JP4399977B2 - Process for producing aromatic hydrocarbon-modified phenolic resin - Google Patents
Process for producing aromatic hydrocarbon-modified phenolic resin Download PDFInfo
- Publication number
- JP4399977B2 JP4399977B2 JP2000363980A JP2000363980A JP4399977B2 JP 4399977 B2 JP4399977 B2 JP 4399977B2 JP 2000363980 A JP2000363980 A JP 2000363980A JP 2000363980 A JP2000363980 A JP 2000363980A JP 4399977 B2 JP4399977 B2 JP 4399977B2
- Authority
- JP
- Japan
- Prior art keywords
- aromatic hydrocarbon
- resin
- reaction
- molecular weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、未反応フェノール類が少なくかつ分子量分布が狭い芳香族炭化水素変性ノボラック型フェノール樹脂を高収率に得るための製造方法に関するものである。本発明の芳香族炭化水素変性ノボラック型フェノール樹脂は、例えば、摩擦材、砥石、積層板、成形材料、接着剤用のバインダーや、エポキシ樹脂の硬化剤、エポキシ樹脂の原料等に好適に使用されるものである。
【0002】
【従来の技術】
芳香族炭化水素変性ノボラック型フェノール樹脂は、通常のノボラック型フェノール樹脂に比べ、耐熱性、耐水性、寸法安定性等が優れ、摩擦材、砥石、積層板、成形材料、接着剤用のバインダーや、エポキシ樹脂の硬化剤、エポキシ樹脂の原料等に広く用いられている。
その芳香族炭化水素変性ノボラック型フェノール樹脂は、ノボラック型フェノール樹脂の分子構造に、単環芳香族炭化水素化合物あるいは多環芳香族炭化水素化合物が反応により組み込むことで、フェノール性水酸基が減り耐熱性、耐水性、寸法安定性等の特性が得られる。
【0003】
芳香族炭化水素変性ノボラック型フェノール樹脂の製造方法は、フェノール類と芳香族炭化水素アルデヒド樹脂とアルデヒド類とを塩酸、硫酸、リン酸、亜リン酸、蓚酸、p−トルエンスルホン酸、キシレンスルホン酸といった無機、有機酸を触媒として反応させることで得られる。芳香族炭化水素変性ノボラック型フェノール樹脂の分子量は、フェノール類に対してアルデヒド類と芳香族炭化水素アルデヒド樹脂との仕込比率等で調整するのが一般的であるが、分子量分布が広くなりやすい問題があった。また、未反応のフェノール類が残り、一般的にはこれを取り除く操作を行うため、実際の変性量が異なってしまう問題があった。分子量分布を狭くする一般的手段としては、有機溶媒中で反応させる方法や、水蒸気蒸留や、溶剤洗浄により低分子量成分を除去する方法があるが、前者の場合は低分子量の芳香族炭化水素変性ノボラック型フェノール樹脂は得られず、後者の場合は収率が大きく低下してしまう欠点があった。
特開平7−242719号公報では、製造した芳香族炭化水素変性ノボラック型フェノール樹脂を120〜195℃でスチーム処理することで、未反応の除去及び高分子量物を分解することにより、分子量分布の狭い芳香族炭化水素変性ノボラック型フェノール樹脂の製造を行っているが、未反応の除去に伴う収得量の低下や煩雑な操作が伴う問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、特定の触媒を用いることによって、未反応フェノール類が少なくかつ分子量分布が狭い芳香族炭化水素変性ノボラック型フェノール樹脂を高収率に製造する事を目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために鋭意研究を行った結果、本発明は、フェノール類と芳香族炭化水素アルデヒド樹脂とアルデヒド類とを水溶性を有する有機ホスホン酸を触媒として、フェノール類1.0当量に対して、芳香族炭化水素アルデヒド樹脂の反応性基とアルデヒド類との当量の和を0.1〜3.0当量として反応することを特徴とする芳香族炭化水素変性ノボラック型フェノール樹脂の製造方法であり、有機ホスホン酸が下記に一般式(I)で示される有機ホスホン酸であることを特徴とする。
R−PO(OH)2 式(I)
(Rは、炭素原子を必ず含み、かつ−COOH及び又は−PO(OH)2 を含む基である。)
【0006】
【発明の実施の形態】
本発明に用いられるフェノール類としては、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、キシレノール、パラターシャリーブチルフェノール、パラオクチルフェノール、パラフェニルフェノール、ビスフェノールA、ビスフェノールF、レゾルシンなどのフェノール類から選ばれた少なくとも1種以上のフェノール類であり、特に限定はしない。
【0007】
芳香族炭化水素アルデヒド樹脂は、例えば、メシチレンホルムアルデヒド樹脂、キシレンホルムアルデヒド樹脂、トルエンホルムアルデヒド樹脂、ベンゼンホルムアルデヒド樹脂、ナフタレンホルムアルデヒド樹脂から選ばれた少なくとも1種類以上の芳香族炭化水素アルデヒド樹脂であり、これらに限定されない。その芳香族炭化水素アルデヒド樹脂は、数平均分子量300〜1000、酸素含有率5〜20重量%、軟化点40〜140℃の範囲にあることが好ましい。
数平均分子量300未満であると未反応の芳香族炭化水素が多く、1000を越えると芳香族炭化水素同士の結合が多く高分子量化しやすい、酸素含有率5重量%未満であると反応性が低すぎ、20重量%を越えると反応性が高すぎる、軟化点40℃未満であると未反応の芳香族炭化水素が多く、140℃を越えると芳香族炭化水素同士の結合が多く高分子量化しやすい。
【0008】
アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレインやこれらの混合物であり、これらのアルデヒド類の発生源となる物質あるいはこれらのアルデヒド類の溶液を使用することも可能である。
【0009】
触媒として使用する水溶性を有する有機ホスホン酸は、ホスホン酸基−PO(OH)2
を含む有機化合物であり、一般式(I)で示される有機ホスホン酸が、低分子でかつ分子量分布が狭い芳香族炭化水素変性ノボラック型フェノール樹脂を高収率に得るために好ましい。
R−PO(OH)2 式(I)
(Rは、炭素原子を必ず含み、かつ−COOH及び又は−PO(OH)2 を含む基である。)
一般式(I)で示される有機ホスホン酸としては、アミノポリホスホン酸類であるエチレンジアミンテトラキスホスホン酸、エチレンジアミンビスメチレンホスホン酸、アミノトリスメチレンホスホン酸、β−アミノエチルホスホン酸N,N−ジ酢酸、アミノメチルホスホン酸N,N−ジ酢酸や、1−ヒドロキシエチリデン−1,1’−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸、等がある。本発明の目的からみて工業的に大量生産され安価であるアミノトリスメチレンホスホン酸や、1−ヒドロキシエチリデン−1,1’−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸が望ましい。
【0010】
有機ホスホン酸の添加量としては、フェノール類1モルに対して0.001〜4.0モル、好ましくは0.01〜0.5モルである。有機ホスホン酸の添加量が多い方が、未反応フェノール類が少なくかつ分子量分布が狭い芳香族炭化水素変性ノボラック型フェノール樹脂を高収率に得る効果が高い傾向にあるが、触媒添加量が4.0モルを越えると、分子量を低く分子量分布を狭くする効果が変わらなくなる。0.001モル未満では、触媒としての効果が実質的になくなる。
【0011】
本発明の芳香族炭化水素変性ノボラック型フェノール樹脂を得るには、(1)フェノール類とアルデヒド類との反応を先に行い、その後芳香族炭化水素アルデヒド樹脂との反応を行う、(2)フェノール類と芳香族炭化水素アルデヒド樹脂との反応を先に行い、その後アルデヒド類との反応を行う、あるいは(3)フェノール類とアルデヒド類と芳香族炭化水素アルデヒド樹脂との反応を同時に行う、等の方法があり、特に限定されない。
従来、フェノール類と芳香族炭化水素アルデヒド樹脂との反応を先に行い、その後アルデヒド類との反応を行う方法が一般的である。本発明において、フェノール類と芳香族炭化水素アルデヒド樹脂との反応、及びフェノール類とアルデヒド類との反応は、これらの反応物に比較してフェノール類モノマーが最も反応性が大きく、従って高分子量化しにくい性質がある。このために、フェノール類とアルデヒド類の反応を先に行っても、反応モル比がフェノール類1.0モルに対してアルデヒド類0.7モル以下であれば、反応生成物は2核体主体の組成物となっており、その後に芳香族炭化水素アルデヒド樹脂を反応させても、反応は問題はなく進み、高分子量化も起こりにくい。
【0012】
フェノール類に対する、芳香族炭化水素アルデヒド樹脂とアルデヒド類との反応モル比は、芳香族炭化水素アルデヒド樹脂をアルデヒド源と見なして、フェノール類1.0当量(モル)に対して、芳香族炭化水素アルデヒド樹脂の反応性基とアルデヒド類との当量の和が0.1〜3.0当量、好ましくは0.5〜1.0当量である。芳香族炭化水素アルデヒド樹脂の反応性基とアルデヒド類との当量の和が0.1当量未満の場合、未反応のフェノール類が多く残る問題がある。3.0当量を越えると未反応の芳香族炭化水素アルデヒド樹脂やアルデヒド類が多く残り、ゲル化等を起こすおそれがある。
芳香族炭化水素アルデヒド樹脂の反応性基は、−CH2OH、−CH2OCH2−、−CH2O−、−CH2OCH2OH等であり、反応性基の当量数は樹脂の酸素含有率から求めることができる。
芳香族炭化水素アルデヒド樹脂の反応性基とアルデヒド類の割合(当量比)は0.5:10〜10:0.5、好ましくは3:10〜10:3である。芳香族炭化水素アルデヒド樹脂の割合がこの範囲より高いと、製造した芳香族炭化水素変性ノボラック型フェノール樹脂の芳香族炭化水素変性率が高くなり、電気絶縁性及び耐水性は良好となるが、硬化性、基材との密着性が悪化する傾向にある。アルデヒド類の割合がこの範囲より高いと、硬化性、基材との密着性が良好となるが、電気絶縁性や耐水性の向上効果が小さくなる。
【0013】
反応溶媒としては、水が一般的であり好ましいが、有機溶媒を使用することができる。また、非極性溶媒を用いて、非水系で行っても構わない。また、パラホルム等用いて反応溶媒なしでも構わない。有機溶媒としては、アルコール類、ケトン類、芳香族類等で、アルコール類としては、メタノール、エタノール、プロピルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等で、ケトン類としては、アセトン、メチルエチルケトン等が挙げられる。
【0014】
触媒として、有機ホスホン酸とともに他の触媒を併用することができる。かかる触媒として、塩酸、硫酸、リン酸、亜リン酸、蓚酸、p−トルエンスルホン酸、キシレンスルホン酸といった通常芳香族炭化水素変性ノボラック型フェノール樹脂の製造で使用する酸や、未反応フェノール類が少なくかつ分子量分布が狭い芳香族炭化水素変性ノボラック型フェノール樹脂製造に効果のあるオキシポリカルボン酸類やアミノポリカルボン酸類の様なポリカルボン酸類等がある。
【0015】
反応温度は、50〜250℃、好ましくは120〜160℃の温度域で行う。反応温度が低すぎると反応の進行が遅く、経済的に成り立たないレベルに反応時間がかかる。反応温度が高すぎると触媒の分解、あるいは樹脂の再配列反応が起こる。
反応終了後、触媒除去のために、中和や水洗を行ってもよい。また、反応溶媒である水や有機溶媒、未反応のフェノール類を除去するため、常圧蒸留や、減圧蒸留、水蒸気蒸留等を行ってもよい。
【0016】
本発明の有機ホスホン酸触媒が、分子量分布を狭く、かつ未反応フェノール類を少なく高収得に製造できる理由は以下の様に考えられる。
有機ホスホン酸は、非常に水溶性が高く水和しやすい。そして、フェノール類、芳香族炭化水素アルデヒド樹脂には溶解性が小さく、芳香族炭化水素変性ノボラック型フェノール樹脂にはその分子量増大とともに溶解性が更に低下する性質を有している。このため反応時には、触媒である有機ホスホン酸を多量に含んだ水相と、フェノール類、芳香族炭化水素アルデヒド樹脂、芳香族炭化水素変性ノボラック型フェノール樹脂からなる、触媒がほとんど存在しない有機相とに相分離した状態となる。フェノール類のモノマー、芳香族炭化水素アルデヒド樹脂、及び初期反応物等の低分子成分は比較的水相に溶出しやすく、溶出した部分は樹脂化反応が進むが、高分子成分は水相への溶出がほとんどなく反応が進まない。また、水相に溶出し反応した芳香族炭化水素変性ノボラック型フェノール樹脂は速やかに有機相に抽出され、抽出後分子量は増大しない。
この様にして、低核体領域と高分子領域の反応速度差が生じるため、結果的に分子量分布が狭く、かつ未反応フェノール類が少ない芳香族炭化水素変性ノボラック型フェノール樹脂を高収率に製造する事が可能となる。
この際、フェノール類のモノマー、未反応の芳香族炭化水素アルデヒド樹脂等低分子成分の有機相から水相への溶出量と、生成した芳香族炭化水素変性ノボラック型フェノール樹脂の有機相への抽出量は、水相と有機相の相間の表面積が大きいほど多くなり、また速度も早くなる。このため、相間の表面積が大きいほど、分子量分布が狭く、かつ未反応フェノール類が少ない芳香族炭化水素変性ノボラック型フェノール樹脂を高収率に製造する事が可能となる。このように相分離した状態で反応が進むため、二つの相がなるべく均一に分散した状態が好ましく、攪拌条件としては、高速度で攪拌することが望ましい。
【0017】
【実施例】
以下、本発明を実施例により詳細に説明する。ここで記載されている「部」及び「%」は全て「重量部」及び「重量%」を示す。
【0018】
(実施例1)
攪拌機及び温度計を備えた3Lの三口フラスコ中に1−ヒドロキシエチリデン−1,1’−ジホスホン酸60%水溶液(フェリオックス115、(株)ライオン製)1500部を添加し、常圧蒸留を行い濃度を85%にした。フェノール1500部、キシレンホルムアルデヒド樹脂1000部(ニカノールG、数平均分子量520〜620、酸素含有率14〜16%、三菱ガス化学(株)製)を添加し140℃に昇温させ4時間還流反応を行った、その後92%パラホルムアルデヒド(三井化学(株)製)141部を逐時添加し、130℃で1時間還流させながら反応させた。反応終了後、反応生成物をサンプリングしガスクロマトグラフィーを用いて未反応フェノール量を測定した。その後、メチルエチルケトンを2000部を添加し、温度を60℃まで下げて純水2000部を添加し、樹脂と分離している水相を除去する水洗工程を3回行った。その後、常圧蒸留を行い130℃まで昇温し、5000Paの減圧度で減圧蒸留を行って180℃まで昇温し、樹脂Aを2493部得た。
【0019】
(実施例2)
実施例1と同様のフラスコ中に1−ヒドロキシエチリデン−1,1’−ジホスホン酸60%水溶液(フェリオックス115、(株)ライオン製)1500部を添加し、常圧蒸留を行い濃度を85%にした。フェノール1500部、92%パラホルムアルデヒド(三井化学(株)製)141部を添加し130℃で1時間反応させた。その後、キシレンホルムアルデヒド樹脂1000部(ニカノールG、数平均分子量520〜620、酸素含有率14〜16%、三菱ガス化学(株)製)を添加し、常圧蒸留を行いながら140℃に昇温させ、還流配管として4時間還流反応を行った。反応終了後、反応生成物をサンプリングしガスクロマトグラフィーを用いて未反応フェノール量を測定した。その後、メチルエチルケトンを2000部を添加し、温度を60℃まで下げて純水2000部を添加し、樹脂と分離している水相を除去する水洗工程を3回行った。その後、常圧蒸留を行い130℃まで昇温し、5000Paの減圧度で減圧蒸留を行って180℃まで昇温し、樹脂Bを2489部得た。
【0020】
(実施例3)
実施例1と同様のフラスコ中に1−ヒドロキシエチリデン−1,1’−ジホスホン酸60%水溶液(フェリオックス115、(株)ライオン製)1500部を添加し、常圧蒸留を行い濃度を85%にした。フェノール1200部、キシレンホルムアルデヒド樹脂(ニカノールH、数平均分子量460〜500、酸素含有率10〜11%、三菱ガス化学(株)製)1000部を添加し140℃に昇温させ4時間還流反応を行った、その後92%パラホルムアルデヒド(三井化学(株)製)141部を逐次添加し、130℃で1時間還流させながら反応させた。反応終了後、反応生成物をサンプリングしガスクロマトグラフィーを用いて未反応フェノール量を測定した。その後、メチルエチルケトンを2000部を添加し、温度を60℃まで下げて純水2000部を添加し、樹脂と分離している水相を除去する水洗工程を3回行った。その後、常圧蒸留を行い130℃まで昇温し、5000Paの減圧度で減圧蒸留を行って180℃まで昇温し、樹脂Cを2195部得た。
【0021】
(比較例1)
実施例1と同様のフラスコ中にフェノール1500部、キシレンホルムアルデヒド樹脂1000部(ニカノールG、数平均分子量520〜620、酸素含有率14〜16%、三菱ガス化学(株)製)、パラトルエンスルホン酸1部を添加し120℃に昇温させ2時間反応を行った、その後、蓚酸15部、92%パラホルムアルデヒド(三井化学(株)製)141部を逐次添加し、100℃で1時間反応させた。反応終了後、反応生成物をサンプリングしガスクロマトグラフィーを用いて未反応フェノール量を測定した。その後、消石灰を15部を添加し、その後、常圧蒸留を行い150℃まで昇温し、5000Paの減圧度で減圧蒸留を行って190℃まで昇温し、樹脂Dを2310部得た。
【0022】
(比較例2)
実施例1と同様のフラスコ中にフェノール1200部、キシレンホルムアルデヒド樹脂(ニカノールH、数平均分子量460〜500、酸素含有率10〜11%、三菱ガス化学(株)製)1000部、パラトルエンスルホン酸10部を添加し130℃に昇温させ2時間反応を行った。その後92%パラホルムアルデヒド(三井化学(株)製)141部、酸化亜鉛35部を添加し100℃で3時間反応させた。反応終了後、反応生成物をサンプリングしガスクロマトグラフィーを用いて未反応フェノール量を測定した。その後、常圧蒸留を行い130℃まで昇温し、5000Paの減圧度で減圧蒸留を行って160℃まで昇温し、樹脂Eを2098部得た。
【0023】
【表1】
数平均分子量:液体クロマトグラフィーで測定
重量平均分子量:液体クロマトグラフィーで測定
軟化点:JIS K−2531に準じ測定
50%エタノール溶液の動粘度:
50重量%のエタノール溶液を25℃でキャノンフェンスケを用いて測定
未反応フェノール量:ガスクロマトグラフィーで測定
ガスクロマトグラフィー:
JIS K0114に準じ、2、5−キシレノールを内部標準として内部標準法で測定した値。
液体クロマトグラフィー:
東ソー製GPCカラム(G1000HXL:1本、G2000HXL:2本、G3000HXL:1本)を用い、流量1.0ml/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の条件で示差屈折計を検出器として用いてGPC測定した。分子量は標準ポリスチレンにより換算。
【0024】
表1の結果から明らかなように、実施例で得られた樹脂は比較例による樹脂に比べて未反応フェノール量が少なく、分子量分布が狭く、かつ反応収率も高い。
【0025】
【発明の効果】
以上の説明の通り、本発明の製造方法により、芳香族炭化水素変性ノボラック型フェノール樹脂を、未反応フェノール類を少なく、分子量分布が狭く、かつ高収率で得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a production method for obtaining an aromatic hydrocarbon-modified novolak-type phenol resin with a small amount of unreacted phenols and a narrow molecular weight distribution in a high yield. The aromatic hydrocarbon-modified novolak type phenolic resin of the present invention is suitably used for, for example, a friction material, a grindstone, a laminated board, a molding material, an adhesive binder, an epoxy resin curing agent, an epoxy resin raw material, and the like. Is.
[0002]
[Prior art]
Aromatic hydrocarbon-modified novolak type phenolic resin is superior in heat resistance, water resistance, dimensional stability, etc. compared to ordinary novolac type phenolic resin, and is used as a binder for friction materials, grindstones, laminates, molding materials, adhesives, etc. It is widely used as a curing agent for epoxy resins and raw materials for epoxy resins.
The aromatic hydrocarbon-modified novolak type phenolic resin is a heat-resistant compound that reduces the number of phenolic hydroxyl groups by incorporating a monocyclic aromatic hydrocarbon compound or polycyclic aromatic hydrocarbon compound into the molecular structure of the novolak type phenolic resin by reaction. Properties such as water resistance and dimensional stability can be obtained.
[0003]
A method for producing an aromatic hydrocarbon-modified novolak type phenol resin is obtained by mixing phenols, aromatic hydrocarbon aldehyde resins and aldehydes with hydrochloric acid, sulfuric acid, phosphoric acid, phosphorous acid, oxalic acid, p-toluenesulfonic acid, xylenesulfonic acid. It can be obtained by reacting with an inorganic or organic acid as a catalyst. The molecular weight of aromatic hydrocarbon-modified novolak-type phenolic resins is generally adjusted with the charge ratio of aldehydes and aromatic hydrocarbon aldehyde resins to phenols, but the molecular weight distribution tends to be wide. was there. In addition, unreacted phenols remain, and generally an operation for removing the phenols is performed, so that there is a problem that the actual modification amount differs. As a general means of narrowing the molecular weight distribution, there are a method of reacting in an organic solvent, a method of removing low molecular weight components by steam distillation or solvent washing, but in the case of the former, low molecular weight aromatic hydrocarbon modification A novolac type phenol resin cannot be obtained, and in the latter case, there is a drawback that the yield is greatly reduced.
In JP-A-7-242719, the produced aromatic hydrocarbon-modified novolak type phenol resin is subjected to steam treatment at 120 to 195 ° C., thereby removing unreacted and decomposing high molecular weight substances, thereby narrowing the molecular weight distribution. Although an aromatic hydrocarbon-modified novolak type phenol resin is being produced, there are problems in that the yield is reduced due to unreacted removal and complicated operations are involved.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to produce an aromatic hydrocarbon-modified novolak type phenol resin with a small amount of unreacted phenols and a narrow molecular weight distribution in a high yield by using a specific catalyst.
[0005]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present invention is based on the following: phenols, aromatic hydrocarbon aldehyde resins, and aldehydes are converted to 1.0 equivalents of phenols using water-soluble organic phosphonic acid as a catalyst. On the other hand, a method for producing an aromatic hydrocarbon-modified novolak type phenol resin characterized in that the reaction is carried out by setting the sum of the equivalents of the reactive group of the aromatic hydrocarbon aldehyde resin and the aldehyde to 0.1 to 3.0 equivalents. The organic phosphonic acid is an organic phosphonic acid represented by the following general formula (I).
R-PO (OH) Formula 2 (I)
(R is a group that always contains a carbon atom and contains —COOH and / or —PO (OH) 2. )
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The phenols used in the present invention were selected from phenols such as phenol, orthocresol, metacresol, paracresol, xylenol, para tertiary butylphenol, paraoctylphenol, paraphenylphenol, bisphenol A, bisphenol F, and resorcin. There are at least one phenol, and there is no particular limitation.
[0007]
The aromatic hydrocarbon aldehyde resin is, for example, at least one kind of aromatic hydrocarbon aldehyde resin selected from mesitylene formaldehyde resin, xylene formaldehyde resin, toluene formaldehyde resin, benzene formaldehyde resin, and naphthalene formaldehyde resin. Not. The aromatic hydrocarbon aldehyde resin preferably has a number average molecular weight of 300 to 1000, an oxygen content of 5 to 20% by weight , and a softening point of 40 to 140 ° C.
If the number average molecular weight is less than 300, there are many unreacted aromatic hydrocarbons, and if it exceeds 1000, the bonds between the aromatic hydrocarbons are many and the molecular weight is likely to increase, and if the oxygen content is less than 5% by weight , the reactivity is low. When the content exceeds 20% by weight , the reactivity is too high. When the softening point is less than 40 ° C, there are many unreacted aromatic hydrocarbons. .
[0008]
Examples of aldehydes include formaldehyde, acetaldehyde, butyraldehyde, acrolein, and mixtures thereof, and substances that generate these aldehydes or solutions of these aldehydes can also be used.
[0009]
The water-soluble organic phosphonic acid used as a catalyst is a phosphonic acid group —PO (OH) 2.
An organic phosphonic acid represented by the general formula (I) is preferable for obtaining an aromatic hydrocarbon-modified novolak type phenol resin having a low molecular weight and a narrow molecular weight distribution in a high yield.
R-PO (OH) Formula 2 (I)
(R is a group that always contains a carbon atom and contains —COOH and / or —PO (OH) 2. )
Examples of the organic phosphonic acid represented by the general formula (I) include ethylenediaminetetrakisphosphonic acid, ethylenediaminebismethylenephosphonic acid, aminotrismethylenephosphonic acid, β-aminoethylphosphonic acid N, N-diacetic acid, which are aminopolyphosphonic acids, Examples thereof include aminomethylphosphonic acid N, N-diacetic acid, 1-hydroxyethylidene-1,1′-diphosphonic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid. Aminotrismethylenephosphonic acid, 1-hydroxyethylidene-1,1′-diphosphonic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid, which are industrially mass-produced and inexpensive, are desirable for the purpose of the present invention.
[0010]
As addition amount of organic phosphonic acid, it is 0.001-4.0 mol with respect to 1 mol of phenols, Preferably it is 0.01-0.5 mol. When the amount of the organic phosphonic acid added is large, the effect of obtaining a high yield of an aromatic hydrocarbon-modified novolak type phenol resin with a small amount of unreacted phenols and a narrow molecular weight distribution tends to be high. If it exceeds 0.0 mol, the effect of lowering the molecular weight and narrowing the molecular weight distribution will not change. If it is less than 0.001 mol, the effect as a catalyst is substantially lost.
[0011]
In order to obtain the aromatic hydrocarbon-modified novolak type phenol resin of the present invention, (1) the reaction between phenols and aldehydes is performed first, and then the reaction with aromatic hydrocarbon aldehyde resins is performed. The reaction between the aromatic hydrocarbon aldehyde resin and the aromatic hydrocarbon aldehyde resin is performed first, followed by the reaction with the aldehyde, or (3) the reaction between the phenol, the aldehyde and the aromatic hydrocarbon aldehyde resin is performed simultaneously. There is a method, and it is not particularly limited.
Conventionally, a method in which a reaction between a phenol and an aromatic hydrocarbon aldehyde resin is first performed and then a reaction with the aldehyde is generally performed. In the present invention, the reaction between phenols and aromatic hydrocarbon aldehyde resins, and the reaction between phenols and aldehydes, phenolic monomers are the most reactive compared to these reactants, and therefore higher molecular weight. There are difficult properties. For this reason, even if the reaction between phenols and aldehydes is performed first, the reaction product is mainly binuclear as long as the reaction molar ratio is 0.7 mol or less of aldehydes with respect to 1.0 mol of phenols. Even if an aromatic hydrocarbon aldehyde resin is subsequently reacted, the reaction proceeds without any problem and high molecular weight is unlikely to occur.
[0012]
The reaction molar ratio of the aromatic hydrocarbon aldehyde resin to the aldehyde with respect to the phenol is considered to be the aromatic hydrocarbon aldehyde resin with respect to 1.0 equivalent (mole) of the phenol as the aldehyde source. sum 0.1-3.0 equivalents equivalent of the reactive group and an aldehyde aldehyde resin, preferably 0.5 to 1.0 equivalents. When the sum of the equivalents of the reactive group of the aromatic hydrocarbon aldehyde resin and the aldehyde is less than 0.1 equivalent, there is a problem that a large amount of unreacted phenol remains . If it exceeds 3.0 equivalents, a large amount of unreacted aromatic hydrocarbon aldehyde resin or aldehyde remains, which may cause gelation or the like.
Reactive groups of the aromatic hydrocarbon aldehyde resin, -CH 2 OH, -CH 2 OCH 2 -, - CH 2 O -, - is CH 2 OCH 2 OH or the like, the number of equivalents of oxygen of the resin reactive groups It can be determined from the content.
The ratio (equivalent ratio) of the reactive groups and aldehydes of the aromatic hydrocarbon aldehyde resin is 0.5: 10 to 10: 0.5, preferably 3:10 to 10: 3. If the ratio of the aromatic hydrocarbon aldehyde resin is higher than this range, the aromatic hydrocarbon modification rate of the produced aromatic hydrocarbon-modified novolac type phenol resin is increased, and the electrical insulation and water resistance are improved, but curing is performed. And adhesion to the substrate tend to deteriorate. When the ratio of aldehydes is higher than this range, curability and adhesion to the substrate are improved, but the effect of improving electrical insulation and water resistance is reduced.
[0013]
As a reaction solvent, water is common and preferable, but an organic solvent can be used. Moreover, you may carry out by non-aqueous system using a nonpolar solvent. Also, paraform or the like may be used without a reaction solvent. Organic solvents include alcohols, ketones, aromatics, alcohols include methanol, ethanol, propyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, etc., and ketones include acetone, methyl ethyl ketone Etc.
[0014]
As the catalyst, other catalysts can be used in combination with the organic phosphonic acid. Examples of such catalysts include acids, unreacted phenols, and the like that are usually used in the production of aromatic hydrocarbon-modified novolak type phenol resins such as hydrochloric acid, sulfuric acid, phosphoric acid, phosphorous acid, oxalic acid, p-toluenesulfonic acid, and xylenesulfonic acid. There are polycarboxylic acids such as oxypolycarboxylic acids and aminopolycarboxylic acids which are effective in producing aromatic hydrocarbon-modified novolak type phenolic resins having a small molecular weight distribution and a small molecular weight distribution.
[0015]
The reaction temperature is 50 to 250 ° C, preferably 120 to 160 ° C. If the reaction temperature is too low, the reaction proceeds slowly, and the reaction time takes a level that is not economically viable. When the reaction temperature is too high, decomposition of the catalyst or rearrangement reaction of the resin occurs.
After completion of the reaction, neutralization or washing with water may be performed to remove the catalyst. Moreover, in order to remove water, an organic solvent, and unreacted phenols, which are reaction solvents, atmospheric distillation, vacuum distillation, steam distillation, or the like may be performed.
[0016]
The reason why the organic phosphonic acid catalyst of the present invention can be produced with a narrow molecular weight distribution and a low yield of unreacted phenols is considered as follows.
Organic phosphonic acids are very water soluble and easy to hydrate. The phenols, the aromatic hydrocarbon aldehyde resin low solubility, the aromatic hydrocarbon-modified novolak type phenolic resin has the property to decrease solubility further together and increasing the molecular weight. Therefore, at the time of reaction, an aqueous phase containing a large amount of organic phosphonic acid as a catalyst and an organic phase consisting of phenols, aromatic hydrocarbon aldehyde resins , aromatic hydrocarbon-modified novolac type phenol resins and almost no catalyst Into a phase-separated state. Low-molecular components such as phenolic monomers, aromatic hydrocarbon aldehyde resins , and initial reactants are relatively easy to elute in the aqueous phase, and the resinized reaction proceeds in the eluted part, but the high-molecular components are dissolved in the aqueous phase. There is almost no elution and the reaction does not proceed. In addition, the aromatic hydrocarbon-modified novolak type phenol resin eluted and reacted in the aqueous phase is rapidly extracted into the organic phase, and the molecular weight does not increase after extraction.
In this way, since the reaction rate difference between the low-nuclear region and the polymer region occurs, narrow resulting in molecular weight distribution and unreacted phenol is less aromatic hydrocarbon-modified novolak type phenolic resin in a high yield It can be manufactured.
At this time, the amount of elution of low molecular components such as phenolic monomers and unreacted aromatic hydrocarbon aldehyde resin from the organic phase to the aqueous phase, and extraction of the generated aromatic hydrocarbon-modified novolak type phenol resin into the organic phase The amount increases as the surface area between the aqueous and organic phases increases, and the speed increases. For this reason, as the surface area between the phases increases, it becomes possible to produce an aromatic hydrocarbon-modified novolac type phenol resin with a narrow molecular weight distribution and a small amount of unreacted phenols in a high yield. Since the reaction proceeds in such a phase-separated state, it is preferable that the two phases are dispersed as uniformly as possible. As stirring conditions, it is desirable to stir at a high speed.
[0017]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. “Parts” and “%” described here all indicate “parts by weight” and “% by weight”.
[0018]
Example 1
1500 parts of 1-hydroxyethylidene-1,1′-diphosphonic acid 60% aqueous solution (Ferox 115, manufactured by Lion Corporation) was added to a 3 L three-necked flask equipped with a stirrer and a thermometer, and atmospheric distillation was performed. The concentration was 85%. 1500 parts of phenol and 1000 parts of xylene formaldehyde resin (Nicanol G, number average molecular weight 520-620, oxygen content 14-16%, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were added, the temperature was raised to 140 ° C., and the reflux reaction was performed for 4 hours. Thereafter, 141 parts of 92% paraformaldehyde (manufactured by Mitsui Chemicals, Inc.) was added every time, and the mixture was reacted at 130 ° C. for 1 hour while refluxing. After completion of the reaction, the reaction product was sampled and the amount of unreacted phenol was measured using gas chromatography. Thereafter, 2000 parts of methyl ethyl ketone was added, the temperature was lowered to 60 ° C., 2000 parts of pure water was added, and the water washing step of removing the aqueous phase separated from the resin was performed three times. Thereafter, atmospheric distillation was performed, the temperature was raised to 130 ° C., vacuum distillation was performed at a reduced pressure of 5000 Pa, the temperature was raised to 180 ° C., and 2493 parts of Resin A was obtained.
[0019]
(Example 2)
1500 parts of 1-hydroxyethylidene-1,1′-diphosphonic acid 60% aqueous solution (Ferox 115, manufactured by Lion Corporation) was added to the same flask as in Example 1, and atmospheric distillation was performed to obtain a concentration of 85%. I made it. 1500 parts of phenol and 141 parts of 92% paraformaldehyde (Mitsui Chemicals) were added and reacted at 130 ° C. for 1 hour. Thereafter, 1000 parts of xylene formaldehyde resin (Nicanol G, number average molecular weight 520 to 620, oxygen content 14 to 16%, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added, and the temperature was raised to 140 ° C. while performing atmospheric distillation. Then, a reflux reaction was performed for 4 hours as a reflux pipe. After completion of the reaction, the reaction product was sampled and the amount of unreacted phenol was measured using gas chromatography. Thereafter, 2000 parts of methyl ethyl ketone was added, the temperature was lowered to 60 ° C., 2000 parts of pure water was added, and the water washing step of removing the aqueous phase separated from the resin was performed three times. Thereafter, atmospheric distillation was performed, the temperature was raised to 130 ° C., vacuum distillation was performed at a reduced pressure of 5000 Pa, the temperature was raised to 180 ° C., and 2489 parts of Resin B was obtained.
[0020]
(Example 3)
1500 parts of 1-hydroxyethylidene-1,1′-diphosphonic acid 60% aqueous solution (Ferox 115, manufactured by Lion Corporation) was added to the same flask as in Example 1, and atmospheric distillation was performed to obtain a concentration of 85%. I made it. 1,200 parts of phenol, 1000 parts of xylene formaldehyde resin (Nicanol H, number average molecular weight 460 to 500, oxygen content 10 to 11%, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were added, the temperature was raised to 140 ° C., and the reflux reaction was performed for 4 hours. Thereafter, 141 parts of 92% paraformaldehyde (manufactured by Mitsui Chemicals, Inc.) was sequentially added, and reacted at 130 ° C. while refluxing for 1 hour. After completion of the reaction, the reaction product was sampled and the amount of unreacted phenol was measured using gas chromatography. Thereafter, 2000 parts of methyl ethyl ketone was added, the temperature was lowered to 60 ° C., 2000 parts of pure water was added, and the water washing step of removing the aqueous phase separated from the resin was performed three times. Thereafter, atmospheric distillation was carried out, the temperature was raised to 130 ° C., vacuum distillation was carried out at a reduced pressure of 5000 Pa, the temperature was raised to 180 ° C., and 2195 parts of Resin C was obtained.
[0021]
(Comparative Example 1)
In the same flask as in Example 1, phenol 1500 parts, xylene formaldehyde resin 1000 parts (Nicanol G, number average molecular weight 520-620, oxygen content 14-16%, manufactured by Mitsubishi Gas Chemical Co., Ltd.), p-toluenesulfonic acid 1 part was added, the temperature was raised to 120 ° C., and the reaction was carried out for 2 hours. Then, 15 parts of oxalic acid and 141 parts of 92% paraformaldehyde (manufactured by Mitsui Chemicals) were sequentially added and reacted at 100 ° C. for 1 hour. It was. After completion of the reaction, the reaction product was sampled and the amount of unreacted phenol was measured using gas chromatography. Thereafter, 15 parts of slaked lime was added, and then atmospheric distillation was performed to raise the temperature to 150 ° C., and vacuum distillation was performed at a reduced pressure of 5000 Pa to raise the temperature to 190 ° C. to obtain 2310 parts of Resin D.
[0022]
(Comparative Example 2)
In the same flask as in Example 1, 1200 parts of phenol, 1000 parts of xylene formaldehyde resin (Nicanol H, number average molecular weight 460 to 500, oxygen content 10 to 11%, manufactured by Mitsubishi Gas Chemical Co., Ltd.), p-toluenesulfonic acid 10 parts were added, the temperature was raised to 130 ° C., and the reaction was carried out for 2 hours. Thereafter, 141 parts of 92% paraformaldehyde (manufactured by Mitsui Chemicals) and 35 parts of zinc oxide were added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction product was sampled and the amount of unreacted phenol was measured using gas chromatography. Thereafter, atmospheric distillation was performed, the temperature was raised to 130 ° C., vacuum distillation was performed at a reduced pressure of 5000 Pa, the temperature was raised to 160 ° C., and 2098 parts of Resin E was obtained.
[0023]
[Table 1]
Number average molecular weight: measured by liquid chromatography Weight average molecular weight: measured by liquid chromatography Softening point: measured according to JIS K-2531 Kinematic viscosity of 50% ethanol solution:
50 wt% ethanol solution measured at 25 ° C. using Cannon Fenceke Unreacted phenol content: measured by gas chromatography Gas chromatography:
A value measured by an internal standard method according to JIS K0114 with 2,5-xylenol as an internal standard.
Liquid chromatography:
Using a Tosoh GPC column (G1000HXL: 1, G2000HXL: 2, G3000HXL: 1) with a flow rate of 1.0 ml / min, elution solvent tetrahydrofuran, and column temperature of 40 ° C., using a differential refractometer as a detector. GPC measurement was performed. Molecular weight is converted using standard polystyrene.
[0024]
As is clear from the results in Table 1, the resins obtained in the examples have a lower amount of unreacted phenol, a narrower molecular weight distribution, and a higher reaction yield than the resins obtained in the comparative examples.
[0025]
【The invention's effect】
As described above, according to the production method of the present invention, an aromatic hydrocarbon-modified novolak-type phenol resin can be obtained with a small amount of unreacted phenols, a narrow molecular weight distribution, and a high yield.
Claims (1)
R−PO(OH)R-PO (OH) 22 式(I) Formula (I)
(Rは、炭素原子を必ず含み、かつ−COOH及び又は−PO(OH)(R must contain a carbon atom and must be —COOH and / or —PO (OH) 22 を含む基である。)Is a group containing )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000363980A JP4399977B2 (en) | 2000-11-30 | 2000-11-30 | Process for producing aromatic hydrocarbon-modified phenolic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000363980A JP4399977B2 (en) | 2000-11-30 | 2000-11-30 | Process for producing aromatic hydrocarbon-modified phenolic resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002167417A JP2002167417A (en) | 2002-06-11 |
JP4399977B2 true JP4399977B2 (en) | 2010-01-20 |
Family
ID=18835000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000363980A Expired - Fee Related JP4399977B2 (en) | 2000-11-30 | 2000-11-30 | Process for producing aromatic hydrocarbon-modified phenolic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4399977B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102002140A (en) * | 2010-10-27 | 2011-04-06 | 山东圣泉化工股份有限公司 | Synthesis method for phenolic resin for coated abrasive polyester fabric treatment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003082047A (en) * | 2001-09-12 | 2003-03-19 | Sumitomo Bakelite Co Ltd | Method for producing aralkyl-modified phenolic resin |
JP7035516B2 (en) * | 2017-12-25 | 2022-03-15 | 三菱瓦斯化学株式会社 | Phenolic modified xylene resin and its manufacturing method |
-
2000
- 2000-11-30 JP JP2000363980A patent/JP4399977B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102002140A (en) * | 2010-10-27 | 2011-04-06 | 山东圣泉化工股份有限公司 | Synthesis method for phenolic resin for coated abrasive polyester fabric treatment |
CN102002140B (en) * | 2010-10-27 | 2012-07-25 | 山东圣泉化工股份有限公司 | Synthesis method for phenolic resin for coated abrasive polyester fabric treatment |
Also Published As
Publication number | Publication date |
---|---|
JP2002167417A (en) | 2002-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4998271B2 (en) | Phenolic resin and resin composition | |
JP5581046B2 (en) | Method for producing novolac resin and novolac resin | |
JP4399977B2 (en) | Process for producing aromatic hydrocarbon-modified phenolic resin | |
JP3651843B2 (en) | Method for producing phenolic resin | |
JPH0617440B2 (en) | New epoxy resin and its manufacturing method | |
JP4595751B2 (en) | Biphenylaralkyl-modified phenolic resin, production method thereof, and epoxy resin molding material containing the same. | |
JP3879971B2 (en) | Method for producing resol type phenolic resin | |
JP2002179751A (en) | Method for producing aromatic hydrocarbon phenolic resin | |
JP2005075938A (en) | Manufacturing process of high ortho novolac type phenolic resin | |
JP2005075936A (en) | Novolac type phenolic resin and its manufacturing process | |
JP5400324B2 (en) | Method for producing novolac resin | |
JP2004238618A (en) | Method for producing novolac-type alkylphenol resin | |
JP2005179448A (en) | Manufacturing method of aromatic hydrocarbon phenolic resin | |
JP3845198B2 (en) | Method for producing phenolic resin | |
JP2006096891A (en) | Method for producing thermosetting resin | |
JP2005179383A (en) | Manufacturing method of aralkyl-modified phenolic resin | |
JP2005232389A (en) | Curable resin composition | |
JP3874338B2 (en) | Method for producing novolac type phenolic resin | |
JP2005200488A (en) | Manufacturing method of aromatic hydrocarbon-modified novolak-type phenolic resin | |
JP2002302525A (en) | Method for producing novolak-type phenolic resin | |
JP2003212944A (en) | Manufacturing method of novolac type phenol resin | |
JP4720057B2 (en) | Production method of epoxy resin | |
JP2005179382A (en) | Manufacturing method of novolak phenolic resin | |
JP2001329034A (en) | Production method for phenol resin | |
WO2016076403A1 (en) | Method for producing novolac type phenolic resin, novolac type phenolic resin, thermosetting resin composition, and cured product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |