JP3845198B2 - Method for producing phenolic resin - Google Patents

Method for producing phenolic resin Download PDF

Info

Publication number
JP3845198B2
JP3845198B2 JP07812898A JP7812898A JP3845198B2 JP 3845198 B2 JP3845198 B2 JP 3845198B2 JP 07812898 A JP07812898 A JP 07812898A JP 7812898 A JP7812898 A JP 7812898A JP 3845198 B2 JP3845198 B2 JP 3845198B2
Authority
JP
Japan
Prior art keywords
compound
reaction
phenolic resin
water
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07812898A
Other languages
Japanese (ja)
Other versions
JPH11279265A (en
Inventor
嘉久 曽根
清貴 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP07812898A priority Critical patent/JP3845198B2/en
Publication of JPH11279265A publication Critical patent/JPH11279265A/en
Application granted granted Critical
Publication of JP3845198B2 publication Critical patent/JP3845198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、各種バインダー、コーティング材、積層材料、成形材料等に有用なフェノール系重合体の製造方法に関する。特に電子材料用のエポキシ硬化剤やエポキシ樹脂の原料に好適な、不純物の少ない高純度の重合体を効率的に得る製造方法に関する。
【0002】
【従来の技術】
フェノールホルムアルデヒド樹脂は、安価な耐熱性樹脂として各種の用途に広く使用されている。また、通常のフェノール樹脂の各特性を向上する目的で、構造の異なる各種の樹脂が開発され、すでに公知となっている。
【0003】
特に、特公昭47−15111号公報などに記載の、α,α′−ジメトキシ−p−キシレンなどのアラルキル化合物とフェノール類との縮合反応によって得られる重合物は、フェノールアラルキル樹脂として、優れた耐熱性、電気特性、耐湿耐薬品性により、各種用途に広く使用されている。
更にフェノールアラルキル樹脂は、近年ではICの高密度化、小型薄型化、表面実装化に伴い、耐湿性が要求される封止材分野での硬化剤としての利用が広がっている。
【0004】
これに対し、特許第2533276号公報、特開平6−256474号公報には、フェノール類とキシリレン化合物、およびベンズアルデヒドなどで代表される芳香族アルデヒド類との共縮合物が開示されている。このフェノール系樹脂は、フェノールアラルキル樹脂に比べて低粘度、高Tg、低ソリで、成形性が優れる等の特長があり、耐熱性が要求される構造部材やICの封止材分野での硬化剤として利用されている。
【発明が解決しようとする課題】
【0005】
上記のフェノール系樹脂の製造方法は、キシリレン化合物として、一般式
Ph−(CH2 OR)2 で表されるグリコール類またはアルコキシ類(Phはフェニレン基、Rは水素、アルキル基等)を原料とするものであり、これらの化合物は通常ビスハロメチル化合物(Ph−(CH2 X)2 )から製造されるので原料として高価であるのみならず、この方法では共縮合反応はパラトルエンスルホン酸やトリフルオロメタンスルホン酸などの酸触媒の存在下で行うことが必要である。
【0006】
しかしこの酸触媒を用いて製造されたフェノール系樹脂においては、反応に用いる酸触媒を反応生成物から完全に分離することは困難で、得られる樹脂は酸性物質を僅かに含有している。そのため、不純物を特に嫌うような用途にはそのままでは適用できず、水洗による触媒の除去などが必要である。また、残存する酸性物質が製造過程で分子量分布の変化、粘度上昇、フェノール類モノマーの再生などの問題を引き起こし、品質が安定しないという欠点を有している。
【0007】
本発明は、このような事情に鑑みなされたもので、安価な原料を用い、不純物が少なく高純度で、かつ粘度などの品質が安定したフェノール系樹脂を効率的に得る製造方法を提供することをその目的とする。
【0008】
本発明者は、上記の目的を達成するため、触媒種や除去方法などを鋭意検討した結果、アラルキル化合物として芳香族環に2個のハロメチル基が置換したビスハロメチル化合物を用いることにより、原料が安価となり、しかも上記ビスハロメチル化合物を用いることにより、パラトルエンスルホン酸のような触媒を添加しなくても、反応開始剤として水を用い、加水分解で発生するハロゲン化水素を縮合反応開始の触媒として用いることができ、高純度でかつ品質の安定したフェノール系樹脂の製造法を見いだし、本発明に到達した。
【0009】
【課題を解決するための手段】
すなわち本発明は、フェノール類と、下記一般式(1)
−(CHX)・・・(1)
で表されるビスハロメチル化合物、及び下記一般式(2)
−CHO・・・・(2)
で表される芳香族アルデヒド化合物(式中、R及びRは同一または異なるフェニレン基、アルキル置換フェニレン基、ジフェニレン基、ジフェニレンオキサイド基、ナフチレン基であり、Xはハロゲン原子である。)とを、反応開始剤として水を添加し、加水分解で発生するハロゲン化水素を縮合反応開始の触媒として縮合反応させることを特徴とするフェノール系樹脂の製造方法である。以下、本発明を詳細に説明する。
【0010】
【発明の実施の形態】
本発明では、原料として前記一般式(1)で表されるビスハロメチル化合物(以下化合物(1)と呼ぶ)を用いる。このようなビスハロメチル化合物の具体例としては、ジ(クロロメチル)ベンゼン、ジ(ブロモメチル)ベンゼン、ジ(クロロメチル)ビフェニル、ジ(クロロメチル)ナフタリン、ジ(クロロメチル)ビフェニルエーテルなどが挙げられる。特にジクロロメチルベンゼンが好適である。ジ(クロロメチル)ベンゼンの場合の−CH2 Xの置換位置は、オルト、メタ、パラのいずれでもよいが、一般的に好ましいのはパラ位またはメタ位であり、メタ位とパラ位の混合系も好ましい。
【0011】
一般式(2)で表される芳香族アルデヒド(以下化合物(2)と呼ぶ)の具体例としては、ベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、tert- ブチルベンズアルデヒド、ナフトアルデヒド、メチルナフトアルデヒドなどが挙げられる。特にベンズアルデヒドおよびナフトアルデヒドが好ましい。
【0012】
化合物(2)/化合物(1)のモル比は、80/20から10/90、好ましくは70/30〜30/70までの範囲が好ましい。この比が80/20を超えると反応性が相対的に低い芳香族アルデヒドが一部反応しきれずに樹脂中に取り残される場合がある。またこの樹脂をエポキシ樹脂やヘキサミンで硬化させた硬化物はやや堅く脆くなり、また吸水率もやや高くなる傾向がある。一方この比が10/90未満の場合は低粘度、高Tg、低ソリ、成形性向上等を目的とした芳香族アルデヒドを導入した効果がほとんど認められなくなる。またこれ以外にも芳香族アルデヒドの効果として、化合物(1)が固体であるのに対し、ベンズアルデヒドなどの液状アルデヒド化合物とあらかじめ混合し溶解させておくことにより製造操作面及び反応均一性の面でも有利となるので、この点からも芳香族アルデヒド添加量を上記モル比以上とするのが好ましい。
【0013】
本発明に用いられるフェノール類としては、芳香族環に結合したヒドロキシル基を1個または2個以上有する各種の単環型、多核型、または縮合多環型芳香族化合物が使用できる。具体例としては、フェノール、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、フェニルフェノール、ハロゲン化フェノールなどの置換フェノール類;レゾルシン、カテコール、ジヒドロキシビフェニル、テトラメチルジヒドロキシビフェニル、ビスフェノールA、ビスフェノールS、ビスフェノールFなどの2価フェノール類;α−ナフトールやβ−ナフトール、ナフタレンジオールなどの縮合多環型フェノール類が挙げられ、これらを1種もしくは2種以上使用することが出来る。これらのフェノール類の中でも好ましくはフェノール、o−クレゾール、p−クレゾール、p−フェニルフェノール、カテコール、4,4′−ジヒドロキシビフェニル、α−またはβ−ナフトールが用いられる。
【0014】
フェノール類に対する化合物(1)+化合物(2)合計量の割合は、モル比で0.1〜0.8が好ましい。このモル比が0.1未満では、未反応のフェノール類が多くなり収率が下がるため好ましくない。0.8を越えると生成樹脂の分子量が増大し、軟化温度が上昇し、成形時の流動性の低下を招き易いため好ましくない。より好ましい割合は0.2〜0.7である。
【0015】
本発明においてはフェノール類とビスハロメチル化合物、芳香族アルデヒドの反応は酸触媒の存在下で行われる。
【0016】
本発明においてはビスハロメチル化合物を原料としているため、反応開始剤として水を添加し、加水分解で発生するハロゲン化水素を縮合反応開始の触媒として用いるので、特にそれ自身が酸触媒であるものを加える必要はない。
【0017】
反応中に発生するHClは、最終的に系外に揮発し除去されるため、得られた重合物は、酸触媒を添加して製造された樹脂のように酸性成分の不純物をほとんど含まず高純度であり、かつ粘度など、製品の品質が極めて安定であるので、反応開始剤として水を用いる本発明の方法は、特に不純物を嫌うような用途には好ましい。
【0018】
添加する水の量はビスハロメチル化合物と芳香族アルデヒド化合物の合計量に対して、100ppm以上が好ましい。水は、反応開始前に必要量以上を系内に添加すれば良い。
【0019】
フェノール類と化合物(1)及び(2)との反応は、通常80〜180℃、好ましくは110〜160℃の温度範囲で行う。反応時間は一般に1〜10時間である。
【0020】
樹脂化反応の際、フェノール類と化合物(1)と(2)の混合物を同時に系内に仕込んでから反応を進めても良く、また必要に応じて(1)と(2)の混合物をあらかじめ反応釜に仕込まれたフェノールの中に逐次添加して反応させてもよい。
【0021】
この反応は、縮合によって生成するHClによって反応が継続進行する。縮合反応が完結した後、系内に残ったHClを未反応のフェノール類と共に減圧下で留去させるか、または不活性ガスを吹き込みながら減圧蒸留するなどの適当な方法によって留去させる。
【0022】
本発明の方法を用いると、半導体封止用のエポキシ樹脂硬化剤など不純物が極めて厳しく規制される用途においても全く問題なく適用できる。
また、使用の際に熱履歴を受けても、粘度上昇、分子量分布の増大、未反応フェノールの再生などの品質変動が全く無視できるので、品質が極めて安定な樹脂が得られる。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明する。
[実施例1]
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製フラスコに、フェノール552.33重量部、水0.25重量部、1,4−ジ(クロロメチル)ベンゼン154.24重量部、ベンズアルデヒド93.43重量部を仕込み、窒素ガス気流下、撹拌しながら加熱した。70℃から120℃まで30分かけて昇温し、120℃で2時間、さらに140℃で2時間の反応を行った。反応によって発生するHClおよび水は系外へ除去させながら反応させた。その後、50torr以下の減圧下で窒素をバブリングさせながら140℃〜150℃で2時間減圧蒸留し、系内の未反応フェノールと僅かに残存するHClを除去し、455.26重量部の目的物を得た。得られたフェノール系樹脂の性状を表1に示す。
【0024】
[実施例2]
実施例1において、原料の仕込み量をフェノール566.69重量部、水0.23重量部、1,4−ジ(クロロメチル)ベンゼン105.50重量部、ベンズアルデヒド127.81重量部とした以外は実施例1と同様の条件で反応させ、減圧蒸留することによって464.20重量部の目的物を得た。得られたフェノール系樹脂の性状を表1に示す。
【0025】
[比較例1]
実施例1で用いたフラスコに、フェノール557.86重量部と、p−キシレングリコールジメチルエーテル144.77重量部、ベンズアルデヒド94.36重量部を仕込んだ。窒素ガス気流下、撹拌しながら80℃でp−トルエンスルホン酸1水和物1.60重量部を水溶液にして添加し、120〜140℃で発生するメタノールと水を系外に除去させながら3時間の反応を行った。その後、50torr以下の減圧下、窒素をバブリングさせながら140℃〜150℃で2時間減圧蒸留し、系内の未反応フェノールを除去し、457.11重量部のフェノール系樹脂を得た。得られた樹脂の性状を表1に示す。
【0026】
[比較例2]
比較例1において、p−トルエンスルホン酸1水和物の代わりに、トリフルオロメタンスルホン酸0.032重量部を水溶液にして添加した以外は比較例1と同様に行い、456.51重量部のフェノール系樹脂を得た。得られた樹脂の性状を表1に示す。
【0027】
【表1】

Figure 0003845198
【0028】
表1に示したように、いずれの実施例で得られた樹脂からも、酸性物質は検出されず、高純度であった。また160℃で10時間の熱処理を行った後も分子量分布やフェノールの増加などの変化が認められず、熱安定性に優れていることが判る。
これに対し、比較例1及び2で得られた樹脂には、触媒の酸性物質が残存し、抽出水のpHも低い値を示した。また熱安定性にも劣り、160℃10時間の熱処理で分子量分布が大きくなり溶融粘度が大幅に上昇し、また未反応フェノールも大幅に増加し、品質の安定性が悪かった。
【0029】
【発明の効果】
本発明によれば、安価な原料を使用し、また反応開始剤として水を用い、加水分解で発生するハロゲン化水素を縮合反応開始の触媒として用いることができるので、触媒の残存による不純物が少なく、品質が安定し、半導体封止用のエポキシ樹脂硬化剤などの用途に適した高純度のフェノール系樹脂を簡単な操作で効率的に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a phenolic polymer useful for various binders, coating materials, laminated materials, molding materials and the like. In particular, the present invention relates to a production method for efficiently obtaining a high-purity polymer with few impurities, which is suitable for an epoxy curing agent for an electronic material or a raw material for an epoxy resin.
[0002]
[Prior art]
Phenol formaldehyde resin is widely used for various applications as an inexpensive heat-resistant resin. In addition, various resins having different structures have been developed and are already publicly known for the purpose of improving the properties of ordinary phenol resins.
[0003]
In particular, a polymer obtained by a condensation reaction of an aralkyl compound such as α, α′-dimethoxy-p-xylene and a phenol described in JP-B-47-15111 is excellent in heat resistance as a phenol aralkyl resin. It is widely used in various applications due to its properties, electrical properties, and moisture and chemical resistance.
Furthermore, in recent years, phenol aralkyl resins have been increasingly used as curing agents in the field of sealing materials that require moisture resistance, as ICs have become denser, smaller, thinner, and more surface-mounted.
[0004]
On the other hand, Japanese Patent No. 2533276 and JP-A-6-256474 disclose cocondensates of phenols, xylylene compounds, and aromatic aldehydes represented by benzaldehyde and the like. This phenolic resin has features such as low viscosity, high Tg, low warpage and excellent moldability compared to phenol aralkyl resin, and is hardened in the field of structural materials and IC sealing materials that require heat resistance. It is used as an agent.
[Problems to be solved by the invention]
[0005]
The above phenolic resin production method uses, as a raw material, glycols or alkoxys represented by the general formula Ph— (CH 2 OR) 2 (Ph is a phenylene group, R is hydrogen, an alkyl group, etc.) as a xylylene compound. These compounds are usually produced from bishalomethyl compounds (Ph- (CH 2 X) 2 ) and are not only expensive as raw materials. In this method, the co-condensation reaction is carried out using paratoluenesulfonic acid or trifluoromethane. It is necessary to carry out in the presence of an acid catalyst such as sulfonic acid.
[0006]
However, in the phenolic resin produced using this acid catalyst, it is difficult to completely separate the acid catalyst used in the reaction from the reaction product, and the resulting resin contains a slight amount of acidic substances. Therefore, it cannot be applied as it is to a use that particularly dislikes impurities, and it is necessary to remove the catalyst by washing with water. In addition, the remaining acidic substance causes problems such as a change in molecular weight distribution, an increase in viscosity, and regeneration of phenolic monomers in the production process, resulting in a disadvantage that the quality is not stable.
[0007]
The present invention has been made in view of such circumstances, and provides a production method for efficiently obtaining a phenol-based resin that uses inexpensive raw materials, has low impurities, has high purity, and has stable quality such as viscosity. Is the purpose.
[0008]
In order to achieve the above object, the present inventor has intensively studied catalyst types and removal methods. As a result, the use of a bishalomethyl compound in which two halomethyl groups are substituted on an aromatic ring as an aralkyl compound makes the raw material inexpensive. In addition, by using the bishalomethyl compound, water is used as a reaction initiator without adding a catalyst such as p-toluenesulfonic acid, and a hydrogen halide generated by hydrolysis is used as a catalyst for starting a condensation reaction. Thus, the present inventors have found a method for producing a phenolic resin having high purity and stable quality, and have reached the present invention.
[0009]
[Means for Solving the Problems]
That is, the present invention relates to phenols and the following general formula (1)
R 1- (CH 2 X) 2 (1)
And a bishalomethyl compound represented by the following general formula (2)
R 2 —CHO (2)
(In the formula, R 1 and R 2 are the same or different phenylene group, alkyl-substituted phenylene group, diphenylene group, diphenylene oxide group, and naphthylene group, and X is a halogen atom.) Is a method for producing a phenolic resin, wherein water is added as a reaction initiator, and a hydrogen halide generated by hydrolysis is subjected to a condensation reaction as a catalyst for starting the condensation reaction . Hereinafter, the present invention will be described in detail.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a bishalomethyl compound represented by the general formula (1) (hereinafter referred to as compound (1)) is used as a raw material. Specific examples of such bishalomethyl compounds include di (chloromethyl) benzene, di (bromomethyl) benzene, di (chloromethyl) biphenyl, di (chloromethyl) naphthalene, di (chloromethyl) biphenyl ether, and the like. Particularly preferred is dichloromethylbenzene. In the case of di (chloromethyl) benzene, the substitution position of —CH 2 X may be any of ortho, meta, and para, but generally preferred is the para position or the meta position, and a mixture of the meta position and the para position. A system is also preferred.
[0011]
Specific examples of the aromatic aldehyde represented by the general formula (2) (hereinafter referred to as compound (2)) include benzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, tert-butylbenzaldehyde, naphthaldehyde, methylnaphthaldehyde and the like. . Benzaldehyde and naphthaldehyde are particularly preferable.
[0012]
The molar ratio of compound (2) / compound (1) is in the range of 80/20 to 10/90, preferably 70/30 to 30/70. When this ratio exceeds 80/20, the aromatic aldehyde having relatively low reactivity may not be partially reacted and may remain in the resin. Further, a cured product obtained by curing this resin with an epoxy resin or hexamine tends to be somewhat hard and brittle, and the water absorption rate tends to be slightly high. On the other hand, when this ratio is less than 10/90, the effect of introducing an aromatic aldehyde for the purpose of low viscosity, high Tg, low warpage, improved moldability, etc. is hardly recognized. In addition to this, as an effect of the aromatic aldehyde, the compound (1) is solid, but by mixing and dissolving in advance with a liquid aldehyde compound such as benzaldehyde, it is also possible in terms of production operation and reaction uniformity. From this point, it is preferable to add the aromatic aldehyde addition amount to the above molar ratio or more.
[0013]
As the phenols used in the present invention, various monocyclic, polynuclear, or condensed polycyclic aromatic compounds having one or more hydroxyl groups bonded to an aromatic ring can be used. Specific examples include substituted phenols such as phenol, cresol, xylenol, ethylphenol, butylphenol, phenylphenol, halogenated phenol; resorcin, catechol, dihydroxybiphenyl, tetramethyldihydroxybiphenyl, bisphenol A, bisphenol S, bisphenol F, etc. Divalent phenols: Condensed polycyclic phenols such as α-naphthol, β-naphthol, and naphthalene diol can be used, and one or more of these can be used. Among these phenols, phenol, o-cresol, p-cresol, p-phenylphenol, catechol, 4,4′-dihydroxybiphenyl, α- or β-naphthol is preferably used.
[0014]
The ratio of the total amount of compound (1) + compound (2) to phenols is preferably 0.1 to 0.8 in terms of molar ratio. If the molar ratio is less than 0.1, unreacted phenols increase and the yield decreases, which is not preferable. If it exceeds 0.8, the molecular weight of the resulting resin increases, the softening temperature rises, and the fluidity during molding tends to decrease, which is not preferable. A more desirable ratio is 0.2 to 0.7.
[0015]
In the present invention, the reaction of phenols, bishalomethyl compounds and aromatic aldehydes is carried out in the presence of an acid catalyst.
[0016]
In the present invention, since a bishalomethyl compound is used as a raw material, water is added as a reaction initiator, and hydrogen halide generated by hydrolysis is used as a catalyst for starting a condensation reaction. There is no need.
[0017]
Since HCl generated during the reaction is eventually volatilized and removed from the system, the obtained polymer is almost free from impurities of acidic components unlike the resin produced by adding an acid catalyst. a purity and viscosities, etc., product quality is very stable der Runode, the method of the present invention using water as a reaction initiator, preferred for applications such as in particular dislike impurities.
[0018]
The amount of water added is preferably 100 ppm or more with respect to the total amount of the bishalomethyl compound and the aromatic aldehyde compound. What is necessary is just to add water more than a required amount into a system before reaction start.
[0019]
The reaction of the phenols with the compounds (1) and (2) is usually performed at a temperature range of 80 to 180 ° C, preferably 110 to 160 ° C. The reaction time is generally 1 to 10 hours.
[0020]
During the resinification reaction, the reaction may proceed after simultaneously adding a mixture of phenols and compounds (1) and (2) to the system, and if necessary, the mixture of (1) and (2) may be preliminarily prepared. The reaction may be carried out by sequentially adding to the phenol charged in the reaction kettle.
[0021]
In this reaction, the reaction proceeds continuously with HCl generated by condensation. After completion of the condensation reaction, HCl remaining in the system is distilled off together with unreacted phenols under reduced pressure, or distilled off by a suitable method such as distillation under reduced pressure while blowing an inert gas.
[0022]
When the method of the present invention is used, it can be applied without any problem even in applications in which impurities are extremely strictly regulated, such as an epoxy resin curing agent for semiconductor encapsulation.
Moreover, even if it receives a thermal history during use, quality fluctuations such as an increase in viscosity, an increase in molecular weight distribution, and regeneration of unreacted phenol can be completely ignored, so that a resin with extremely stable quality can be obtained.
[0023]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[Example 1]
In a glass flask equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 552.33 parts by weight of phenol, 0.25 parts by weight of water, 154.24 parts by weight of 1,4-di (chloromethyl) benzene, 93 of benzaldehyde 93 .43 parts by weight were charged and heated with stirring under a nitrogen gas stream. The temperature was raised from 70 ° C. to 120 ° C. over 30 minutes, and a reaction was performed at 120 ° C. for 2 hours and further at 140 ° C. for 2 hours. HCl and water generated by the reaction were reacted while being removed from the system. Thereafter, distillation was performed under reduced pressure at 140 ° C. to 150 ° C. for 2 hours while bubbling nitrogen under a reduced pressure of 50 torr or less to remove unreacted phenol and a slight residual HCl in the system, and 455.26 parts by weight of the target product was obtained. Obtained. Table 1 shows the properties of the obtained phenolic resin.
[0024]
[Example 2]
In Example 1, the amount of raw materials charged was 566.69 parts by weight of phenol, 0.23 parts by weight of water, 105.50 parts by weight of 1,4-di (chloromethyl) benzene, and 127.81 parts by weight of benzaldehyde. The reaction was carried out under the same conditions as in Example 1, followed by distillation under reduced pressure to obtain 464.20 parts by weight of the target product. Table 1 shows the properties of the obtained phenolic resin.
[0025]
[Comparative Example 1]
The flask used in Example 1 was charged with 557.86 parts by weight of phenol, 144.77 parts by weight of p-xylene glycol dimethyl ether, and 94.36 parts by weight of benzaldehyde. While stirring under a nitrogen gas stream, 1.60 parts by weight of p-toluenesulfonic acid monohydrate was added as an aqueous solution at 80 ° C., and methanol and water generated at 120 to 140 ° C. were removed from the system. Time reaction was performed. Thereafter, distillation was performed under reduced pressure at 140 ° C. to 150 ° C. for 2 hours while bubbling nitrogen under a reduced pressure of 50 torr or less to remove unreacted phenol in the system, and 457.11 parts by weight of a phenolic resin was obtained. Table 1 shows the properties of the obtained resin.
[0026]
[Comparative Example 2]
In Comparative Example 1, the same procedure as in Comparative Example 1 was carried out except that 0.032 parts by weight of trifluoromethanesulfonic acid was added as an aqueous solution instead of p-toluenesulfonic acid monohydrate. 456.51 parts by weight of phenol A system resin was obtained. Table 1 shows the properties of the obtained resin.
[0027]
[Table 1]
Figure 0003845198
[0028]
As shown in Table 1, no acidic substance was detected from the resins obtained in any of the examples, and the purity was high. In addition, even after heat treatment at 160 ° C. for 10 hours, no change in molecular weight distribution or increase in phenol was observed, indicating that the thermal stability is excellent.
On the other hand, in the resins obtained in Comparative Examples 1 and 2, the acidic substance of the catalyst remained and the pH of the extracted water was low. In addition, the heat stability was inferior, and the heat treatment at 160 ° C. for 10 hours increased the molecular weight distribution, resulting in a significant increase in melt viscosity and a significant increase in unreacted phenol, resulting in poor quality stability.
[0029]
【The invention's effect】
According to the present invention, an inexpensive raw material can be used, water can be used as a reaction initiator, and hydrogen halide generated by hydrolysis can be used as a catalyst for initiating the condensation reaction. Therefore, it is possible to efficiently obtain a high-purity phenolic resin having a stable quality and suitable for uses such as an epoxy resin curing agent for semiconductor encapsulation, by a simple operation.

Claims (3)

フェノール類と、下記一般式(1)
−(CHX)・・・(1)
で表されるビスハロメチル化合物、及び下記一般式(2)
−CHO・・・・(2)
で表される芳香族アルデヒド化合物(式中、R及びRは同一または異なるフェニレン基、アルキル置換フェニレン基、ジフェニレン基、ジフェニレンオキサイド基、ナフチレン基であり、Xはハロゲン原子である。)とを、反応開始剤として水を添加し、加水分解で発生するハロゲン化水素を縮合反応開始の触媒として縮合反応させることを特徴とするフェノール系樹脂の製造方法。
Phenols and the following general formula (1)
R 1- (CH 2 X) 2 (1)
And a bishalomethyl compound represented by the following general formula (2)
R 2 —CHO (2)
(Wherein, R 1 and R 2 are the same or different phenylene group, alkyl-substituted phenylene group, diphenylene group, diphenylene oxide group, naphthylene group, and X is a halogen atom.) And adding a water as a reaction initiator and subjecting the hydrogen halide generated by hydrolysis to a condensation reaction as a catalyst for initiating the condensation reaction.
反応開始剤としての水の添加量が、ビスハロメチル化合物と芳香族アルデヒド化合物の合計量に対して重量比で100ppm以上であることを特徴とする請求項に記載のフェノール系樹脂の製造方法。The addition amount of water as the reaction initiator, the manufacturing method of the phenolic resin according to claim 1, characterized in that at 100ppm or more by weight relative to the total amount of Bisuharomechiru compound and an aromatic aldehyde compound. 芳香族アルデヒド化合物/ビスハロメチル化合物のモル比が80/20〜10/90の範囲であることを特徴とする請求項1〜のいずれかに記載のフェノール系樹脂の製造方法。Method for producing a phenolic resin according to any one of claims 1 to 2, wherein the molar ratio of aromatic aldehyde compound / Bisuharomechiru compound is in the range of 80 / 20-10 / 90.
JP07812898A 1998-03-25 1998-03-25 Method for producing phenolic resin Expired - Fee Related JP3845198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07812898A JP3845198B2 (en) 1998-03-25 1998-03-25 Method for producing phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07812898A JP3845198B2 (en) 1998-03-25 1998-03-25 Method for producing phenolic resin

Publications (2)

Publication Number Publication Date
JPH11279265A JPH11279265A (en) 1999-10-12
JP3845198B2 true JP3845198B2 (en) 2006-11-15

Family

ID=13653256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07812898A Expired - Fee Related JP3845198B2 (en) 1998-03-25 1998-03-25 Method for producing phenolic resin

Country Status (1)

Country Link
JP (1) JP3845198B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170493B2 (en) * 2005-10-14 2013-03-27 エア・ウォーター株式会社 Phenol polymer, its production method and its use
JP4979251B2 (en) * 2006-03-24 2012-07-18 エア・ウォーター株式会社 Phenol polymer, its production method and its use
JP5366263B2 (en) * 2010-07-21 2013-12-11 日本化薬株式会社 Phenol aralkyl resin, epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
JPH11279265A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4283773B2 (en) Method for producing novolac type phenolic resin
JP4998271B2 (en) Phenolic resin and resin composition
JP5774021B2 (en) Phenol oligomer and method for producing the same
JP5549107B2 (en) Method for producing novolac resin
JP2012167289A (en) Phenol novolac resin, method for producing the same, and epoxy resin composition and cured product produced by using the same
TW201033255A (en) Novolac resin and method for producing the same
TWI534167B (en) Phenol resin composition, epoxy resin composition and cured product of epoxy resin
WO2011118147A1 (en) Solid resol-type phenolic resin and method for producing same
JPS6242926B2 (en)
JP2866747B2 (en) Method for producing phenolic polymer
JP3845198B2 (en) Method for producing phenolic resin
TWI466965B (en) Method for producing novolak resin and novolak resin
JP2010229304A (en) Phenol resin, process for producing the same, epoxy resin composition including the resin, and cured article thereof
JP3755629B2 (en) Method for producing phenol aralkyl resin
JPS6252764B2 (en)
JP4275380B2 (en) Method for producing high molecular weight cresol novolac resin
JP2004091550A (en) Phenolic resin and its manufacturing method, and epoxy resin curing agent
KR102383690B1 (en) Benzoxazine mixture and the usage thereof
JP4487625B2 (en) Method for producing phenol novolac resin
US3290271A (en) Naphthyl condensed novolak
JP4761417B2 (en) Novel epoxy resin, curing agent and epoxy resin composition
KR20180003007A (en) Benzoxazine compound and the usage thereof
JP2005075938A (en) Manufacturing process of high ortho novolac type phenolic resin
JP2005154480A (en) Method for producing novolak type phenol resin
JP3888915B2 (en) Epoxy resin curing agent

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 19981019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees