WO2010079749A1 - Data transfer device and camera - Google Patents

Data transfer device and camera Download PDF

Info

Publication number
WO2010079749A1
WO2010079749A1 PCT/JP2010/000051 JP2010000051W WO2010079749A1 WO 2010079749 A1 WO2010079749 A1 WO 2010079749A1 JP 2010000051 W JP2010000051 W JP 2010000051W WO 2010079749 A1 WO2010079749 A1 WO 2010079749A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
signal
data
data signal
amount
Prior art date
Application number
PCT/JP2010/000051
Other languages
French (fr)
Japanese (ja)
Inventor
小山勝
田村勉
向山日出海
Original Assignee
株式会社ニコンシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコンシステム filed Critical 株式会社ニコンシステム
Publication of WO2010079749A1 publication Critical patent/WO2010079749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines

Definitions

  • the present invention relates to a data transfer device and a camera having the data transfer device.
  • Patent Document 1 discloses a data transfer apparatus that corrects delay variation between signals in parallel data transfer.
  • the present invention has been made in view of the above problems, and a data transfer apparatus that enables stable data transfer by correcting a delay in data transfer that changes from time to time due to temperature change or voltage change, and the data transfer apparatus. It aims at providing the camera which has this.
  • a data transfer device is a data transfer device that transfers a data signal in synchronization with a clock signal, and is a reference delayed data signal obtained by delaying the data signal by a reference delay amount.
  • a delay processing unit that outputs a small delay data signal delayed by a first delay compensation amount smaller than a reference delay amount, and a large delay data signal delayed by a second delay compensation amount larger than a reference delay amount
  • a capture unit that captures and outputs data from the reference delay data signal based on the clock signal, matching between the reference delay data signal and the small delay data signal, and the reference delay data signal and the large delay data signal
  • a delay control unit that controls a reference delay amount in the delay processing unit based on at least one of the matching.
  • the delay control unit increases the reference delay amount of the delay processing unit when the reference delay data signal and the small delay data signal cannot be matched, and increases the reference delay data signal and the large delay data signal.
  • the reference delay amount of the delay processing unit may be decreased.
  • the capturing unit compares the data captured from the reference delay data signal with the data captured from the small delay data signal based on the clock signal, and when the matching is not achieved.
  • the delay control unit is configured to output a delay plus signal, compare the data fetched from the reference delay data signal with the data fetched from the large delay data signal, and output a delay minus signal if a match is not achieved.
  • the first and second delay compensation amounts may be set to be smaller than half the data width of the data signal.
  • the frequency of the clock signal may be 1 GHz or more.
  • the camera according to the present invention includes any one of the data transfer devices described above.
  • FIG. 5 is a timing chart showing an example of correcting a reference delay amount, where (a) shows a data signal at the time of initial setting, (b) shows a data signal when a delay time increases due to a temperature rise or the like, and (c) Indicates a data signal after correction of the reference delay amount. It is a flowchart which shows the correction process of the reference
  • a data transfer device is a data transfer device provided in the signal processing circuit 3 with the image sensor 2 of the camera 1 as an output device, the signal processing circuit 3 as an input device, and a data signal output from the image sensor 2.
  • An example of a configuration in which the image is captured by the unit 4 and transferred to the image processing unit 5 is shown.
  • the image sensor 2 is connected to one end of two data signal lines DATA 0 and DATA 1 that output image signals (data signals) in parallel and one end of a clock signal line CLK that outputs a clock signal. .
  • the other ends of these signal lines DATA0, DATA1, and CLK are connected to the data transfer unit 4 of the signal processing circuit 3, respectively.
  • an image signal (data signal) is transmitted in parallel using two channels using a clock signal. Can be transferred.
  • the image sensor 2 also has a function of outputting test data to be described later to the data signal lines DATA0 and DATA1.
  • the signal processing circuit 3 is a digital front-end circuit that performs various types of image processing on the digital image signal (data signal) input from the image sensor 2.
  • the signal processing circuit 3 includes a data transfer unit 4, an image processing unit 5, and a storage unit 6. Further, each of the data transfer units 4 includes two delay processing units 7 and capture units 8 and a delay control unit 9. In the signal processing circuit 3, the delay processing unit 7, the capturing unit 8, and the storage unit 6 are each connected to a delay control unit 9.
  • the image processing unit 5 is an ASIC that performs various types of image processing (defective pixel correction, gradation correction, white balance adjustment, edge enhancement, etc.) on a digital image signal. In FIG. 1, the flow of the data signal (image signal) is indicated by a solid line, and the flow of the control signal is indicated by a broken line.
  • the above-described delay processing unit 7 and capturing unit 8 are arranged for each of the signal lines DATA0 and DATA1.
  • the delay processing unit 7 and the capturing unit 8 of each set are connected in series, and each delay processing unit 7 is connected to one of the data signal lines DATA0 and DATA1.
  • the output of each capturing unit 8 is connected to the image processing unit 5 via a signal line 19.
  • Each capturing unit 8 is connected to a clock signal line CLK.
  • the delay control unit 9 and each delay processing unit 7 are connected by a signal line 20, and the delay control unit 9 and each take-in unit 8 are connected by a signal line 21. Note that the delay processing unit 7 and the capturing unit 8 of each set have the same configuration.
  • the delay processing unit 7 and the capturing unit 8 connected to the data signal line DATA0 will be described, and the description of the delay processing unit 7 and the capturing unit 8 connected to the data signal line DATA1 will be omitted. To do.
  • the delay processing unit 7 is a circuit that controls the delay amount of the data signal output from the data signal line DATA0. As shown in FIG. 2A, the delay processing unit 7 includes a plurality of delay elements (buffers, etc.) 11 connected in series in a plurality of stages, and a plurality of paths 12 connected to the outputs of the respective delay elements 11. And a selector 10 for selecting one of these paths 12.
  • the signal line DATA0 is connected to the input terminal of the first stage of the delay element 11 (delay 1 in FIG. 2A).
  • the delay processing unit 7 is configured such that signals passing through the three paths 12 selected by the selector 10 are output from the three signal lines 13 (13a to 13c) connected to the selector 10. .
  • the above three paths are selected by the selector 10 based on the reference delay switching signal A and the delay compensation amount signal N transmitted from the delay control unit 9 via the signal line 20.
  • the output of the A-stage delay element (delay A in FIG. 2B) designated by the reference delay switching signal A that is, the A-stage delay A signal that has passed through the element 11 (hereinafter referred to as “reference delay data signal N0”) is output to the signal line 13a.
  • the delay element 11 (the Ath stage) N stages before the Ath stage has a delay quantity smaller than the delay quantity by the delay element 11 from the first stage to the Ath stage (referred to as “reference delay quantity”).
  • a signal (hereinafter referred to as “small delay data signal N ⁇ ”) that has passed through the ⁇ N stage delay element 11) is output from the signal line 13b. Further, a signal having a delay amount larger than the reference delay amount and having passed through the delay element 11 N stages after the A stage (the A + N delay element 11) (hereinafter referred to as “large delay data signal N +”). Is output from the signal line 13c. As apparent from the configuration of FIG. 2, the amount by which the data signal input via DATA 0 in the delay processing unit 7 is delayed is determined by the number of delay elements 11. Therefore, the reference delay switching signal A and the delay compensation amount signal N are actually expressed as the number of stages of the delay elements 11.
  • FIG. 2B shows a case where the delay compensation amount 1 (one stage of the delay element 11) is designated as the delay compensation amount signal N, and the signal that has passed through the delay A-1 and the delay A + 1 is shown. These are output as a small delay data signal N ⁇ and a large delay data signal N +, respectively.
  • the delay time of one delay element 11 is about 1/10 or less of the data transfer period (when the data transfer period is 1 GHz, the delay time of one delay element 11 is 100 picoseconds or less).
  • the number of delay elements 11 is at least 1.5 times the data transfer period of the entire delay element 11 (15 when the data transfer period is 1 GHz and the delay time of the delay element 11 is 100 picoseconds).
  • the margin may be ensured by setting it to be several times the data transfer cycle.
  • the delay processing unit 7 is used to adjust the delay amount of the data signal captured by the capturing unit 8 with respect to the clock signal.
  • the delay compensation amount signal N is set in a range where the delay compensation amount is smaller than half of the data width of the data signal.
  • the delay compensation amount for the small delay data signal is the same as the delay compensation amount for the large delay data signal, but they may be different.
  • the signal transmitted from the delay control unit 9 via the signal line 20 includes the reference delay switching signal A, the first delay compensation amount signal N1 for the small delay data signal N ⁇ , and the large delay data signal N +. Becomes the second delay compensation amount signal N1.
  • the fetch unit 8 is a value indicated by the input data signal (reference delay data signal N0) in synchronization with the rising or falling edge of the clock signal input from the clock signal line CLK or both the falling and rising timings. Is to capture. As shown in FIG. 3, the fetch unit 8 includes three flip-flop circuits (FF) 14 to 16 and two exclusive OR circuits (EXOR) 17 and 18.
  • the reference delay data signal N0 output to the signal line 13a of the delay processing unit 7 is input to the D terminal of the first flip-flop circuit 14.
  • the small delay data signal N ⁇ output to the signal line 13b is input to the D terminal of the second flip-flop circuit 15.
  • the large delay data signal N + output to the signal line 13c is input to the D terminal of the third flip-flop circuit 16.
  • the clock signal line CLK is connected to the CK terminals of the first to third flip-flop circuits 14 to 16, and the clock signal output from the image sensor 2 is input to these CK terminals.
  • the flip-flop circuits 14 to 16 hold the value (“1” or “0”) of the signal input to the D terminal at the time of rising or falling of the clock signal or both of falling and rising, and the Q terminal Is output from
  • the value output from the Q terminal of the first flip-flop circuit 14 is output to the image processing unit 5 through the signal line 19 and simultaneously output to the delay control unit 9 through the signal line 21 as the data signal Sd.
  • the Q output of the first flip-flop circuit 14 and the Q output of the second flip-flop circuit 15 are connected to the two IN terminals of the first exclusive OR circuit 17, respectively.
  • the delay plus signal Sp is output from the OUT terminal of the first exclusive OR circuit 17 to the delay control unit 9 via the signal line 21.
  • the Q output of the first flip-flop circuit 14 and the Q output of the third flip-flop circuit 16 are connected to the two IN terminals of the second exclusive OR circuit 18, respectively.
  • a delay minus signal Sn is output from the OUT terminal of the second exclusive OR circuit 18 to the delay control unit 9 via the signal line 21.
  • the first and second exclusive OR circuits 17 and 18 are configured such that “0” is output from the OUT terminal when the input values of the two IN terminals are the same, and “1” is output when they are different. ing. That is, when the clock signal rises or falls, “0” is output as the delay plus signal Sp when the reference delay data signal N0 and the small delay data signal N ⁇ match, and “1” when they are different. Is output. Similarly, “0” is output as the delay minus signal Sn when the reference delay data signal N0 matches the large delay data signal N +, and “1” is output when they are different.
  • the capturing unit 8 outputs the delay plus signal Sp, and the reference delay data signal N0 and the large delay data signal N + When the matching cannot be achieved, the delay minus signal Sn is output.
  • the delay compensation amount (the delay compensation amount for the small delay data signal and the delay compensation amount for the large delay data signal) is set too large, or when the eye pattern becomes small due to a temperature change or the like, FIG.
  • the outputs of the two exclusive OR circuits (EXOR) 17 and 18 may become 1, so a process for reducing the delay compensation amount is required.
  • a process for reducing the delay compensation amount is not necessary.
  • a process for reducing the delay compensation amount may be added to the flow process of FIG.
  • the delay control unit 9 is a processor that controls each group of the delay processing unit 7 and the capturing unit 8 independently.
  • the delay control unit 9 is based on signals (data signal Sd, delay plus signal Sp, and delay minus signal Sn) input via the signal line 21 connected to the capturing unit 8. It controls the reference delay amount (the number of delay stages) (detailed control method will be described later).
  • the storage unit 6 includes a storage medium such as a register.
  • the storage unit 6 stores data such as a reference delay amount (the number of delay stages) of the delay processing unit 7 controlled by the delay control unit 9. (Reference delay amount initial setting process) Now, an operation example of the data transfer unit 4 configured as described above will be described.
  • the delay control unit 9 determines the reference delay amount in the delay processing unit 7 using the test data output from the image sensor 2.
  • the test data in this case is composed of a binary data string in which “0” and “1” are repeated in the same cycle as the clock signal.
  • the delay control unit 9 initializes the reference delay amount of the delay processing unit 7 (for example, sets the number of delay stages to 0) and instructs the image sensor 2 to start outputting test data (step S101).
  • test data is output from the image sensor 2 to the data signal lines DATA0 and DATA1 in synchronization with the clock signal.
  • the test data of the data signal line DATA0 is input to the capturing unit 8 via the delay processing unit 7.
  • the delay control unit 9 determines whether or not the data signal Sd captured by the capturing unit 8 and input to the delay control unit 9 at the rising edge of the clock signal is “0” (step S102). .
  • the delay control unit 9 increases the reference delay amount (the number of delay stages) by 1, and uses the reference delay amount as the reference delay switching signal A as a delay processing unit. 7 is output. As a result, the delay control unit 9 increases the number of stages of the delay elements 11 that output the reference delay data signal N0 by 1 (step S103). Thereby, the phase of the data signal (test data) input from the data signal line DATA0 can be delayed. Thereafter, the delay control unit 9 returns to step S102 and repeats the above-described operation.
  • step S102 the loop from the NO side of step S102 to step S103 is performed until the data signal capturing position in the capturing unit 8 reaches a value of “0” in order to search for the rising position of the signal waveform in the test data. This corresponds to the shift operation.
  • step S102 when the data signal Sd is “0” (YES side of S102), the delay control unit 9 is captured by the capture unit 8 at the rising edge of the clock signal, and the delay control unit 9 It is determined whether or not the data signal Sd input to “1” is “1” (step S104).
  • the delay control unit 9 increases the reference delay amount (the number of delay stages) by 1, and uses the reference delay amount as the reference delay switching signal A as a delay processing unit. 7 is output. Thereby, the delay control unit 9 increases the number of stages of the delay elements 11 to which the reference delay data signal N0 is output by 1 (step S105).
  • step S104 the delay control unit 9 returns to step S104 and repeats the above-described operation.
  • the loop from the NO side to step S105 in step S104 corresponds to an operation of shifting the data signal acquisition position in the acquisition unit 8 to the rising position of the signal waveform in the test data.
  • step S104 when the data signal Sd is “1” (YES in S104), the delay control unit 9 temporarily stores the current reference delay amount in the storage unit 6 as “delay_start”. (Step S106).
  • the reference delay amount “delay_start” stored in step S106 corresponds to the rising position of the signal waveform in the test data (see FIG. 5).
  • the delay control unit 9 determines whether or not the data signal Sd captured by the capturing unit 8 and input to the delay control unit 9 at the rising edge of the clock signal is “0” (step S107).
  • the delay control unit 9 increases the reference delay amount (the number of delay stages) by 1, and uses the reference delay amount as the reference delay switching signal A as a delay processing unit. 7 is output.
  • the delay control unit 9 increases the number of stages of the delay elements 11 to which the reference delay data signal N0 is output by 1 (step S108).
  • the phase of the data signal (test data) input from the data signal line DATA0 can be delayed.
  • the delay control unit 9 returns to step S107 and repeats the above operation.
  • the loop from the NO side to step S108 in step S107 corresponds to an operation of shifting the data signal capturing position in the capturing unit 8 to the falling position of the signal waveform in the test data (see FIG. 5).
  • step S107 when the data signal Sd is “0” (YES side of S107), the delay control unit 9 temporarily stores the current reference delay amount as “delay_end” in the storage unit 6. (Step S109).
  • the reference delay amount “delay_end” stored in step S109 corresponds to the falling position of the signal waveform in the test data (see FIG. 5).
  • the delay control unit 9 uses the reference delay amount “delay_start” acquired in step S106 and the reference delay amount “delay_end” acquired in step S109, and uses the reference delay of the delay processing unit 7 during data communication.
  • An initial value of the amount (reference capture position of the data signal) is determined (step S110). Specifically, the delay control unit 9 calculates and determines the reference capture position of the data signal by the following equation (1).
  • Reference capture position (delay_end ⁇ delay_start) / 2 + delay_start (1)
  • the reference capture position (initial value of the reference delay amount) obtained in step S110 is located between the rising position and the falling position of the signal waveform of the test data (see FIG. 5). For this reason, in the data communication performed after the initial setting, the data signal capture timing is stabilized by the reference delay amount given by the delay processing unit 7, so that a code error during data transfer is reduced. Further, the reference capture position (initial value of the reference delay amount) is determined based on the actual measurement value of the test data. For this reason, the above setting operation also absorbs errors due to variations in wiring length, elements, and environmental changes, so that the reliability of the data transfer unit 4 can be further improved.
  • the initial value of the reference delay amount can be adjusted independently for each of the data signal line DATA0 and the data signal line DATA1. Therefore, the parallel data transfer unit 4 can avoid the isometric wiring design, and the degree of freedom of layout of elements and wirings is greatly improved at the time of designing. (Reference delay correction)
  • the initial reference delay amount of the delay processing unit 7 is adjusted by the delay control unit 4 by the above processing, and the data signal capturing position in the capturing unit 8 is adjusted to a position where data can be stably captured.
  • the following problems may occur.
  • a delay for example, one delay element 11 occurs in the data signal. Change in the delay time, delay time in the signal line, etc.) and accurate data cannot be obtained.
  • the data transfer unit 4 is configured such that an optimum value can be taken in by correcting the reference delay amount in the delay processing unit 7 in accordance with the state of the data signal.
  • a reference delay amount correction method will be described with reference to FIG.
  • the delay control unit 9 determines an initial reference delay amount using the test data (step S201). Thereafter, the delay control unit 9 sets the number of stages of the delay elements 11 by outputting the reference delay amount as the reference delay switching signal A to the delay processing unit 7. Further, the delay control unit 9 sets a reference delay amount and a delay compensation amount in the selector 10 by outputting a predetermined delay compensation amount as a delay compensation amount signal N to the delay processing unit 7 (step S202).
  • the delay controller 9 uses the delay plus signal Sp and the delay minus signal Sn output from the fetching unit 8 while fetching the data signal by the fetching unit 8 in such a state.
  • the reference delay amount is corrected by the following operation.
  • the delay control unit 9 determines whether or not the delay plus signal Sp is “1” (step S203). When the delay plus signal Sp is “1” (YES side of S203), the delay control unit 9 adds 1 to the current reference delay amount (number of stages) and uses the reference delay amount as the reference delay switching signal A. By outputting to the delay processing unit 7, the number of stages of the delay elements 11 is set (step S204).
  • step S204 adds 1 to the current reference delay amount (number of stages) to increase the delay amount of the data signal to correct the phase (see FIG. 8B). . After the reference delay amount is increased by 1 in step S204, the process returns to step S203 and the same operation is repeated.
  • the delay control unit 9 next determines whether or not the delay minus signal Sn is “1” (step S203). S205). When the delay minus signal Sn is “1” (YES side of S205), the delay control unit 9 subtracts 1 from the current reference delay amount (number of stages) and sets the reference delay amount to the reference delay switching signal. By outputting it to the delay processing unit 7 as A, the number of stages of the delay elements 11 is set (step S206).
  • step S206 performs correction to reduce the delay amount of the data signal and advance the phase by subtracting 1 from the current reference delay amount (number of stages) (see FIG. 8C). ). After the reference delay amount (stage number) is decreased by 1 in step S206, the process returns to step S203 and the same operation is repeated.
  • step S205 If the delay minus signal Sn is not “1” in step S205 (NO side of S205), the process returns to step S203 as it is and repeats the same operation.
  • the adjustment amount of the reference delay amount (stage number) when the delay plus signal Sp or the delay minus signal Sn becomes “1” may be one or more.
  • the adjustment amount of the reference delay amount (number of stages) may be two stages or three stages.
  • the data transfer apparatus can more appropriately correct in real time the delay amount of data that changes from time to time due to temperature change or voltage change, by the processing loop from S203 to S206.
  • processing for determining whether the data Sd captured by the capturing unit 8 is “0” or “1” (step S102, In S104 and S107), in consideration of fluctuations in the data signal due to jitter or the like, it is determined that it is “0” or “1” when it is “0” or “1” continuously acquired several times. You may comprise so that it may do.
  • the delay stage number is set to n times these values by the delay plus signal Sp or the delay minus signal Sn. May be.
  • the delay compensation amount N output from the delay control unit 9 to the delay processing unit 7 may be set to an optimal value depending on the number of stages of the delay elements 11 and the transfer speed (however, as described above, the data signal Range less than half of the data width).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A data transfer device (data transfer unit (4)) arranged in a digital camera (1) includes: a delay process unit (7) which outputs a data signal as reference delay data signal N0 delayed by a predetermined delay amount, a small-delay data signal N- delayed by the predetermined delay amount subtracted by a delay compensation amount, and a large-delay data signal N+ delayed by an amount greater than the predetermined delay compensation amount; an acquisition unit (8) which acquires data from the reference delay data signal N0 according to a clock signal and outputs it; and a delay control unit (9) which controls the predetermined reference delay amount in the delay process unit (7) according to at least one of the matching between the reference data signal N0 and the small-delay data signal N- and the matching between the reference data signal N0 and the large-delay data signal N+.

Description

データ転送装置及びカメラData transfer device and camera
 本発明は、データ転送装置及びこのデータ転送装置を有するカメラに関する。 The present invention relates to a data transfer device and a camera having the data transfer device.
 従来、デジタルデータの高速転送を目的とする電子機器の設計では、伝送路のインピーダンスコントロール、等長配線、プリント基板等の材質の選定を行い、その後に信号波形のシミュレーションを行って、データの有効期間(アイパターン)を確保している。特に、複数の信号線でデータ転送を行うパラレル方式の場合、転送速度がギガヘルツ近傍のオーダーになると等長配線などの対策のみでは限界があり、また、ジッタ(データ信号の遅延時間のゆらぎ)の影響によって安定した高速伝送が困難となることも知られている。なお、特許文献1には、パラレル方式でのデータ転送において、信号間の遅延ばらつきを補正するデータ転送装置が開示されている。 Conventionally, when designing electronic equipment for the purpose of high-speed transfer of digital data, transmission path impedance control, equal-length wiring, selection of materials such as printed circuit boards, etc. are performed, and then signal waveforms are simulated to validate the data. Period (eye pattern) is secured. In particular, in the case of a parallel method in which data transfer is performed using a plurality of signal lines, there is a limit to measures such as isometric wiring if the transfer speed is in the order of gigahertz, and jitter (fluctuation in the delay time of the data signal) is limited. It is also known that stable high-speed transmission becomes difficult due to the influence. Patent Document 1 discloses a data transfer apparatus that corrects delay variation between signals in parallel data transfer.
特開2004-171254号公報JP 2004-171254 A
 しかしながら、信号間の遅延ばらつきを補正したとしても、温度変化や電圧変化によって、データの遅延には時々刻々と変化が発生する。そして、転送されるデータの遅延量がデータの取込タイミングに対して大きく変化すると、データの誤読み出しが生じやすくなり、データ転送の正確性が失われるという課題があった。 However, even if the delay variation between signals is corrected, the data delay changes every moment due to temperature change and voltage change. If the amount of delay of the transferred data greatly changes with respect to the data fetch timing, there is a problem that erroneous data reading is likely to occur and the accuracy of data transfer is lost.
 本発明はこのような課題に鑑みてなされたものであり、温度変化や電圧変化により時々刻々変化するデータ転送における遅延を補正して安定したデータ転送を可能とするデータ転送装置及びこのデータ転送装置を有するカメラを提供することを目的とする。 The present invention has been made in view of the above problems, and a data transfer apparatus that enables stable data transfer by correcting a delay in data transfer that changes from time to time due to temperature change or voltage change, and the data transfer apparatus. It aims at providing the camera which has this.
 前記課題を解決するために、本発明に係るデータ転送装置は、クロック信号に同期してデータ信号を転送するデータ転送装置であって、データ信号を、基準遅延量だけ遅延させた基準遅延データ信号、基準遅延量よりも第1の遅延補償量だけ小さく遅延させた小遅延データ信号、及び、基準遅延量よりも第2の遅延補償量だけ大きく遅延させた大遅延データ信号として出力する遅延処理部と、クロック信号に基づいて、基準遅延データ信号からデータを取り込んで出力する取込部と、基準遅延データ信号と小遅延データ信号との整合、及び、基準遅延データ信号と大遅延データ信号との整合の少なくとも一方に基づいて、遅延処理部における基準遅延量を制御する遅延制御部と、を有する。 In order to solve the above problems, a data transfer device according to the present invention is a data transfer device that transfers a data signal in synchronization with a clock signal, and is a reference delayed data signal obtained by delaying the data signal by a reference delay amount. A delay processing unit that outputs a small delay data signal delayed by a first delay compensation amount smaller than a reference delay amount, and a large delay data signal delayed by a second delay compensation amount larger than a reference delay amount And a capture unit that captures and outputs data from the reference delay data signal based on the clock signal, matching between the reference delay data signal and the small delay data signal, and the reference delay data signal and the large delay data signal A delay control unit that controls a reference delay amount in the delay processing unit based on at least one of the matching.
 このようなデータ転送装置において、遅延制御部は、基準遅延データ信号と小遅延データ信号との整合が取れなくなったときは、遅延処理部の基準遅延量を増加させ、基準遅延データ信号と大遅延データ信号との整合が取れなくなったときは、遅延処理部の基準遅延量を減少させてもよい。 In such a data transfer device, the delay control unit increases the reference delay amount of the delay processing unit when the reference delay data signal and the small delay data signal cannot be matched, and increases the reference delay data signal and the large delay data signal. When the data signal cannot be matched, the reference delay amount of the delay processing unit may be decreased.
 また、このようなデータ転送装置において、取込部は、クロック信号に基づいて、基準遅延データ信号から取り込んだデータと小遅延データ信号から取り込んだデータとを比較して、整合が取れないときは遅延プラス信号を出力し、基準遅延データ信号から取り込んだデータと大遅延データ信号から取り込んだデータとを比較して、整合が取れないときは遅延マイナス信号を出力するように構成され、遅延制御部は、取込部から遅延プラス信号が出力されたときは、遅延処理部の基準遅延量を増加させ、取込部から遅延マイナス信号が出力されたときは、遅延処理部の基準遅延量を減少させてもよい。 In such a data transfer device, the capturing unit compares the data captured from the reference delay data signal with the data captured from the small delay data signal based on the clock signal, and when the matching is not achieved. The delay control unit is configured to output a delay plus signal, compare the data fetched from the reference delay data signal with the data fetched from the large delay data signal, and output a delay minus signal if a match is not achieved. When the delay plus signal is output from the capture unit, the reference delay amount of the delay processing unit is increased, and when the delay minus signal is output from the capture unit, the reference delay amount of the delay processing unit is decreased. You may let them.
 また、このようなデータ転送装置において、第1及び第2の遅延補償量は、データ信号のデータ幅の半分より小さく設定されるようにしてもよい。 In such a data transfer apparatus, the first and second delay compensation amounts may be set to be smaller than half the data width of the data signal.
 さらに、このようなデータ転送装置において、クロック信号の周波数は1GHz以上であってもよい。 Furthermore, in such a data transfer device, the frequency of the clock signal may be 1 GHz or more.
 また、本発明に係るカメラは、上述のデータ転送装置のいずれかを有して構成される。 In addition, the camera according to the present invention includes any one of the data transfer devices described above.
本発明に係るデータ転送装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the data transfer apparatus which concerns on this invention. 遅延処理部の構成例を示すブロック図であり、(a)遅延処理部全体の構成を示し、(b)は主要な部分の構成を示す。It is a block diagram which shows the structural example of a delay processing part, (a) shows the structure of the whole delay processing part, (b) shows the structure of the principal part. 取込部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a taking-in part. 遅延制御部で実行される基準遅延量の初期設定処理を示すフローチャートである。It is a flowchart which shows the initial setting process of the reference | standard delay amount performed with a delay control part. 基準遅延量の初期設定例を示すタイミングチャートである。It is a timing chart which shows the example of initial setting of the reference delay amount. 基準遅延量の補正例を示すタイミングチャートであって,(a)は初期設定時のデータ信号を示し、(b)は温度上昇等により遅延時間が増加した場合のデータ信号を示し、(c)は基準遅延量の補正後のデータ信号を示す。5 is a timing chart showing an example of correcting a reference delay amount, where (a) shows a data signal at the time of initial setting, (b) shows a data signal when a delay time increases due to a temperature rise or the like, and (c) Indicates a data signal after correction of the reference delay amount. 遅延制御部で実行される基準遅延量の補正処理を示すフローチャートである。It is a flowchart which shows the correction process of the reference | standard delay amount performed with a delay control part. (a)は初期状態での取込部の出力例を示し、(b)はS204の場合での取込部の出力例を示し、(c)はS206の場合での取込部の出力例を示す。(A) shows an output example of the capture unit in the initial state, (b) shows an output example of the capture unit in the case of S204, and (c) shows an output example of the capture unit in the case of S206. Indicates.
 以下、本発明の一の実施形態について図面を参照して説明する。まず、図1を用いて本実施の形態に係るデータ転送装置をデジタルカメラに適用した場合を説明する。この図1では、カメラ1の撮像素子2を出力装置とし、信号処理回路3を入力装置として、撮像素子2から出力されるデータ信号を信号処理回路3に設けられたデータ転送装置であるデータ転送部4で取り込んで画像処理部5に渡すように構成したときの構成例を示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, the case where the data transfer apparatus according to this embodiment is applied to a digital camera will be described with reference to FIG. In FIG. 1, a data transfer device is a data transfer device provided in the signal processing circuit 3 with the image sensor 2 of the camera 1 as an output device, the signal processing circuit 3 as an input device, and a data signal output from the image sensor 2. An example of a configuration in which the image is captured by the unit 4 and transferred to the image processing unit 5 is shown.
 このカメラ1において、撮像素子2は、画像信号(データ信号)を並列出力する2つのデータ信号線DATA0,DATA1の一端と、クロック信号を出力するクロック信号線CLKの一端と、が接続されている。そして、これらの信号線DATA0,DATA1,CLKの他端は、それぞれ信号処理回路3のデータ転送部4に接続されている。このように2つの信号線DATA0,DATA1を設けることにより、撮像素子2と信号処理回路3との間のデータ転送では、クロック信号を用いて2つのチャネルにより画像信号(データ信号)をパラレル方式で転送できる。なお、撮像素子2は、データ信号線DATA0,DATA1に対して、後述するテストデータを出力する機能も備えている。 In this camera 1, the image sensor 2 is connected to one end of two data signal lines DATA 0 and DATA 1 that output image signals (data signals) in parallel and one end of a clock signal line CLK that outputs a clock signal. . The other ends of these signal lines DATA0, DATA1, and CLK are connected to the data transfer unit 4 of the signal processing circuit 3, respectively. By providing the two signal lines DATA0 and DATA1 in this way, in the data transfer between the image sensor 2 and the signal processing circuit 3, an image signal (data signal) is transmitted in parallel using two channels using a clock signal. Can be transferred. Note that the image sensor 2 also has a function of outputting test data to be described later to the data signal lines DATA0 and DATA1.
 信号処理回路3は、撮像素子2から入力されたデジタルの画像信号(データ信号)に各種の画像処理を施すデジタルフロントエンド回路である。この信号処理回路3は、データ転送部4と、画像処理部5と、記憶部6と、を有する。さらに、データ転送部4は、それぞれ2つの遅延処理部7及び取込部8と、遅延制御部9と、を有している。この信号処理回路3において、遅延処理部7、取込部8及び記憶部6はそれぞれ遅延制御部9と接続されている。また、画像処理部5は、デジタルの画像信号に各種の画像処理(欠陥画素補正、階調補正、ホワイトバランス調整、エッジ強調等)を施すASICである。なお、図1において、データ信号(画像信号)の流れを実線で示し、制御信号の流れを破線で示す。 The signal processing circuit 3 is a digital front-end circuit that performs various types of image processing on the digital image signal (data signal) input from the image sensor 2. The signal processing circuit 3 includes a data transfer unit 4, an image processing unit 5, and a storage unit 6. Further, each of the data transfer units 4 includes two delay processing units 7 and capture units 8 and a delay control unit 9. In the signal processing circuit 3, the delay processing unit 7, the capturing unit 8, and the storage unit 6 are each connected to a delay control unit 9. The image processing unit 5 is an ASIC that performs various types of image processing (defective pixel correction, gradation correction, white balance adjustment, edge enhancement, etc.) on a digital image signal. In FIG. 1, the flow of the data signal (image signal) is indicated by a solid line, and the flow of the control signal is indicated by a broken line.
 上述の遅延処理部7及び取込部8は、信号線DATA0,DATA1に対してそれぞれ1組みずつ配置されている。各組の遅延処理部7及び取込部8は、直列に接続されており、それぞれの遅延処理部7はデータ信号線DATA0,DATA1のいずれか一方と接続されている。そして、各々の取込部8の出力はそれぞれ信号線19を介して画像処理部5と接続されている。また、各々の取込部8はクロック信号線CLKと接続されている。さらに、遅延制御部9と各々の遅延処理部7とは信号線20で接続され、遅延制御部9と各々の取込部8とは信号線21で接続されている。なお、各組の遅延処理部7及び取込部8の構成はいずれも共通する。そのため、以降の説明においては、データ信号線DATA0に接続された遅延処理部7及び取込部8について説明し、データ信号線DATA1に接続された遅延処理部7及び取込部8の説明は省略する。 The above-described delay processing unit 7 and capturing unit 8 are arranged for each of the signal lines DATA0 and DATA1. The delay processing unit 7 and the capturing unit 8 of each set are connected in series, and each delay processing unit 7 is connected to one of the data signal lines DATA0 and DATA1. The output of each capturing unit 8 is connected to the image processing unit 5 via a signal line 19. Each capturing unit 8 is connected to a clock signal line CLK. Further, the delay control unit 9 and each delay processing unit 7 are connected by a signal line 20, and the delay control unit 9 and each take-in unit 8 are connected by a signal line 21. Note that the delay processing unit 7 and the capturing unit 8 of each set have the same configuration. Therefore, in the following description, the delay processing unit 7 and the capturing unit 8 connected to the data signal line DATA0 will be described, and the description of the delay processing unit 7 and the capturing unit 8 connected to the data signal line DATA1 will be omitted. To do.
 遅延処理部7は、データ信号線DATA0から出力されるデータ信号の遅延量を制御する回路である。図2(a)に示すように、この遅延処理部7は、複数段直列に接続された複数の遅延素子(バッファー等)11と、各々の遅延素子11の出力と接続された複数のパス12と、これらのパス12のいずれかを選択するセレクタ10と、を有している。遅延素子11の最初の段(図2(a)における遅延1)の入力端には、信号線DATA0が接続されている。また、この遅延処理部7は、セレクタ10が選択する3つのパス12を通る信号がこのセレクタ10に接続された3本の信号線13(13a~13c)から出力されるように構成されている。上記の3つのパスの選択は、遅延制御部9から信号線20を介して送信される基準遅延切換信号A及び、遅延補償量信号Nにより、セレクタ10が行う。具体的には、図2(b)に示すように、基準遅延切換信号Aで指定された第A段の遅延素子(図2(b)における遅延A)の出力、すなわち、第A段の遅延素子11を通過した信号(以下、「基準遅延データ信号N0」と呼ぶ)が、信号線13aに出力される。また、第1段から第A段までの遅延素子11による遅延量(これを「基準遅延量」と呼ぶ)よりも小さい遅延量となる、第A段よりN段前の遅延素子11(第A-N段の遅延素子11)を通過した信号(以下、「小遅延データ信号N-」と呼ぶ)が、信号線13bから出力される。また、基準遅延量よりも大きい遅延量となる、第A段よりN段後の遅延素子11(第A+N段の遅延素子11)を通過した信号(以下、「大遅延データ信号N+」と呼ぶ)が、信号線13cから出力される。この図2の構成から明らかなように、遅延処理部7においてDATA0を介して入力されたデータ信号が遅延される量は、遅延素子11の数により決定される。そのため、基準遅延切換信号A及び遅延補償量信号Nは、実際には、遅延素子11の段数として表される。 The delay processing unit 7 is a circuit that controls the delay amount of the data signal output from the data signal line DATA0. As shown in FIG. 2A, the delay processing unit 7 includes a plurality of delay elements (buffers, etc.) 11 connected in series in a plurality of stages, and a plurality of paths 12 connected to the outputs of the respective delay elements 11. And a selector 10 for selecting one of these paths 12. The signal line DATA0 is connected to the input terminal of the first stage of the delay element 11 (delay 1 in FIG. 2A). The delay processing unit 7 is configured such that signals passing through the three paths 12 selected by the selector 10 are output from the three signal lines 13 (13a to 13c) connected to the selector 10. . The above three paths are selected by the selector 10 based on the reference delay switching signal A and the delay compensation amount signal N transmitted from the delay control unit 9 via the signal line 20. Specifically, as shown in FIG. 2B, the output of the A-stage delay element (delay A in FIG. 2B) designated by the reference delay switching signal A, that is, the A-stage delay A signal that has passed through the element 11 (hereinafter referred to as “reference delay data signal N0”) is output to the signal line 13a. Further, the delay element 11 (the Ath stage) N stages before the Ath stage has a delay quantity smaller than the delay quantity by the delay element 11 from the first stage to the Ath stage (referred to as “reference delay quantity”). A signal (hereinafter referred to as “small delay data signal N−”) that has passed through the −N stage delay element 11) is output from the signal line 13b. Further, a signal having a delay amount larger than the reference delay amount and having passed through the delay element 11 N stages after the A stage (the A + N delay element 11) (hereinafter referred to as “large delay data signal N +”). Is output from the signal line 13c. As apparent from the configuration of FIG. 2, the amount by which the data signal input via DATA 0 in the delay processing unit 7 is delayed is determined by the number of delay elements 11. Therefore, the reference delay switching signal A and the delay compensation amount signal N are actually expressed as the number of stages of the delay elements 11.
 なお、図2(b)は、遅延補償量信号Nとして遅延補償量1(遅延素子11の1段)が指定されている場合を示しており、遅延A-1と遅延A+1を通過した信号がそれぞれ小遅延データ信号N-及び大遅延データ信号N+として出力される。また、本実施形態の例では、1つの遅延素子11の遅延時間はデータ転送周期の1/10程度以下(データ転送周期が1GHzの場合、1つの遅延素子11の遅延時間は100ピコ秒以下)とする。また、本実施形態の例では、遅延素子11の個数は遅延素子11全体でデータ転送周期の少なくとも1.5倍(データ転送周期が1GHzで遅延素子11の遅延時間が100ピコ秒の場合15個)としてもよく、データ転送周期の数倍とすればマージン(余裕)が確保される。このように、遅延処理部7は、取込部8で取り込まれるデータ信号のクロック信号に対する遅延量を調整するために用いられるものである。さらに、遅延補償量信号Nは、遅延補償量が、データ信号のデータ幅の半分より小さくなる範囲で設定される。なお、本実施形態では小遅延データ信号用の遅延補償量と大遅延データ信号用の遅延補償量とは同じとしたが、これらを異ならせてもよい。その場合、遅延制御部9から信号線20を介して送信される信号は、基準遅延切換信号A及び、小遅延データ信号N-用の第1の遅延補償量信号N1と大遅延データ信号N+用の第2の遅延補償量信号N1となる。 FIG. 2B shows a case where the delay compensation amount 1 (one stage of the delay element 11) is designated as the delay compensation amount signal N, and the signal that has passed through the delay A-1 and the delay A + 1 is shown. These are output as a small delay data signal N− and a large delay data signal N +, respectively. In the example of this embodiment, the delay time of one delay element 11 is about 1/10 or less of the data transfer period (when the data transfer period is 1 GHz, the delay time of one delay element 11 is 100 picoseconds or less). And In the example of the present embodiment, the number of delay elements 11 is at least 1.5 times the data transfer period of the entire delay element 11 (15 when the data transfer period is 1 GHz and the delay time of the delay element 11 is 100 picoseconds). The margin may be ensured by setting it to be several times the data transfer cycle. As described above, the delay processing unit 7 is used to adjust the delay amount of the data signal captured by the capturing unit 8 with respect to the clock signal. Further, the delay compensation amount signal N is set in a range where the delay compensation amount is smaller than half of the data width of the data signal. In this embodiment, the delay compensation amount for the small delay data signal is the same as the delay compensation amount for the large delay data signal, but they may be different. In this case, the signal transmitted from the delay control unit 9 via the signal line 20 includes the reference delay switching signal A, the first delay compensation amount signal N1 for the small delay data signal N−, and the large delay data signal N +. Becomes the second delay compensation amount signal N1.
 取込部8は、クロック信号線CLKから入力されるクロック信号の立ち上がり又は立ち下がり又は立ち下がり及び立ち上がりの両方のタイミングに同期して、入力されたデータ信号(基準遅延データ信号N0)の示す値を取り込むものである。この取込部8は、図3に示すように、3つのフリップフロップ回路(FF)14~16と、2つの排他論理和回路(EXOR)17,18と、を有している。遅延処理部7の信号線13aに出力された基準遅延データ信号N0は、第1フリップフロップ回路14のD端子に入力される。信号線13bに出力された小遅延データ信号N-は、第2フリップフロップ回路15のD端子に入力される。信号線13cに出力された大遅延データ信号N+は、第3フリップフロップ回路16のD端子に入力される。また、クロック信号線CLKは、第1~第3フリップフロップ回路14~16のCK端子に接続され、これらのCK端子に撮像素子2から出力されたクロック信号が入力される。フリップフロップ回路14~16は、クロック信号の立ち上がり若しくは立ち下がり又は立ち下がり及び立ち上がりの両方の時にD端子に入力されている信号の値(「1」又は「0」)を保持して、Q端子から出力するものである。なお、第1フリップフロップ回路14のQ端子から出力される値は信号線19を介して画像処理部5に出力され、同時に、データ信号Sdとして信号線21を介して遅延制御部9に出力される。 The fetch unit 8 is a value indicated by the input data signal (reference delay data signal N0) in synchronization with the rising or falling edge of the clock signal input from the clock signal line CLK or both the falling and rising timings. Is to capture. As shown in FIG. 3, the fetch unit 8 includes three flip-flop circuits (FF) 14 to 16 and two exclusive OR circuits (EXOR) 17 and 18. The reference delay data signal N0 output to the signal line 13a of the delay processing unit 7 is input to the D terminal of the first flip-flop circuit 14. The small delay data signal N− output to the signal line 13b is input to the D terminal of the second flip-flop circuit 15. The large delay data signal N + output to the signal line 13c is input to the D terminal of the third flip-flop circuit 16. The clock signal line CLK is connected to the CK terminals of the first to third flip-flop circuits 14 to 16, and the clock signal output from the image sensor 2 is input to these CK terminals. The flip-flop circuits 14 to 16 hold the value (“1” or “0”) of the signal input to the D terminal at the time of rising or falling of the clock signal or both of falling and rising, and the Q terminal Is output from The value output from the Q terminal of the first flip-flop circuit 14 is output to the image processing unit 5 through the signal line 19 and simultaneously output to the delay control unit 9 through the signal line 21 as the data signal Sd. The
 また、第1排他論理和回路17の2つのIN端子には、それぞれ第1フリップフロップ回路14のQ出力と第2フリップフロップ回路15のQ出力が接続される。この第1排他論理和回路17のOUT端子からは遅延プラス信号Spが、信号線21を介して遅延制御部9に出力される。また、第2排他論理和回路18の2つのIN端子には、それぞれ第1フリップフロップ回路14のQ出力と第3フリップフロップ回路16のQ出力が接続される。この第2排他論理和回路18のOUT端子からは遅延マイナス信号Snが信号線21を介して遅延制御部9に出力される。この第1及び第2排他論理和回路17,18は、2つのIN端子の入力値が同じときはOUT端子から「0」が出力され、異なるときは「1」が出力されるように構成されている。すなわち、クロック信号の立ち上がり時若しくは立ち下がり時に、基準遅延データ信号N0と、小遅延データ信号N-とが一致するときに遅延プラス信号Spとして「0」が出力され、異なるときに「1」が出力される。同様に、基準遅延データ信号N0と、大遅延データ信号N+とが一致するときに遅延マイナス信号Snとして「0」が出力され、異なるときに「1」が出力される。すなわち、取込部8は、基準遅延データ信号N0と小遅延データ信号N-との整合が取れないときに、遅延プラス信号Spを出力し、基準遅延データ信号N0と大遅延データ信号N+との整合が取れないときに、遅延マイナス信号Snを出力する。 Also, the Q output of the first flip-flop circuit 14 and the Q output of the second flip-flop circuit 15 are connected to the two IN terminals of the first exclusive OR circuit 17, respectively. The delay plus signal Sp is output from the OUT terminal of the first exclusive OR circuit 17 to the delay control unit 9 via the signal line 21. Further, the Q output of the first flip-flop circuit 14 and the Q output of the third flip-flop circuit 16 are connected to the two IN terminals of the second exclusive OR circuit 18, respectively. A delay minus signal Sn is output from the OUT terminal of the second exclusive OR circuit 18 to the delay control unit 9 via the signal line 21. The first and second exclusive OR circuits 17 and 18 are configured such that “0” is output from the OUT terminal when the input values of the two IN terminals are the same, and “1” is output when they are different. ing. That is, when the clock signal rises or falls, “0” is output as the delay plus signal Sp when the reference delay data signal N0 and the small delay data signal N− match, and “1” when they are different. Is output. Similarly, “0” is output as the delay minus signal Sn when the reference delay data signal N0 matches the large delay data signal N +, and “1” is output when they are different. That is, when the reference delay data signal N0 and the small delay data signal N− cannot be matched, the capturing unit 8 outputs the delay plus signal Sp, and the reference delay data signal N0 and the large delay data signal N + When the matching cannot be achieved, the delay minus signal Sn is output.
 なお、遅延補償量(小遅延データ信号用の遅延補償量と大遅延データ信号用の遅延補償量)を大きく設定しすぎた場合、または温度変化等によりアイパターンが小さくなった場合は図7のフロー処理において2つの排他論理和回路(EXOR)17,18の出力ともに1になってしまう可能性があるため、遅延補償量を小さくする処理が必要になる。しかし、通常はアイパターンの縮小も考慮した遅延補償量を設定すれば、遅延補償量を小さくする処理は必要ない。または図7のフロー処理に遅延補償量を小さくする処理を追加してもよい。 When the delay compensation amount (the delay compensation amount for the small delay data signal and the delay compensation amount for the large delay data signal) is set too large, or when the eye pattern becomes small due to a temperature change or the like, FIG. In the flow process, there is a possibility that the outputs of the two exclusive OR circuits (EXOR) 17 and 18 may become 1, so a process for reducing the delay compensation amount is required. However, normally, if a delay compensation amount is set in consideration of eye pattern reduction, a process for reducing the delay compensation amount is not necessary. Alternatively, a process for reducing the delay compensation amount may be added to the flow process of FIG.
 遅延制御部9は、各組の遅延処理部7及び取込部8をそれぞれ独立に制御するプロセッサである。例えば、遅延制御部9は、取込部8に接続された信号線21を介して入力される信号(データ信号Sd、遅延プラス信号Sp及び遅延マイナス信号Sn)に基づいて、遅延処理部7の基準遅延量(遅延段数)を制御するものである(詳細な制御方法については、後述する)。また、記憶部6は、レジスタなどの記憶媒体で構成される。この記憶部6には、遅延制御部9によって制御される遅延処理部7の基準遅延量(遅延段数)等のデータが記憶される。
(基準遅延量の初期設定処理)
 それでは、以上のような構成のデータ転送部4の動作例について説明する。まず、図4を用いて、遅延制御部9により、遅延処理部7の基準遅延量を初期設定する方法について説明する。なお、この図4に示す処理は、例えば、カメラ1の電源投入直後や、撮像素子2から記録画像データを転送する直前などのタイミングで実行される。また、図4に示す処理では、撮像素子2から出力されるテストデータを用いて、遅延制御部9が遅延処理部7での基準遅延量を決定する。この場合のテストデータは、クロック信号と同じ周期で「0」と「1」とが繰り返される2値のデータ列で構成される。
The delay control unit 9 is a processor that controls each group of the delay processing unit 7 and the capturing unit 8 independently. For example, the delay control unit 9 is based on signals (data signal Sd, delay plus signal Sp, and delay minus signal Sn) input via the signal line 21 connected to the capturing unit 8. It controls the reference delay amount (the number of delay stages) (detailed control method will be described later). The storage unit 6 includes a storage medium such as a register. The storage unit 6 stores data such as a reference delay amount (the number of delay stages) of the delay processing unit 7 controlled by the delay control unit 9.
(Reference delay amount initial setting process)
Now, an operation example of the data transfer unit 4 configured as described above will be described. First, a method for initially setting the reference delay amount of the delay processing unit 7 by the delay control unit 9 will be described with reference to FIG. Note that the processing shown in FIG. 4 is executed, for example, at a timing immediately after the camera 1 is turned on or just before the recording image data is transferred from the image sensor 2. In the process shown in FIG. 4, the delay control unit 9 determines the reference delay amount in the delay processing unit 7 using the test data output from the image sensor 2. The test data in this case is composed of a binary data string in which “0” and “1” are repeated in the same cycle as the clock signal.
 最初に、遅延制御部9は、遅延処理部7の基準遅延量を初期化する(例えば、遅延段数を0にする)とともに、撮像素子2にテストデータの出力開始を指示する(ステップS101)。これにより、撮像素子2からは、クロック信号に同期して各データ信号線DATA0,DATA1にテストデータが出力される。そして、データ信号線DATA0のテストデータは、遅延処理部7を介して取込部8に入力される。次に、遅延制御部9は、クロック信号の立ち上がりにおいて取込部8で取り込まれてこの遅延制御部9に入力されたデータ信号Sdが「0」であるか否かを判定する(ステップS102)。遅延制御部9は、データ信号Sdが「0」でない場合(S102のNO側)には、基準遅延量(遅延段数)を1増加させ、その基準遅延量を基準遅延切換信号Aとして遅延処理部7に出力する。これにより、遅延制御部9は、基準遅延データ信号N0を出力する遅延素子11の段数を1増加させる(ステップS103)。これにより、データ信号線DATA0から入力されるデータ信号(テストデータ)の位相を遅らせることができる。その後に遅延制御部9は、ステップS102に戻って上述の動作を繰り返す。なお、ステップS102のNO側からステップS103までのループは、テストデータでの信号波形の立ち上がり位置を探索するために、取込部8におけるデータ信号の取込位置を「0」値のところまで一旦シフトさせる動作に相当する。 First, the delay control unit 9 initializes the reference delay amount of the delay processing unit 7 (for example, sets the number of delay stages to 0) and instructs the image sensor 2 to start outputting test data (step S101). Thus, test data is output from the image sensor 2 to the data signal lines DATA0 and DATA1 in synchronization with the clock signal. Then, the test data of the data signal line DATA0 is input to the capturing unit 8 via the delay processing unit 7. Next, the delay control unit 9 determines whether or not the data signal Sd captured by the capturing unit 8 and input to the delay control unit 9 at the rising edge of the clock signal is “0” (step S102). . When the data signal Sd is not “0” (NO side of S102), the delay control unit 9 increases the reference delay amount (the number of delay stages) by 1, and uses the reference delay amount as the reference delay switching signal A as a delay processing unit. 7 is output. As a result, the delay control unit 9 increases the number of stages of the delay elements 11 that output the reference delay data signal N0 by 1 (step S103). Thereby, the phase of the data signal (test data) input from the data signal line DATA0 can be delayed. Thereafter, the delay control unit 9 returns to step S102 and repeats the above-described operation. Note that the loop from the NO side of step S102 to step S103 is performed until the data signal capturing position in the capturing unit 8 reaches a value of “0” in order to search for the rising position of the signal waveform in the test data. This corresponds to the shift operation.
 次に、遅延制御部9は、ステップS102において、データ信号Sdが「0」である場合(S102のYES側)には、クロック信号の立ち上がりにおいて取込部8で取り込まれてこの遅延制御部9に入力されたデータ信号Sdが「1」であるか否かを判定する(ステップS104)。遅延制御部9は、データ信号Sdが「1」でない場合(S104のNO側)には、基準遅延量(遅延段数)を1増加させ、その基準遅延量を基準遅延切換信号Aとして遅延処理部7に出力する。これにより、遅延制御部9は、基準遅延データ信号N0が出力される遅延素子11の段数を1増加させる(ステップS105)。これにより、データ信号線DATA0から入力されるデータ信号(テストデータ)の位相を遅らせることができる。その後に遅延制御部9は、ステップS104に戻って上述の動作を繰り返す。なお、ステップS104のNO側からステップS105までのループは、テストデータでの信号波形の立ち上がり位置まで、取込部8におけるデータ信号の取込位置をシフトさせる動作に相当する。 Next, in step S102, when the data signal Sd is “0” (YES side of S102), the delay control unit 9 is captured by the capture unit 8 at the rising edge of the clock signal, and the delay control unit 9 It is determined whether or not the data signal Sd input to “1” is “1” (step S104). When the data signal Sd is not “1” (NO side of S104), the delay control unit 9 increases the reference delay amount (the number of delay stages) by 1, and uses the reference delay amount as the reference delay switching signal A as a delay processing unit. 7 is output. Thereby, the delay control unit 9 increases the number of stages of the delay elements 11 to which the reference delay data signal N0 is output by 1 (step S105). Thereby, the phase of the data signal (test data) input from the data signal line DATA0 can be delayed. Thereafter, the delay control unit 9 returns to step S104 and repeats the above-described operation. Note that the loop from the NO side to step S105 in step S104 corresponds to an operation of shifting the data signal acquisition position in the acquisition unit 8 to the rising position of the signal waveform in the test data.
 そして、遅延制御部9は、ステップS104において、データ信号Sdが「1」である場合(S104のYES側)には、現在の基準遅延量を「delay_start」として記憶部6に一時的に記憶させる(ステップS106)。なお、このステップS106で記憶された基準遅延量「delay_start」は、テストデータでの信号波形の立ち上がり位置に対応する(図5参照)。 In step S104, when the data signal Sd is “1” (YES in S104), the delay control unit 9 temporarily stores the current reference delay amount in the storage unit 6 as “delay_start”. (Step S106). The reference delay amount “delay_start” stored in step S106 corresponds to the rising position of the signal waveform in the test data (see FIG. 5).
 さらに、遅延制御部9は、クロック信号の立ち上がりにおいて取込部8で取り込まれてこの遅延制御部9に入力されたデータ信号Sdが「0」であるか否かを判定する(ステップS107)。遅延制御部9は、データ信号Sdが「0」でない場合(S107のNO側)には、基準遅延量(遅延段数)を1増加させ、その基準遅延量を基準遅延切換信号Aとして遅延処理部7に出力する。これにより、遅延制御部9は、基準遅延データ信号N0が出力される遅延素子11の段数を1増加させる(ステップS108)。これにより、データ信号線DATA0から入力されるデータ信号(テストデータ)の位相を遅らせることができる。その後に遅延制御部9は、ステップS107に戻って上述の動作を繰り返す。なお、ステップS107のNO側からステップS108までのループは、テストデータでの信号波形の立ち下がり位置まで取込部8におけるデータ信号の取込位置をシフトさせる動作に相当する(図5参照)。 Further, the delay control unit 9 determines whether or not the data signal Sd captured by the capturing unit 8 and input to the delay control unit 9 at the rising edge of the clock signal is “0” (step S107). When the data signal Sd is not “0” (NO side of S107), the delay control unit 9 increases the reference delay amount (the number of delay stages) by 1, and uses the reference delay amount as the reference delay switching signal A as a delay processing unit. 7 is output. Thereby, the delay control unit 9 increases the number of stages of the delay elements 11 to which the reference delay data signal N0 is output by 1 (step S108). Thereby, the phase of the data signal (test data) input from the data signal line DATA0 can be delayed. After that, the delay control unit 9 returns to step S107 and repeats the above operation. Note that the loop from the NO side to step S108 in step S107 corresponds to an operation of shifting the data signal capturing position in the capturing unit 8 to the falling position of the signal waveform in the test data (see FIG. 5).
 そして、遅延制御部9は、ステップS107において、データ信号Sdが「0」である場合(S107のYES側)には、現在の基準遅延量を「delay_end」として記憶部6に一時的に記憶させる(ステップS109)。なお、このステップS109で記憶された基準遅延量「delay_end」は、テストデータでの信号波形の立ち下がり位置に対応する(図5参照)。 Then, in step S107, when the data signal Sd is “0” (YES side of S107), the delay control unit 9 temporarily stores the current reference delay amount as “delay_end” in the storage unit 6. (Step S109). The reference delay amount “delay_end” stored in step S109 corresponds to the falling position of the signal waveform in the test data (see FIG. 5).
 最後に、遅延制御部9は、ステップS106で取得した基準遅延量「delay_start」と、ステップS109で取得した基準遅延量「delay_end」とを用いて、データ通信のときの遅延処理部7の基準遅延量(データ信号の基準取り込み位置)の初期値を決定する(ステップS110)。具体的には、遅延制御部9は、次式(1)によってデータ信号の基準取り込み位置を演算して決定する。 Finally, the delay control unit 9 uses the reference delay amount “delay_start” acquired in step S106 and the reference delay amount “delay_end” acquired in step S109, and uses the reference delay of the delay processing unit 7 during data communication. An initial value of the amount (reference capture position of the data signal) is determined (step S110). Specifically, the delay control unit 9 calculates and determines the reference capture position of the data signal by the following equation (1).
 基準取り込み位置=(delay_end-delay_start)/2+delay_start  (1)
 このステップS110で求めた基準取り込み位置(基準遅延量の初期値)は、テストデータの信号波形の立ち上がり位置と立ち下がり位置との中間に位置することとなる(図5参照)。そのため、上記初期設定後に行われるデータ通信では、データ信号の取り込みタイミングが遅延処理部7により付与された基準遅延量によって安定するので、データ転送時の符号誤りが低減する。また、上記の基準取り込み位置(基準遅延量の初期値)はテストデータの実測値によって決定される。そのため、上記の設定動作によって、配線長および素子のばらつきや環境変化による誤差も吸収されるので、データ転送部4の信頼性をより向上させることができる。さらに、データ転送部4を以上のように構成すると、データ信号線DATA0およびデータ信号線DATA1のそれぞれに対して独立して基準遅延量の初期値を調整できる。そのため、パラレル方式のデータ転送部4では等長配線設計を回避することができ、設計時において素子や配線のレイアウトの自由度が大きく向上する。
(基準遅延量の補正処理)
 しかしながら、上述の処理により、遅延制御部4により遅延処理部7の初期の基準遅延量を調整して、取込部8におけるデータ信号の取込位置を安定してデータが取り込める位置に調整したとしても、以下の問題が生じうる。例えば、クロック信号の周波数が1GHz以上の高速データ転送を行っている場合に、このデータ転送部4に温度変化や電圧変化が生じると、データ信号に発生する遅延(例えば、一つの遅延素子11で遅延される時間や、信号線で遅延する時間など)に変化が出てしまい正確なデータの取得ができなくなってしまう。
Reference capture position = (delay_end−delay_start) / 2 + delay_start (1)
The reference capture position (initial value of the reference delay amount) obtained in step S110 is located between the rising position and the falling position of the signal waveform of the test data (see FIG. 5). For this reason, in the data communication performed after the initial setting, the data signal capture timing is stabilized by the reference delay amount given by the delay processing unit 7, so that a code error during data transfer is reduced. Further, the reference capture position (initial value of the reference delay amount) is determined based on the actual measurement value of the test data. For this reason, the above setting operation also absorbs errors due to variations in wiring length, elements, and environmental changes, so that the reliability of the data transfer unit 4 can be further improved. Furthermore, if the data transfer unit 4 is configured as described above, the initial value of the reference delay amount can be adjusted independently for each of the data signal line DATA0 and the data signal line DATA1. Therefore, the parallel data transfer unit 4 can avoid the isometric wiring design, and the degree of freedom of layout of elements and wirings is greatly improved at the time of designing.
(Reference delay correction)
However, it is assumed that the initial reference delay amount of the delay processing unit 7 is adjusted by the delay control unit 4 by the above processing, and the data signal capturing position in the capturing unit 8 is adjusted to a position where data can be stably captured. However, the following problems may occur. For example, when high-speed data transfer with a clock signal frequency of 1 GHz or more is performed, if a temperature change or a voltage change occurs in the data transfer unit 4, a delay (for example, one delay element 11 occurs in the data signal). Change in the delay time, delay time in the signal line, etc.) and accurate data cannot be obtained.
 例えば、図6(a)に示す基準遅延データ信号の状態から温度が上昇して遅延が増大し、図6(b)の状態になると、クロック信号の立ち上がり時のデータ信号の値が図6(a)の場合に比べて、反転してしまい(「0」となり)正確な値を取り込めなくなる。そこで、本実施の形態に係るデータ転送部4においては、データ信号の状態に応じて、遅延処理部7における基準遅延量を補正して最適な値が取り込めるように構成されている。以下、基準遅延量の補正方法について、図7を合わせて用いて説明する。 For example, when the temperature increases from the state of the reference delay data signal shown in FIG. 6A and the delay increases, and when the state of FIG. Compared with the case of a), it is inverted (becomes “0”), and an accurate value cannot be taken. Therefore, the data transfer unit 4 according to the present embodiment is configured such that an optimum value can be taken in by correcting the reference delay amount in the delay processing unit 7 in accordance with the state of the data signal. Hereinafter, a reference delay amount correction method will be described with reference to FIG.
 上述のステップS101~S110に示したように、遅延制御部9は、テストデータを用いて初期の基準遅延量を決定する(ステップS201)。その後、遅延制御部9は、上記の基準遅延量を基準遅延切換信号Aとして遅延処理部7に出力することで、遅延素子11の段数を設定する。また、遅延制御部9は、所定の遅延補償量を遅延補償量信号Nとして遅延処理部7に出力することで、セレクタ10における基準遅延量及び遅延補償量を設定する(ステップS202)。 As shown in steps S101 to S110 described above, the delay control unit 9 determines an initial reference delay amount using the test data (step S201). Thereafter, the delay control unit 9 sets the number of stages of the delay elements 11 by outputting the reference delay amount as the reference delay switching signal A to the delay processing unit 7. Further, the delay control unit 9 sets a reference delay amount and a delay compensation amount in the selector 10 by outputting a predetermined delay compensation amount as a delay compensation amount signal N to the delay processing unit 7 (step S202).
 そして、遅延制御部9は、このような状態で取込部8によりデータ信号の取込を行いながら、合わせて、取込部8から出力される遅延プラス信号Sp及び遅延マイナス信号Snを用いて、以下の動作により基準遅延量の補正を行う。 The delay controller 9 uses the delay plus signal Sp and the delay minus signal Sn output from the fetching unit 8 while fetching the data signal by the fetching unit 8 in such a state. The reference delay amount is corrected by the following operation.
 具体的には、まず、遅延制御部9は、遅延プラス信号Spが「1」であるか否かを判定する(ステップS203)。遅延制御部9は、遅延プラス信号Spが「1」である場合(S203のYES側)は、現在の基準遅延量(段数)に1を加えるとともに、その基準遅延量を基準遅延切換信号Aとして遅延処理部7に出力することで、遅延素子11の段数を設定する(ステップS204)。 Specifically, first, the delay control unit 9 determines whether or not the delay plus signal Sp is “1” (step S203). When the delay plus signal Sp is “1” (YES side of S203), the delay control unit 9 adds 1 to the current reference delay amount (number of stages) and uses the reference delay amount as the reference delay switching signal A. By outputting to the delay processing unit 7, the number of stages of the delay elements 11 is set (step S204).
 遅延プラス信号Spが「1」であるということは、基準取込位置において取り込まれた基準遅延データ信号N0と、この基準遅延位置から-N段の遅延素子11から出力された小遅延データ信号N-との値が異なっていることを意味する。すなわち、現在の基準遅延量により遅延されたデータ信号の遅延量が、初期設定されたときに比べて短くなっている(データ信号の位相が進んでいる)状態にある。そのため、ステップS204での遅延制御部9は、現在の基準遅延量(段数)に1を加えることで、データ信号の遅延量を大きくして位相を遅らせる補正を行う(図8(b)参照)。ステップS204で基準遅延量を1増加させた後は、ステップS203に戻り同様の動作を繰り返す。 The fact that the delay plus signal Sp is “1” means that the reference delay data signal N0 captured at the reference capture position and the small delay data signal N output from the delay element 11 of −N stages from the reference delay position. -Means that the value is different. That is, the delay amount of the data signal delayed by the current reference delay amount is shorter (the phase of the data signal is advanced) than when the data signal is initially set. Therefore, the delay control unit 9 in step S204 adds 1 to the current reference delay amount (number of stages) to increase the delay amount of the data signal to correct the phase (see FIG. 8B). . After the reference delay amount is increased by 1 in step S204, the process returns to step S203 and the same operation is repeated.
 一方、ステップS203で遅延プラス信号Spが「1」でない場合(S203のNO側)は、次に、遅延制御部9は、遅延マイナス信号Snが「1」であるか否かを判定する(ステップS205)。そして、遅延制御部9は、遅延マイナス信号Snが「1」である場合(S205のYES側)は、現在の基準遅延量(段数)から1を引くとともに、その基準遅延量を基準遅延切換信号Aとして遅延処理部7に出力することで、遅延素子11の段数を設定する(ステップS206)。 On the other hand, if the delay plus signal Sp is not “1” in step S203 (NO side of S203), the delay control unit 9 next determines whether or not the delay minus signal Sn is “1” (step S203). S205). When the delay minus signal Sn is “1” (YES side of S205), the delay control unit 9 subtracts 1 from the current reference delay amount (number of stages) and sets the reference delay amount to the reference delay switching signal. By outputting it to the delay processing unit 7 as A, the number of stages of the delay elements 11 is set (step S206).
 遅延マイナス信号が「1」であるということは、基準遅延位置において取り込まれた基準遅延データ信号N0と、この基準遅延位置から+N段の遅延素子11から出力された大遅延データ信号N+との値が異なっていることを意味する。すなわち、現在の基準遅延量により遅延されたデータ信号の遅延量が、初期設定されたときに比べて長くなっている(データ信号の位相が遅れている)状態にある。そのため、ステップS206での遅延制御部9は、現在の基準遅延量(段数)から1を引くことで、データ信号の遅延量を小さくして位相を進ませる補正を行う(図8(c)参照)。ステップS206で基準遅延量(段数)を1減少させた後は、ステップS203に戻り同様の動作を繰り返す。 The fact that the delay minus signal is “1” means that the value of the reference delay data signal N0 fetched at the reference delay position and the large delay data signal N + output from the delay element 11 of + N stages from the reference delay position. Means different. In other words, the delay amount of the data signal delayed by the current reference delay amount is longer (the phase of the data signal is delayed) than when it was initially set. Therefore, the delay control unit 9 in step S206 performs correction to reduce the delay amount of the data signal and advance the phase by subtracting 1 from the current reference delay amount (number of stages) (see FIG. 8C). ). After the reference delay amount (stage number) is decreased by 1 in step S206, the process returns to step S203 and the same operation is repeated.
 また、ステップS205で遅延マイナス信号Snが「1」でない場合(S205のNO側)は、そのままステップS203に戻り同様の動作を繰り返す。なお、遅延プラス信号Spまたは遅延マイナス信号Snが「1」となった時の基準遅延量(段数)の調整量は1段以上とすることもできる。例えば遅延補償量が遅延素子3段の場合には、基準遅延量(段数)の調整量を2段もしくは3段としてもよい。 If the delay minus signal Sn is not “1” in step S205 (NO side of S205), the process returns to step S203 as it is and repeats the same operation. Note that the adjustment amount of the reference delay amount (stage number) when the delay plus signal Sp or the delay minus signal Sn becomes “1” may be one or more. For example, when the delay compensation amount is three stages of delay elements, the adjustment amount of the reference delay amount (number of stages) may be two stages or three stages.
 本実施形態のデータ転送装置は、S203からS206までの処理のループにより、温度変化や電圧変化によって時々刻々変化するデータの遅延量をリアルタイムでより適切に補正することができる。 The data transfer apparatus according to the present embodiment can more appropriately correct in real time the delay amount of data that changes from time to time due to temperature change or voltage change, by the processing loop from S203 to S206.
 例えば、図6(b)に示すように、温度上昇により遅延量が増加して基準遅延位置により取り込まれたデータ信号と、基準遅延位置から+N段遅延されたデータ信号とが異なったときは、図6(c)に示すように、同じ値になるまで(遅延マイナス信号Snが「0」になるまで)基準遅延量を減少させることにより、取込部8で安定してデータが取り込める位置までデータ信号の取り込み位置を補正することができる。そのため、1GHz以上のクロック信号を用いてデータ転送を行った場合でも、温度その他の要因で伝送路特性やデータ出力タイミングが変化に対応して常に、データ取込タイミングを安定した状態に維持することができる。 For example, as shown in FIG. 6B, when the data signal fetched by the reference delay position due to an increase in temperature due to a temperature rise differs from the data signal delayed by + N stages from the reference delay position, As shown in FIG. 6C, by reducing the reference delay amount until the same value is reached (until the delay minus signal Sn becomes “0”), the data can be stably captured by the capturing unit 8. The data signal capture position can be corrected. Therefore, even when data transfer is performed using a clock signal of 1 GHz or higher, the data acquisition timing should always be kept stable in response to changes in transmission path characteristics and data output timing due to temperature and other factors. Can do.
 なお、上述の遅延処理部7の基準遅延量の初期設定において、取込部8で取り込まれたデータSdが「0」であるか、若しくは「1」であるかを判定する処理(ステップS102,S104,S107)においては、ジッタ等によるデータ信号の変動を考慮して、複数回取得して連続して「0」若しくは「1」であるときに、「0」若しくは「1」であると判断するように構成しても良い。また、上述の基準遅延量の補正処理において、システムの伝送特性の変動が激しい場合は、遅延プラス信号Spまたは遅延マイナス信号Snにより、遅延段数をこれらの値のn倍として設定するように構成しても良い。また、遅延制御部9から遅延処理部7に対して出力する遅延補償量Nは、遅延素子11の段数や転送速度により最適な値に設定してもよい(但し、上述のように、データ信号のデータ幅の半分より小さくなる範囲とする)。 In the initial setting of the reference delay amount of the delay processing unit 7 described above, processing for determining whether the data Sd captured by the capturing unit 8 is “0” or “1” (step S102, In S104 and S107), in consideration of fluctuations in the data signal due to jitter or the like, it is determined that it is “0” or “1” when it is “0” or “1” continuously acquired several times. You may comprise so that it may do. Further, in the above-described correction process of the reference delay amount, when the transmission characteristics of the system are greatly fluctuated, the delay stage number is set to n times these values by the delay plus signal Sp or the delay minus signal Sn. May be. The delay compensation amount N output from the delay control unit 9 to the delay processing unit 7 may be set to an optimal value depending on the number of stages of the delay elements 11 and the transfer speed (however, as described above, the data signal Range less than half of the data width).
 以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずであり、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物によることも可能である。 From the above detailed description, the features and advantages of the embodiment will become apparent. It is intended that the scope of the claims extend to the features and advantages of the embodiments as described above without departing from the spirit and scope of the right. Further, any person having ordinary knowledge in the technical field should be able to easily come up with any improvements and modifications, and there is no intention to limit the scope of the embodiments having the invention to those described above. It is also possible to use appropriate improvements and equivalents within the scope disclosed in.
1 デジタルカメラ  4 データ転送部(データ転送装置)
7 遅延処理部  8 取込部  9 遅延制御部
1 Digital Camera 4 Data Transfer Unit (Data Transfer Device)
7 Delay processing section 8 Capture section 9 Delay control section

Claims (6)

  1.  クロック信号に同期してデータ信号を転送するデータ転送装置であって、
     前記データ信号を、基準遅延量だけ遅延させた基準遅延データ信号、前記基準遅延量よりも第1の遅延補償量だけ小さく遅延させた小遅延データ信号、及び、前記基準遅延量よりも第2の遅延補償量だけ大きく遅延させた大遅延データ信号として出力する遅延処理部と、
     前記クロック信号に基づいて、前記基準遅延データ信号からデータを取り込んで出力する取込部と、
     前記基準遅延データ信号と前記小遅延データ信号との整合、及び、前記基準遅延データ信号と前記大遅延データ信号との整合の少なくとも一方に基づいて、前記遅延処理部における前記基準遅延量を制御する遅延制御部と、を有するデータ転送装置。
    A data transfer device for transferring a data signal in synchronization with a clock signal,
    A reference delay data signal obtained by delaying the data signal by a reference delay amount, a small delay data signal delayed by a first delay compensation amount from the reference delay amount, and a second delay from the reference delay amount. A delay processing unit that outputs a large delay data signal that is greatly delayed by a delay compensation amount;
    A capturing unit that captures and outputs data from the reference delay data signal based on the clock signal;
    The reference delay amount in the delay processing unit is controlled based on at least one of matching between the reference delay data signal and the small delay data signal and matching between the reference delay data signal and the large delay data signal. A data transfer device comprising: a delay control unit;
  2.  前記遅延制御部は、前記基準遅延データ信号と前記小遅延データ信号との整合が取れなくなったときは、前記遅延処理部の前記基準遅延量を増加させ、前記基準遅延データ信号と前記大遅延データ信号との整合が取れなくなったときは、前記遅延処理部の前記基準遅延量を減少させる請求項1に記載のデータ転送装置。 When the reference delay data signal and the small delay data signal cannot be matched, the delay control unit increases the reference delay amount of the delay processing unit to increase the reference delay data signal and the large delay data. The data transfer apparatus according to claim 1, wherein when the signal cannot be matched, the reference delay amount of the delay processing unit is decreased.
  3.  前記取込部は、前記クロック信号に基づいて、前記基準遅延データ信号から取り込んだデータと前記小遅延データ信号から取り込んだデータとを比較して、整合が取れないときは遅延プラス信号を出力し、前記基準データ信号から取り込んだデータと前記大遅延データ信号から取り込んだデータとを比較して、整合が取れないときは遅延マイナス信号を出力するように構成され、
     前記遅延制御部は、前記取込部から前記遅延プラス信号が出力されたときは、前記遅延処理部の前記基準遅延量を増加させ、前記取込部から前記遅延マイナス信号が出力されたときは、前記遅延処理部の前記基準遅延量を減少させる請求項1または2に記載のデータ転送装置。
    The fetching unit compares the data fetched from the reference delay data signal with the data fetched from the small delay data signal based on the clock signal, and outputs a delay plus signal when matching is not achieved. The data fetched from the reference data signal and the data fetched from the large delay data signal are compared, and when a match is not achieved, a delay minus signal is output.
    The delay control unit increases the reference delay amount of the delay processing unit when the delay plus signal is output from the capturing unit, and when the delay minus signal is output from the capturing unit. The data transfer device according to claim 1, wherein the reference delay amount of the delay processing unit is reduced.
  4.  前記第1の遅延補償量及び前記第2の遅延補償量は、前記データ信号のデータ幅の半分より小さく設定される請求項1~3いずれか一項に記載のデータ転送装置。 The data transfer apparatus according to any one of claims 1 to 3, wherein the first delay compensation amount and the second delay compensation amount are set to be smaller than a half of a data width of the data signal.
  5.  前記クロック信号の周波数は1GHz以上である請求項1~4いずれか一項に記載のデータ転送装置。 The data transfer device according to any one of claims 1 to 4, wherein a frequency of the clock signal is 1 GHz or more.
  6.  請求項1~5いずれか一項に記載のデータ転送装置を有するカメラ。 A camera having the data transfer device according to any one of claims 1 to 5.
PCT/JP2010/000051 2009-01-09 2010-01-06 Data transfer device and camera WO2010079749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009003281A JP2010161692A (en) 2009-01-09 2009-01-09 Data transfer apparatus and camera
JP2009-003281 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079749A1 true WO2010079749A1 (en) 2010-07-15

Family

ID=42316515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000051 WO2010079749A1 (en) 2009-01-09 2010-01-06 Data transfer device and camera

Country Status (2)

Country Link
JP (1) JP2010161692A (en)
WO (1) WO2010079749A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121764A1 (en) * 2012-02-17 2013-08-22 セイコーエプソン株式会社 Receiver circuit, communication system, electronic device, and method of controlling receiver circuit
EP2512761B1 (en) 2009-12-18 2020-07-15 The Gillette Company LLC Razor cartridge with non-cutting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521500A (en) * 2020-04-20 2023-05-24 プロテアンテックス リミテッド Inter-die connectivity monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229236A (en) * 1985-07-31 1987-02-07 ミシエル セルヴル Transition point measuring apparatus for data signal and matching mechanism therewith
JPH03230647A (en) * 1990-02-05 1991-10-14 Nec Corp Regenerative repeater
JPH0454043A (en) * 1990-06-22 1992-02-21 Fujitsu Ltd Reception data identification circuit
JPH08265375A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Identification circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229236A (en) * 1985-07-31 1987-02-07 ミシエル セルヴル Transition point measuring apparatus for data signal and matching mechanism therewith
JPH03230647A (en) * 1990-02-05 1991-10-14 Nec Corp Regenerative repeater
JPH0454043A (en) * 1990-06-22 1992-02-21 Fujitsu Ltd Reception data identification circuit
JPH08265375A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Identification circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2512761B1 (en) 2009-12-18 2020-07-15 The Gillette Company LLC Razor cartridge with non-cutting element
WO2013121764A1 (en) * 2012-02-17 2013-08-22 セイコーエプソン株式会社 Receiver circuit, communication system, electronic device, and method of controlling receiver circuit
JP2013168903A (en) * 2012-02-17 2013-08-29 Seiko Epson Corp Receiver circuit, communication system, electronic apparatus and method of controlling receiver circuit

Also Published As

Publication number Publication date
JP2010161692A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US9829914B2 (en) Method for performing signal control of an electronic device, and associated apparatus
US20090195429A1 (en) Time to digital converting circuit and related method
US7068086B2 (en) Phase correction circuit
US20110228105A1 (en) Data transfer device and electronic camera
JP4948421B2 (en) Test apparatus, adjustment apparatus, adjustment method, and adjustment program
WO2010079749A1 (en) Data transfer device and camera
US9313016B2 (en) Receiver circuit, communication system, electronic device, and method for controlling receiver circuit
US20120249204A1 (en) Flip-flop circuit, scan test circuit, and method of controlling scan test circuit
JP2017135506A (en) Skew adjustment circuit, semiconductor device, and skew calibration method
JP2013109637A (en) Memory interface circuit and operation method thereof
WO2009087960A1 (en) Data transfer device and camera
US7454647B1 (en) Apparatus and method for skew measurement
US8325240B2 (en) Data transfer device and electronic camera
US6665218B2 (en) Self calibrating register for source synchronous clocking systems
JP5163162B2 (en) Data transfer device and electronic camera
US7583544B2 (en) Data reading circuit
JP5215695B2 (en) Imaging device
US8164348B1 (en) Method and apparatus for tuning delay
JP2011097215A (en) A/d conversion apparatus
JP4381880B2 (en) Timing adjustment circuit
JP6530288B2 (en) Semiconductor device and test method of semiconductor device
JP4819493B2 (en) Circuit system
US8520792B2 (en) Phase adjusting device and camera
US9341677B1 (en) System and method for data input alignment
JP2010245664A (en) Image processor, method of adjusting sampling position, and a/d converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/10/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 10729169

Country of ref document: EP

Kind code of ref document: A1