WO2010079671A1 - Method for producing novolac resin, and novolac resin - Google Patents

Method for producing novolac resin, and novolac resin Download PDF

Info

Publication number
WO2010079671A1
WO2010079671A1 PCT/JP2009/070878 JP2009070878W WO2010079671A1 WO 2010079671 A1 WO2010079671 A1 WO 2010079671A1 JP 2009070878 W JP2009070878 W JP 2009070878W WO 2010079671 A1 WO2010079671 A1 WO 2010079671A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
molecular weight
novolac resin
phenol
Prior art date
Application number
PCT/JP2009/070878
Other languages
French (fr)
Japanese (ja)
Inventor
進一 瀧本
能理善 小野
千巳 山腰
Original Assignee
昭和高分子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和高分子株式会社 filed Critical 昭和高分子株式会社
Priority to CN2009801539933A priority Critical patent/CN102272180B/en
Priority to KR1020117015550A priority patent/KR101348997B1/en
Publication of WO2010079671A1 publication Critical patent/WO2010079671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Definitions

  • the present invention relates to a production method for obtaining a low molecular weight novolac resin in a high yield and a novolac resin obtained by the production method.
  • Phenolic resins have heat resistance and are used in various fields. For example, when used as a curing agent for epoxy resin, it is excellent in heat resistance, adhesion, electrical insulation, etc., resin composition for printed circuit board, resin composition for interlayer insulation material used for printed circuit board and copper foil with resin, It is used for resin compositions for electronic parts sealing materials, resist inks, conductive pastes, paints, adhesives, composite materials, and the like. With recent technological innovations, further improvements in heat resistance, moisture resistance, flame retardancy and the like of epoxy resin compositions are required. One solution is to increase the amount of filler used.
  • the novolak resin is produced by addition condensation of phenols and aldehydes in the presence of an acidic catalyst. Usually, the molar ratio of aldehydes to phenols is used in the range of 0.3 to 0.9 mol, and the molecular weight of the resin obtained is controlled by adjusting the molar ratio.
  • Patent Document 1 discloses a method of heterogenizing a phenol and paraformaldehyde in the presence of a phosphoric acid catalyst. Although this method improves the reaction rate of phenols, the catalyst is limited to phosphoric acid, so aldehydes that are less reactive than paraformaldehyde, such as aliphatic aldehydes such as acetaldehyde and butyraldehyde, benzaldehyde and salicylaldehyde, etc.
  • Patent Document 2 discloses a method of reacting phenols and aldehydes in the presence of an organic phosphonic acid catalyst. The monomer reaction rate is improved by forming an aqueous phase in which the catalyst is present and an organic phase in which the resin is easily dissolved.
  • the catalyst is limited to organic phosphonic acid, sufficient reactivity cannot be obtained when reacting with an aldehyde having a reactivity lower than that of the aforementioned formaldehyde. Further, since a temperature of 110 ° C.
  • the present invention has been made based on the above circumstances, and has a low molecular weight in which phenols and aldehydes, in particular, aliphatic aldehydes and aromatic aldehydes having 2 or more carbon atoms are reacted under mild conditions.
  • An object of the present invention is to provide an efficient method for producing a novolac resin and a novolac resin obtained by the production method.
  • the present invention is based on the finding that the above problems can be achieved by reacting phenols and aldehydes in the presence of a boron compound and a catalyst containing an acid having a pKa of 5.0 or less. That is, the gist of the present invention is as follows.
  • Formula (I) B- (OR) 3 (I) (In the formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
  • a process for producing a novolac resin comprising reacting a phenol and an aldehyde in the presence of a boron compound represented by the formula (I) and a catalyst containing an acid having a pKa of 5.0 or less, 2.
  • the method for producing a novolac resin according to 1 above, wherein the boron compound represented by the formula (I) is boric acid, 4).
  • the number average molecular weight of the novolak resin obtained by the production method according to the above 1, wherein the phenol is phenol or cresol, the aldehyde is benzaldehyde, and the boron compound represented by the formula (I) is boric acid is 300 to Novolak resin having a dispersity (weight average molecular weight / number average molecular weight) of 1.3 or less and a melt viscosity at 150 ° C. of 300 mPa ⁇ s or less.
  • a novolac resin obtained by the method can be provided.
  • Example 1 is a GPC chart of novolac resin in Example 1.
  • 10 is a GPC chart of novolac resin in Comparative Example 4.
  • the formula (I) B- (OR) 3 (I) (In the formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.) Is used as an essential component.
  • the alkyl group having 1 to 10 carbon atoms as R may be linear or branched, and is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group.
  • Pentyl group isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, decyl group and the like.
  • the boron compound represented by the formula (I) include boric acid, trimethyl borate, triethyl borate, triisopropyl borate, tributyl borate and the like, and are used alone or in combination of two or more. be able to. Of these, boric acid is practically preferred.
  • the boron compound is used in an amount of 0.3 to 20 parts by weight, preferably 1.0 to 10 parts by weight, based on 100 parts by weight of phenols. If the amount of the boron compound used is less than 0.3 parts by mass, the reaction rate of phenols and aldehydes decreases, which is not preferable. If the amount exceeds 10 parts by mass, the effect of improving the reaction rate is hardly changed, so it is not practical.
  • the acid having a pKa of 5.0 or less which is an essential component of the catalyst in the present invention, may be any acid used in the production of general novolak resins.
  • hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, paratoluene sulfone An acid, an oxalic acid, etc. are mentioned, It can use individually or in mixture of 2 or more types.
  • An acid having a pKa of more than 5.0 is not practical because of poor catalyst effect.
  • an acid having a pKa of 0.0 to 4.0 is preferable, and examples thereof include oxalic acid, phosphoric acid, salicylic acid, and tartaric acid.
  • the amount of the acid having a pKa of 5.0 or less is 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, based on 100 parts by weight of phenols. It is preferable to use in the ratio.
  • phenols and aldehydes are reacted in the presence of a boron compound and an acid having a pKa of 5.0 or less.
  • the phenols used in the method of the present invention may be those used in the production of general phenol resins, such as phenol, various cresols, various ethylphenols, various xylenols, various butylphenols, various octylphenols, various nonylphenols.
  • phenylphenols various cyclohexylphenols, various trimethylphenols, bisphenol A, catechol, resorcinol, hydroquinone, various naphthols, pyrogallol and the like can be used alone or in admixture of two or more. Of these, phenol and various cresols are practically preferable.
  • any aldehydes that can be used for the production of phenol resins can be used.
  • two or more kinds can be mixed and used.
  • the aldehydes are used in an amount of 0.3 to 1.0 mol, preferably 0.4 to 0.9 mol, based on 1 mol of the total amount of phenols.
  • the amount of the aldehyde used is less than 0.3 mol, the remaining phenolic monomer increases, which is not efficient.
  • the aldehydes exceed 1.0 mol, the molecular weight of the resulting novolak resin is increased, which is not preferable.
  • the novolak resin obtained by using phenol or cresol as the phenol, benzaldehyde as the aldehyde, and boric acid as the boron compound represented by the formula (I) has a number average molecular weight of 300 to 600, The dispersity (weight average molecular weight / number average molecular weight) is 1.3 or less, and the melt viscosity at 150 ° C. is 300 mPa ⁇ s or less.
  • the melt viscosity of the novolak resin can be lowered, and a sufficient effect as a curing agent for the epoxy resin is exhibited.
  • a dispersity of 1.3 or less means that there are few high molecular weight polynuclear bodies in the novolak resin. Further, the dispersity is preferably 1.2 or less.
  • the melt viscosity is 300 mPa ⁇ s or less, when used as a curing agent for an epoxy resin, the fluidity of the blend is improved, so that a blend excellent in moldability is obtained.
  • the melt viscosity at 150 ° C. is preferably 250 mPa ⁇ s or less. In order to lower the melt viscosity of the novolak resin, it is necessary to reduce the content of the polynuclear body as much as possible.
  • the method for reacting phenols with aldehydes is not particularly limited.
  • a method in which phenols, aldehydes, a boron compound represented by formula (I), and an acid having a pKa of 5.0 or less are charged and reacted together.
  • the reaction temperature is preferably in the range of 30 to 120 ° C.
  • organic solvents examples include alcohols such as propyl alcohol and butanol, glycols such as ethylene glycol and propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and butylene.
  • alcohols such as propyl alcohol and butanol
  • glycols such as ethylene glycol and propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and butylene.
  • Glycol ethers such as glycol monomethyl ether, butylene glycol monoethyl ether, butylene glycol monopropyl ether, ketones such as methyl ethyl ketone and methyl isobutyl ketone, propyl acetate, butyl acetate, ethyl lactate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether Esters such as acetate, ethers such as 1,4-dioxane Etc. are alone, or in combination of two or more can be used.
  • the organic solvent can be used in an amount of about 0 to 1,000 parts by mass, preferably about 10 to 100 parts by mass with respect to 100 parts by mass of phenols.
  • the condensed water may be removed by distillation or, if necessary, the remaining catalyst may be removed by washing with water. Furthermore, unreacted phenols and unreacted aldehydes may be removed by distillation under reduced pressure or steam distillation.
  • FIG. 1 the gel permeation chromatography (GPC) chart of resin A is shown. The horizontal axis indicates the elution time (minutes). It can be seen from FIG. 1 that the resin A is mainly composed of a low molecular weight dinuclear body.
  • Example 2 The same procedure as in Example 1 was conducted except that metacresol was used as a phenol, to obtain 98 g of novolak resin B.
  • Example 3 The same procedure as in Example 1 was carried out except that 56 g of salicylaldehyde was used as the aldehyde, to obtain 92 g of novolak resin C.
  • Example 4 The same procedure as in Example 1 was conducted, except that 56 g of metahydroxybenzaldehyde was used as aldehydes, to obtain 94 g of novolak resin D.
  • Example 5 A reaction was carried out in the same manner as in Example 1 except that 1.7 g of trimethyl borate was used instead of boric acid and the reaction was carried out at 50 ° C. for 10 hours to obtain 97 g of novolak resin E97.
  • Comparative Example 1 A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 12 g of sodium borate and 1 g of oxalic acid and reacted at 100 ° C. for 8 hours, but the reaction did not proceed and no resin was obtained.
  • Comparative Example 2 A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, and 1 g of oxalic acid and reacted at 100 ° C. for 8 hours, but the reaction did not proceed and no resin was obtained.
  • FIG. 2 shows a gel permeation chromatography (GPC) chart of Resin E.
  • the horizontal axis indicates the elution time (minutes). From FIG. 2, it can be seen that Resin E produces a considerable amount of polynuclear body in addition to the binuclear body.
  • Comparative Example 5 Except having used metacresol as phenols, it carried out similarly to the comparative example 4, and obtained novolak resin H82g.
  • Table 1 shows the values measured by the following analytical methods for the novolak resins obtained in Examples 1 to 6 and the novolak resins obtained in Comparative Examples 4 and 5.
  • the analysis method of resin is as follows. (1) Number average molecular weight, weight average molecular weight, dispersity Measured by gel permeation chromatography (GPC). The column configuration was measured at a flow rate of 1 ml / min using two KF-804s manufactured by Showa Denko KK, using tetrahydrofuran as a solvent. The molecular weight was calculated in terms of polystyrene, and the content was calculated as a percentage of the total peak area. The degree of dispersion was calculated by weight average molecular weight / number average molecular weight.
  • Example 7 A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 2 g of salicylaldehyde, 1 g of boric acid and 1 g of oxalic acid, and reacted at 100 ° C. for 8 hours. Subsequently, it was washed twice with 100 g of pure water to remove boric acid and oxalic acid. Subsequently, the distillate was removed under reduced pressure at 180 ° C. and 50 mmHg to obtain 92 g of novolak resin I.
  • Example 8 The reaction was conducted in the same manner as in Example 7 except that metacresol was used as a phenol, to obtain a novolak resin J97g.
  • Example 9 The reaction was conducted in the same manner as in Example 7 except that 50 g of orthocresol and 50 g of paracresol were used as phenols to obtain 94 g of novolak resin K.
  • Example 10 A reaction was carried out in the same manner as in Example 7 except that 2 g of 2,4-dihydroxybenzaldehyde was used instead of salicylaldehyde, to obtain 93 g of novolak resin L93.
  • Comparative Example 6 A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 2 g of salicylaldehyde and 1 g of oxalic acid and reacted at 100 ° C. for 8 hours. The reaction did not proceed and no resin was obtained.
  • Comparative Example 7 A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 2 g of salicylaldehyde and 1 g of boric acid, and reacted at 100 ° C. for 8 hours. The reaction did not proceed and no resin was obtained.
  • Table 2 shows values measured for the novolak resins obtained in Examples 7 to 10 by the above analytical method.
  • the novolak resin of the present invention Since the novolak resin of the present invention has a low molecular weight, the fluidity is high, and the thermosetting resin composition used as a curing agent for the epoxy resin significantly improves the fluidity during molding.
  • the amount of filler can be increased to reduce the linear expansion coefficient, the moisture absorption rate, and the flame retardance of the molded product.
  • the cured product has good heat resistance, moisture resistance, mechanical properties, electrical insulation, adhesion to metal, etc., and is therefore very effective for electronic material applications that require high reliability. is there.
  • resin compositions for encapsulants for electronic components resin compositions for printed circuit boards, resin compositions for interlayer insulation materials used for printed circuit boards and copper foils with resin, resist inks, conductive pastes (conductive filling) Agent), paints, adhesives, composite materials and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

Disclosed is a method for efficiently producing a novolac resin having a low molecular weight, wherein a phenol and an aldehyde are reacted with each other under mild conditions. The method for producing a novolac resin is characterized in that a phenol and an aldehyde are reacted with each other in the presence of a catalyst that contains a boron compound represented by the following formula (I): B-(OR)3 (wherein R represents a hydrogen atom or an alkyl group having 1-10 carbon atoms) and an acid having a pKa of 5.0 or less.

Description

ノボラック樹脂の製造方法およびノボラック樹脂Method for producing novolac resin and novolac resin
 本発明は低分子量ノボラック樹脂を高収率で得るための製造方法及び該製造方法により得られるノボラック樹脂に関するものである。 The present invention relates to a production method for obtaining a low molecular weight novolac resin in a high yield and a novolac resin obtained by the production method.
 フェノール樹脂は、耐熱性があり様々な分野に使用されている。
 例えば、エポキシ樹脂の硬化剤として用いた場合、耐熱性、密着性、電気絶縁性等に優れ、プリント基板用樹脂組成物、プリント基板および樹脂付き銅箔に使用する層間絶縁材料用樹脂組成物、電子部品の封止材用樹脂組成物、レジストインキ、導電ペースト、塗料、接着剤、複合材料等に用いられている。
 近年の技術革新に伴い、エポキシ樹脂組成物の更なる耐熱性、耐湿性、難燃性等の向上が求められている。
 その解決手段の一つとして充填剤の使用量増加がある。
 充填剤量を多くすることにより成形品の線膨張係数の低減や吸湿率の低減、難燃性の向上が可能となるが、一方で充填量が多くなることにより配合物の流動性が低下し、成形性が悪くなるという問題が生じるため、樹脂成分の低溶融粘度化が必要となる。
 ノボラック樹脂は、フェノール類とアルデヒド類とを酸性触媒の存在下に付加縮合して製造される。
 通常、フェノール類に対するアルデヒド類のモル比が0.3~0.9モルの範囲で使用され、モル比を調整することで得られる樹脂の分子量を制御している。
 樹脂の溶融粘度を低くするには高分子量成分をできるだけ少なくする必要があるが、分子量の低いノボラック樹脂を得るためにはモル比を小さくしなければならず、その場合未反応のフェノールモノマーが多く残存することになる。
 樹脂中の未反応フェノール類モノマーは減圧下で蒸留することにより低減することができるが、モル比の低い樹脂ほど大量のフェノール類モノマーが蒸留により除去されることになるため、収率の低下が避けられない。
 一方、樹脂中にフェノール類モノマーが残存した場合、成型物の寸法安定性の低下、ボイドの発生などを引き起こすことから、樹脂中のフェノールモノマーはできるだけ少ない方が好ましい。
 このような背景から、ノボラック樹脂の高収率化が検討されてきた(特許文献1、2を参照)。
 特許文献1ではフェノール類とパラホルムアルデヒドとをリン酸触媒の存在下で不均一化反応する方法が示されている。
 この方法によるとフェノール類の反応率は向上するものの、触媒がリン酸に限定されるため、パラホルムアルデヒドよりも反応性の低いアルデヒド、例えばアセトアルデヒドやブチルアルデヒドなどの脂肪族アルデヒド、ベンズアルデヒドやサリチルアルデヒドなどの芳香族アルデヒドと反応させる場合には十分な反応性が得られない。
 特許文献2ではフェノール類とアルデヒド類とを有機ホスホン酸触媒の存在下で反応する方法が示されている。
 触媒の存在する水相と樹脂の溶解しやすい有機相を形成することによりモノマー反応率を向上させている。
 しかし、この方法でも触媒が有機ホスホン酸に限定されるため、前述のホルムアルデヒドよりも反応性の低いアルデヒドと反応させる場合には十分な反応性が得られない。
 また、触媒効率向上には110℃以上の温度が必要であることから、高分子量体の生成は避けられず、低分子量のノボラック樹脂を得るには好ましくない。
 アセトアルデヒドやブチルアルデヒドなどの脂肪族アルデヒド、ベンズアルデヒドやサリチルアルデヒドなどの芳香族アルデヒドとフェノール類とを反応する場合は、ハロゲン化水素やスルホン酸系化合物など、リン酸や有機ホスホン酸よりも更に強い酸を大量に使用し、かつ高い反応温度が必要となる。
 このような条件下では高分子量成分が生成しやすくなるため、低分子量のノボラック樹脂を得るのは困難である。
 このように、ホルムアルデヒドやパラホルムアルデヒドよりも反応性の低いアルデヒド類を使用して低分子量ノボラック樹脂を高収率で得ようとする場合、これまでに有効な製造手段はなかった。
Phenolic resins have heat resistance and are used in various fields.
For example, when used as a curing agent for epoxy resin, it is excellent in heat resistance, adhesion, electrical insulation, etc., resin composition for printed circuit board, resin composition for interlayer insulation material used for printed circuit board and copper foil with resin, It is used for resin compositions for electronic parts sealing materials, resist inks, conductive pastes, paints, adhesives, composite materials, and the like.
With recent technological innovations, further improvements in heat resistance, moisture resistance, flame retardancy and the like of epoxy resin compositions are required.
One solution is to increase the amount of filler used.
Increasing the amount of filler makes it possible to reduce the coefficient of linear expansion of the molded product, reduce the moisture absorption rate, and improve the flame retardancy.However, increasing the amount of filler reduces the fluidity of the compound. Since the problem that moldability deteriorates arises, it is necessary to lower the melt viscosity of the resin component.
The novolak resin is produced by addition condensation of phenols and aldehydes in the presence of an acidic catalyst.
Usually, the molar ratio of aldehydes to phenols is used in the range of 0.3 to 0.9 mol, and the molecular weight of the resin obtained is controlled by adjusting the molar ratio.
In order to reduce the melt viscosity of the resin, it is necessary to reduce the high molecular weight component as much as possible. However, in order to obtain a novolak resin having a low molecular weight, the molar ratio must be reduced, and in this case, there are many unreacted phenol monomers. Will remain.
Unreacted phenolic monomers in the resin can be reduced by distillation under reduced pressure. However, the lower the molar ratio of the resin, the more phenolic monomers will be removed by distillation, resulting in a decrease in yield. Inevitable.
On the other hand, if a phenolic monomer remains in the resin, it causes a decrease in the dimensional stability of the molded product and generation of voids. Therefore, it is preferable that the phenolic monomer in the resin is as small as possible.
Against this background, higher yields of novolak resins have been studied (see Patent Documents 1 and 2).
Patent Document 1 discloses a method of heterogenizing a phenol and paraformaldehyde in the presence of a phosphoric acid catalyst.
Although this method improves the reaction rate of phenols, the catalyst is limited to phosphoric acid, so aldehydes that are less reactive than paraformaldehyde, such as aliphatic aldehydes such as acetaldehyde and butyraldehyde, benzaldehyde and salicylaldehyde, etc. When it is reacted with an aromatic aldehyde, sufficient reactivity cannot be obtained.
Patent Document 2 discloses a method of reacting phenols and aldehydes in the presence of an organic phosphonic acid catalyst.
The monomer reaction rate is improved by forming an aqueous phase in which the catalyst is present and an organic phase in which the resin is easily dissolved.
However, even in this method, since the catalyst is limited to organic phosphonic acid, sufficient reactivity cannot be obtained when reacting with an aldehyde having a reactivity lower than that of the aforementioned formaldehyde.
Further, since a temperature of 110 ° C. or higher is necessary for improving the catalyst efficiency, the production of a high molecular weight body is unavoidable, which is not preferable for obtaining a low molecular weight novolak resin.
When reacting aliphatic aldehydes such as acetaldehyde and butyraldehyde and aromatic aldehydes such as benzaldehyde and salicylaldehyde with phenols, acids such as hydrogen halides and sulfonic acid compounds are stronger than phosphoric acid and organic phosphonic acids. Is used in large quantities and requires a high reaction temperature.
Under such conditions, it becomes difficult to obtain a low molecular weight novolak resin because a high molecular weight component is easily generated.
Thus, when trying to obtain a low molecular weight novolak resin in a high yield by using aldehydes having lower reactivity than formaldehyde and paraformaldehyde, there has been no effective production means so far.
特開2004-339257号公報JP 2004-339257 A 特開2002-194041号公報JP 2002-194041 A
 本発明は以上のような事情に基づいてなされたものであり、フェノール類とアルデヒド類、特に炭素数が2以上の脂肪族アルデヒドおよび芳香族アルデヒドとを、温和な条件下で反応させる低分子量のノボラック樹脂の効率的な製造方法及び該製造方法により得られるノボラック樹脂を提供することを目的とするものである。 The present invention has been made based on the above circumstances, and has a low molecular weight in which phenols and aldehydes, in particular, aliphatic aldehydes and aromatic aldehydes having 2 or more carbon atoms are reacted under mild conditions. An object of the present invention is to provide an efficient method for producing a novolac resin and a novolac resin obtained by the production method.
 本発明は、ホウ素化合物及びpKaが5.0以下の酸を含む触媒の存在下、フェノール類とアルデヒド類とを反応させることによって、上記課題が達成できることを見出したことに基づくものである。
 即ち、本発明は以下を要旨とする。
The present invention is based on the finding that the above problems can be achieved by reacting phenols and aldehydes in the presence of a boron compound and a catalyst containing an acid having a pKa of 5.0 or less.
That is, the gist of the present invention is as follows.
1.式(I)
 B-(OR)3   (I) 
(式中、Rは、水素原子、炭素数1~10のアルキル基を示す。)
で表されるホウ素化合物およびpKaが5.0以下の酸を含む触媒の存在下、フェノール類とアルデヒド類とを反応させることを特徴とするノボラック樹脂の製造方法、
2.前記酸のpKaが0.0~4.0の範囲である上記1に記載のノボラック樹脂の製造方法、
3.式(I)で表されるホウ素化合物が、ホウ酸である上記1に記載のノボラック樹脂の製造方法、
4.フェノール類がフェノールまたはクレゾールで、アルデヒド類がベンズアルデヒドであり、式(I)で表されるホウ素化合物がホウ酸である上記1に記載の製造方法によって得られるノボラック樹脂の数平均分子量が、300~600であり、分散度(重量平均分子量/数平均分子量)が1.3以下で、かつ150℃における溶融粘度が300mPa・s以下であるノボラック樹脂
1. Formula (I)
B- (OR) 3 (I)
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
A process for producing a novolac resin, comprising reacting a phenol and an aldehyde in the presence of a boron compound represented by the formula (I) and a catalyst containing an acid having a pKa of 5.0 or less,
2. The method for producing a novolak resin according to the above 1, wherein the acid has a pKa in the range of 0.0 to 4.0,
3. 2. The method for producing a novolac resin according to 1 above, wherein the boron compound represented by the formula (I) is boric acid,
4). The number average molecular weight of the novolak resin obtained by the production method according to the above 1, wherein the phenol is phenol or cresol, the aldehyde is benzaldehyde, and the boron compound represented by the formula (I) is boric acid is 300 to Novolak resin having a dispersity (weight average molecular weight / number average molecular weight) of 1.3 or less and a melt viscosity at 150 ° C. of 300 mPa · s or less.
 本発明によれば、フェノール類とアルデヒド類とをホウ素化合物およびpKaが5.0以下の酸を含む触媒の存在下で反応させることにより、低分子量のノボラック樹脂の効率的な製造方法及び該製造方法により得られるノボラック樹脂を提供することができる。 According to the present invention, an efficient method for producing a low molecular weight novolak resin and its production by reacting phenols and aldehydes in the presence of a boron compound and a catalyst containing an acid having a pKa of 5.0 or less. A novolac resin obtained by the method can be provided.
実施例1におけるノボラック樹脂のGPCチャートである。1 is a GPC chart of novolac resin in Example 1. 比較例4におけるノボラック樹脂のGPCチャートである。10 is a GPC chart of novolac resin in Comparative Example 4.
 以下、本発明を詳しく説明する。
 本発明のノボラック樹脂の製造方法においては、pKaが5.0以下の酸の他に、式(I)
 B-(OR)3   (I) 
(式中、Rは、水素原子、炭素数1~10のアルキル基を示す。)
で表されるホウ素化合物が必須成分として使用される。
 Rである炭素数1~10のアルキル基としては、直鎖状でも分岐状でもよく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、ヘキシル基、イソへキシル基、ヘプチル基、オクチル基、デシル基等が挙げられる。
The present invention will be described in detail below.
In the method for producing the novolak resin of the present invention, in addition to the acid having a pKa of 5.0 or less, the formula (I)
B- (OR) 3 (I)
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
Is used as an essential component.
The alkyl group having 1 to 10 carbon atoms as R may be linear or branched, and is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group. Pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, decyl group and the like.
 式(I)で表されるホウ素化合物の具体例としては、ホウ酸、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリブチルなどが挙げられ、単独若しくは2種以上混合して使用することができる。
 これらのうち、ホウ酸が実用上好ましい。
 前記ホウ素化合物の使用量は、フェノール類100質量部に対して0.3~20質量部、好ましくは1.0~10重量部の割合で用いるのがよい。
 ホウ素化合物の使用量が0.3質量部未満では、フェノール類とアルデヒド類の反応率が低下するため好ましくなく、10質量部を越えると反応率向上の効果が殆ど変わらなくなるため、実用的でない。
Specific examples of the boron compound represented by the formula (I) include boric acid, trimethyl borate, triethyl borate, triisopropyl borate, tributyl borate and the like, and are used alone or in combination of two or more. be able to.
Of these, boric acid is practically preferred.
The boron compound is used in an amount of 0.3 to 20 parts by weight, preferably 1.0 to 10 parts by weight, based on 100 parts by weight of phenols.
If the amount of the boron compound used is less than 0.3 parts by mass, the reaction rate of phenols and aldehydes decreases, which is not preferable. If the amount exceeds 10 parts by mass, the effect of improving the reaction rate is hardly changed, so it is not practical.
 本発明における触媒の必須成分であるpKaが5.0以下の酸としては、一般的なノボラック樹脂の製造に使用されるものであれば良く、例えば塩酸、硝酸、硫酸、リン酸、パラトルエンスルホン酸、シュウ酸などが挙げられ、単独若しくは2種類以上混合して使用することができる。
 pKaが5.0を超える酸では触媒としての効果が乏しく実用的でない。
 反応設備への腐食およびノボラック樹脂の収率などを考慮すると、pKaが0.0~4.0である酸が好ましく、例えばシュウ酸、リン酸、サリチル酸、酒石酸などが挙げられる。
 前記pKaが5.0以下の酸の使用量は、フェノール類100質量部に対して0.1~20質量部、好ましくは0.1~10重量部、更に好ましくは0.2~5重量部の割合で用いるのが好ましい。
The acid having a pKa of 5.0 or less, which is an essential component of the catalyst in the present invention, may be any acid used in the production of general novolak resins. For example, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, paratoluene sulfone. An acid, an oxalic acid, etc. are mentioned, It can use individually or in mixture of 2 or more types.
An acid having a pKa of more than 5.0 is not practical because of poor catalyst effect.
Considering corrosion to the reaction equipment and the yield of novolak resin, an acid having a pKa of 0.0 to 4.0 is preferable, and examples thereof include oxalic acid, phosphoric acid, salicylic acid, and tartaric acid.
The amount of the acid having a pKa of 5.0 or less is 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, based on 100 parts by weight of phenols. It is preferable to use in the ratio.
 本発明のノボラック樹脂の製造方法は、ホウ素化合物およびpKaが5.0以下の酸の存在下、フェノール類とアルデヒド類を反応させるものである。
 本発明方法に使用されるフェノール類としては、一般的なフェノール樹脂の製造に使用されるものであれば良く、例えばフェノール、各種クレゾール、各種エチルフェノール、各種キシレノール、各種ブチルフェノール、各種オクチルフェノール、各種ノニルフェノール、各種フェニルフェノール、各種シクロヘキシルフェノール、各種トリメチルフェノール、ビスフェノールA、カテコール、レゾシノール、ハイドロキノン、各種ナフトール、ピロガロールなどを、単独又は2種以上混合して使用することができる。
 これらのうち、フェノールや各種クレゾールが実用上好ましい。
In the method for producing a novolak resin of the present invention, phenols and aldehydes are reacted in the presence of a boron compound and an acid having a pKa of 5.0 or less.
The phenols used in the method of the present invention may be those used in the production of general phenol resins, such as phenol, various cresols, various ethylphenols, various xylenols, various butylphenols, various octylphenols, various nonylphenols. Various phenylphenols, various cyclohexylphenols, various trimethylphenols, bisphenol A, catechol, resorcinol, hydroquinone, various naphthols, pyrogallol and the like can be used alone or in admixture of two or more.
Of these, phenol and various cresols are practically preferable.
 一方、フェノール類と反応させるアルデヒド類としては、フェノール樹脂の製造に使用可能とされているアルデヒド類であれば使用可能である。
 例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、パラホルムアルデヒド、各種プロピルアルデヒド、各種ブチルアルデヒド、各種バレルアルデヒド、各種ヘキシルアルデヒド、グリオキザール、クロトンアルデヒド、グルタルアルデヒド、各種ヒドロキシベンズアルデヒド、各種ジヒドロキシベンズアルデヒド、各種ヒドロキシメチルベンズアルデヒドなどを単独もしくは2種以上混合して使用することができる。
 上記アルデヒド類の使用量は、フェノール類の合計量1モルに対して、0.3~1.0モル、好ましくは0.4~0.9モルの割合で用いるのが望ましい。
 このアルデヒド類の使用量が0.3モル未満であると、残存するフェノール類モノマーが多くなるため効率的でない。
 一方、アルデヒド類が1.0モルを超えると、得られるノボラック樹脂の分子量が高くなるため好ましくない。
On the other hand, as aldehydes to be reacted with phenols, any aldehydes that can be used for the production of phenol resins can be used.
For example, formaldehyde, acetaldehyde, benzaldehyde, paraformaldehyde, various propyl aldehydes, various butyraldehydes, various valeraldehydes, various hexyl aldehydes, glyoxal, crotonaldehyde, glutaraldehyde, various hydroxybenzaldehydes, various dihydroxybenzaldehydes, various hydroxymethylbenzaldehydes, etc. Alternatively, two or more kinds can be mixed and used.
The aldehydes are used in an amount of 0.3 to 1.0 mol, preferably 0.4 to 0.9 mol, based on 1 mol of the total amount of phenols.
When the amount of the aldehyde used is less than 0.3 mol, the remaining phenolic monomer increases, which is not efficient.
On the other hand, when the aldehydes exceed 1.0 mol, the molecular weight of the resulting novolak resin is increased, which is not preferable.
 本発明において、フェノール類としてフェノールまたはクレゾール、アルデヒド類としてベンズアルデヒド、式(I)で表されるホウ素化合物としてホウ酸を使用することによって得られるノボラック樹脂は、数平均分子量が300~600であり、分散度(重量平均分子量/数平均分子量)が1.3以下で、かつ150℃における溶融粘度が300mPa・s以下である。
 得られるノボラック樹脂の数平均分子量が上記範囲内であると、ノボラック樹脂の溶融粘度を低くすることができ、エポキシ樹脂の硬化剤として十分な効果を発揮する。
 分散度が1.3以下であることは、ノボラック樹脂中の高分子量の多核体が少ないことを意味する。
 また、分散度は、好ましくは1.2以下である。
 溶融粘度が300mPa・s以下であると、エポキシ樹脂の硬化剤として使用した場合、配合物の流動性が向上するため成形性に優れた配合物が得られる。
 更に、150℃における溶融粘度は、好ましくは250mPa・s以下である。
 ノボラック樹脂の溶融粘度を低くするためには、多核体の含有量をできるだけ少なくする必要がある。
In the present invention, the novolak resin obtained by using phenol or cresol as the phenol, benzaldehyde as the aldehyde, and boric acid as the boron compound represented by the formula (I) has a number average molecular weight of 300 to 600, The dispersity (weight average molecular weight / number average molecular weight) is 1.3 or less, and the melt viscosity at 150 ° C. is 300 mPa · s or less.
When the number average molecular weight of the obtained novolak resin is within the above range, the melt viscosity of the novolak resin can be lowered, and a sufficient effect as a curing agent for the epoxy resin is exhibited.
A dispersity of 1.3 or less means that there are few high molecular weight polynuclear bodies in the novolak resin.
Further, the dispersity is preferably 1.2 or less.
When the melt viscosity is 300 mPa · s or less, when used as a curing agent for an epoxy resin, the fluidity of the blend is improved, so that a blend excellent in moldability is obtained.
Furthermore, the melt viscosity at 150 ° C. is preferably 250 mPa · s or less.
In order to lower the melt viscosity of the novolak resin, it is necessary to reduce the content of the polynuclear body as much as possible.
 フェノール類とアルデヒド類とを反応させる方法には、特に制限はなく、例えばフェノール類と、アルデヒド類、式(I)で表されるホウ素化合物およびpKa5.0以下の酸を一括で仕込み反応させる方法、またはフェノール類と式(I)で表されるホウ素化合物およびpKa5.0以下の酸を仕込み、所定の反応温度にてアルデヒド類を添加する方法が挙げられる。
 このとき、反応温度は30~120℃の範囲で行うとよい。
 30℃未満であると反応の進行が遅く、かつ未反応のフェノール類が残存するため好ましくなく、また120℃を超える温度では高分子量成分の生成が促進されるため好ましくない。
 反応時間は特に制限はなく、アルデヒド類および触媒の量、反応温度により調整すればよい。
 反応の際、有機溶剤を使用することももちろん可能である。
 このような有機溶媒としては、プロピルアルコール、ブタノール等のアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ブチレングリコールモノメチルエーテル、ブチレングリコールモノエチルエーテル、ブチレングリコールモノプロピルエーテル等のグリコールエーテル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸プロピル、酢酸ブチル、乳酸エチル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、1,4-ジオキサン等のエーテル類等が単独で、若しくは二種以上を併用して使用できる。
 前記有機溶媒は、フェノール類100質量部に対して、0~1,000質量部、好ましくは10~100質量部程度となるように使用することができる。
 反応後は蒸留により縮合水を除去したり、また必要に応じて水洗して残存触媒を除去してもよい。
 更に、減圧蒸留或いは水蒸気蒸留を行って未反応のフェノール類や未反応アルデヒド類を除去してもよい。
The method for reacting phenols with aldehydes is not particularly limited. For example, a method in which phenols, aldehydes, a boron compound represented by formula (I), and an acid having a pKa of 5.0 or less are charged and reacted together. Or a method of adding a phenol compound and a boron compound represented by the formula (I) and an acid having a pKa of 5.0 or less and adding an aldehyde at a predetermined reaction temperature.
At this time, the reaction temperature is preferably in the range of 30 to 120 ° C.
When the temperature is lower than 30 ° C., the reaction proceeds slowly and unreacted phenols remain, which is not preferable, and when the temperature exceeds 120 ° C., formation of a high molecular weight component is promoted, which is not preferable.
There is no restriction | limiting in particular in reaction time, What is necessary is just to adjust with the quantity of aldehydes and a catalyst, and reaction temperature.
It is of course possible to use an organic solvent during the reaction.
Examples of such organic solvents include alcohols such as propyl alcohol and butanol, glycols such as ethylene glycol and propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and butylene. Glycol ethers such as glycol monomethyl ether, butylene glycol monoethyl ether, butylene glycol monopropyl ether, ketones such as methyl ethyl ketone and methyl isobutyl ketone, propyl acetate, butyl acetate, ethyl lactate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether Esters such as acetate, ethers such as 1,4-dioxane Etc. are alone, or in combination of two or more can be used.
The organic solvent can be used in an amount of about 0 to 1,000 parts by mass, preferably about 10 to 100 parts by mass with respect to 100 parts by mass of phenols.
After the reaction, the condensed water may be removed by distillation or, if necessary, the remaining catalyst may be removed by washing with water.
Furthermore, unreacted phenols and unreacted aldehydes may be removed by distillation under reduced pressure or steam distillation.
 以下に、本発明の製造方法によるノボラック樹脂の実施例を示して、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples of novolak resins produced by the production method of the present invention, but the present invention is not limited to these.
実施例1
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、ホウ酸1g、シュウ酸(pKa=1.04)1gを仕込み、100℃で8時間反応させた。
 次いで、純水100gで2回洗浄を行い、触媒を除去した。
 次いで、180℃、50mmHgの減圧下で溜出分を除去し、ノボラック樹脂A94gを得た。
 図1に、樹脂Aのゲルパーミエーションクロマトグラフィー(GPC)チャートを示す。なお、横軸は溶出時間(分)を示す。
 図1から樹脂Aは、低分子量の2核体が主生成物であることが分かる。
Example 1
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 1 g of boric acid and 1 g of oxalic acid (pKa = 1.04) and reacted at 100 ° C. for 8 hours.
Next, the catalyst was removed by washing twice with 100 g of pure water.
Subsequently, the distillate was removed under reduced pressure at 180 ° C. and 50 mmHg to obtain 94 g of novolak resin A.
In FIG. 1, the gel permeation chromatography (GPC) chart of resin A is shown. The horizontal axis indicates the elution time (minutes).
It can be seen from FIG. 1 that the resin A is mainly composed of a low molecular weight dinuclear body.
実施例2
 フェノール類としてメタクレゾールを使用した以外は実施例1と同様に行い、ノボラック樹脂B98gを得た。
Example 2
The same procedure as in Example 1 was conducted except that metacresol was used as a phenol, to obtain 98 g of novolak resin B.
実施例3
 アルデヒド類としてサリチルアルデヒド56gを使用した以外は実施例1と同様に行い、ノボラック樹脂C92gを得た。
Example 3
The same procedure as in Example 1 was carried out except that 56 g of salicylaldehyde was used as the aldehyde, to obtain 92 g of novolak resin C.
実施例4
 アルデヒド類としてメタヒドロキシベンズアルデヒド56gを使用した以外は実施例1と同様に行い、ノボラック樹脂D94gを得た。
Example 4
The same procedure as in Example 1 was conducted, except that 56 g of metahydroxybenzaldehyde was used as aldehydes, to obtain 94 g of novolak resin D.
実施例5
 ホウ酸の代わりにホウ酸トリメチル1.7gを使用し、反応を50℃で10時間行った以外は実施例1と同様に反応を行い、ノボラック樹脂E97gを得た。
Example 5
A reaction was carried out in the same manner as in Example 1 except that 1.7 g of trimethyl borate was used instead of boric acid and the reaction was carried out at 50 ° C. for 10 hours to obtain 97 g of novolak resin E97.
実施例6
 シュウ酸の代わりにリン酸(pKa=2.12)1gを使用した以外は実施例1と同様に反応を行い、ノボラック樹脂F90gを得た。
Example 6
A reaction was carried out in the same manner as in Example 1 except that 1 g of phosphoric acid (pKa = 2.12) was used instead of oxalic acid to obtain 90 g of novolak resin F.
比較例1
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、ホウ酸ナトリウム12g、シュウ酸1gを仕込み、100℃で8時間反応させたが、反応が進行せず樹脂は得られなかった。
Comparative Example 1
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 12 g of sodium borate and 1 g of oxalic acid and reacted at 100 ° C. for 8 hours, but the reaction did not proceed and no resin was obtained.
比較例2
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、シュウ酸1gを仕込み、100℃で8時間反応させたが、反応が進行せず樹脂は得られなかった。
Comparative Example 2
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, and 1 g of oxalic acid and reacted at 100 ° C. for 8 hours, but the reaction did not proceed and no resin was obtained.
比較例3
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、ホウ酸1g、吉草酸(pKa=5.17)1gを仕込み、100℃で8時間反応させたが、反応が進行せず樹脂は得られなかった。
Comparative Example 3
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 1 g of boric acid and 1 g of valeric acid (pKa = 5.17) and reacted at 100 ° C. for 8 hours. Was not obtained.
比較例4
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、パラトルエンスルホン酸10gを仕込み、100℃で8時間反応させた。
 次いで、水酸化ナトリウム水溶液で中和した後、純水100gで5回洗浄を行い塩を除去した。
 次いで180℃、50mmHgの減圧下で溜出分を除去し、ノボラック樹脂G77gを得た。
 図2に樹脂Eのゲルパーミエーションクロマトグラフィー(GPC)チャートを示す。なお、横軸は溶出時間(分)を示す。
 図2から樹脂Eは、2核体以外に相当量の多核体が生成していることが分かる。
Comparative Example 4
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde and 10 g of paratoluenesulfonic acid, and reacted at 100 ° C. for 8 hours.
Next, after neutralizing with an aqueous sodium hydroxide solution, the salt was removed by washing 5 times with 100 g of pure water.
Next, the distillate was removed under reduced pressure at 180 ° C. and 50 mmHg to obtain 77 g of novolak resin G.
FIG. 2 shows a gel permeation chromatography (GPC) chart of Resin E. The horizontal axis indicates the elution time (minutes).
From FIG. 2, it can be seen that Resin E produces a considerable amount of polynuclear body in addition to the binuclear body.
比較例5
 フェノール類としてメタクレゾールを使用した以外は比較例4と同様に行い、ノボラック樹脂H82gを得た。
Comparative Example 5
Except having used metacresol as phenols, it carried out similarly to the comparative example 4, and obtained novolak resin H82g.
 実施例1~6で得られたノボラック樹脂、比較例4および5で得られたノボラック樹脂について下記分析方法で測定した値を表1に示す。
 樹脂の分析方法は以下の通りである。
(1)数平均分子量、重量平均分子量、分散度
 ゲルパーミエーションクロマトグラフィー(GPC)により測定した。
 カラム構成は昭和電工(株)製のKF-804を2本用い、溶媒としてテトラヒドロフランを使用し、流量1ml/分で測定した。
 分子量はポリスチレン換算、含有率は全ピーク面積中の百分率で算出した。
 分散度は重量平均分子量/数平均分子量で算出した。
(2)軟化点(℃)
 エレックス科学製気相軟化点測定装置EX-719PDを用いて昇温速度2.5℃/分で測定した。
(3)溶融粘度(mPa・s)
 リサーチ・イクウィップ社製ICI粘度計を用い、150℃で測定した。
Table 1 shows the values measured by the following analytical methods for the novolak resins obtained in Examples 1 to 6 and the novolak resins obtained in Comparative Examples 4 and 5.
The analysis method of resin is as follows.
(1) Number average molecular weight, weight average molecular weight, dispersity Measured by gel permeation chromatography (GPC).
The column configuration was measured at a flow rate of 1 ml / min using two KF-804s manufactured by Showa Denko KK, using tetrahydrofuran as a solvent.
The molecular weight was calculated in terms of polystyrene, and the content was calculated as a percentage of the total peak area.
The degree of dispersion was calculated by weight average molecular weight / number average molecular weight.
(2) Softening point (° C)
The measurement was performed at a heating rate of 2.5 ° C./minute using an EXEX gas phase softening point measuring apparatus EX-719PD.
(3) Melt viscosity (mPa · s)
The measurement was performed at 150 ° C. using an ICI viscometer manufactured by Research Equip.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例7
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、サリチルアルデヒド2g、ホウ酸1g及びシュウ酸1gを仕込み、100℃で8時間反応させた。
 次いで、純水100gで2回洗浄を行い、ホウ酸及びシュウ酸を除去した。
 次いで、180℃、50mmHgの減圧下で溜出分を除去し、ノボラック樹脂I92gを得た。
Example 7
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 2 g of salicylaldehyde, 1 g of boric acid and 1 g of oxalic acid, and reacted at 100 ° C. for 8 hours.
Subsequently, it was washed twice with 100 g of pure water to remove boric acid and oxalic acid.
Subsequently, the distillate was removed under reduced pressure at 180 ° C. and 50 mmHg to obtain 92 g of novolak resin I.
実施例8
 フェノール類としてメタクレゾールを使用した以外は実施例7と同様に反応を行い、ノボラック樹脂J97gを得た。
Example 8
The reaction was conducted in the same manner as in Example 7 except that metacresol was used as a phenol, to obtain a novolak resin J97g.
実施例9
 フェノール類としてオルソクレゾール50g、パラクレゾール50gを使用した以外は実施例7と同様に反応を行い、ノボラック樹脂K94gを得た。
Example 9
The reaction was conducted in the same manner as in Example 7 except that 50 g of orthocresol and 50 g of paracresol were used as phenols to obtain 94 g of novolak resin K.
実施例10
 サリチルアルデヒドの代わりに2,4-ジヒドロキシベンズアルデヒド2gを使用した以外は実施例7と同様に反応を行い、ノボラック樹脂L93gを得た。
Example 10
A reaction was carried out in the same manner as in Example 7 except that 2 g of 2,4-dihydroxybenzaldehyde was used instead of salicylaldehyde, to obtain 93 g of novolak resin L93.
比較例6
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、サリチルアルデヒド2g及びシュウ酸1gを仕込み、100℃で8時間反応させたところ、反応が進行せず樹脂は得られなかった。
Comparative Example 6
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 2 g of salicylaldehyde and 1 g of oxalic acid and reacted at 100 ° C. for 8 hours. The reaction did not proceed and no resin was obtained.
比較例7
 冷却管、攪拌機を備えたフラスコに、オルソクレゾール100g、ベンズアルデヒド49g、サリチルアルデヒド2g及びホウ酸1gを仕込み、100℃で8時間反応させたところ、反応が進行せず樹脂は得られなかった。
Comparative Example 7
A flask equipped with a condenser and a stirrer was charged with 100 g of orthocresol, 49 g of benzaldehyde, 2 g of salicylaldehyde and 1 g of boric acid, and reacted at 100 ° C. for 8 hours. The reaction did not proceed and no resin was obtained.
 実施例7~10で得られたノボラック樹脂について上記分析方法で測定した値を表2に示す。 Table 2 shows values measured for the novolak resins obtained in Examples 7 to 10 by the above analytical method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のノボラック樹脂は、分子量が低いため流動性が高く、エポキシ樹脂の硬化剤として使用した熱硬化性樹脂組成物は、成形時の流動性が著しく向上する。
 本発明のノボラック樹脂を半導体封止材用として使用した場合、充填剤量を多くすることにより成形品の線膨張係数の低減や吸湿率の低減、難燃性の向上が可能となる。
 また、その硬化物は、良好な耐熱性、耐湿性、機械的特性、電気絶縁性、金属との接着性などを有し、従って、高信頼性を必要とする電子材料用途に非常に有効である。
 具体的には、電子部品の封止材用樹脂組成物、プリント基板用樹脂組成物、プリント基板および樹脂付き銅箔に使用する層間絶縁材料用樹脂組成物、レジストインキ、導電ペースト(導電性充填剤含有)、塗料、接着剤、複合材料等に利用可能である。
Since the novolak resin of the present invention has a low molecular weight, the fluidity is high, and the thermosetting resin composition used as a curing agent for the epoxy resin significantly improves the fluidity during molding.
When the novolak resin of the present invention is used for a semiconductor encapsulant, the amount of filler can be increased to reduce the linear expansion coefficient, the moisture absorption rate, and the flame retardance of the molded product.
In addition, the cured product has good heat resistance, moisture resistance, mechanical properties, electrical insulation, adhesion to metal, etc., and is therefore very effective for electronic material applications that require high reliability. is there.
Specifically, resin compositions for encapsulants for electronic components, resin compositions for printed circuit boards, resin compositions for interlayer insulation materials used for printed circuit boards and copper foils with resin, resist inks, conductive pastes (conductive filling) Agent), paints, adhesives, composite materials and the like.

Claims (4)

  1.  式(I)
     B-(OR)3   (I) 
    (式中、Rは、水素原子、炭素数1~10のアルキル基を示す。)
    で表されるホウ素化合物およびpKaが5.0以下の酸を含む触媒の存在下、フェノール類とアルデヒド類とを反応させることを特徴とするノボラック樹脂の製造方法。
    Formula (I)
    B- (OR) 3 (I)
    (In the formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
    A process for producing a novolac resin, comprising reacting a phenol and an aldehyde in the presence of a boron compound represented by the formula (1) and a catalyst containing an acid having a pKa of 5.0 or less.
  2.  前記酸のpKaが0.0~4.0の範囲である請求項1に記載のノボラック樹脂の製造方法。 The method for producing a novolak resin according to claim 1, wherein the acid has a pKa in the range of 0.0 to 4.0.
  3.  式(I)で表されるホウ素化合物が、ホウ酸である請求項1に記載のノボラック樹脂の製造方法。 The method for producing a novolak resin according to claim 1, wherein the boron compound represented by the formula (I) is boric acid.
  4.  フェノール類がフェノールまたはクレゾールで、アルデヒド類がベンズアルデヒドであり、式(I)で表されるホウ素化合物がホウ酸である上記1に記載の製造方法によって得られるノボラック樹脂の数平均分子量が、300~600であり、分散度(重量平均分子量/数平均分子量)が1.3以下で、かつ150℃における溶融粘度が300mPa・s以下であるノボッラク樹脂。 The number average molecular weight of the novolak resin obtained by the production method according to the above 1, wherein the phenol is phenol or cresol, the aldehyde is benzaldehyde, and the boron compound represented by the formula (I) is boric acid is 300 to A novolac resin having a dispersity (weight average molecular weight / number average molecular weight) of 1.3 or less and a melt viscosity at 150 ° C. of 300 mPa · s or less.
PCT/JP2009/070878 2009-01-09 2009-12-15 Method for producing novolac resin, and novolac resin WO2010079671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801539933A CN102272180B (en) 2009-01-09 2009-12-15 Method for producing novolac resin, and novolac resin
KR1020117015550A KR101348997B1 (en) 2009-01-09 2009-12-15 Method for producing novolac resin, and novolac resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009003351 2009-01-09
JP2009-003351 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079671A1 true WO2010079671A1 (en) 2010-07-15

Family

ID=42316441

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/070879 WO2010079672A1 (en) 2009-01-09 2009-12-15 Novolac resin and thermosetting resin composition
PCT/JP2009/070878 WO2010079671A1 (en) 2009-01-09 2009-12-15 Method for producing novolac resin, and novolac resin

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070879 WO2010079672A1 (en) 2009-01-09 2009-12-15 Novolac resin and thermosetting resin composition

Country Status (5)

Country Link
JP (2) JP5581046B2 (en)
KR (2) KR101348997B1 (en)
CN (2) CN102272180B (en)
TW (2) TWI466965B (en)
WO (2) WO2010079672A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119500A (en) * 2013-04-23 2014-10-29 宝山钢铁股份有限公司 Epoxy-resin curing agent and preparation method thereof
CN103525238A (en) * 2013-10-21 2014-01-22 陆君军 Aqueous phenolic resin environment-friendly paint
US9975987B2 (en) 2014-03-25 2018-05-22 Dic Corporation Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article
JP6729863B2 (en) * 2014-11-13 2020-07-29 アイカ工業株式会社 Method for producing novolac type phenol resin, novolac type phenol resin, thermosetting resin composition and cured product
US11161976B2 (en) * 2019-06-18 2021-11-02 Hexion Vad Llc Phenolic epoxy system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143492A (en) * 1978-04-28 1979-11-08 Matsushita Electric Works Ltd Preparation of phenolic resin
JPH09227646A (en) * 1996-02-20 1997-09-02 Mitsubishi Chem Corp Production of aromatic carboxylic ester of novolac phenol resin
JP2002167416A (en) * 2000-11-30 2002-06-11 Hitachi Chem Co Ltd Phenolic resin, resin composition and resin molding material for sealing using the same, and electronic component device
JP2006257136A (en) * 2005-03-15 2006-09-28 Dainippon Ink & Chem Inc Method for producing novolak type phenol resin

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849115A1 (en) * 1978-11-11 1980-05-22 Bayer Ag METHOD FOR ISOLATING BORN PHENOL FORMALDEHYDE RESINS
JPS61176638A (en) * 1985-02-01 1986-08-08 Mitsui Petrochem Ind Ltd Production of semi-incombustible organic expanded material
JPH0751611B2 (en) * 1988-01-25 1995-06-05 旭有機材工業株式会社 Method for producing phenolic resin and bisphenol
NO891063L (en) * 1988-03-31 1989-10-02 Thiokol Morton Inc NOVOLAK RESINES OF MIXED ALDEHYDES AND POSITIVE PHOTORESIST MATERIALS MADE FROM SUCH RESINES.
US5789522A (en) * 1996-09-06 1998-08-04 Shipley Company, L.L.C. Resin purification process
JPH10218815A (en) * 1997-02-14 1998-08-18 Honshu Chem Ind Co Ltd New trisphenol compound
JPH11268219A (en) * 1998-03-26 1999-10-05 Mitsubishi Electric Corp Laminate
JP3833940B2 (en) * 2001-01-11 2006-10-18 エア・ウォーター株式会社 Phenol polymer, process for producing the same, and epoxy resin curing agent using the same
TW200306324A (en) * 2002-04-22 2003-11-16 Tokyo Ind Co Ltd Novolak resin solution, positive photoresist composition, and method of producing same
JP2004043777A (en) * 2002-04-22 2004-02-12 Tokyo Ohka Kogyo Co Ltd Novolac resin solution, positive type photoresist composition and method of preparing the same
CN100489023C (en) * 2002-12-13 2009-05-20 茵迪斯佩克化学公司 Phenolic modified resorcinolic resins for rubber compound formula
JP2004269613A (en) * 2003-03-06 2004-09-30 Sumitomo Bakelite Co Ltd Phenol resin composition for friction material
JP2004296613A (en) * 2003-03-26 2004-10-21 Renesas Technology Corp Semiconductor device
JP2004361638A (en) * 2003-06-04 2004-12-24 Tokyo Ohka Kogyo Co Ltd Positive photoresist composition for manufacture of system lcd and resist pattern forming method
JP2006249178A (en) * 2005-03-09 2006-09-21 Dainippon Ink & Chem Inc Epoxy resin composition, its cured product, and phenolic resin composition
KR101288703B1 (en) * 2005-09-30 2013-07-22 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition and semiconductor device
CN100445310C (en) * 2006-09-15 2008-12-24 中国科学院山西煤炭化学研究所 Preparation method of boron modified phenolic resin
KR101392291B1 (en) * 2007-04-13 2014-05-07 주식회사 동진쎄미켐 Photoresist composition and method of manufacturing a thin-film transistor substrate using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143492A (en) * 1978-04-28 1979-11-08 Matsushita Electric Works Ltd Preparation of phenolic resin
JPH09227646A (en) * 1996-02-20 1997-09-02 Mitsubishi Chem Corp Production of aromatic carboxylic ester of novolac phenol resin
JP2002167416A (en) * 2000-11-30 2002-06-11 Hitachi Chem Co Ltd Phenolic resin, resin composition and resin molding material for sealing using the same, and electronic component device
JP2006257136A (en) * 2005-03-15 2006-09-28 Dainippon Ink & Chem Inc Method for producing novolak type phenol resin

Also Published As

Publication number Publication date
JP2010180399A (en) 2010-08-19
TW201031717A (en) 2010-09-01
KR101348993B1 (en) 2014-01-09
JP5581046B2 (en) 2014-08-27
CN102272180B (en) 2013-12-25
WO2010079672A1 (en) 2010-07-15
TWI466965B (en) 2015-01-01
JP5876976B2 (en) 2016-03-02
CN102282187A (en) 2011-12-14
KR20110097926A (en) 2011-08-31
TWI490282B (en) 2015-07-01
JP2010180400A (en) 2010-08-19
KR101348997B1 (en) 2014-01-09
KR20110101189A (en) 2011-09-15
TW201031718A (en) 2010-09-01
CN102282187B (en) 2014-07-23
CN102272180A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP5513747B2 (en) NOVOLAC RESIN AND PROCESS FOR PRODUCING THE SAME
JP5466362B2 (en) Cashew novolac resin, method for producing the same, and curing agent for epoxy resin
JP5581046B2 (en) Method for producing novolac resin and novolac resin
KR101989836B1 (en) Phenol resin and thermosetting resin composition
JP5254590B2 (en) Low molecular weight novolak resin, method for producing the same, and thermosetting resin composition using the same
JP5400324B2 (en) Method for producing novolac resin
JP6497639B2 (en) Thermosetting resin composition, cured product and method for producing modified phenolic resin
JP5635258B2 (en) Modified novolak resin and thermosetting resin composition containing the modified novolak resin
JP5188294B2 (en) Low molecular weight epoxy resin and thermosetting resin composition containing the same
JP2010037501A (en) Triazole co-condensed material and method for producing the same
JP4399977B2 (en) Process for producing aromatic hydrocarbon-modified phenolic resin
JP6729863B2 (en) Method for producing novolac type phenol resin, novolac type phenol resin, thermosetting resin composition and cured product
KR20150040752A (en) Thermosetting resin composition and cured product obtained from curing the same
JP2005075936A (en) Novolac type phenolic resin and its manufacturing process
JP2010013601A (en) Modified novolac resin, and thermosetting resin composition blended with the same
JP5254598B2 (en) Method for producing high molecular weight high ortho novolac resin
JP2010047712A (en) Novolac type phenolic resin containing azo group

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153993.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117015550

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837557

Country of ref document: EP

Kind code of ref document: A1