WO2010081347A1 - 电容式麦克风的隔离片和采用这种隔离片的电容式麦克风 - Google Patents

电容式麦克风的隔离片和采用这种隔离片的电容式麦克风 Download PDF

Info

Publication number
WO2010081347A1
WO2010081347A1 PCT/CN2009/074952 CN2009074952W WO2010081347A1 WO 2010081347 A1 WO2010081347 A1 WO 2010081347A1 CN 2009074952 W CN2009074952 W CN 2009074952W WO 2010081347 A1 WO2010081347 A1 WO 2010081347A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
spacer
condenser microphone
material layer
metal
Prior art date
Application number
PCT/CN2009/074952
Other languages
English (en)
French (fr)
Inventor
姚荣国
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US13/145,019 priority Critical patent/US8654996B2/en
Priority to KR1020117016596A priority patent/KR101281229B1/ko
Publication of WO2010081347A1 publication Critical patent/WO2010081347A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to a condenser microphone, and more particularly to a spacer for a condenser microphone.
  • the core component of a condenser microphone is a capacitor assembly consisting of a plate, a diaphragm, and a spacer disposed between the two.
  • the spacer in the condenser microphone mainly serves to isolate the plate from the diaphragm to form a parallel plate capacitor.
  • the spacer can be prepared in advance, that is, the spacer is fabricated into a single separated annular piece by a process such as punching or cutting, and then mounted in a condenser microphone.
  • spacers that are not separated may be first mounted to a plurality of condenser microphones distributed according to the array and then separated by a process such as stamping or cutting.
  • the patent application No. CN200610099179.6 discloses a structure in which a plurality of condenser microphone parts are arranged in an array and assembled together and then cut and separated.
  • the spacer is a resin film. Or made of metal plates.
  • the technical problem to be solved by the present invention is to provide a condenser microphone spacer which is low in cost and is not easily affected by static electricity.
  • the technical solution of the present invention is: a spacer for a condenser microphone, mounted between a plate of a microphone and a diaphragm, and: the spacer includes at least one insulating layer, and At least one conductive layer combined with the insulating layer.
  • the improvement of the technical solution is that the insulating layer is an organic material layer, and the conductive layer is a metallization layer or a metal layer.
  • the spacer comprises a layer of organic material and a layer of metal.
  • the spacer comprises a layer of organic material, and a layer of metal is respectively disposed on both sides of the layer of the organic material.
  • the improvement of the technical solution is that the metal layer has a thickness of 0.001 mm to 0.01 mm.
  • the improvement of the technical solution is that the thickness of the organic material layer is 0.01 mm to 0.1 mm.
  • the spacer is a ring structure, and a plurality of connecting ribs are disposed on a periphery of the spacer.
  • the spacer is a ring structure, and the outer periphery of the spacer is square.
  • the insulating layer is an organic polymer material layer
  • the conductive layer is formed by antistatic treatment of the surface of the organic polymer material layer by using a proton bombardment technique in a plasma environment. Conductive layer.
  • the organic material layer is an organic polymer material layer
  • the metallization layer or the metal layer is the organic polymer layer by bombarding the organic polymer material layer by metal ions
  • the surface of the material layer is metallized or quasi-metallized.
  • the organic material layer is an organic polymer material layer
  • the metal layer is formed by depositing metal on the organic polymer material layer by wet chemical method of electroplating or hot dip plating.
  • the present invention also provides a condenser microphone which can effectively reduce the manufacturing cost of the product and improve the product quality by using the above various spacers.
  • the spacer of the condenser microphone is installed between the plate of the microphone and the diaphragm, and: the spacer includes at least one insulating layer, and the insulating layer At least one conductive layer is combined; the beneficial effects of the invention are: the spacer can be effectively prevented from generating or storing static electricity during processing, and the processing of using the metal sheet to manufacture the spacer sheet is difficult and costly. It is easy to increase the disadvantage of parasitic capacitance.
  • FIG. 1 is a cross-sectional view showing a specific configuration of a condenser microphone including a spacer according to the present invention
  • FIG. 2 is an enlarged schematic view showing a portion A of the condenser microphone
  • Figure 3 is a plan view showing a specific structure of a cell spacer according to a first embodiment of the present invention
  • Figure 4 is a plan view showing a spacer array according to a first embodiment of the present invention
  • FIG. 5 is a plan view showing a specific structure of a cell spacer according to a second embodiment of the present invention.
  • FIG. 6 is a plan view showing a spacer array according to a second embodiment of the present invention.
  • a condenser microphone having a spacer according to the present invention includes a circuit board substrate 1 at the top, a circuit board bottom plate 3 at the bottom, and a circuit board substrate and a circuit board bottom plate.
  • the circuit board frame 2, all or a part of the circuit board substrate 1, the circuit board bottom board 2, and the circuit board frame 3 can be made of a circuit board and constitute a protective structure of the condenser microphone.
  • a plurality of electrodes 11 for mounting the patch are provided on the upper surface of the circuit board substrate 1 facing the outside of the microphone, and a signal amplifying device 12 is provided on the lower surface facing the inside of the microphone. Further, an acoustic hole 31 for receiving an external sound signal is disposed on the circuit board bottom plate 3. Further, inside the microphone, an elastic metal connecting device 4, a plate 5, a spacer 6, a diaphragm 7 and a vibrating ring 71 for fixing the diaphragm 7 are mounted, wherein the plate 5 The vibrating diaphragm 7 and the spacer 6 disposed therebetween constitute a capacitor assembly of the condenser microphone.
  • One end of the elastic metal connecting device 4 is connected to the electrode plate 5, and the other end thereof is connected to the circuit board substrate 1, thereby electrically connecting the electrode plate 5 and the circuit board substrate 1.
  • the vibrating diaphragm 7 passes through the vibrating ring 71 and the circuit board bottom plate 3, the circuit board Circuits (not shown) between the frames 2 are connected to the board substrate 1, and necessary circuits are provided on both sides and inside of the board substrate 1.
  • the signal amplifying device 12 can realize amplification of an electric signal or the like. Usually, these configurations are well-known techniques, so they are not described in detail here.
  • the spacer 6 includes an organic material layer 61 and a metal layer 62.
  • the metal layer 62 is disposed on the upper side or the lower side of the organic material layer 61.
  • the spacer is processed. In the process, the advantages of the metal plate and the organic material itself can be utilized at the same time, and the manufacturing process is relatively simple, and only the metal layer needs to be plated on the organic material layer.
  • the thickness of the metal layer 62 is preferably 0.001 to 0.01 mm
  • the thickness of the organic material layer 61 is preferably 0.01 to 0.1 mm
  • the metal layer may be made of a material such as copper foil or aluminum foil
  • the organic material layer may be made of a material such as PI.
  • FIG 3 is a plan view schematically showing a specific structure of a cell spacer according to a first embodiment of the present invention.
  • the spacer 6 has a substantially annular structure having an opening at the center thereof, and four connecting ribs 63 projecting outwardly are integrally formed on the spacer 6 at equal intervals.
  • four connecting ribs 63 are provided.
  • the number of the connecting ribs 63 on one spacer is not limited to four, and may be any number of two or more.
  • a single annular spacer can be fabricated by stamping, cutting, etc., and then the unitary spacer is individually mounted in a condenser microphone.
  • FIG. 4 is a plan view schematically showing an array of spacers according to a first embodiment of the present invention, in which six spacers are formed in an array form of 2x3, and connecting ribs 63 of adjacent spacers are connected by a connecting portion 64.
  • the array of spacers thus formed is mounted in the same manner in a plurality of condenser microphones, and by cutting the connecting portions 64 between the adjacent spacers, the spacers are separated into a single state, thereby remaining in each of the condenser microphones. In the monomer.
  • the spacer according to the second embodiment of the present invention Compared with the structure in which the spacer in the first embodiment is composed of two layers of the metal layer 62 and the organic material layer 61, the spacer of the second embodiment The two metal layers 62 respectively located on the outer layer and the organic material layer 61 disposed between the two metal layers are included. This structure can also achieve an effect similar to that of the first embodiment.
  • Fig. 5 shows another shape of the spacer 6 which is changed, that is, the spacer 6 has a square structure in which an elliptical opening is opened in the middle.
  • Fig. 6 shows the structure of a spacer array in which a plurality of spacers 6 shown in Fig. 5 are integrally connected, in which adjacent spacers 6 are connected together by a connecting portion 64.
  • the connecting portion 64 has an elongated shape extending along the edge of the spacer 6, and the structure is also applicable to the need for mass production of a microphone in an automated manner, and the connection between the spacers can be further enhanced.
  • the structure of the connecting rib 64 of the first embodiment can also be used here.
  • the organic material layer 61 is a polymer organic material layer, and the metal layer 62 is deposited on the organic material layer by wet chemical methods such as electroplating or hot dip plating. 61 came up to achieve.
  • the metallization layer and the metal layer may also be used to bombard the polymer organic material layer by metal ions, thereby making the surface of the polymer organic material layer metallized or quasi-metallized to make it conductive. And it has anti-static function.
  • the quasi-metallization layer and the metal layer obtained by this process are firmly bonded on the polymer organic material layer, and are not easy to wear and fall off. After being applied to the condenser microphone product, the product reliability and product can be better realized. performance.
  • the conductive layer of the spacer may also be selected from other types of conductive layers, for example, using a layer of a polymer organic material as an insulating layer, and placing the polymer organic material layer in a plasma environment using a proton bombardment technique.
  • the surface of the polymer organic material layer is treated to form a conductive layer on the originally insulated polymer organic material layer, so that the separator has an antistatic function, and the process does not change other characteristics of the organic material layer, and is environmentally friendly. specialty.
  • metal conductive layer metal conductive layer
  • other conductive layer are preferred methods of the present invention, and other similar organic material layers are used as a substrate.
  • a method of providing a metal layer or a metalloid layer or other conductive layer on the organic material layer to realize the conductive and antistatic function of the entire separator is to be understood as an equivalent method of the present invention.
  • the present invention also provides a condenser microphone, which uses the above various spacers, Can effectively reduce product manufacturing costs and improve product quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

说明书
Title of Invention:电容式麦克风的隔离片和釆用这种隔离片的电容 式麦克风
技术领域
技术领域
[1] 本发明涉及一种电容式麦克风, 尤其涉及电容式麦克风的隔离片。
背景技术
背景技术
[2] 近年来, 在手机、 耳机等电子产品中, 价格低廉、 性能优越的电容式麦克风被 广泛应用。 电容式麦克风的核心器件是由极板、 振动膜片以及设置在二者之间 的隔离片构成的电容组件。
[3] 电容式麦克风中的隔离片主要起到将极板和振动膜片隔离开, 从而形成平行板 电容的作用。 一般来讲可以预先制作隔离片, 即利用冲压、 切割等工艺将隔离 片制作成为单一分离的环形片, 然后安装到电容式麦克风中。 在部分产品结构 中, 也可以将没有分离的隔离片先安装到按照阵列分布的多个电容式麦克风中 再利用冲压、 切割等工艺进行分离。 例如专利申请号为 CN200610099179.6的 专利公开了一种将多个电容式麦克风的零件按照阵列分布, 并且一起装配后再 进行切割分离的结构, 在该专利中, 说明了隔离片是利用树脂薄膜或者金属板 制作的。
[4] 然而, 如果利用树脂薄膜制作隔离片, 虽然成本低廉、 加工容易, 但是在隔离 片的分离过程中容易产生静电, 对产品性能造成影响。 此外, 如果利用金属板 制作隔离片, 虽然可以解决产生静电的问题, 但加工难度和成本都会提高, 而 且容易导致极板和振动膜片之间的寄生电容增加, 产品极限灵敏度下降。 因此 , 需要一种成本低廉、 结构简单且能够减小静电影响的电容麦克风。
对发明的公开
技术问题 [5] 本发明所要解决的技术问题是提供一种成本低廉、 不容易产生静电影响的电容 式麦克风隔离片。
技术解决方案
[6] 为解决上述技术问题, 本发明的技术方案是: 电容式麦克风的隔离片, 安装在 麦克风的极板和振动膜片之间, 并且: 所述隔离片包括至少一层绝缘层, 及与 所述绝缘层结合的至少一层导电层。
[7] 本技术方案的改进在于: 所述绝缘层为有机材料层, 所述导电层为准金属化层 或者金属层。
[8] 本技术方案的改进在于: 所述隔离片包括一层有机材料层和一层金属层。
[9] 本技术方案的改进在于: 所述隔离片包括一层有机材料层, 所述有机材料层两 侧分别设置有一层金属层。
[10] 本技术方案的改进在于: 所述金属层的厚度为 0.001mm ~ 0.01mm。
[11] 本技术方案的改进在于: 所述有机材料层的厚度为 0.01mm ~0.1mm。
[12] 本技术方案的改进在于: 所述隔离片为环形结构, 所述隔离片的外围设置有多 个连接筋。
[13] 本技术方案的改进在于: 所述隔离片为环形结构, 所述隔离片外周为方形。
[14] 本技术方案的改进在于: 所述绝缘层为有机高分子材料层, 所述导电层为通过 在等离子环境下利用质子轰击技术对所述有机高分子材料层表面进行抗静电处 理后形成的导电层。
[15] 本技术方案的改进在于: 所述有机材料层为有机高分子材料层, 所述准金属化 层或者金属层为通过将金属离子轰击所述有机高分子材料层使得所述有机高分 子材料层表面金属化或者准金属化来实现。
[16] 本技术方案的改进在于: 所述有机材料层为有机高分子材料层, 所述金属层为 通过电镀或者热浸镀的湿化学方法将金属沉积在所述有机高分子材料层上来实 现。
[17] 本发明还提供了一种电容式麦克风, 这种电容式麦克风釆用上述各种隔离片, 可以有效的降低产品制造成本并且提高产品质量。
有益效果 [18] 由于釆用了上述技术方案, 电容式麦克风的隔离片, 安装在麦克风的极板和振 动膜片之间, 并且: 所述隔离片包括至少一层绝缘层, 及与所述绝缘层结合的 至少一层导电层; 本发明的有益效果是: 可以有效地避免隔离片在加工过程中 产生或储存静电, 同吋也克服了使用金属片制造隔离片吋的加工难度大、 成本 高、 容易增加寄生电容的缺点。
附图说明
[19] 图 1是表示具备本发明涉及的隔离片的电容式麦克风的具体结构的剖视图; [20] 图 2是上述电容式麦克风的局部 A的放大示意图;
[21] 图 3是表示本发明的第一实施例涉及的单体隔离片的具体结构的平面示意图; [22] 图 4是表示本发明的第一实施例涉及的隔离片阵列的平面示意图;
[23] 图 5是表示本发明的第二实施例涉及的单体隔离片的具体结构的平面示意图; [24] 图 6是表示本发明的第二实施例涉及的隔离片阵列的平面示意图。
本发明的实施方式
[25] 第一实施例:
[26] 下面, 结合附图详细说明本发明涉及的电容式麦克风的隔离片。
[27] 图 1是表示具备本发明涉及的隔离片的电容式麦克风的具体结构的剖视图。 如 图 1所示, 具备本发明涉及的隔离片的电容式麦克风的, 包括位于顶部的线路板 基板 1、 位于底部的线路板底板 3、 以及位于所述线路板基板与线路板底板之间 的线路板框架 2, 这些线路板基板 1、 线路板底板 2、 线路板框架 3的全部或一部 分可以用线路板制成, 并且构成电容式麦克风的保护结构。 其中, 在线路板基 板 1的朝向麦克风外侧的上表面设置有多个可以实现贴片安装的电极 11, 在朝向 麦克风内部的下表面设置有信号放大装置 12。 另外, 在所述线路板底板 3上设置 有用于接收外界声音信号的声孔 31。 此外, 在该麦克风的内部, 还安装有弹性 金属连接装置 4、 极板 5、 隔离片 6、 振动膜片 7和用于固定所述振动膜片 7的振动 环 71, 其中, 该极板 5、 振动膜片 7以及设置在二者之间的隔离片 6构成电容式麦 克风的电容组件。
[28] 弹性金属连接装置 4的一端连接极板 5, 其另一端连接线路板基板 1, 从而将极 板 5和线路板基板 1电连接。 振动膜片 7通过振动环 71以及线路板底板 3、 线路板 框架 2之间的电路 (图中未示出) 连接到线路板基板 1上, 而且在线路板基板 1的 两侧以及内部设置有必要的电路。 并且, 所述信号放大装置 12可以实现电信号 的放大等。 通常情况下, 这些构成属于公知技术, 所以, 在此不进行详细描述
[29] 图 2是上述电容式麦克风的局部 A的放大示意图。 如图 2所示, 隔离片 6包括有机 材料层 61和金属层 62, 金属层 62设置在有机材料层 61的上侧或者下侧, 通过这 种双层的隔离片结构, 在隔离片的加工过程中, 可以同吋利用金属板和有机材 料本身的优点, 并且制作工艺较为简单, 只需要在有机材料层上镀覆金属层即 可。 另外, 金属层 62的厚度优选为 0.001〜0.01 mm, 有机材料层 61的厚度优选 为 0.01〜0.1 mm, 金属层可以釆用铜箔、 铝箔等材料, 有机材料层可以釆用 PI等 材料。
[30] 图 3是表示本发明的第一实施例涉及的单体隔离片的具体结构的平面示意图。
如图 3所示, 该隔离片 6具有大体上环形结构, 其中心具有开口部, 在隔离片 6上 还等间隔地一体形成有四个向外延伸突出的连接筋 63。 在此, 以设置 4个连接筋 63的例子做了说明, 但一个隔离片上的连接筋 63的个数不限于 4个, 可以是 2个 以上的任意数量。 一般来讲, 在制造单体的电容式麦克风吋, 可以利用冲压、 切割等工艺制作单体的环形隔离片, 然后将该单体隔离片单个地安装到电容式 麦克风中。 但是, 在适合大批量自动化生产的阵列式麦克风制造中, 也可以先 利用冲压等工艺制作将多个隔离片连成一体的隔离片阵列, 然后将该隔离片阵 列同吋安装到多个电容式麦克风中, 再利用切割等工艺分离成留在各麦克风中 的单体的隔离片。 图 4是表示本发明的第一实施例涉及的隔离片阵列的平面示意 图, 其中, 6个隔离片形成 2x3的阵列形式, 相邻的各隔离片的连接筋 63通过连 接部 64连接在一起。 将如此形成的隔离片阵列同吋安装到多个电容式麦克风中 , 再通过切割相邻隔离片之间的连接部 64, 使各个隔离片成为单体分离的状态 , 从而留在各个电容式麦克风单体中。
[31] 第二实施例:
[32] 下面, 说明本发明第二实施例涉及的隔离片的具体结构。 同第一实施例中隔离 片由金属层 62和有机材料层 61这两层构成的结构相比, 本第二实施例的隔离片 包括分别位于外层的 2个金属层 62和设置在该 2个金属层之间的有机材料层 61。 该结构也可以实现与第一实施例相近似的效果。
[33] 另外, 图 5示出了隔离片 6的改变后的另一种形状, 即隔离片 6的形状为中部开 设有椭圆形开口的方形结构。 图 6示出多个图 5所示的隔离片 6连接成一体而形成 的隔离片阵列的结构, 其中, 相邻的隔离片 6之间通过连接部 64相连接在一起。 在此, 连接部 64具有沿着隔离片 6的边沿延伸的长条形状, 该结构同样可以适用 于大批量自动化生产麦克风的需要, 还可以更进一步加强各个隔离片之间的连 接。 毋庸置疑, 在此也可以使用第一实施例的连接筋 64的结构。
[34] 为了进一步降低制造成本, 在本发明的一个优选实施方案中, 有机材料层 61为 高分子有机材料层, 金属层 62通过电镀或者热浸镀等湿化学方法将金属沉积在 有机材料层 61上来实现。
[35] 在本发明的一个优选实施方式中, 也可以用同样具备导电性能的准金属化层替 代金属层, 也可以有效地避免隔离片在加工过程中产生或储存静电。
[36] 同吋, 本发明中准金属化层及金属层也可以釆用通过金属离子轰击高分子有机 材料层, 从而使得高分子有机材料层表面金属化或者准金属化、 使其具有导电 性并且具有防静电功能, 这种工艺得到的准金属化层和金属层在高分子有机材 料层上结合牢固、 不易磨损脱落, 在应用到电容式麦克风产品以后能够更好的 实现产品可靠性和产品性能。
[37] 在本发明中, 隔离片的导电层也可以选用其他形式的导电层, 例如利用一层高 分子有机材料层为绝缘层, 将高分子有机材料层置于等离子环境下利用质子轰 击技术对高分子有机材料层表面进行处理, 使得原本绝缘的高分子有机材料层 上形成有导电层, 从而使隔离片具有抗静电功能, 并且这种工艺不会改变有机 材料层的其他特性, 具有环保的特点。
[38] 本说明书提供的几种在有机材料层上设置金属导电层 (准金属导电层)或者其他 导电层的方法, 为本发明优选的方法, 其他近似的以有机材料层为基材, 在有 机材料层上设置金属层或者准金属层或者其他导电层从而实现整个隔离片具有 导电、 抗静电功能的工艺方法, 应当理解为本发明的等同方法。
[39] 本发明还提供了一种电容式麦克风, 这种电容式麦克风釆用上述各种隔离片, 可以有效的降低产品制造成本并且提高产品质量。
[40] 以上对本发明所请求保护的电容式麦克风的隔离片以及应用这种隔离片的电容 式麦克风进行了详细介绍, 仅仅是应用了具体实施例对本发明的原理及实施方 式进行的阐述, 以上实施例的说明只是用于帮助理解本发明核心思想; 同吋, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。 工业实用性
[41]
序列表自由内容
[42]

Claims

权利要求书
[Claim 1] 1.一种电容式麦克风的隔离片, 安装在麦克风的极板和振动膜片之 间, 其特征在于: 所述隔离片包括至少一层绝缘层, 及与所述绝 缘层结合的至少一层导电层。
2.根据权利要求 1所述的电容式麦克风的隔离片, 其特征在于: 所 述绝缘层为有机材料层, 所述导电层为准金属化层或者金属层。
3.根据权利要求 2所述的电容式麦克风的隔离片, 其特征在于: 所 述隔离片包括一层有机材料层, 在所述有机材料层的两侧分别设 置有一层金属层。
4.根据权利要求 3所述的电容式麦克风的隔离片, 其特征在于: 所 述金属层的厚度为 0.001 mm - 0.01mm。
5.根据权利要求 3所述的电容式麦克风的隔离片, 其特征在于: 所 述有机材料层的厚度为 0.01 mm ~0.1mm。
6.根据权利要求 1至 5任一权利要求所述的电容式麦克风的隔离片, 其特征在于: 所述隔离片为环形结构, 所述隔离片的外围设置有 多个连接筋。
7.根据权利要求 1至 5任一权利要求所述的电容式麦克风的隔离片, 其特征在于: 所述隔离片为环形结构, 所述隔离片外周为方形。
8.根据权利要求 1所述的电容式麦克风的隔离片, 其特征在于: 所 述绝缘层为有机高分子材料层, 所述导电层为通过在等离子环境 下利用质子轰击技术对所述有机高分子材料层表面进行抗静电处 理后形成的导电层。
9.根据权利要求 2所述的电容式麦克风的隔离片, 其特征在于: 所 述有机材料层为有机高分子材料层, 所述准金属化层或者金属层 为通过将金属离子轰击所述有机高分子材料层使得所述有机高分 子材料层表面金属化或者准金属化来实现。
10.根据权利要求 2所述的电容式麦克风的隔离片, 其特征在于: 所 述有机材料层为有机高分子材料层, 所述金属层为通过电镀或者 热浸镀的湿化学方法将金属沉积在所述有机高分子材料层上来实 现。
11.一种电容式麦克风, 其特征在于: 该电容式麦克风包括权利要 求 1〜11中任一项所述的隔离片。
PCT/CN2009/074952 2009-01-19 2009-11-16 电容式麦克风的隔离片和采用这种隔离片的电容式麦克风 WO2010081347A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/145,019 US8654996B2 (en) 2009-01-19 2009-11-16 Spacer for a capacitive microphone and capacitive microphone with the same
KR1020117016596A KR101281229B1 (ko) 2009-01-19 2009-11-16 콘덴서형 마이크로폰의 스페이서 및 그 스페이서를 사용한 콘덴서형 마이크로폰

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200920018530.3 2009-01-19
CN200920018530U CN201383872Y (zh) 2009-01-19 2009-01-19 电容式麦克风的隔离片

Publications (1)

Publication Number Publication Date
WO2010081347A1 true WO2010081347A1 (zh) 2010-07-22

Family

ID=41527343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074952 WO2010081347A1 (zh) 2009-01-19 2009-11-16 电容式麦克风的隔离片和采用这种隔离片的电容式麦克风

Country Status (4)

Country Link
US (1) US8654996B2 (zh)
KR (1) KR101281229B1 (zh)
CN (1) CN201383872Y (zh)
WO (1) WO2010081347A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959109A (zh) * 2010-05-25 2011-01-26 瑞声声学科技(深圳)有限公司 微机电系统麦克风
CN109429156B (zh) * 2017-09-05 2024-03-01 山东共达电声股份有限公司 驻极体传声器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299226A (zh) * 1999-12-09 2001-06-13 元一通讯株式会社 电容式麦克风的绝缘环及其固定方法
US20020168073A1 (en) * 2001-05-10 2002-11-14 Kazuhiko Kajihara Electret condenser microphone and method of producing same
CN1578538A (zh) * 2003-07-29 2005-02-09 Bse株式会社 集成基座及使用该基座的驻极体电容器麦克风
CN1784084A (zh) * 2004-12-03 2006-06-07 佳乐电子股份有限公司 麦克风及其制造方法
US20060188112A1 (en) * 2005-02-24 2006-08-24 Eekjoo Chung Condenser microphone and method for manufacturing the same
KR20070088079A (ko) * 2006-02-24 2007-08-29 주식회사 비에스이 사각 콘덴서 마이크로폰
KR20070105785A (ko) * 2006-04-27 2007-10-31 (주) 대일씨티 콘덴서 마이크로폰
CN201042076Y (zh) * 2007-04-29 2008-03-26 歌尔声学股份有限公司 电容式麦克风

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876211A (en) * 1988-08-09 1989-10-24 Hughes Aircraft Company Method for fabricating varactor diodes using ion implanation
GB9425577D0 (en) * 1994-12-19 1995-02-15 Power Jeffrey Acoustic transducers with controlled directivity
US6741709B2 (en) * 2000-12-20 2004-05-25 Shure Incorporated Condenser microphone assembly
WO2002052893A1 (en) * 2000-12-22 2002-07-04 Brüel & Kjær Sound & Vibration Measurement A/S A highly stable micromachined capacitive transducer
RU2193255C1 (ru) * 2002-01-08 2002-11-20 Санкт-Петербургский государственный электротехнический университет Микроэлектронная структура на основе "кремний-диэлектрик" для изготовления полупроводниковых приборов и способ ее получения
FR2837218B1 (fr) * 2002-03-18 2005-02-18 Dacral Sa Composition de revetement de substrat metallique
CN1186822C (zh) * 2002-09-23 2005-01-26 中国科学院长春应用化学研究所 有机薄膜晶体管及制备方法
US20040157426A1 (en) * 2003-02-07 2004-08-12 Luc Ouellet Fabrication of advanced silicon-based MEMS devices
JP3867716B2 (ja) * 2004-06-18 2007-01-10 セイコーエプソン株式会社 超音波トランスデューサ、超音波スピーカ、及び超音波トランスデューサの駆動制御方法
JP2006019858A (ja) * 2004-06-30 2006-01-19 Audio Technica Corp マイクロホン装置
JP4787648B2 (ja) * 2006-03-29 2011-10-05 パナソニック株式会社 コンデンサマイクロホンの製造方法およびコンデンサマイクロホン
US8126167B2 (en) * 2006-03-29 2012-02-28 Yamaha Corporation Condenser microphone
JP2008048329A (ja) * 2006-08-21 2008-02-28 Star Micronics Co Ltd コンデンサマイクロホン及びコンデンサマイクロホンの積層構造体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299226A (zh) * 1999-12-09 2001-06-13 元一通讯株式会社 电容式麦克风的绝缘环及其固定方法
US20020168073A1 (en) * 2001-05-10 2002-11-14 Kazuhiko Kajihara Electret condenser microphone and method of producing same
CN1578538A (zh) * 2003-07-29 2005-02-09 Bse株式会社 集成基座及使用该基座的驻极体电容器麦克风
CN1784084A (zh) * 2004-12-03 2006-06-07 佳乐电子股份有限公司 麦克风及其制造方法
US20060188112A1 (en) * 2005-02-24 2006-08-24 Eekjoo Chung Condenser microphone and method for manufacturing the same
KR20070088079A (ko) * 2006-02-24 2007-08-29 주식회사 비에스이 사각 콘덴서 마이크로폰
KR20070105785A (ko) * 2006-04-27 2007-10-31 (주) 대일씨티 콘덴서 마이크로폰
CN201042076Y (zh) * 2007-04-29 2008-03-26 歌尔声学股份有限公司 电容式麦克风

Also Published As

Publication number Publication date
US8654996B2 (en) 2014-02-18
KR20110096586A (ko) 2011-08-30
CN201383872Y (zh) 2010-01-13
US20110274300A1 (en) 2011-11-10
KR101281229B1 (ko) 2013-07-02

Similar Documents

Publication Publication Date Title
US9162869B1 (en) MEMS microphone package structure having non-planar substrate and method of manufacturing same
US9271435B2 (en) Miniature microphone, protection frame thereof and method for manufacturing the same
US20070189556A1 (en) Condenser microphone and method of producing the same
JP2007043327A (ja) コンデンサマイクロホン
JP2005192178A (ja) 統合ベース及びこれを利用したエレクトレットコンデンサマイクロホン
CN102075838B (zh) 驻极体传声器
EP2116101A1 (en) Stray capacitance reduced condenser microphone
US20080037815A1 (en) Condenser microphone
US8103028B2 (en) Electrostatic loudspeaker
WO2010081347A1 (zh) 电容式麦克风的隔离片和采用这种隔离片的电容式麦克风
WO2014094831A1 (en) Top-port mems microphone and method of manufacturing the same
CN102075841B (zh) 驻极体传声器
CN1480010A (zh) 超薄型电容式话筒装置及其装配方法
CN101835077A (zh) 一种驻极体电容传声器及其制作方法
CN103108274A (zh) 驻极体电容传声器
CN201682614U (zh) 一种驻极体电容传声器
KR100696164B1 (ko) 배극판 홀더와 그를 구비하는 콘덴서 마이크로폰 및 그조립방법
CN101888585B (zh) 一种单指向电容式麦克风
CN101742388B (zh) 具有驻极体式电声换能器的电子装置
KR20040079776A (ko) 일렉트릿 콘덴서 마이크로폰
CN102026084A (zh) 驻极体电容传声器的制作方法
CN201657312U (zh) 电容式麦克风
WO2012159536A1 (zh) 驻极体电容传声器
CN201742552U (zh) 一种单指向电容式麦克风
CN201167414Y (zh) 微型电容式麦克风

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016596

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13145019

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838134

Country of ref document: EP

Kind code of ref document: A1