WO2010078843A1 - 资源分配方法、网络设备和无线系统 - Google Patents

资源分配方法、网络设备和无线系统 Download PDF

Info

Publication number
WO2010078843A1
WO2010078843A1 PCT/CN2010/070040 CN2010070040W WO2010078843A1 WO 2010078843 A1 WO2010078843 A1 WO 2010078843A1 CN 2010070040 W CN2010070040 W CN 2010070040W WO 2010078843 A1 WO2010078843 A1 WO 2010078843A1
Authority
WO
WIPO (PCT)
Prior art keywords
system terminal
mode
lte
resource block
downlink
Prior art date
Application number
PCT/CN2010/070040
Other languages
English (en)
French (fr)
Inventor
柯柏安
曲秉玉
弗雷德里克·柏根
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10729102.3A priority Critical patent/EP2381640B1/en
Publication of WO2010078843A1 publication Critical patent/WO2010078843A1/zh
Priority to US13/176,285 priority patent/US8614983B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a resource allocation method, a network device, and a wireless system.
  • LTE Long Term Evolved
  • the network notifies the exact system bandwidth used by the uplink and downlink to each terminal in the network through broadcast signaling, and the terminal further includes physical resources according to the system bandwidth.
  • the number of Physical Resource Blocks (PRBs) determines the resource allocation granularity of certain resource allocation methods.
  • the network also sends the information about the specific resource allocation to the terminal that needs to transmit data through the resource allocation signaling, and the terminal determines the time-frequency resource location specifically allocated by the network according to the received resource allocation signaling information, and the corresponding time-frequency resource Send or receive data at the location to realize data transmission and communication between the network and the terminal.
  • LTE-A In an evolved LTE system (LTE-A), in order to support a larger bandwidth, one possible way is to aggregate multiple branch carriers, that is, to simultaneously schedule resources of multiple branch carriers to one terminal for use.
  • the frequency of the multiple branch carriers may be continuous or non-contiguous.
  • the bandwidth of each branch carrier may be the same or different.
  • Each branch carrier may be a carrier compatible with the LTE terminal, or may only support LTE. - The carrier of the A terminal, then the LTE terminal cannot perform data transmission and communication on the LTE-A carrier.
  • a part of the PRB resources may be configured as a resource that cannot be used by the LTE terminal in one branch carrier.
  • these resources can be designed for the needs of LTE-A systems, such as the pilot structure, etc. Different from the system, this can not only support the characteristics of the LTE-A system, but also support the carrier bandwidth configuration different from the bandwidth of the LTE system, and realize that each carrier is a backward compatible carrier, which increases the flexibility of system design.
  • a certain PRB resource in a certain carrier of the existing LTE-A system may be configured to be unavailable to the LTE terminal, if all the PRB resources are similar to LTE.
  • the order of the system resource blocks is PRB-sequenced, and the resource block or hopping mapping is performed accordingly, and then resource allocation may cause collision and blocking of LTE and LTE-A resource allocation, so that LTE-A in this carrier
  • the terminal and the LTE terminal are not well compatible.
  • the embodiments of the present invention provide a resource allocation method, a network device, and a wireless system, so that the resource allocation methods of the LTE-A terminal and the LTE terminal are compatible.
  • the embodiment of the invention provides a resource allocation method, including:
  • Sorting resource blocks used by the first system terminal and the second system terminal according to the use of the resource block by the terminal of the first system and the terminal of the second system;
  • the second system is an evolved system of the first system, and the second system is capable of providing communication services for terminals of the first system.
  • the embodiment of the invention provides a network device, including:
  • a sorting module configured to sort resource blocks used by the first system terminal and the second system terminal according to the use of the resource block by the first system terminal and the second system terminal;
  • An allocation module for allocating sorted resource blocks is provided.
  • the embodiment of the invention provides a wireless system, including:
  • a network device configured to sort resource blocks used by the first system terminal and the second system terminal according to the usage of the resource block by the first system terminal and the second system terminal; After the resource block.
  • FIG. 1 is a schematic diagram of a method for resource allocation in a downlink using RAtypeO mode
  • FIG. 2 is a schematic diagram of a method for resource allocation in the RA3 method in the current downlink
  • FIG. 3 is a schematic diagram of a method for allocating resources in the downlink using the RAtype2 LVRB method
  • FIG. 4 is a schematic diagram of a method for allocating resources in the downlink using the RAtype2 DVRB method
  • FIG. 6 is a schematic flow chart of a method according to a first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for allocating resources in the RA type O mode in the downlink according to the second embodiment of the present invention
  • FIG. 8 is a schematic diagram of a method for allocating resources in the downlink using the RA type O mode according to the third embodiment of the present invention
  • FIG. 10 is a schematic diagram of a method for resource allocation in the downlink using RA type1 mode according to the fifth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a method for allocating a resource in a RA type 1 manner in a downlink according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a method for allocating a resource in a RA type 1 manner in downlink according to a seventh embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a method for allocating resources by using RAtype2 DVRB mode in the downlink according to the eighth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a method for allocating resources in a frequency hopping manner according to a ninth embodiment of the present invention
  • FIG. 15 is a schematic diagram of a method for allocating resources in a downlink using RA type O according to a tenth embodiment of the present invention
  • FIG. 16 is a schematic diagram of a method for resource allocation by using RAtype1 mode in the downlink according to the eleventh embodiment of the present invention
  • FIG. 17 is a schematic diagram of a method for allocating a resource allocation method using the RAtype2 LVRB method in the downlink according to the twelfth embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a method for allocating a resource allocation method using the RAtype2 LVRB mode in the downlink according to the thirteenth embodiment of the present invention.
  • 19 is a schematic diagram of a method for allocating a resource allocation method using a RAtype2 DVRB method in a downlink according to a fourteenth embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a resource allocation method for uplink hopping frequency hopping mode according to a fifteenth embodiment of the present invention.
  • Figure 21 is a block diagram showing the structure of a device according to a sixteenth embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
  • RAtype resource allocation types 0, RAtype1, and RAtype2.
  • RAtypeO indicates the allocation of resource block groups (RBGs) in a bitmap manner, where each bit indicates the corresponding RBG allocation or not, and one RBG is the minimum granularity of resource allocation, and each resource block group (RBG) ) Includes several resource blocks (RBs).
  • the number of resource blocks included in each resource block group is determined by the total number of all RBs included in the system bandwidth, that is, the size of the RBG is a function of the system bandwidth including the number of RBs.
  • the size of the RBG corresponding to different system bandwidths may be different, that is, the minimum granularity of resource allocation is different. See Table 1 for the relationship between the number of physical resource blocks (PRBs) included in the system bandwidth and the granularity ⁇ .
  • PRBs physical resource blocks
  • the size of each resource block group (that is, the granularity) is P.
  • the allocation mode of RA typeO it is required in resource allocation signaling.
  • RBG bits are used to indicate the specific resource allocation. Among them, " means rounding up.
  • the number of bits used by RAtype1 and RA typeO to occupy resource allocation signaling is the same, and is also indicated by a bit map.
  • the RA type 1 divides the resource block into a subset of the P resource block groups according to the system bandwidth. For example, the number of resource blocks included in each resource block group in the RA type O is P, that is, the granularity of each resource block group is P. Then RAtypel also groups the resource blocks into a subset of P resource block groups.
  • each bit can indicate the corresponding resource block group subset RB
  • the number of bits of RA type2 resource allocation signaling is different from RA typeO (or RA typel), and the specific resource allocation method is also different.
  • One bit in the RA type2 resource allocation signaling indicates whether it is a centralized virtual resource block (LVRB) or a discrete virtual resource block (DVRB).
  • LVRB virtual resource block
  • DVRB discrete virtual resource block
  • the virtual resource block serial number and the physical resource block serial number are corresponding to Therefore, LVRB is allocated centrally on physical resources.
  • each VRB to PRB mapping is defined by a 4th order diversity interleaver and has been uniquely defined.
  • Each VRB is mapped to a different PRB in two time slots in one subframe, that is, on different PRBs to which the same VRB is mapped to the two slots, and there is a Gap value between them, as shown in Table 2.
  • the Gap value can be 1 or 2, including the specific Gap value, which is uniquely determined by Table 2.
  • 1 bit in the resource allocation signaling indicates whether Gapl or Gap2 is specifically used.
  • the initial VRB sequence number and the number of consecutive VRBs are indicated, and all PRBs corresponding to the VRBs allocated in the first time slot are determined according to the mapping rule of the VRB to the PRB, according to the Gap value adopted in Table 2, Further, all PRBs corresponding to the VRBs allocated in the second time slot are determined.
  • the resource allocation types RA Type 2 and RA type 0 (or RA type 1 ) have different information lengths, and the terminal detects that the specific resource allocation type is obtained by relying on the blind check information bit length.
  • the resource allocation signaling indicates the starting VRB sequence number and The number of consecutively allocated VRBs, and one bit in the resource allocation information indicates support and does not support resource hopping.
  • the specific hopping mode can be configured to support the hopping of the slot boundary or the hopping of the subframe boundary. This is notified by the broadcast signaling. Whether the hopping of all the terminals in the small area is bounded by the subframe or the time slot is unified. .
  • the Hopping mode is divided into UL hopping t pel and UL hopping type 2.
  • some PRBs may be invisible to the LTE terminal in a certain carrier of the LTE-A system.
  • the resource allocation method of the LTE terminal and the PRB ordering method must be performed for the PRB visible to the LTE terminal. If the LTE-A terminal-specific resource blocks that are not visible to the LTE terminal are subjected to the PRB ordering and resource allocation in the LTE-like manner, the LTE terminal and the LTE-A terminal resource allocation conflict and block in the carrier may occur.
  • the scheduler can solve these problems to some extent, but this also increases the complexity of the scheduler, so that the LTE and LTE-A resource allocation methods are not compatible.
  • the following describes the problems that arise in various resource allocation methods:
  • One carrier of LTE-A consists of 18 PRBs, and the sequence numbers of PRBs are sequentially defined as 0, 1, 2, ..., 17 including A part, part and B 2 part.
  • the A part is used by both the LTE terminal and the LTE-A terminal, and is composed of 12 PRBs, and the corresponding PRB numbers are 3, 4, ..., 14; the Bj part and the B 2 part are LTE-A terminals. If the LTE terminal cannot be used, the part and the 3 ⁇ 4 part include 3 PRBs, and the part of the included PRB has the sequence number 0, 1, 2, and the B 2 part includes the PRB with the sequence number 15, 16, 17. According to Table 1, it can be seen that one RBG of the LTE-A system and the LTE system is composed of two PRBs.
  • FIG. 1 is a schematic diagram of a method for resource allocation in the current downlink using RA type O mode.
  • the RB resources in the area A part are available to both the LTE terminal and the LTE-A terminal, and the RB resources of the 8 and the area can only be used by the LTE-A terminal.
  • the RA type O method is a bitmap method, and each bit refers to Indicates the information of the corresponding RBG allocation.
  • the RBG size corresponds to the system bandwidth. See Table 1. It can be seen from FIG. 1 that the LTE and LTE-A resource allocation mix causes some RBs to be effectively indicated and used.
  • LTE-A uses its corresponding RBG3 (ie, RB6, RB7), then LTE corresponds to RBG1. And RBG2 will no longer be allocated to the LTE terminal, so the corresponding RB5 and RB8 will not be used, and the resource is wasted due to the inability to perform effective signaling indication.
  • RBG3 ie, RB6, RB7
  • FIG. 2 is a schematic diagram of a method for resource allocation in the current downlink using RA typel mode.
  • the RA type 1 method in LTE is to divide into P (the size of each RBG) resource block group subset according to the system bandwidth, select one of the subsets, and then use the bitmap mode to indicate the selection of the subset.
  • the LTE and LTE-A resource allocation mix may cause blocking of each other's RBGs. For example, if LTE-A uses subsetO, then LTE corresponding subsetO and subset1 will be affected.
  • FIG. 3 is a schematic diagram of a resource allocation method using the RA type2 LVRB mode in the existing downlink.
  • the RA type 2 signaling in the LTE indicates the starting VRB sequence number and the number of consecutively allocated VRBs.
  • the virtual resource block sequence number corresponds to the physical resource block sequence number, so LVRB is allocated centrally on physical resources.
  • indicating continuous VRB allocation can indicate continuous PRB allocation at the same time.
  • the LTE-A terminal corresponds to VRB3, but for the LTE terminal, corresponding to VRB0, the resource indication makes the same
  • FIG. 4 is a schematic diagram of a resource allocation method using the RA type 2 DVRB method in the existing downlink.
  • the RA type 2 signaling in the LTE indicates the starting VRB sequence number and the number of continuously allocated VRBs.
  • the number of RBs is 12 and 18, respectively, so that the number of PRBs participating in DVRB of LTE and LTE-A (N-VRB) may also be unequal, so that from VRB-to-PRB
  • the resources of LTE and LTE-A collide when mapping.
  • the LTE-A system is 18, and the LTE system is 12, It can be seen from Table 2 that there is only one Gap value.
  • the N gap of the LTE and the LTE are both 8.
  • the number of RBs participating in the DVRB in the LTE-A is 16 and the number of PRBs participating in the DVRB in the LTE is 8.
  • the first time slot (1 st slot ) and the second time slot (2 nd slot ) need to satisfy the N gap relationship. Therefore, referring to FIG. 4 , in the LTE-A system, the PRB participating in the DVRB is numbered 0-15.
  • the PRBs of the DVRBs participating in the DVRB are 3 to 6 and 11 to 14 PRBs; the sequence number in each slot is the sequence number of the corresponding VRB, for example, in the LTE-A system, the sequence number is 1.
  • the serial number of the VRB corresponding to the PRB is 4, and so on. Therefore, if the VRB is extended to LTE-A according to the existing RA type2 resource allocation mode, even if different VRBs are allocated for LTE and LTE-A, the number of RBs participating in the mapping from VRB to PRB is different due to LTE and LTE-A.
  • the VRB1 for the LTE corresponds to the PRB5
  • the VRB5 for the LTE-A corresponds to the PRB5, so that the resource indication conflicts.
  • one carrier of LTE-A is composed of 18 PRBs, and the sequence numbers of PRBs are sequentially defined as 0, 1, 2, ..., 17 including A part, part and B 2 part.
  • the A part is used by both the LTE terminal and the LTE-A terminal, and is composed of 12 PRBs, and the corresponding PRB numbers are 3, 4, ..., 14; the Bj part and the B 2 part are LTE-A terminals. If the LTE terminal cannot be used, the part and the 3 ⁇ 4 part include 3 PRBs, and the part of the included PRB has the sequence number 0, 1, 2, and the B 2 part includes the PRB with the sequence number 15, 16, 17. According to Table 1, it can be seen that one RBG of the LTE-A system and the LTE system is composed of two PRBs.
  • FIG. 5 is a schematic diagram of a method for resource allocation by using a frequency hopping method in an existing uplink.
  • the PUCCH needs to be transmitted.
  • the number of RBs occupied by the PUCCH (N-RB_PUCCH) is equal to 2, and is located at both ends of the area A, and is occupied by the LTE-A terminal.
  • the intermediate PRB resource causes all of its physical resources for data transmission to be discontinuous.
  • Figure 5 illustrates the UL hopping type 1.
  • the number of PRBs participating in uplink resource allocation will also be For example, the number of RBs participating in the uplink resource allocation (N-UL_PUSCH) in the LTE system in FIG. 5 is 10 (the RBs included in the LTE include 2 RBs removed from the PUCCH), and the LTE-A system
  • the number of RBs participating in the uplink resource allocation (N-UL_PUSCH) is 16 ((the RBs included in the LTE-A include the 2 RBs occupied by the PUCCH).
  • the mapping rule according to the VRB to the PRB may result in Collision and collision of LTE and LTE-A resources.
  • PRB6 ⁇ PRB9 are allocated to LTE terminals in the first time slot
  • PRB 1 ⁇ PRB5 except PRB3 are allocated to LTE-A.
  • Terminals, these resources are orthogonal in this time slot (the resource numbers do not overlap), that is, the LTE terminal and the LTE-A terminal resource allocation do not overlap in the time slot, but they are respectively hopped (Hopping) to the second time.
  • FIG. 6 is a schematic flowchart of a method according to a first embodiment of the present invention, including:
  • Step 61 The network device according to the backward compatible system terminal and the evolved system terminal to the resource block
  • the resource blocks used by the backward compatible system terminal and the evolved system terminal are sorted
  • Step 62 The network device allocates the sorted resource blocks.
  • the backward compatible system may be referred to as a first system, for example, may be an LTE system
  • the evolved system may be referred to as a second system, for example, may be an LTE-A system. It can be seen from the foregoing description that the second system is an evolved system of the first system and is capable of providing communication services for terminals of the first system.
  • one carrier of LTE-A is composed of 18 PRBs, and the sequence numbers of PRBs are sequentially defined as 0, 1, 2, ..., 17 including A part, part and B 2 part.
  • the A part is used by both the LTE terminal and the LTE-A terminal, and is composed of 12 PRBs, and the corresponding PRB numbers are 3, 4, ..., 14; the part and the B 2 part are LTE-A terminals can be used.
  • the LTE terminal cannot be used.
  • the part and the B 2 part both include 3 PRBs, and the part of the included PRB has the sequence number 0, 1, 2, and the B 2 part includes the PRB sequence number 15, 16, 17.
  • both LTE-A systems and one RBG of the LTE system are composed of two PRBs.
  • the embodiment of the present invention can provide two
  • the LTE-A and LTE common parts are sorted. Since the starting sequence numbers are the same, it is possible to avoid the problem that the PRBs in LTE-A and LTE cannot be properly aligned due to different starting sequence numbers, so that LTE-A and LTE are not compatible.
  • the second is LTE-A and LTE are sorted separately, and in the LTE-A and LTE common parts, to ensure the compatibility between the two, specifically for RAtypeO and RAtpyel in the common part, LTE-A RBG and LTE
  • the RBG start position is the same, or the LTE-A RBG covers the LTE RBG.
  • the downlink RAtypeO, RAtypeK RAtype2 DVRB, and the uplink frequency hopping mode For the case of LTE-A and LTE separately sorting, it can be applied to all uplink and downlink resource allocation modes, that is, applicable.
  • the downlink RA type0, RAtypel, RAtype2 LVRB, RAtype2 DVRB, uplink no-hopping mode and frequency hopping mode only consider the area A and Bl, the boundary between B2 should meet the compatibility requirements, DVRB and Hopping mode To meet the VRB to PRB image
  • the resources of the LTE and LTE-A terminals do not conflict. The following is described in detail:
  • the PRBs are reordered in the order of Part A, Part B 2, and Part. Therefore, in area A, the number of all PRBs is the same for LTE and LTE-A terminals, and there is no PRB resource blocking phenomenon.
  • the size of the RBGs in LTE-A can be determined by the following method:
  • FIG. 7 is a schematic diagram of a method for resource allocation in the downlink using RA type O according to the second embodiment of the present invention.
  • the size of the RBG in the common part of the LTE-A is determined by the number of PRBs included in the area A (that is, the part common to the LTE terminal and the LTE-A terminal). For details, refer to the total number of PRBs included in Table 1. The relationship with the granularity is determined. According to Table 1, the size of the RBG in LTE-A and the size of the RBG in LTE are both 2.
  • the LTE-A dedicated part can be customized.
  • FIG. 8 is a schematic diagram of a method for resource allocation in the downlink using the RA type O mode according to the third embodiment of the present invention.
  • the size of the RBG of the common part in LTE-A is an integer multiple of the size of the RBG in LTE, for example, 2 times.
  • the LTE-A dedicated part can be customized. Referring to FIG. 8, in the A area, the size of the RBG of the LTE is 2, and the size of the RBG of the LTE-A is 4; in the part and part of the B 2 part, the size of the RBG of the LTE-A is 3.
  • FIG. 9 is a schematic diagram of a method for resource allocation in the downlink using the RA type O mode according to the fourth embodiment of the present invention.
  • the size of the RBG of the LTE-A is the same as the size of the RBG of the LTE, but for the LTE-A proprietary area and the B 2 area, the RBG The size can be customized.
  • the proprietary partial customization method can avoid the B 2 region and the partial RBs of the region to form an RBG. For example, if it is not customized, because of the B 2 region? ! ⁇ ⁇ and PRB15 the area number is linked, it may be assigned to a Gen 4 RBG, but since PRB14 and PRB15 on separate physical resources, channel quality and the region B 2 have a greater area difference, The possibility of joint resource allocation is relatively small, and the B 2 area needs to be And ⁇ areas are defined separately.
  • the customized method may be as follows: As shown in FIGS. 8 and 9, when the number of RBs included in the B 2 region and the ⁇ region is relatively small, the B 2 region and the region may respectively define one RBG.
  • the number of the RBs included in the other RBGs is smaller or larger than the RBG.
  • the size of the RBG9 and the RBG size of the A area is smaller than the number of RBs included in RBG9.
  • the above is achieved by reordering the RBs to achieve compatibility between the LTE-A and the LTE systems in the RA typeO mode.
  • the RBs are reordered in the order of the A part, the B 2 part, and the part. Therefore, in area A, the number of all RBs is the same for LTE and LTE-A terminals, and RB resource blocking does not occur.
  • the number of subsets in LTE-A and the number of RBs included in each subset may be determined by the following methods:
  • FIG. 10 is a schematic diagram of a method for resource allocation in the downlink using RA type1 according to the fifth embodiment of the present invention.
  • the number of subsets of LTE-A is determined by the number of RBs included in the area A (ie, the part common to the LTE terminal and the LTE-A terminal), rather than the number of RBs included in all LTE-A.
  • the number of subsets in LTE-A is the same as the number of subsets of LTE, both of which are 2.
  • FIG. 11 is a schematic diagram of a method for resource allocation in the downlink using RA type1 mode according to the sixth embodiment of the present invention.
  • the number of subsets of LTE-A is an integer multiple of the number of subsets of LTE, for example, 2 times.
  • the RBG in the subset needs a custom size. As shown in FIG. 11, the size of the B 2 part and part of the RBG is 3. , which belong to subset 3 ( subset 3 ) and subsetO of LTE-A, respectively, and are different in size from RBGs in other subsets.
  • FIG. 12 is a schematic diagram of a method for resource allocation in the downlink using RA type1 mode according to the seventh embodiment of the present invention.
  • the number of resource block group subsets in LTE-A is the same as the number of resource block group subsets in LTE, and the subset of each of the A areas includes equal sizes of RBGs.
  • the size of the RBG can be customized.
  • the method corresponding to the customization in the RA type O may be as follows: As shown in FIG.
  • the B 2 region and the region may respectively define one RBG.
  • the RBG of the same size as the RBG of the A area is included in the area and the area, the number of RBs included in the RBG is smaller or larger than the RBG, in order to ensure the RBG alignment of the LTE and the LTE-A in the area A,
  • the size of the RBG9 is the same as the RBG size of the A area, and the number of RBs included in the RBG8 is smaller than the number of RBs included in the RBG9.
  • the above is achieved by reordering the PRBs to achieve compatibility between the LTE-A and the LTE systems in the RA typel mode.
  • FIG. 13 is a schematic diagram of a method for allocating resources by using RA type 2 DVRB mode in the downlink according to the eighth embodiment of the present invention.
  • the PRB of the LTE-A is sequentially numbered from A, then to the included PRB, so that the RBs of the LTE are aligned, and only the bandwidth paradigm of the DVRB in the area A is allowed, but the LVRB and the RA type may be adopted.
  • the 0/1 mode allocates resources. This ensures that the mapping from VRB to PRB in the RA type2 DVRB resource allocation mode does not conflict or collide with LTE and LTE-A terminals.
  • FIG. 14 is a schematic diagram of a method for allocating resources in a frequency hopping mode according to a ninth embodiment of the present invention.
  • the PRB of LTE-A is sequentially numbered from A, then B 2 to the included PRB, so that it is aligned with the LTE RB, and only the predefined Hopping mode in UL hopping type 1 and UL hopping type 2 is allowed. It occurs in the bandwidth of area A, that is, the area dedicated to LTE-A and B 2 does not allow the resource allocation mode of the predefined Hopping mode in UL hopping type 1 and UL hopping type 2, but No hopping mode can be adopted. Resource allocation is performed, so that the mapping from VRB to PRB and LTE-A terminals are not conflicting and colliding.
  • the PRB of LTE-A is sequentially numbered from A, then B 2 to the included RBs, and then the corresponding resource allocation is performed.
  • the corresponding resource allocation is performed.
  • FIG. 15 is a schematic diagram of a method for allocating resources by using RA type O in the downlink according to the tenth embodiment of the present invention.
  • the PRBs available for LTE-A are numbered according to the sequence number 0 ⁇ 17.
  • the PRBs available for LTE are numbered according to the sequence number 0 ⁇ 11.
  • the RBGs of both the LTE-A and the LTE common parts need to be aligned.
  • the sizes of the RBGs of the LTE-A dedicated part may be different, for example, Referring to FIG. 15, the size of RBG0 in LTE-A is 1, and the size of RBG1 in LTE-A is 2.
  • the three methods described in the downlink RA type O embodiment may be used in the manner of sorting from the common part. For example, the size of the RBG may be determined as shown in FIG. 7-9. Narration.
  • FIG. 16 is a schematic diagram of a method for resource allocation in the RA type 1 manner in the downlink according to the eleventh embodiment of the present invention.
  • the RBs available for LTE-A are numbered according to the sequence number from 0 to 17.
  • the RBs available for LTE are numbered according to the sequence number from 0 to 11.
  • the RBG subsets of the LTE-A and LTE common parts need to be aligned. For this reason, the RBG sizes of the LTE-A dedicated parts may be different. For example, referring to FIG.
  • RBG subset 0 in LTE-A includes RBG0 of size
  • RBG subset 1 in LTE-A includes RBG9 of size 1.
  • the size of the specific RBG and the determination of the corresponding RBG subset may be the same as described in the downlink RA type1 embodiment in the manner of sorting from the common part.
  • the three methods, for example, the size of the RBG and the determination of the RBG subset may be as shown in FIG. 10-12, and details are not described herein again.
  • FIG. 17 is a schematic diagram of a method for allocating RA type2 LVRB resource allocation in the downlink according to the twelfth embodiment of the present invention. As shown in FIG. 17, when seven consecutive PRBs of VRB10 to VRB 16 are allocated to the LTE-A terminal. The corresponding PRBs 10 to PRBs 16 are not continuously connected to the physical resources because of different numbers.
  • the complexity of the terminal measurement and CQI may be increased and the signaling overhead may be increased or caused frequently.
  • the CQI information of the entire bandwidth is reported. If this is not the case, it will also cause inaccurate scheduling to affect the performance of the transmitted data.
  • FIG. 18 is a schematic diagram of a method for allocating RA type 2 LVRB resource allocation in the thirteenth embodiment of the present invention.
  • FIG. 18 can be used. The normal sequence is numbered so that all PRBs corresponding to LTE and LTE-A are contiguous in physical resources.
  • B1 can be divided into two RBGs, and one RBG has one.
  • RB another RBG has 2 RBs.
  • the B1 can be directly divided into one RBG, and the RBG includes three RBs.
  • the specific allocation method for B1 is similar to the foregoing, and therefore will not be described again.
  • FIG. 19 is a schematic diagram of a method for resource allocation by using RAtype2 DVRB mode in the downlink according to the fourteenth embodiment of the present invention.
  • LTE-A the PRBs available for LTE-A are numbered according to the sequence number from 0 to 17.
  • the PRBs available for LTE are numbered according to the sequence number from 0 to 11.
  • DVRB is only performed in a part common to LTE-A and LTE. That is, DVRB is only supported in the area A, and DVRB is not allowed in the area dedicated to LTE-A and B 2 Resource allocation method.
  • the RA type 2 DVRB mode is allowed to occur only in the bandwidth range of the area A, it is applicable not only to the method of numbering from the common part but also to the method of numbering LTE-A and LTE, respectively.
  • the initial VRB sequence number and the continuously allocated VRBs number information are indicated, and the virtual resource block sequence number corresponds to the physical resource block sequence number.
  • the same method as RA type 2 LVRB can be used, and only different RB numbers are defined for LTE and LTE-A terminals, which will not be described here.
  • LTE-A and LTE can be respectively numbered.
  • the following uses the image hopping mode as an example:
  • FIG. 20 is a schematic diagram of a resource allocation method for uplink hopping frequency hopping mode according to a fifteenth embodiment of the present invention.
  • the PRBs available for LTE-A are numbered according to the sequence number from 0 to 17.
  • the PRBs available for LTE are numbered according to the sequence number from 0 to 11, and the method is maintained. Compatibility of LTE and LTE-A resource allocation.
  • the Hopping mode defined for the pages in UL hopping type 1 and UL hopping type 2 is only allowed to occur in the bandwidth of area A, that is, the areas dedicated to LTE-A and B 2 are not allowed to use UL hopping type 1 and UL.
  • the resource allocation mode of the Hopping mode in the hopping type 2 but the resource allocation can be performed in the No hopping mode. This ensures that the mapping from the VRB to the PRB does not conflict with the LTE and LTE-A terminals. Hit it.
  • the Hopping method defined for the pages in UL hopping type 1 and UL hopping type 2 only allows this method to occur within the bandwidth of area A, not only for the method of numbering from the common part, but also for LTE- The method of numbering A and LTE respectively.
  • This embodiment can ensure the compatibility between LTE-A and LTE by considering the specific use of PRB by LTE-A and LTE and performing resource allocation.
  • Figure 21 is a block diagram showing the structure of a device according to a sixteenth embodiment of the present invention, including a sorting module 211 and an allocating module 212.
  • the sorting module 211 is configured to sort the resource blocks of the backward compatible system and the evolved system according to the use of the resource block by the backward compatible system and the evolved system; and the allocation module 212 is configured to allocate the sorted resource blocks obtained by the sorting module 211.
  • the backward compatible system is also referred to as a first system
  • the evolved system is also referred to as a second system. Similar later, no longer repeat them.
  • the sorting module 211 is specifically configured to start, by using a resource block common to the backward compatible system and the evolved system, to uniformly sort the resource blocks of the backward compatible system and the evolved system; the allocating module 212 is specifically configured to adopt the downlink RA.
  • the resource type of the backward compatible system is allocated to the resource module of the backward compatible system, or the downlink RA type 2 LVRB mode, the downlink RA type 2 DVRB mode, the uplink frequency hopping mode, or the uplink frequency hopping mode.
  • the resource block of the common part of the evolved system and the common part of the backward compatible system is allocated by using the downlink RA type 2 DVRB mode or the uplink frequency hopping mode; or the allocation module 212 is specifically configured to adopt the downlink RA type O mode or the downlink RA type 1 mode. All resource blocks of the evolved system are allocated.
  • the ordering module 211 is specifically configured to separately sort the resource blocks of the backward compatible system and the resource blocks of the evolved system.
  • the allocation module 212 is specifically configured to adopt a downlink RA type O mode, a downlink RA type 1 mode, and a downlink RA type 2 LVRB. Mode, downlink RAtype2 DVRB mode, uplink no-hopping mode, or uplink frequency hopping mode, allocate resource blocks of backward compatible systems; adopt downlink RAtypeO mode, downlink RA typel mode, downlink RAtype2 LVRB mode, downlink RA type2 DVRB mode, uplink No frequency hopping mode, or uplink frequency hopping mode, allocates resource blocks of the evolved system.
  • the foregoing sorting module 211 and the assigning module 212 can also implement various sorting and assigning functions in the foregoing methods, and details are not described herein.
  • This embodiment can ensure the compatibility between LTE-A and LTE by considering the specific use of PRB by LTE-A and LTE and performing resource allocation.
  • an embodiment of the present invention further provides a wireless system, including a network device, configured to sort resource blocks of a backward compatible system and an evolved system according to a resource block usage by a backward compatible system and an evolved system; And assign the sorted resource blocks.
  • a wireless system including a network device, configured to sort resource blocks of a backward compatible system and an evolved system according to a resource block usage by a backward compatible system and an evolved system; And assign the sorted resource blocks.
  • a wireless system including a network device, configured to sort resource blocks of a backward compatible system and an evolved system according to a resource block usage by a backward compatible system and an evolved system; And assign the sorted resource blocks.
  • a wireless system including a network device, configured to sort resource blocks of a backward compatible system and an evolved system according to a resource block usage by a backward compatible system and an evolved system; And assign the sorted resource blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

资源分配方法、 网络设备和无线系统
本申请要求于 2009 年 1 月 6 日提交中国专利局、 申请号为 200910002378.4、 发明名称为 "资源分配方法、 网络设备和无线系统" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通信技术, 特别涉及一种资源分配方法、 网络设备和 无线系统。 背景技术 在长期演进 ( Long Term Evolved, LTE ) 系统中, 网络将上下行采用的 确切的系统带宽大小通过广播信令通知给网络内的每一个终端, 进而终端 再根据系统带宽所包括的物理资源块( Physical Resource block, PRB )数目 确定某些资源分配方法的资源分配粒度。 之后, 网络还会通过资源分配信 令将具体资源分配的信息发送给需要传输数据的终端, 终端根据接收的资 源分配信令信息确定网络具体分配的时频资源位置, 并在相应的时频资源 位置上发送或是接收数据, 实现网络和终端的数据传输和通信。
在演进的 LTE 系统(LTE-A ) 中, 为了支持更大的带宽, 一种可能的 方式是将多个分支载波进行聚合, 即将多个分支载波的资源同时调度给一 个终端使用。 多个分支载波占用的频语可以是连续的, 也可以是非连续的, 每个分支载波的带宽可以相同,也可以不同,每个分支载波可以是兼容 LTE 终端的载波, 也可以仅仅是支持 LTE-A终端的载波, 那么 LTE终端在该 LTE-A载波上不能进行数据传输和通信。 现有技术中为了支持 LTE-A系统 的特性, 除了可以将某一个载波配置成仅支持 LTE-A终端的载波, 另外也 可以在一个分支载波内将部分 PRB资源配置成 LTE终端不可使用的资源, 在这些资源上可针对 LTE-A系统的需求进行设计, 如导频结构等可以与后 向系统不同, 这不仅可以支持 LTE-A系统的特性, 还可以支持不同于 LTE 系统带宽的载波带宽配置, 而且可以实现每个载波都是后向兼容的载波, 增加系统设计的灵活性。
发明人在实现本发明的过程中发现现有技术至少存在如下问题: 现有 LTE-A系统的某个载波内可以有部分 PRB资源配置成 LTE终端不可用的, 如果所有的 PRB资源按照类似 LTE系统资源块的顺序进行 PRB排序, 并 相应进行资源块分组或跳频映射等处理, 再进行资源分配, 可能导致 LTE 和 LTE-A资源分配时发生冲突和阻塞,使这个载波内的 LTE-A终端和 LTE 终端不能很好兼容。 发明内容 本发明实施例提供了一种资源分配方法, 网络设备和无线系统, 以使 LTE-A终端和 LTE终端的资源分配方法兼容。
本发明实施例提供了一种资源分配方法, 包括:
根据第一系统的终端和第二系统的终端对资源块的使用情况, 对第一 系统终端和第二系统终端使用的资源块进行排序;
分配排序后的资源块;
其中, 所述第二系统为所述第一系统的演进系统, 且所述第二系统能 够为所述第一系统的终端提供通信服务。
本发明实施例提供了一种网络设备, 包括:
排序模块, 用于根据第一系统终端和第二系统终端对资源块的使用情 况, 对第一系统终端和第二系统终端使用的资源块进行排序;
分配模块, 用于分配排序后的资源块。
本发明实施例提供了一种无线系统, 包括:
网络设备, 用于根据第一系统终端和第二系统终端对资源块的使用情 况, 对第一系统终端和第二系统终端使用的资源块进行排序; 并分配排序 后的资源块。
由上述技术方案可知,本发明实施例通过考虑 LTE系统的具体使用 PRB 资源的情况,避免现有统一按照类似 LTE系统排序方法对 LTE-A系统所有的 PRB统一排序造成的 LTE-A终端和 LTE终端资源分配不兼容的问题。 附图说明 图 1为现有下行采用 RAtypeO方式资源分配方法示意图;
图 2为现有下行采用 RAtypel方式资源分配方法示意图;
图 3为现有下行采用 RAtype2 LVRB方式资源分配方法示意图; 图 4为现有下行采用 RAtype2 DVRB方式资源分配方法示意图; 图 5为现有上行采用跳频方式资源分配方法示意图;
图 6为本发明第一实施例的方法流程示意图;
图 7为本发明第二实施例下行采用 RAtypeO方式资源分配方法示意图; 图 8为本发明第三实施例下行采用 RA typeO方式资源分配方法示意图; 图 9为本发明第四实施例下行采用 RAtypeO方式资源分配方法示意图; 图 10为本发明第五实施例下行采用 RA typel方式资源分配方法示意 图;
图 11为本发明第六实施例下行采用 RA typel方式资源分配方法示意 图;
图 12为本发明第七实施例下行采用 RA typel方式资源分配方法示意 图;
图 13为本发明第八实施例下行采用 RAtype2 DVRB方式资源分配方法 示意图;
图 14为本发明第九实施例上行采用跳频方式资源分配方法示意图; 图 15为本发明第十实施例下行采用 RA typeO方式资源分配方法示意 图; 图 16为本发明第十一实施例下行采用 RAtypel方式资源分配方法示意 图;
图 17为本发明第十二实施例下行采用 RAtype2 LVRB方式资源分配方 法示意图;
图 18为本发明第十三实施例下行采用 RAtype2 LVRB方式资源分配方 法示意图;
图 19为本发明第十四实施例下行采用 RAtype2 DVRB方式资源分配方 法示意图;
图 20为本发明第十五实施例上行采用镜像跳频方式资源分配方法示意 图;
图 21为本发明第十六实施例的设备结构示意图。 具体实施方式 下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 在 LTE系统的下行资源分配中, 每个时间传输单元对应的资源分配信 令中承载终端资源分配的类型和对应的资源分配信息, 分为资源分配类型 ( RAtype ) 0、 RAtypel、 RAtype2。 RAtypeO是用比特映射 ( Bitmap ) 的 方式指示资源块组(RBG )的分配情况, 其中每个比特指示对应的 RBG分 配与否, 一个 RBG也就是资源分配的最小粒度, 每个资源块组(RBG ) 包 括若干个资源块(RB )。每个资源块组包括的资源块的个数是由系统带宽包 括的所有 RB总数目决定的, 即 RBG的大小是系统带宽包含 RB个数的一 个函数。 不同的系统带宽对应的 RBG的大小可能不同, 即资源分配的最小 粒度不同。 参见表 1为系统带宽包含的物理资源块(PRB )的个数 与粒 度 Ρ的关系。 NDL
丄、 RB P
< 10 1
11-26 2
27-63 3
64-110 4
表 1
如果系统带宽包含的物理资源块的个数为 N^, 每个资源块组的大小 (即粒度) 为 P, 对于 RA typeO 的分配方式, 在资源分配信令中需要
N DL
N RB
RBG 个比特来表示具体的资源分配情况。 其中, 「 表示向上取整。
P *1 在同一系统带宽情况下, RAtypel和 RA typeO占用资源分配信令的比 特数是相同的, 也是采用比特映射(bitmap )方式指示的。 为了区分具体的 资源分配类型是 RA type 0还是 RA type 1 , 在资源分配的信令中有 1个比 特的信息进行区分。 RA typel根据系统带宽将资源块组分为 P个资源块组 子集, 例如, RAtypeO中每个资源块组包括的资源块的个数为 P, 也即每个 资源块组的粒度为 P,那么 RAtypel也将资源块组分为 P个资源块组子集。 因此需要「log2 (Ρ)Ί个比特表示被调度终端的资源是哪个资源块组子集的。 为 了能够指示更多的资源, 还需要 1 个比特用于指示资源分配的起始方向, 即是从左还是从右指示资源分配。 因此用于指示被调度资源块的比特数目
Ν DL
为 Ν; RB
' RB -「log2(P)]- l,每个比特可以指示对应的资源块组子集中 RB
Ρ 是否被调用, 而且对被调度终端的资源分配也仅限制在一个子集中进行。
同一系统带宽情况下, RA type2资源分配信令的比特数目与 RA typeO (或 RA typel )不同, 具体资源分配方法也不同。 RA type2资源分配信令中 有 1个比特表示是集中式虚拟资源块分配( Localized Virtual Resource Block, LVRB )还是离散的虚拟资源块分配 (distributed Virtual Resource Block, DVRB ) 。 对应 LVRB, 虚拟资源块序号与物理资源块序号是——对应的, 所以 LVRB在物理资源上是集中分配的。 对于 DVRB, 每个 VRB到 PRB的映 射通过一个 4阶分集的交织器定义的, 并且已经唯一定义。 每一个 VRB在一 个子帧内的两个时隙映射到不同的 PRB上, 也就是两个时隙同一个 VRB映 射到的不同的 PRB上, 它们之间存在一个 Gap值, 如表 2所示。 根据系统包 含 PRB个数的不同, Gap值可以为 1个或是 2个, 包括具体 Gap数值都由表 2 唯一确定。 当有 2个 Gap数值可以使用时, 资源分配信令中有 1个比特指示具 体采用的是 Gapl还是 Gap2。 在资源分配信令中指示起始的 VRB序号和连续 VRB的个数, 根据 VRB到 PRB的映射规则确定了第一个时隙内分配的 VRBs 对应的所有 PRBs, 根据表 2采用的 Gap数值, 进而确定了第二个时隙内分配 的 VRBs对应的所有 PRBs。 同一种系统带宽情况下, 资源分配类型 RA Type 2和 RA type 0 (或是 RA type 1 )信息长度不同, 终端检测具体的资源分配 类型是依靠盲检信息比特长度来获取的。
表 2
Figure imgf000008_0001
在 LTE系统中的上行资源分配中,资源分配信令指示起始 VRB序号及 连续分配的 VRBs个数信息, 并且资源分配信息中有 1个比特表示支持和 不支持资源跳频( hopping )。 具体 hopping的模式可以配置成时隙边界支持 hopping还是子帧边界支持 hopping, 这是由广播信令进行通知的, 小区内 所有终端的 hopping是以子帧为边界还是以时隙为边界是统一的。 Hopping 的模式分为 UL hopping t pel和 UL hopping type2。
当系统从 LTE扩展到 LTE-A时,为了支持 LTE-A系统的特性及增加系 统带宽配置的灵活性,在 LTE-A系统的某个载波内可以有部分 PRB对 LTE 终端是不可见的。 LTE终端的资源分配方法和 PRB排序的方法必须针对 LTE 终端可见的 PRB进行。 那么针对 LTE终端不可见的 LTE-A终端专有的资 源块如果按照类似 LTE方式进行 PRB排序和资源分配,会导致这个载波内 LTE终端和 LTE-A终端资源分配时发生冲突和阻塞,导致某些 PRB资源出 现漏洞和浪费, 调度器可以部分程度的解决这些问题, 但这也增加调度器 的复杂性, 使得 LTE和 LTE-A资源分配的方法不能很好的兼容。 下面分别 描述各种资源分配方法中出现的问题:
对于下行资源分配方法:
殳 LTE-A的一个载波由 18个 PRB构成, PRB的序号依次定义为 0, 1, 2, ...17, 包括 A部分、 部分和 B2部分。 其中, A部分是 LTE终端和 LTE-A 终端均可以使用的, 由 12个 PRB构成, 对应的 PRB序号为 3, 4, ...,14; Bj 部分和 B2部分是 LTE-A终端可以使用, 而 LTE终端不能使用的, 部分和 ¾ 部分均包括 3个 PRB, 部分包括的 PRB的序号为 0, 1 , 2, B2部分包括的 PRB 的序号为 15, 16, 17。 根据表 1可知, LTE-A系统和 LTE系统的 1个 RBG均是 由 2个 PRB构成的。
1 ) RA type 0
图 1为现有下行采用 RA typeO方式资源分配方法示意图。参见图 1, 区域 A部分的 RB资源是 LTE终端和 LTE-A终端均可用的, 8和 区域的 RB资源 仅仅可以被 LTE-A终端使用。 RA type O方法是通过 bitmap方式,每个比特指 示对应的 RBG分配与否的信息, RBG大小与系统带宽对应, 可参见表 1。 从 图 1中可以看出 LTE和 LTE-A资源分配混用导致有些 RB不能被有效指示和 使用, 比如, 如果 LTE-A使用了其对应的 RBG3 (也就是 RB6, RB7 ) , 那 么 LTE对应的 RBG1和 RBG2将不能再分配给 LTE的终端, 这样对应的 RB5, RB8将没有使用, 由于无法进行有效信令指示造成了资源的浪费。
2 ) RA type 1
图 2为现有下行采用 RA typel方式资源分配方法示意图。 参见图 2, LTE 中的 RA type 1方法是根据系统带宽决定分成 P (每个 RBG的大小 )个资源 块组子集(subset ),选择其中一个子集,再通过 bitmap方式,指示选择 subset 中对应的 RB分配与否的信息。从图 2中可以看出 LTE和 LTE-A资源分配混用 可能会导致阻塞彼此的 RBGs, 比如, 如果 LTE-A使用了 subsetO, 那么 LTE 对应的 subsetO和 subsetl将会受到影响。
3 ) RA type2 LVRB
图 3为现有下行采用 RA type2 LVRB方式资源分配方法示意图。 参见图 3, LTE中的 RA type 2信令指示起始 VRB序号和连续分配的 VRBs个数信息。 对于 LVRB, 虚拟资源块序号与物理资源块序号——对应, 所以 LVRB在物 理资源上是集中分配的。 如图 3所示, 指示连续的 VRB分配同时即可指示连 续的 PRB分配, 对于同一个 PRB3, 对 LTE-A终端与其对应是 VRB3, 但对于 LTE终端与其对应的是 VRB0, 资源指示使得同一个 PRB和 LTE终端和 LTE-A终端的 VRB映射存在一个偏置(offset ) 。
4 ) RA type2 DVRB
图 4为现有下行采用 RA type2 DVRB方式资源分配方法示意图。 参见图 4, LTE中的 RA type 2信令指示起始 VRB序号和连续分配的 VRBs个数信息。 对于 LTE和 LTE-A其 RB个数分别为 12和 18, 这样使得 LTE和 LTE-A的参与 DVRB的 PRB的个数(N— VRB )也可能是不相等的,使得从 VRB-to-PRB映射 时 LTE和 LTE-A的资源发生冲突。 LTE-A系统的 为 18, LTE系统的 为 12, 由表 2可知只有一个 Gap值, 这时参与 DVRB的 RB个数的计算公式为: N_VRB=2[min{Ngap,N^ -Ngap }], 进一步根据表 2可知, LTE-A和 LTE的 Ngap 均为 8, 再根据上述的计算公式可知, LTE-A中参与 DVRB的 RB的个数为 16 个, LTE中参与 DVRB的 PRB的个数为 8个。 同时, 由于第一时隙 ( 1st slot ) 和第二时隙 (2nd slot )需要满足 Ngap关系, 因此, 参见图 4, LTE-A系统中, 参与 DVRB的 PRB为序号为 0~15的 PRB, LTE系统中, 参与 DVRB的 PRB的 序号为 3~6、 11~14的 PRB; 每个时隙中的序号为对应的 VRB的序号, 例如, LTE-A系统中,序号为 1的 PRB对应的 VRB的序号为 4,其他依次类推。因此, 如果按照现有 RA type2资源分配方式, 从 LTE扩展到 LTE-A后, 即使对于 LTE和 LTE-A分配不同的 VRB, 但由于 LTE和 LTE-A从 VRB到 PRB映射参与 的 RB数目不同, 导致可能映射相同的 PRB上, 比如, 对于 LTE的 VRB1对应 PRB5, 而对于 LTE-A的 VRB5对应 PRB5, 使资源指示冲突。
对于上行资源分配方法:
同样假设 LTE-A的一个载波由 18个 PRB构成, PRB的序号依次定义为 0, 1, 2, ...17, 包括 A部分、 部分和 B2部分。其中, A部分是 LTE终端和 LTE-A 终端均可以使用的, 由 12个 PRB构成, 对应的 PRB序号为 3, 4, ...,14; Bj 部分和 B2部分是 LTE-A终端可以使用, 而 LTE终端不能使用的, 部分和 ¾ 部分均包括 3个 PRB, 部分包括的 PRB的序号为 0, 1 , 2, B2部分包括的 PRB 的序号为 15, 16, 17。 根据表 1可知, LTE-A系统和 LTE系统的 1个 RBG均是 由 2个 PRB构成的。
1 )无跳频( No hopping )
类似下行 RA type2 LVRB资源分配方法, 指示起始虚拟资源块( VRB ) 序号和连续分配的虚拟资源块(VRBs )个数信息, 虚拟资源块序号与物理 资源块序号——对应。该方法和 RA type2 LVRB方法类似, 面临的问题也相 同, 不再赘述。
2 ) 跳频( Hopping ) 图 5为现有上行采用跳频方式资源分配方法示意图。 参见图 5, 再上行 时, 需要传输 PUCCH, 参见图 5, PUCCH占用的 RB个数(N— RB— PUCCH ) 等于 2,并且位于区域 A的两端, 对于 LTE-A终端来讲, 占用了中间的 PRB资 源,导致其所有供数据传输的物理资源不再连续。图 5释例了 UL hopping type 1, 对于 LTE和 LTE-A当 N— UL— RB不等时, 如图分别为 12和 18, 类似于 RA type2 DVRB, 参与上行资源分配的 PRB个数也会不同, 例如, 图 5中 LTE系 统中参与上行资源分配的 RB的个数(N— UL— PUSCH )为 10个(LTE包括的 12个 RB中除去 PUCCH占用的 2个 RB ) , LTE-A系统中参与上行资源分配的 RB的个数( N—UL— PUSCH )为 16个( ( LTE-A包括的 18个 RB中除去 PUCCH 占用的 2个 RB )。 这样根据 VRB到 PRB的映射规则会导致 LTE和 LTE-A资源 的冲突和碰撞。 例如, 如图 5所示, 第一个时隙内, PRB6 ~ PRB9分配给了 LTE终端, 同时除 PRB3外的 PRB 1 ~ PRB5分配给了 LTE-A终端,这些资源在 这个时隙内是正交的(资源编号不重叠), 即该时隙内 LTE终端和 LTE-A终 端资源分配不重叠, 但它们分别跳频 (Hopping ) 到第二个时隙内对应与 PRB10 - PRB13^PRB9 - PRB12 (具体的跳频原则是现有技术包, 不再赘 述), 这时对于 PRB10 ~ PRB12是冲突的(资源重叠), 这样会导致两个终 端发送的数据在第二个时隙内的 PRB10 ~ PRB12上发生了强烈的干扰,造成 了资源分配的冲突。
综上所述, 当 LTE-A系统的某个载波内有部分 RB资源是 LTE终端不 可用时, 针对 LTE - A中各种上下行资源分配的方法, 若还采用 LTE中各 种上下行资源分配的方法, 很可能出现 LTE和 LTE-A资源分配时发生冲突 和阻塞, 或是出现漏洞和资源的浪费, 使得 LTE和 LTE-A资源分配的方法 不能很好的兼容。 为此本发明实施例需要解决当 LTE-A系统的某个载波内 有部分 PRB资源是 LTE终端不可用时, LTE-A和 LTE兼容的问题。
图 6为本发明第一实施例的方法流程示意图, 包括:
步骤 61 : 网络设备才据后向兼容系统终端和演进系统终端对资源块的 使用情况, 对后向兼容系统终端和演进系统终端使用的资源块进行排序; 步骤 62: 网络设备分配排序后的资源块。
其中, 该后向兼容系统可称为第一系统, 比如, 可以为 LTE系统, 该 演进系统可称为第二系统, 比如, 可以为 LTE-A系统。 由前述描述可以看 出, 该第二系统为第一系统的演进系统, 且能够为该第一系统的终端提供 通信服务。
具体地, 仍然假设 LTE-A的一个载波由 18个 PRB构成, PRB的序号 依次定义为 0, 1 , 2, ...17, 包括 A部分、 部分和 B2部分。 其中, A部 分是 LTE终端和 LTE-A终端均可以使用的,由 12个 PRB构成,对应的 PRB 序号为 3, 4, ...,14; 部分和 B2部分是 LTE-A终端可以使用, 而 LTE终 端不能使用的, 部分和 B2部分均包括 3个 PRB, 部分包括的 PRB的 序号为 0, 1 , 2, B2部分包括的 PRB的序号为 15, 16, 17。 ^居表 1可知, LTE-A系统和 LTE系统的 1个 RBG均是由 2个 PRB构成的。
为了解决上述 LTE-A和 LTE不兼容的问题, 本发明实施例可以提供两
LTE-A和 LTE公用的部分开始排序, 由于开始的序号是相同的, 可以避免 开始序号不同可能造成的 LTE-A和 LTE 中的 PRB 不能艮好对齐, 以致 LTE-A和 LTE不兼容的问题; 其二是 LTE-A和 LTE分别进行排序, 且在 LTE-A和 LTE公用的部分, 要保证两者的兼容性, 具体的对于 RAtypeO和 RAtpyel在公用部分, LTE-A的 RBG与 LTE的 RBG起始位置相同, 或者 LTE-A的 RBG正好覆盖 LTE的 RBG。对于从公用的部分开始排序的方式, 可以适用于下行的 RAtypeO、 RAtypeK RAtype2 DVRB,上行的跳频方式; 对于 LTE-A和 LTE分开排序的情况,可以适用于所有上下行资源分配方式, 即适用于下行的 RA type0、 RAtypel、 RAtype2 LVRB、 RAtype2 DVRB, 上行的无跳频方式和跳频方式, 只是要考虑区域 A和 Bl, B2之间的边界 要满足兼容性的要求, DVRB和 Hopping模式下要满足 VRB到 PRB的映 射 LTE和 LTE-A终端的资源不发生冲突。 下面具体描述:
对于从 LTE-A和 LTE的公用部分开始排序的方式:
1 ) 下行的 RA type 0
针对 LTE-A终端使用的 18个 PRB, 按照 A部分、 B2部分和 部分的顺序 对 PRB重新排序。 因此, 在区域 A内, 所有的 PRB的编号对于 LTE和 LTE-A 终端是相同的,不会出现 PRB资源阻塞现象。对 PRB重新排序后,对于 LTE-A 中的 RBG的大小可以采用下述方法确定:
方法一: 图 7为本发明第二实施例下行采用 RA typeO方式资源分配方法 示意图。 参见图 7, LTE-A中公用部分的 RBG的大小由区域 A (即 LTE终端 和 LTE-A终端公用的部分) 包含的 PRB的个数确定, 具体可参照表 1所示的 包括的 PRB总数与粒度的关系确定。 根据表 1, 可以得到 LTE-A中的 RBG的 大小和 LTE中的 RBG的大小均为 2。 另外, LTE-A专用的部分可以自定义。
方法二: 图 8为本发明第三实施例下行采用 RA typeO方式资源分配方法 示意图。 参见图 8, LTE-A中公用部分的 RBG的大小是 LTE中的 RBG的大小 的整数倍, 例如, 为 2倍。 另夕卜, LTE-A专用的部分可以自定义。 参见图 8, 在 A区域, LTE的 RBG的大小为 2, LTE-A的 RBG的大小为 4; 在 B2部分和 部分, LTE-A的 RBG的大小为 3。
方法三: 图 9为本发明第四实施例下行采用 RA typeO方式资源分配方法 示意图。 参见图 9, 在 LTE终端和 LTE-A终端公用的部分( A区域), LTE-A 的 RBG的大小与 LTE的 RBG的大小相同, 但是对于 LTE-A专有的 区域和 B2区域, RBG的大小可以自定义。
对于上述三种方法来说, 采用专有部分自定义的方式, 可以避免 B2区 域和 区域的部分 RB联合构成一个 RBG, 例如, 如果不是自定义, 由于 B2 区域的?!^^与^区域的 PRB15的序号是相连的, 4艮可能被分到一个 RBG 中,但是由于 PRB14和 PRB15在物理资源上是分离的, B2区域和 区域的信 道质量会有较大差异, 联合进行资源分配的可能性比较小, 需要将 B2区域 和^区域分别进行定义。 自定义的方法可以为: 如图 8和 9所示, 当 B2区域 和^区域包括的 RB的个数比较少时, 可以将 B2区域和 区域分别定义一个 RBG。 或者, 如果 B2区域和 区域中包括与 A区域的 RBG大小相同的 RBG, 其他的 RBG包括的 RB的个数小于或大于该 RBG, 例如, 参见图 7, RBG9的 大小与 A区域的 RBG大小相同, RBG8包括的 RB的个数小于 RBG9包括的 RB 的个数。
上述通过对 RB重新排序, 实现了 RA typeO方式下, LTE-A和 LTE系统 的兼容。
2 ) 下行的 RA typel
针对 LTE-A终端使用的 18个 RB, 按照 A部分、 B2部分和 部分的顺序 对 RB重新排序。 因此, 在区域 A内, 所有的 RB的编号对于 LTE和 LTE-A终 端是相同的, 不会出现 RB资源阻塞现象。 对 RB重新排序后, 对于 LTE-A中 的子集个数及每个子集包含的 RB的个数可以采用下述方法确定:
方法一:对应于 RA typeO的方法一: 图 10为本发明第五实施例下行采用 RA typel方式资源分配方法示意图。 参见图 10, LTE-A的子集个数由区域 A (即 LTE终端和 LTE-A终端公用的部分) 包含的 RB的个数确定, 而不是由 所有 LTE-A包含的 RB的个数确定。 图 10中, LTE-A中的子集个数与 LTE的 子集个数相同, 均为 2。
方法二:对应于 RA typeO的方法二: 图 11为本发明第六实施例下行采用 RA typel方式资源分配方法示意图。 参见图 11, LTE-A的子集个数是 LTE的 子集个数的整数倍, 例如, 为 2倍。 另外, 为了使得 LTE和 LTE-A的资源块 组子集排列整齐, 这样在有些情况下, 子集中的 RBG需要自定义大小, 如 图 11所示, B2部分和 部分的 RBG的大小为 3, 其分别属于 LTE-A的子集 3 ( subset3 )和 subsetO中, 与其它子集中的 RBG大小不等。
方法三:对应于 RA typeO的方法三: 图 12为本发明第七实施例下行采用 RA typel方式资源分配方法示意图。 参见图 12, 在 LTE终端和 LTE-A终端公 用的部分(A区域) , LTE-A中的资源块组子集个数和 LTE中的资源块组子 集个数相同, 且 A区域中的每个的子集包含的 RBG的大小相等。 但是对于 LTE-A专有的 区域和 B2区域, RBG的大小可以自定义。 对应于 RA typeO 中自定义的方法可以为:如图 12所示, 当 B2区域和 区域包括的 PRB的个数 比较少时, 可以将 B2区域和 区域分别定义一个 RBG。 或者, 如果 ¾区域 和^区域中包括与 A区域的 RBG大小相同的 RBG, 为了保证区域 A中的 LTE 和 LTE-A的 RBG对齐, 其他的 RBG包括的 RB的个数小于或大于该 RBG, 例 如, 参见图 10, RBG9的大小与 A区域的 RBG大小相同, RBG8包括的 RB的 个数小于 RBG9包括的 RB的个数。
上述通过对 PRB重新排序, 实现了 RA typel方式下, LTE-A和 LTE系统 的兼容。
3 ) 下行的 RA type2 DVRB
图 13为本发明第八实施例下行采用 RA type2 DVRB方式资源分配方法 示意图。 参见图 13, 将 LTE-A的 PRB从 A, 然后 ¾到 包含的 PRB进行顺序 编号, 使得与 LTE的 RB整齐排列, 并且只允许 DVRB发生在区域 A的带宽范 式, 但可以采用 LVRB和 RA type 0/1方式进行资源分配, 这样可以保证 RA type2 DVRB资源分配方式下从 VRB到 PRB的映射 LTE和 LTE-A终端是不发 生冲突和碰撞的。
4 )上行的跳频(Hopping )方式
图 14为本发明第九实施例上行采用跳频方式资源分配方法示意图。 参 见图 14, 将 LTE-A的 PRB从 A, 然后 B2到 包含的 PRB进行顺序编号, 使得与 LTE的 RB整齐排列, 并且只允许 UL hopping type 1及 UL hopping type 2中预定义的 Hopping方式发生在区域 A的带宽范围内, 也就是针对 LTE-A专用的区域 和 B2不允许采用 UL hopping type 1及 UL hopping type 2中预定义的 Hopping方式的资源分配方式, 但可以采用 No hopping方式 进行资源分配, 这样可以保证从 VRB到 PRB的映射 LTE和 LTE-A终端是 不发生冲突和碰撞的。
上述将 LTE-A的 PRB从 A, 然后 B2到 包含的 RB进行顺序编号, 之后进行相应的资源分配。 行相应的资源分配。 包括:
1 ) 下行的 RA typeO
图 15为本发明第十实施例下行采用 RA typeO方式资源分配方法示意 图。
参见图 15, 对于 LTE-A, 将 LTE-A可用的 PRB按照 0~17这一序号进行编号, 对于 LTE, 将 LTE可用的 PRB按照 0~11这一序号进行编号。 并且, 为了保证 LTE-A和 LTE的兼容, 需要在 LTE-A和 LTE公用的部分两者的 RBG是对齐 的, 为此, LTE-A专用部分的 RBG的大小可能是不相同的, 例如, 参见图 15, LTE-A中的 RBG0的大小为 1, LTE-A中的 RBG1的大小为 2。具体的 RBG 的大小的确定可以采用上述从公用部分开始排序的方式中下行 RA typeO实 施例中描述的三种方法, 例如, RBG的大小的确定可以如图 7-9所示, 在此 不再赘述。
2 ) 下行的 RA typel
图 16为本发明第十一实施例下行采用 RA typel方式资源分配方法示意 图。 参见图 16, 对于 LTE-A, 将 LTE-A可用的 RB按照 0~17这一序号进行编 号, 对于 LTE, 将 LTE可用的 RB按照 0~11这一序号进行编号。 并且, 为了 保证 LTE-A和 LTE的兼容, 需要在 LTE-A和 LTE公用的部分两者的 RBG子集 是对齐的, 为此, LTE-A专用部分的 RBG的大小可能是不相同的, 例如, 参见图 16, LTE-A中的 RBG子集 0包括的 RBG0的大小为 1, LTE-A中的 RBG 子集 1包括的 RBG9的大小为 1。具体的 RBG的大小及对应的 RBG子集的确定 可以采用上述从公用部分开始排序的方式中下行 RA typel实施例中描述的 三种方法, 例如, RBG的大小及 RBG子集的确定可以如图 10-12所示, 在此 不再赘述。
3 ) 下行的 RA type2 LVRB
对于下行的 RA type2 LVRB,针对 LTE-A终端使用的 18个 PRB,假设 RA type 2 LVRB与 RA type 0/1—样,从 A,然后 ¾到 包含的 PRB进行顺序编号, 对于 LTE-A终端是可以分配所有 PRB的,图 17为本发明第十二实施例下行采 用 RA type2 LVRB方式资源分配方法示意图, 如图 17所示, 当 VRB10 ~ VRB 16连续的 7个 PRB分配给 LTE-A终端时, 对应的 PRB 10 ~ PRB 16却因为 不同的编号使得在物理资源上不再连续, 如果仍然将这些资源分配给终端, 会导致终端测量和 CQI的复杂度并且增加信令开销或是导致频繁的整个带 宽的 CQI信息上报, 如果不这样, 也会导致不准确的调度影响传输数据的性 能。
为了解决上述问题, 针对 RA type 0和 1可以按照以上方法进行编号, 图 18为本发明第十三实施例下行采用 RA type2 LVRB方式资源分配方法示 意图, 对于 RA type 2 LVRB可以采用图 18所示正常的顺序进行编号, 使得 LTE和 LTE-A对应的所有 PRB在物理资源上是连续的。 并且, 在对图 18所示 的 LTE-A中 B 1进行 RBG分配时, 为保证 LTE-A公用部分的 RBG与 LTE的 RBG对齐, 可以将 B1分为两个 RBG, —个 RBG有 1个 RB, 另一个 RBG有 2 个 RB, 当然, 也可以如图 12所示, 直接将该 B1分为一个 RBG, 该 RBG包含 3个 RB。 针对 B1的具体分配方法与前述类似, 因此不再赘述。
4 ) 下行的 RA type2 DVRB
图 19为本发明第十四实施例下行采用 RAtype2 DVRB方式资源分配方 法示意图。 参见图 19, 对于 LTE-A, 将 LTE-A可用的 PRB按照 0~17这一 序号进行编号, 对于 LTE, 将 LTE可用的 PRB按照 0~11这一序号进行编 号。 并且, 对于 LTE-A只在 LTE-A和 LTE公用的部分进行 DVRB。 即仅在 区域 A范围内支持 DVRB,在 LTE-A专用的区域 和 B2不允许采用 DVRB 的资源分配方法。 关于对 RA type2 DVRB方式只允许发生在区域 A的带宽 范围内的这种方法, 不仅应用于从公用部分开始编号的方法, 也适合于对 LTE-A和 LTE分别进行编号的方法。
5 )上行的无跳频方式
类似下行 RA type2 LVRB资源分配方法, 指示起始虚拟资源块( VRB ) 序号和连续分配的虚拟资源块(VRBs )个数信息, 虚拟资源块序号与物理 资源块序号——对应。该方法和 RA type2 LVRB方法类似, 面临的问题也相 同, 不再赘述。
类似下行 RA type 2 LVRB资源分配方法, 指示起始 VRB序号和连续分 配的 VRBs个数信息, 虚拟资源块序号与物理资源块序号——对应。 这个模 式下可以采用 RA type 2 LVRB相同的方法,只需要针对 LTE和 LTE-A终端定 义不同的 RB序号, 这里不再进行说明。
6 )上行的跳频方式
上述对于上行跳频模式的 typel和 type2中预定义的模式, 采用了从公 用部分开始编号的方法, 当然也可以对 LTE-A和 LTE分别进行编号, 下面 以镜像跳频模式为例进行说明:
对于镜像的 hopping方式,可以通过对 LTE和 LTE-A RB进行不同的编 号进行支持。 图 20为本发明第十五实施例上行采用镜像跳频方式资源分配 方法示意图。 如图 20所示, 对于 LTE-A, 将 LTE-A可用的 PRB按照 0~17 这一序号进行编号, 对于 LTE, 将 LTE可用的 PRB按照 0~11这一序号进 行编号, 该方法保持了 LTE和 LTE-A资源分配的兼容性。
但对于 UL hopping type 1及 UL hopping type 2中予页定义的 Hopping方 式只允许发生在区域 A的带宽范围内, 也就是针对 LTE-A专用的区域 和 B2不允许采用 UL hopping type 1 及 UL hopping type 2 中预定义的 Hopping方式的资源分配方式, 但可以采用 No hopping方式进行资源分配, 这样可以保证从 VRB到 PRB的映射 LTE和 LTE-A终端是不发生冲突和碰 撞的。 关于对 UL hopping type 1及 UL hopping type 2中予页定义的 Hopping 方式只允许发生在区域 A的带宽范围内的这种方法, 不仅应用于从公用部 分开始编号的方法, 也适合于对 LTE-A和 LTE分别进行编号的方法。
本实施例通过考虑 LTE-A和 LTE对 PRB的具体使用情况, 进行资源 分配, 可以很好地保证 LTE-A和 LTE的兼容。
图 21为本发明第十六实施例的设备结构示意图, 包括排序模块 211和 分配模块 212。排序模块 211用于根据后向兼容系统和演进系统对资源块的 使用情况, 对后向兼容系统和演进系统的资源块进行排序; 分配模块 212 用于分配排序模块 211 得到的排序后的资源块。 其中, 如前所述, 该后向 兼容系统又称为第一系统, 该演进系统又称为第二系统。 后面类似, 不再 赘述。
其中, 所述排序模块 211 具体用于从后向兼容系统和演进系统公用的 资源块开始, 对后向兼容系统和演进系统的资源块统一进行排序; 所述分 配模块 212具体用于采用下行 RA typeO方式、 下行 RA typel方式、 下行 RA type2 LVRB方式、 下行 RA type2 DVRB方式、 上行无跳频方式, 或上 行跳频方式, 分配后向兼容系统的资源块; 或者, 所述分配模块 212具体 用于采用下行 RA type2 DVRB方式, 或上行跳频方式, 分配演进系统中与 后向兼容系统公用部分的资源块; 或者, 所述分配模块 212具体用于采用 下行 RAtypeO方式, 或下行 RA typel方式, 分配演进系统的所有资源块。
或者, 所述排序模块 211 具体用于对后向兼容系统的资源块和演进系 统的资源块分别进行排序; 所述分配模块 212具体用于采用下行 RA typeO 方式、下行 RA typel方式、下行 RAtype2 LVRB方式、下行 RAtype2 DVRB 方式、 上行无跳频方式, 或上行跳频方式, 分配后向兼容系统的资源块; 采用下行 RAtypeO方式、 下行 RA typel方式、 下行 RAtype2 LVRB方式、 下行 RA type2 DVRB方式、 上行无跳频方式, 或上行跳频方式, 分配演进 系统的资源块。 上述排序模块 211和分配模块 212,具体还可以实现前述方法中的各种 排序和分配功能, 具体不再赘述。
本实施例通过考虑 LTE-A和 LTE对 PRB的具体使用情况, 进行资源 分配, 可以很好地保证 LTE-A和 LTE的兼容。
进一步地, 本发明实施例还提供了一种无线系统, 包括网络设备, 用于 根据后向兼容系统和演进系统对资源块的使用情况, 对后向兼容系统和演 进系统的资源块进行排序; 并分配排序后的资源块。 具体的网络设备可参见 图 21所示的网络设备。 本实施例通过考虑 LTE-A和 LTE对 PRB的具体使 用情况, 进行资源分配, 可以很好地保证 LTE-A和 LTE的兼容。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其 进行限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普 通技术人员应当理解: 其依然可以对本发明的技术方案进行修改或者等同 替换, 而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技 术方案的精神和范围。

Claims

权利要求
1、 一种资源分配方法, 其特征在于, 包括:
根据第一系统的终端和第二系统的终端对资源块的使用情况, 对第一 系统终端和第二系统终端使用的资源块进行排序;
分配排序后的资源块;
其中, 所述第二系统为所述第一系统的演进系统, 且所述第二系统能 够为所述第一系统的终端提供通信服务。
2、 根据权利要求 1所述的方法, 其特征在于, 所述对第一系统终端和 第二系统终端使用的资源块进行排序包括: 从第一系统终端和第二系统终 端公用的资源块开始, 对第一系统终端使用的资源块和第二系统终端使用 的资源块进行排序。
3、 根据权利要求 2所述的方法, 其特征在于, 所述分配排序后的资源 块包括:
对后向兼容系统终端和演进系统终端公用的资源块, 采用下行资源分 配类型 RA typeO方式、 下行 RA typel方式、 下行 RA type2方式、 上行无 跳频方式, 或上行跳频方式, 分配给后向兼容系统终端或演进系统终端; 和 /或, 对演进系统终端专用的资源块, 采用下行 RAtypeO方式, 下行 RA typel方式、 上行无跳频方式, 或上行镜像跳频方式, 分配给演进系统 终端。
4、 根据权利要求 1所述的方法, 其特征在于, 所述对第一系统终端和 第二系统终端使用的资源块进行排序包括: 对第一系统终端使用的资源块 和第二系统终端使用的资源块分别进行排序。
5、 根据权利要求 4所述的方法, 其特征在于, 所述分配排序后的资源 块包括:
对第一系统终端和第二系统终端公用的资源块, 采用下行 RA typeO方 式、 下行 RA type 1方式、 下行 RA type2方式、 上行无i兆频方式, 或上行i兆 频方式, 分配给第一系统终端或第二系统终端;
对第二系统终端专用的资源块,采用下行 RA typeO方式,下行 RA type 1 方式、下行 RAtype2 集中式虚拟资源块分配 LVRB方式、上行无跳频方式, 或上行镜像跳频方式, 分配给第二系统终端。
6、 根据权利要求 3或 5所述的方法, 其特征在于, 对第一系统终端和 第二系统终端公用的资源块, 采用下行 RA typeO方式, 分配给第二系统终 端包括:
按照第一系统终端的资源分配粒度或其整数倍, 将公用的资源块分为 一个或多个资源块组, 且第二系统终端的每个资源块组与第一系统终端的 一个或多个资源块组对齐;
采用比特映射的方式将各资源块组分配给所述第二系统终端。
7、 根据权利要求 3或 5所述的方法, 其特征在于, 对第二系统专用的 资源块, 采用下行 RAtypeO方式, 分配给第二系统终端包括:
将专用的资源块按照专用部分组成一个或多个资源块组; 或者, 按照 第一系统终端的资源分配粒度或其整数倍, 将专用的资源块分为一个或多 个资源块组;
采用比特映射的方式将各资源块组分配给所述第二系统终端。
8、 根据权利要求 3或 5所述的方法, 其特征在于, 对第一系统终端和 第二系统终端公用的资源块, 采用下行 RA typel方式, 分配给第二系统终 端包括:
按照第一系统终端的资源分配粒度或其整数倍, 将公用的资源块分为 一个或多个资源块组, 且第二系统终端的每个资源块组与第一系统终端的 一个或多个资源块组对齐;
将所述资源块组分为与资源分配粒度或其整数倍相同的资源块组子 集;
采用比特映射的方式将各资源块组子集中的资源块分配给所述第二系 统终端。
9、 根据权利要求 3或 5所述的方法, 其特征在于, 对第二系统专用的 资源块, 采用下行 RAtypel方式, 分配给第二系统终端包括:
将专用资源块按照专用部分组成一个或多个资源块组; 或者, 按照第 一系统终端的资源分配粒度或其整数倍, 将专用资源块分为一个或多个资 源块组; 源块组子集;
采用比特映射的方式将各资源块组子集中的资源块分配给所述第二系 统终端。
10、 根据权利要求 2或 4所述的方法, 其特征在于, 所述分配排序后 的资源块包括:
采用下行 RA type2 LVRB方式或上行无跳频方式, 为第二系统终端分 配连续的物理资源块;
采用下行 RA type2 离散的虚拟资源块分配 DVRB方式或上行跳频方 式, 为第二系统终端分配公用的资源块。
11、 根据权利要求 1、 2或 4所述的方法, 其特征在于, 所述资源块包 括第一系统终端和第二系统终端公用的资源块和第二系统终端专用的资源 块, 且所述公用资源块的至少一侧有专用资源块。
12、 一种网络设备, 其特征在于, 包括:
排序模块, 用于根据第一系统终端和第二系统终端对资源块的使用情 况, 对第一系统终端和第二系统终端使用的资源块进行排序;
分配模块, 用于分配排序后的资源块。
13、 根据权利要求 12所述的设备, 其特征在于:
所述排序模块具体用于从第一系统终端和第二系统终端公用的资源块 开始, 对第一系统终端使用的资源块和第二系统终端使用的资源块进行排 序;
所述分配模块具体用于对第一系统终端和第二系统终端公用的资源 块, 采用下行 RA typeO方式、 下行 RA typel方式、 下行 RA type2方式、 上行无跳频方式, 或上行跳频方式, 分配给第一系统终端或第二系统终端; 和 /或,所述分配模块具体用于对第二系统终端专用的资源块,采用下行 RA typeO方式, 下行 RAtypel方式、 上行无跳频方式, 或上行镜像跳频方式, 分配给第二系统终端。
14、 根据权利要求 12所述的设备, 其特征在于:
所述排序模块具体用于对第一系统终端使用的资源块和第二系统终端 使用的资源块分别进行排序;
所述分配模块具体用于对第一系统终端和第二系统终端公用的资源 块, 采用下行 RA typeO方式、 下行 RA typel方式、 下行 RA type2方式、 上行无跳频方式, 或上行跳频方式, 分配给第一系统终端或第二系统终端; 和 /或,所述分配模块具体用于对第二系统终端专用的资源块,采用下行 RA typeO方式, 下行 RA typel方式、 下行 RA type2 LVRB方式、 上行无i兆频 方式, 或上行镜像跳频方式, 分配给第二系统终端。
15、 一种无线系统, 其特征在于, 包括:
网络设备, 用于根据第一系统终端和第二系统终端对资源块的使用情 况, 对第一系统终端和第二系统终端使用的资源块进行排序; 并分配排序 后的资源块。
PCT/CN2010/070040 2009-01-06 2010-01-06 资源分配方法、网络设备和无线系统 WO2010078843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10729102.3A EP2381640B1 (en) 2009-01-06 2010-01-06 Resource allocation method, network device and wireless system
US13/176,285 US8614983B2 (en) 2009-01-06 2011-07-05 Resource allocation method, network device, and wireless system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100023784A CN101932098B (zh) 2009-01-06 2009-01-06 资源分配方法、网络设备和无线系统
CN200910002378.4 2009-01-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/176,285 Continuation US8614983B2 (en) 2009-01-06 2011-07-05 Resource allocation method, network device, and wireless system

Publications (1)

Publication Number Publication Date
WO2010078843A1 true WO2010078843A1 (zh) 2010-07-15

Family

ID=42316264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070040 WO2010078843A1 (zh) 2009-01-06 2010-01-06 资源分配方法、网络设备和无线系统

Country Status (4)

Country Link
US (1) US8614983B2 (zh)
EP (1) EP2381640B1 (zh)
CN (1) CN101932098B (zh)
WO (1) WO2010078843A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614983B2 (en) 2009-01-06 2013-12-24 Huawei Technologies Co., Ltd. Resource allocation method, network device, and wireless system
US8743785B2 (en) 2011-08-15 2014-06-03 Futurewei Technologies, Inc. System and method for reducing interference
US9031015B2 (en) 2009-12-31 2015-05-12 China Academy Of Telecommunications Technology Method and device for allocating downlink resource and receiving downlink data

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917677B2 (en) * 2010-04-14 2014-12-23 Samsung Electronics Co., Ltd. Systems and methods for bundling resource blocks in a wireless communication system
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
EP2564611B1 (en) 2011-07-01 2015-02-18 Ofinno Technologies, LLC Synchronization signal and control messages in multicarrier OFDM
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US8842637B2 (en) 2011-12-04 2014-09-23 Ofinno Technologies, Llc Carrier information transmission to wireless devices
CN103312433B (zh) 2012-03-08 2016-12-21 华为技术有限公司 数据传输方法及系统、基站和用户设备
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
CN105657833A (zh) * 2014-11-12 2016-06-08 中兴通讯股份有限公司 一种跳频实现方法、网络设备及通信系统
CN108633058B (zh) * 2017-03-24 2021-05-07 华为技术有限公司 一种资源分配方法及基站、ue
CN109769300A (zh) 2017-11-10 2019-05-17 华为技术有限公司 一种通信方法、装置以及系统
CN108924932B (zh) * 2017-11-10 2019-11-05 华为技术有限公司 一种通信方法、装置
US10469221B2 (en) 2017-11-10 2019-11-05 Huawei Technologies Co., Ltd. Communication method, apparatus, and system
CN110022194B (zh) * 2018-01-09 2021-08-24 维沃移动通信有限公司 资源映射方法、网络侧设备及终端
WO2020046275A1 (en) * 2018-08-28 2020-03-05 Nokia Solutions And Networks Oy Method, apparatus and computer readable medium for allocating mini-slots
US11424851B2 (en) * 2020-12-09 2022-08-23 Qualcomm Incorporated Dynamic bit width determination for resource block group mask

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131558A1 (en) * 2006-05-12 2007-11-22 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
CN101155194A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 通信资源分配指示方法及其系统、装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007200145A1 (en) * 2006-01-18 2007-08-02 Nec Australia Pty Ltd Method of physical resource management in a wideband communication system
CN101064955A (zh) 2006-04-28 2007-10-31 北京三星通信技术研究有限公司 指配信道资源的设备和方法
CN101043742A (zh) 2006-06-28 2007-09-26 华为技术有限公司 一种无线通信系统中用户资源分配指配方法
KR100913102B1 (ko) * 2007-03-19 2009-08-19 엘지전자 주식회사 이동 통신 시스템에서의 자원 할당 방법 및 자원 할당 정보송수신 방법
US8265029B2 (en) * 2007-06-15 2012-09-11 Futurewei Technologies, Inc. Method and apparatus for assigning resources in a wireless system
JP5453308B2 (ja) * 2008-01-09 2014-03-26 アップル インコーポレイテッド 物理リソースブロックへの分散型リソースブロックインデックスのマッピング
WO2010015285A1 (en) * 2008-08-08 2010-02-11 Nokia Siemens Networks Oy Fine-grain and backward-compliant resource allocation
US8509161B2 (en) * 2008-08-11 2013-08-13 Sharp Kabushiki Kaisha Systems and methods for OFDMA and SC-FDMA switching
WO2010049754A1 (en) * 2008-10-28 2010-05-06 Nokia Corporation Physical downlink control channel configuration for extended bandwidth systems
US20100130218A1 (en) * 2008-11-21 2010-05-27 Interdigital Patent Holdings, Inc. Method and apparatus for supporting aggregation of multiple component carriers
EP2371163A1 (en) * 2008-12-15 2011-10-05 Nokia Corporation Downlink control and physical hybrid arq indicator channel (phich) configuration for extended bandwidth system
CN101932098B (zh) 2009-01-06 2013-06-05 华为技术有限公司 资源分配方法、网络设备和无线系统
US20100195586A1 (en) * 2009-02-05 2010-08-05 Infineon Technologies Ag Multiband-operation in wireless communication systems
JP5083253B2 (ja) * 2009-03-16 2012-11-28 富士通モバイルコミュニケーションズ株式会社 無線送信装置、無線受信装置および送信方法
US8934417B2 (en) * 2009-03-16 2015-01-13 Google Technology Holdings LLC Resource allocation in wireless communication systems
US8432859B2 (en) * 2009-06-22 2013-04-30 Alcatel Lucent Indicating dynamic allocation of component carriers in multi-component carrier systems
US8861424B2 (en) * 2009-07-06 2014-10-14 Qualcomm Incorporated Downlink control channel for relay resource allocation
US8583128B2 (en) * 2009-07-13 2013-11-12 Intel Mobile Communications GmbH Apparatus and method for mapping physical control channels
CN102014444B (zh) * 2009-12-31 2013-04-17 电信科学技术研究院 分配下行资源及实现下行数据接收的方法、装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131558A1 (en) * 2006-05-12 2007-11-22 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
CN101155194A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 通信资源分配指示方法及其系统、装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CMCC, On the scenario and channel model for LTE-Advanced", R1-081823, 3GPP TSG RAN WG1 #53, 5 May 2008 (2008-05-05), KANSAS CITY, USA, pages 1 - 2, XP050110199 *
NOKIA ET AL.: "Signalling of PRB allocations for LTE downlink", R1-072303, 3GPP TSG-RAN WORKING GROUP 1 #49, 7 May 2007 (2007-05-07), KOBE, JAPAN, pages 1 - 5, XP050106033 *
See also references of EP2381640A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614983B2 (en) 2009-01-06 2013-12-24 Huawei Technologies Co., Ltd. Resource allocation method, network device, and wireless system
US9031015B2 (en) 2009-12-31 2015-05-12 China Academy Of Telecommunications Technology Method and device for allocating downlink resource and receiving downlink data
US8743785B2 (en) 2011-08-15 2014-06-03 Futurewei Technologies, Inc. System and method for reducing interference

Also Published As

Publication number Publication date
EP2381640B1 (en) 2017-11-08
US8614983B2 (en) 2013-12-24
CN101932098A (zh) 2010-12-29
EP2381640A1 (en) 2011-10-26
US20110274076A1 (en) 2011-11-10
CN101932098B (zh) 2013-06-05
EP2381640A4 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2010078843A1 (zh) 资源分配方法、网络设备和无线系统
CN109565861B (zh) 下一代蜂窝网络中的数据传输的方法和装置
US8073062B2 (en) Method and apparatus for downlink resource allocation in an orthogonal frequency division multiplexing communication system
WO2018137690A1 (zh) 一种通信系统中资源分配的方法及设备
WO2018076565A1 (zh) 资源配置方法及资源配置装置
US20210099987A1 (en) Allocating transmission resources in communication networks that provide low latency services
US8767658B2 (en) Method and base station for sending uplink scheduling grant control signaling
US20080101211A1 (en) Method of assigning uplink acknowledgement channels in scheduled packet data systems
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
JP5755335B2 (ja) アップリンク・サウンディング・リファレンス信号をトリガし送信する方法および装置
US20150208387A1 (en) Resource allocation signalling
WO2019052455A1 (zh) 数据信道参数配置方法及装置
CN110839284B (zh) 一种调度请求资源确定及配置方法、设备及装置
WO2011095069A1 (zh) 资源分配方式指示方法、装置和系统
CN107736065A (zh) 一种资源分配信息指示方法、基站及用户设备
CN113348718A (zh) 通信装置、基础设施设备以及方法
WO2021023081A1 (en) Sidelink feedback resource allocation
WO2019137503A1 (zh) 一种上行控制信息的传输方法、接入网设备以及终端设备
CN109803412B (zh) 资源映射方法、确定方法、网络侧设备及用户终端
CN113273271A (zh) Nr-u中的逻辑信道优先级排序的增强
US20200059902A1 (en) Dynamic spdcch resources determination
CN112188637B (zh) 无线通信方法、用户设备和网络设备
WO2022156477A1 (zh) 一种通信方法及装置
US20220070914A1 (en) Configured grant usage method and apparatus, network device and terminal
CN111328138B (zh) Mac pdu的组织方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010729102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010729102

Country of ref document: EP