solution containing an organic semiconductor material and a solvent. Production method.
[10] 前記第 1及び第 2自己組織化膜が、請求項 4に記載の式(1)で表される有機シラン 化合物に由来する膜である請求項 8に記載の有機半導体デバイスの製造方法。  [10] The method for producing an organic semiconductor device according to [8], wherein the first and second self-assembled films are films derived from an organosilane compound represented by the formula (1) according to claim 4. .
[11] 前記疎撥液処理前に、基板表面の所定領域を親水化処理する工程を更に有し、 前記自己組織ィ匕膜が、気相吸着法又は液相吸着法により形成される請求項 7に記 載の有機半導体デバイスの製造方法。  [11] The method further comprises a step of hydrophilizing a predetermined region of the substrate surface before the lyophobic treatment, and the self-organized film is formed by a gas phase adsorption method or a liquid phase adsorption method. 7. A method for producing an organic semiconductor device according to 7.
[12] 前記溶媒が、芳香族ハロゲン化炭化水素、脂肪族ハロゲン化炭化水素又は芳香 族炭化水素である請求項 9に記載の有機半導体デバイスの製造方法。  12. The method for producing an organic semiconductor device according to claim 9, wherein the solvent is an aromatic halogenated hydrocarbon, an aliphatic halogenated hydrocarbon, or an aromatic hydrocarbon.
[13] 前記芳香族ハロゲン化炭素がクロ口ベンゼン、 o—ジクロ口ベンゼン又は 1,2,4—トリ クロ口ベンゼンであり、前記脂肪族ハロゲンィ匕炭化水素がクロ口ホルム、 1, 1ージクロ 口エチレン、 1,1, 2—トリクロロエチレン、テトラクロロエチレン又は 1,2—ジクロロェチレ ンであり、前記芳香族炭化水素がベンゼン、トルエン又は p—キシレンである請求項 1 2に記載の有機半導体デバイスの製造方法。  [13] The aromatic halogenated carbon is black mouth benzene, o-dichloro mouth benzene or 1,2,4-trichloro mouth benzene, and the aliphatic halogenated hydrocarbon is black mouth form, 1, 1-dichloro mouth. The method for producing an organic semiconductor device according to claim 12, which is ethylene, 1,1,2-trichloroethylene, tetrachloroethylene, or 1,2-dichloroethylene, and the aromatic hydrocarbon is benzene, toluene, or p-xylene.
[14] 前記塗布方法が、スピンコート法、インクジェット法、デイスペンス法、ディップ法であ る請求項 9に記載の有機半導体デバイスの製造方法。 前記基板が、ゲート電極とその上にゲート絶縁膜を備え、前記所定領域がゲート絶 縁膜上であるデバイスの製造方法であって、前記第 2自己組織ィ匕膜上に前記有機半 導体膜を形成する工程と、前記有機半導体膜を形成する前に該有機半導体膜を挟 むように前記ゲート絶縁膜上にソース Zドレイン電極を形成する力、又は前記有機半 導体膜上にソース Zドレイン電極を形成する工程とを含み、前記第 2自己組織化膜 が、キャリア輸送機能を有する単分子膜である請求項 8に記載の有機半導体デバイ スの製造方法。 14. The method for producing an organic semiconductor device according to claim 9, wherein the coating method is a spin coating method, an ink jet method, a dispense method, or a dip method. The substrate includes a gate electrode and a gate insulating film on the gate electrode, and the predetermined region is on a gate insulating film, and the organic semiconductor film is formed on the second self-assembled film. And a step of forming a source Z drain electrode on the gate insulating film so as to sandwich the organic semiconductor film before forming the organic semiconductor film, or a source Z drain electrode on the organic semiconductor film. The method for producing an organic semiconductor device according to claim 8, wherein the second self-assembled film is a monomolecular film having a carrier transport function.
PCT/JP2007/059959 2006-05-16 2007-05-15 Organic semiconductor device and method for manufacturing same WO2007132845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-136729 2006-05-16
JP2006136729 2006-05-16

Publications (1)

Publication Number Publication Date
WO2007132845A1 true WO2007132845A1 (en) 2007-11-22

Family

ID=38693935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059959 WO2007132845A1 (en) 2006-05-16 2007-05-15 Organic semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2007132845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212127A (en) * 2008-02-29 2009-09-17 Dainippon Printing Co Ltd Organic transistor and method of manufacturing the same
JP2009280666A (en) * 2008-05-21 2009-12-03 Toray Fine Chemicals Co Ltd Silicone polymer having naphthalene ring and composition of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284289A (en) * 2000-03-31 2001-10-12 Seiko Epson Corp Manufacturing method of fine structure
JP2005158765A (en) * 2003-11-20 2005-06-16 Canon Inc Field effect organic transistor and manufacturing method thereof
JP2005228968A (en) * 2004-02-13 2005-08-25 Sharp Corp Field effect transistor, and image display device and semiconductor device using the transistor
JP2005354051A (en) * 2004-06-08 2005-12-22 Palo Alto Research Center Inc Method of manufacturing printed transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284289A (en) * 2000-03-31 2001-10-12 Seiko Epson Corp Manufacturing method of fine structure
JP2005158765A (en) * 2003-11-20 2005-06-16 Canon Inc Field effect organic transistor and manufacturing method thereof
JP2005228968A (en) * 2004-02-13 2005-08-25 Sharp Corp Field effect transistor, and image display device and semiconductor device using the transistor
JP2005354051A (en) * 2004-06-08 2005-12-22 Palo Alto Research Center Inc Method of manufacturing printed transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212127A (en) * 2008-02-29 2009-09-17 Dainippon Printing Co Ltd Organic transistor and method of manufacturing the same
JP2009280666A (en) * 2008-05-21 2009-12-03 Toray Fine Chemicals Co Ltd Silicone polymer having naphthalene ring and composition of the same

Similar Documents

Publication Publication Date Title
US6617609B2 (en) Organic thin film transistor with siloxane polymer interface
US7352000B2 (en) Organic thin film transistor with polymeric interface
JP4511175B2 (en) Organic thin film transistor, manufacturing method thereof, integrated circuit and composition
US8373161B2 (en) Organic thin film transistor
JP2009290187A (en) Forming method and structure of self-organization monomolecular film, field effect transistor
US20070178710A1 (en) Method for sealing thin film transistors
JP5470763B2 (en) Carbon nanotube dispersion solution, organic semiconductor composite solution, organic semiconductor thin film, and organic field effect transistor
TW200929651A (en) Thin film transistors
JP2004327857A (en) Method for manufacturing organic transistor and organic transistor
WO2007125950A1 (en) Organic semiconductor thin film and organic semiconductor device
WO2005117157A1 (en) Organic compound having at both ends different functional groups differing in reactivity in elimination reaction, organic thin films, organic device, and processes for producing these
TW200926418A (en) Thin film transistors
JP5463631B2 (en) Organic transistor material and organic field effect transistor
JP3955872B2 (en) Organic device using organic compound having different functional groups with different elimination reactivity at both ends
WO2007132845A1 (en) Organic semiconductor device and method for manufacturing same
WO2010082414A1 (en) Organic thin film transistor, method for manufacturing same, and device equipped with same
JP2008071958A (en) Organic thin-film transistor and manufacturing method therefor
JP2007188923A (en) Field effect transistor and picture display device
US8106387B2 (en) Organic thin film transistors
WO2007119442A1 (en) Organic transistor improved in charge mobility and its manufacturing method
JP2006303007A (en) Field effect transistor
JP2006080056A (en) Organic thin film using organic compound having at both ends different functional group differing in reactivity in elimination reaction and manufacturing method for the organic thin film
JP4000836B2 (en) Method for forming a film pattern
KR100779560B1 (en) Self-patternable dielectric film for organic thin-film transistor, fabricating method therefor, and organic thin-film transistor including the same
Melville Thermally Evaporated Silicon Phthalocyanine and Thioxanthene Benzanthrone Based Organic Thin-Film Transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07743394

Country of ref document: EP

Kind code of ref document: A1