WO2010076974A2 - 폴리 실리콘 증착장치 - Google Patents

폴리 실리콘 증착장치 Download PDF

Info

Publication number
WO2010076974A2
WO2010076974A2 PCT/KR2009/006974 KR2009006974W WO2010076974A2 WO 2010076974 A2 WO2010076974 A2 WO 2010076974A2 KR 2009006974 W KR2009006974 W KR 2009006974W WO 2010076974 A2 WO2010076974 A2 WO 2010076974A2
Authority
WO
WIPO (PCT)
Prior art keywords
core rod
silicon core
reactor
electrode
gas
Prior art date
Application number
PCT/KR2009/006974
Other languages
English (en)
French (fr)
Other versions
WO2010076974A3 (ko
Inventor
유호정
박성은
엄일수
Original Assignee
주식회사 세미머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세미머티리얼즈 filed Critical 주식회사 세미머티리얼즈
Priority to CN2009801007471A priority Critical patent/CN101919028B/zh
Publication of WO2010076974A2 publication Critical patent/WO2010076974A2/ko
Publication of WO2010076974A3 publication Critical patent/WO2010076974A3/ko

Links

Images

Classifications

    • H01L21/205
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Definitions

  • the present invention relates to an apparatus for manufacturing polysilicon used as a main raw material in the semiconductor or photovoltaic industry, and more particularly, to a polysilicon deposition apparatus for depositing polysilicon on a silicon core rod surface. .
  • metal-grade silicon In order to manufacture polycrystalline silicon (also called polysilicon), which is used as a main raw material in the semiconductor or photovoltaic industry, metal-grade silicon must be made by reducing and reacting quartz or sand with carbon. Metal grade silicon is further refined and made into solar cell grade or semiconductor grade silicon. Metal polysilicon purification methods include Siemens (Siemens) method, Fluidized bed (fluidized bed) method, VLD (Vapor-to-Liquid Deposition) method and direct purification of metal grade silicon.
  • the most commonly used method is the Siemens method.
  • polycrystalline silicon is produced by thermally decomposing a source gas mixed with chlorosilane or monosilane with hydrogen and depositing it on a silicon core rod.
  • the silicon core rod is energized and heats the entire silicon core rod according to the heat of resistance. Since silicon has a very high electrical resistance at room temperature, electricity is not energized well. However, when the silicon is heated to about 1000 ° C, the electrical resistance is drastically lowered, so electricity is well supplied. Therefore, a means for heating the silicon core rods early in the polysilicon manufacturing process is needed.
  • a carbon rod is installed next to a silicon core rod in a reactor to generate electricity by flowing electricity to the carbon rod at the beginning of the process, and to increase the temperature of the silicon core rod according to the heat.
  • silicon is deposited on the carbon rod, there is a problem in that the use efficiency of the raw material gas is reduced and carbon contamination occurs.
  • the present invention has been proposed in the above background, and an object of the present invention is to provide a polysilicon deposition apparatus capable of obtaining high-efficiency, high-purity polysilicon used for initial heating of a silicon core rod.
  • Another object of the present invention is to provide a polysilicon deposition apparatus having high utilization efficiency and deposition efficiency of source gas.
  • Still another object of the present invention is to provide a polysilicon deposition apparatus that can easily check the state inside the reactor in which polysilicon deposition is made.
  • the polysilicon deposition apparatus is installed on the bottom of the reactor is formed a gas inlet for the source gas is introduced and the gas outlet for discharging the gas to a predetermined distance
  • An electrode part including a first electrode and a second electrode spaced apart from each other, a silicon core rod part that generates current while receiving current from the first electrode of the electrode part and conducting current to the second electrode of the electrode part, and a silicon core rod
  • a silicon core rod heating unit including a heating element spaced apart from the unit by a predetermined interval and including a heating element installed therein, and a source gas introduced into the heating element through the gas inlet of the reactor flows toward the silicon core rod unit.
  • a gas injection part formed on the surface of the heating element.
  • a polysilicon deposition apparatus includes a plurality of heaters in which heat generating means formed in the first and second heating elements are installed in a height direction of the first and second heating elements, but the plurality of heaters may include a plurality of heaters. It is characterized by being installed at regular intervals around the first and second heating elements.
  • a polysilicon deposition apparatus including a plurality of nozzles including at least two nozzles in which a plurality of gas injection nozzles are provided at positions spaced apart by a predetermined distance in the height direction of the surface of the first and second heating elements.
  • a plurality of nozzle group is characterized in that the predetermined intervals are installed around the surface of the first, second heating element.
  • the nozzle group provided on the surface of the first, second heating element is provided between a plurality of heaters are installed at regular intervals around the first, second heating element. It is characterized by.
  • the polysilicon deposition apparatus of the present invention is injected into the silicon core rod after the heating element is wrapped around the silicon core rod and the raw material gas introduced into the heating element is preheated, thereby reducing the amount of power used to initially heat the silicon core rod.
  • High efficiency and high deposition efficiency in which the silicon gas decomposed from the source gas is deposited on the silicon core rod has a high useful effect.
  • the polysilicon deposition apparatus of the present invention includes a plurality of heaters in which the heating means formed inside the first and second heating elements are installed in the height direction of the first and second heating elements, and the plurality of heaters are the first and second heaters. 2 By installing at regular intervals around the heating element, the surface temperature of the silicon core rod is evenly increased, so that the deposition efficiency of the silicon gas decomposed from the source gas is deposited on the silicon core rod.
  • the polysilicon deposition apparatus of the present invention includes a plurality of nozzle groups including at least two nozzles in which a plurality of gas injection nozzles are provided at positions spaced apart by a predetermined interval in the height direction of the surfaces of the first and second heating elements.
  • the plurality of nozzle groups are installed at regular intervals around the surfaces of the first and second heating elements, so that the gas injection nozzles are evenly formed at positions very close to the silicon core rods, and thus the silicon gas decomposed from the source gas discharged from the gas injection nozzles.
  • the deposition efficiency deposited on the silicon core rod has a high useful effect.
  • the nozzle group provided on the surfaces of the first and second heating elements is installed between a plurality of heaters installed at regular intervals around the first and second heating elements, thereby providing a plurality of heaters. Radiation heat from the gas is transferred to the silicon core rod through the gas injection nozzle to prevent the silicon gas decomposed from the source gas is deposited unevenly on the silicon core rod has a useful deposition efficiency is high.
  • FIG. 1 is an embodiment showing a cross-sectional view of a polysilicon deposition apparatus according to the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of the first heating element 123a of the polysilicon deposition apparatus of FIG. 1;
  • FIG 3 shows a temperature distribution diagram of the silicon core rod according to the present invention.
  • FIG. 1 is a cross-sectional view of a polysilicon deposition apparatus according to an exemplary embodiment of the present invention
  • FIG. 2 is a cross-sectional view of AA including a first heating element 123a of the polysilicon deposition apparatus according to FIG. 1.
  • the polysilicon deposition apparatus 100 includes a reactor 110 in which a gas inlet 111 into which a raw material gas is introduced and a gas outlet 112 to discharge gas to an outside are formed. And a polysilicon deposition unit 120 installed in the inner space of the reactor 110 to deposit polysilicon by pyrolysing the source gas supplied through the gas inlet 111.
  • the source gas is chlorosilane or monosilane, and the source gas is supplied mixed with a carrier gas such as hydrogen.
  • the polysilicon deposition part 120 includes an electrode part 121, a silicon core rod part 122, a silicon core rod heating part 123, and a plurality of gas injection nozzles 124. It includes a gas injection unit.
  • the electrode part 121 is for supplying current to the silicon core rod part 122 and is installed on the bottom of the reactor 110 and is spaced apart by a predetermined distance from the first electrode 121a and the second electrode 121b. It includes.
  • the first electrode 121a and the second electrode 121b may be implemented as electrodes of graphite material.
  • the first electrode 121a and the second electrode 121b are installed to be insulated from the bottom of the reactor 110.
  • the silicon core rod part 122 receives current from the first electrode 121a of the electrode part 121 and decomposes the raw material gas while heating itself while supplying current to the second electrode 121b of the electrode part 121. It serves to deposit the silicon gas.
  • the silicon core rod part 122 is connected to the first electrode 121a of the electrode part 121 and is installed in a direction perpendicular to the bottom of the reactor 110 and the electrode part 121.
  • the third silicon core rod 122c is connected thereto.
  • the silicon core rod heating part 123 serves to heat the silicon core rod part 122 before inputting a current to the silicon core rod part 122.
  • the silicon core rod heating part 123 may be spaced apart from the first silicon core rod 122a by a predetermined distance to surround the first silicon core rod 122a and the first heating element 123a having the heating means 1231 installed therein.
  • the heat generating means 1231 may be a ceramic heater such as SiC (silicon carbide), MoSi 2 (molybdenum silicide), graphite, or Fe-Cr (iron-chromium) system, Ni-Cr (nickel-chromium) system, or Fe-Cr-Al ( Iron-chromium-aluminum) -based metal heaters.
  • the heating means 1231 formed in the first heating element 123a includes a plurality of heaters installed in the height direction of the first heating element 123a.
  • the plurality of heaters six heaters may be installed around the first heating element 123a at regular intervals, for example, at 60 degree intervals, and four heaters may be installed at 90 degree intervals.
  • the plurality of gas injection nozzles 124 may include source gases introduced into the first and second heating elements 123a and 123b through the gas inlet 111 of the reactor 110, respectively. It is formed on the surfaces of the first and second heating elements 123a and 123b so as to flow toward the second silicon core rods 122a and 122b.
  • the source gas injected through the plurality of gas injection nozzles 124 is pyrolyzed, and the decomposed silicon gas is deposited on the first and second silicon core rods 122a and 122b.
  • the raw material gas is injected into the first and second heating elements 123a and 123b, preheated by the heat generating means 1231, and injected into the first and second silicon core rods 122a and 122b, thereby providing the polysilicon of the present invention.
  • pyrolysis of source gas may occur rapidly.
  • the plurality of gas injection nozzles 124 may include at least two nozzles installed at positions spaced apart by a predetermined interval in a height direction of the surface of the first heating element 123a ( And a plurality of nozzle groups 1241 including 124.
  • the plurality of nozzle groups 1241 included in the plurality of gas injection nozzles 124 are provided at regular intervals around the surface of the first heating element 123a. Accordingly, the gas injection nozzle 124 is formed evenly at a position very close to the first silicon core rod 122a, so that the silicon deposition efficiency is high. That is, the silicon gas decomposed from the source gas exiting the gas injection nozzle 124 is deposited directly on the first silicon core rod 122a to form the silicon rod 210.
  • the installation nozzle group 1241 at regular intervals around the surface of the first heating element 123a is provided between the plurality of heaters 1231 provided at regular intervals around the first heating element 123a. Accordingly, radiant heat of the plurality of heaters 1231 is transferred to the first silicon core rod 122a through the gas injection nozzle 124 so that silicon gas decomposed from the source gas is unevenly deposited on the first silicon core rod 122a. Can be prevented.
  • the reactor 110 includes a bottom cooling body 113 having a first cooling rod 113a installed therein, and first and second silicon core rods 122a at one end of the bottom cooling body 113. , Installed in a direction parallel to 112b and having a lower cooling body 114 having a second cooling rod 114a therein, and an upper surface of the lower cooling body 114, respectively, and having a third cooling rod 115a therein.
  • the upper cooling body 115 is formed, and the dome cooling body 116 is installed above the upper cooling body 116 and the fourth cooling rod 116a is formed therein.
  • the reactor 110 includes a cooling water supply device for supplying cooling water to each of the first to fourth cooling rods 113a to 116a.
  • the cooling water supply device supplies the cooling water having the lowest temperature to the second cooling rod 114a of the lower cooling body 114 from the time when the source gas is supplied into the reactor.
  • the supplied feed gas is pyrolyzed and deposited on the first and second silicon core rods 112a and 112b, but some silicon powder is not deposited on the silicon first and second silicon core rods 112a and 112b and the reactor It may also be deposited inside 110. Since the deposition reaction of the silicon powder occurs easily where the temperature is low, the lowest temperature of the lower cooling body 114 is controlled to induce the deposition of the silicon powder on the lower cooling body 114. When a large amount of silicon powder is deposited on the dome cooler 116 or the upper coolant 115, it may adversely affect the quality of the silicon rod 210 and when a large amount of silicon powder is deposited on the bottom coolant 113. This is because there is a risk of blocking the gas outlet 112.
  • the polysilicon deposition apparatus 100 further includes a viewing window 117 to allow the inside of the reactor 110 to be identified from the outside.
  • the viewing window 117 is for measuring the diameter of the silicon rod (210) in FIG. 2, and may be installed in the upper cooling body 115.
  • a large amount of silicon powder is deposited on the see-through window 117, it may be difficult to check the inside thereof, thereby attaching a hot wire to the glass of the see-through window 117 to increase the temperature to suppress the deposition of the silicon powder to the maximum, thereby facilitating the internal check. .
  • FIG 3 shows a temperature distribution diagram of the silicon core rod according to the present invention.
  • the surface temperature of the silicon core rod 122a is evenly distributed so that the deposition efficiency of the silicon gas decomposed from the source gas is deposited on the silicon core rod 122a.
  • the temperature distribution 31 between the heater 1231 and the silicon core rod 122a is 850 It is in the range of ⁇ to 950 ⁇ . Accordingly, the polysilicon deposition apparatus according to the present invention is expected to increase the deposition efficiency in which the silicon gas decomposed from the source gas is deposited on the silicon core rod 122a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명에 따른 폴리 실리콘 증착장치는, 원료가스가 투입되는 가스 투입구 및 외부로 가스를 배출하는 가스 배출구가 형성되는 반응기의 바닥에 설치되며 소정 거리만큼 이격되게 설치되는 제1 전극과 제2 전극을 포함하는 전극부와, 전극부의 제 1 전극으로부터 전류를 입력받아 전극부의 제2 전극으로 전류를 통전시키면서 자체 발열하는 실리콘 코어 로드부와, 실리콘 코어 로드부로부터 소정 간격만큼 떨어져 실리콘 코어 로드부를 둘러싸며 내부에 발열수단이 설치되는 발열체를 포함하는 실리콘 코어 로드 가열부, 및 반응기의 가스 투입구를 통해 발열체 내부에 투입되는 원료가스가 실리콘 코어 로드부를 향하여 흐르도록 발열체의 표면에 형성되는 가스 분사부를 포함한다.

Description

폴리 실리콘 증착장치
본 발명은 반도체나 태양광 산업에서의 주원료로 사용되는 폴리 실리콘을 제조하기 위한 장치에 관한 것으로, 더욱 상세하게는 실리콘 코어 로드(core rod) 표면에 폴리 실리콘을 증착시키는 폴리 실리콘 증착장치에 관한 것이다.
반도체나 태양광 산업에서의 주원료로 사용되는 다결정 실리콘(폴리실리콘이라고도 함)을 제조하기 위해서는 쿼츠나 모래 등을 카본과 환원반응시켜 금속급 실리콘을 만들어야 한다. 금속급 실리콘은 다시 추가적인 정제과정을 거쳐 태양전지급 실리콘이나 반도체급 실리콘으로 만들어 진다. 금속급 폴리실리콘의 정제 방법으로는 크게 Siemens(지멘스)법, Fluidized bed(유동층)법, VLD(Vapor-to-Liquid Deposition) 방식과 금속급 실리콘을 직접 정제하는 방법 등이 있다.
이중에서 가장 일반적으로 많이 사용되고 있는 방법이 지멘스(Siemens)법이다. 이 방법은 염화실란(chlorosilane)이나 모노실란(monosilane)이 수소와 혼합된 원료가스를 열분해하여 실리콘 코어 로드에 증착시켜 다결정 실리콘을 제조하는 것이다. 이 방법은 실리콘 코어 로드에 전기를 통하게 하여 그 저항열에 따라 실리콘 코어 로드 전체를 발열시키는데, 실리콘은 상온에서는 전기 저항이 매우 크기 때문에 전기가 잘 통전이 되지 않는다. 그러나 실리콘을 약 1000℃까지 가열하게 되면 전기 저항이 대폭적으로 낮아지기 때문에 전기가 잘 통전된다. 따라서 폴리 실리콘 제조 공정 초기에 실리콘 코어 로드를 가열하는 수단이 필요하다.
종래에는 반응기 내부의 실리콘 코어 로드 옆에 카본 로드를 설치하여 공정 초기에 카본 로드에 전기를 흘려 발열시키고, 이 열에 따라 실리콘 코어 로드의 온도를 올리는 방법을 사용하였다. 그러나 이 방법은 카본 로드에도 실리콘이 증착되기 때문에 원료가스 사용효율이 떨어지고, 카본에 의한 오염이 발생하는 문제점이 있다.
한편, 미국특허등록공보 제6,749,824호에서는 실리콘 코어 로드 외부에 유도코일을 설치하여 초기 가열을 하였다. 이 방법은 실리콘은 유도가열에 의해 발열이 힘들고, 유도 코일관의 영향을 받아 증착이 불균일하게 되는 단점이 있다. 또한 일본특허공개공보 2001-278611에서는 적외선 조사에 의해 실리콘 코어 로드를 초기 가열하였다. 이 방법은 적외선 조사를 위해 반응기 일부분의 창을 설치하여 하고, 이 때문에 높은 증착 온도에서는 이 부분의 열손실이 많고 이 부근에서 증착된 실리콘의 품질은 편차가 크게 되는 문제점이 있다.
본 발명은 상기와 같은 배경에서 제안된 것으로, 본 발명의 목적은 실리콘 코어 로드를 초기 가열하는데 사용되는 전력의 효율이 높고, 고순도의 폴리 실리콘을 얻을 수 있는 폴리 실리콘 증착 장치를 제공하는 것이다.
본 발명의 다른 목적은 원료가스의 이용효율과 증착효율이 높은 폴리 실리콘 증착 장치를 제공하는 것이다.
본 발명의 또다른 목적은 폴리 실리콘 증착이 이루어지는 반응기 내부의 상태를 외부에서 용이하게 확인할 수 있는 폴리 실리콘 증착 장치를 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 양상에 따른 폴리 실리콘 증착장치는, 원료가스가 투입되는 가스 투입구 및 외부로 가스를 배출하는 가스 배출구가 형성되는 반응기의 바닥에 설치되며 소정 거리만큼 이격되게 설치되는 제1 전극과 제2 전극을 포함하는 전극부와, 전극부의 제 1 전극으로부터 전류를 입력받아 전극부의 제2 전극으로 전류를 통전시키면서 자체 발열하는 실리콘 코어 로드부와, 실리콘 코어 로드부로부터 소정 간격만큼 떨어져 실리콘 코어 로드부를 둘러싸며 내부에 발열수단이 설치되는 발열체를 포함하는 실리콘 코어 로드 가열부, 및 반응기의 가스 투입구를 통해 발열체 내부에 투입되는 원료가스가 실리콘 코어 로드부를 향하여 흐르도록 발열체의 표면에 형성되는 가스 분사부를 포함한다.
본 발명의 다른 양상에 따른 폴리 실리콘 증착장치는, 제1, 제2 발열체의 내부에 형성되는 발열수단이 제1, 제2 발열체의 높이 방향으로 설치되는 다수개의 히터를 포함하되 다수개의 히터는 제1, 제2 발열체의 둘레에 일정한 간격으로 설치되는 것을 특징으로 한다.
본 발명의 또 다른 양상에 따른 폴리 실리콘 증착장치는, 복수개의 가스 분사 노즐이 제1, 제2 발열체의 표면의 높이 방향으로 일정한 간격만큼 떨어진 위치에 설치되는 적어도 2 개이상의 노즐을 포함하는 다수의 노즐군을 포함하되 다수의 노즐군은 제1, 제2 발열체의 표면 둘레에 일정한 간격으로 설치되는 것을 특징으로 한다.
본 발명의 또 다른 양상에 따른 폴리 실리콘 증착장치는, 제1, 제2 발열체의 표면에 설치되는 노즐군이 제1, 제2 발열체의 둘레에 일정한 간격으로 설치되는 다수개의 히터들 사이에 설치되는 것을 특징으로 한다.
상기한 구성에 따르면, 본 발명의 폴리 실리콘 증착 장치는 발열체가 실리콘 코어 로드 주변을 둘러싸고 발열체 내부로 투입된 원료가스가 예열된 후에 실리콘 코어 로드로 분사됨으로써, 실리콘 코어 로드를 초기 가열하는데 사용되는 전력의 효율이 높고 원료가스에서 분해된 실리콘 기체가 실리콘 코어 로드에 증착되는 증착효율이 높은 유용한 효과가 있다.
또한, 본 발명의 폴리 실리콘 증착 장치는 제1, 제2 발열체의 내부에 형성되는 발열수단이 제1, 제2 발열체의 높이 방향으로 설치되는 다수개의 히터를 포함하며 다수개의 히터는 제1, 제2 발열체의 둘레에 일정한 간격으로 설치됨으로써, 실리콘 코어 로드의 표면 온도를 고르게 높여 주어 원료가스에서 분해된 실리콘 기체가 실리콘 코어 로드에 증착되는 증착효율이 높은 유용한 효과가 있다.
또한, 본 발명의 폴리 실리콘 증착 장치는 복수개의 가스 분사 노즐이 제1, 제2 발열체의 표면의 높이 방향으로 일정한 간격만큼 떨어진 위치에 설치되는 적어도 2 개이상의 노즐을 포함하는 다수의 노즐군을 포함하고 다수의 노즐군은 제1, 제2 발열체의 표면 둘레에 일정한 간격으로 설치됨으로써, 가스 분사 노즐이 실리콘 코어 로드와 매우 가까운 위치에 골고루 형성되어 가스 분사 노즐에서 빠져나온 원료가스에서 분해된 실리콘 기체가 실리콘 코어 로드에 증착되는 증착효율이 높은 유용한 효과가 있다.
또한, 본 발명의 폴리 실리콘 증착 장치는 제1, 제2 발열체의 표면에 설치되는 노즐군이 제1, 제2 발열체의 둘레에 일정한 간격으로 설치되는 다수개의 히터들 사이에 설치됨으로써, 다수개의 히터들의 복사열이 가스 분사 노즐을 통해 실리콘 코어 로드로 전달되어 원료가스에서 분해된 실리콘 기체가 실리콘 코어 로드에 불균일하게 증착되는 것을 방지하여 증착효율이 높은 유용한 효과가 있다.
도 1 은 본 발명에 따른 폴리 실리콘 증착장치의 단면도를 도시한 실시예,
도 2 는 도1에 따른 폴리 실리콘 증착장치의 제1 발열체(123a)를 포함하는 AA 단면도,
도 3 은 본 발명에 따른 실리콘 코어 로드의 온도 분포도를 나타낸 것이다.
이하, 첨부된 도면을 참조하여 전술한, 그리고 추가적인 양상을 기술되는 바람직한 실시예를 통하여 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 설명하기로 한다.
도 1 은 본 발명에 따른 폴리 실리콘 증착장치의 단면도를 도시한 실시예이고, 도 2 는 도1에 따른 폴리 실리콘 증착장치의 제1 발열체(123a)를 포함하는 AA 단면도이다.
먼저 도 1에 도시한 바와 같이, 본 발명에 따른 폴리 실리콘 증착장치(100)는 크게 원료가스가 투입되는 가스 투입구(111) 및 외부로 가스를 배출하는 가스 배출구(112)가 형성되는 반응기(110)와, 반응기(110)의 내부공간에 설치되며 가스 투입구(111)를 통해 공급되는 원료가스를 열분해하여 폴리 실리콘을 증착하는 폴리 실리콘 증착부(120)를 포함한다. 본 명세서에서 원료가스는 염화실란(chlorosilane)이나 모노실란(monosilane)이며, 원료가스는 수소와 같은 캐리어 가스와 혼합되어 공급된다.
폴리 실리콘 증착부(120)는 일 실시예에 있어서, 전극부(121)와, 실리콘 코어 로드부(122)와, 실리콘 코어 로드 가열부(123)와, 복수개의 가스 분사 노즐(124)를 포함하는 가스 분사부를 포함한다.
전극부(121)는 실리콘 코어 로드부(122)로 전류를 공급하기 위한 것으로, 반응기(110)의 바닥에 설치되며 소정 거리만큼 이격되게 설치되는 제1 전극(121a)과 제2 전극(121b)을 포함한다. 여기서, 제1 전극(121a)과 제2 전극(121b)은 그라파이트(graphite) 재질의 전극으로 구현될 수 있다. 또한, 제1 전극(121a)과 제2 전극(121b)은 반응기(110) 바닥과 절연되게 설치된다.
실리콘 코어 로드부(122)는 전극부(121)의 제1 전극(121a)으로부터 전류를 입력받아 전극부(121)의 제2 전극(121b)으로 전류를 통전시키면서 자체 발열하면서, 원료가스에서 분해된 실리콘 가스를 증착시키는 역할을 한다. 실리콘 코어 로드부(122)는 전극부(121)의 제1 전극(121a)과 연결되며 반응기(110)의 바닥과 수직한 방향으로 설치되는 제1 실리콘 코어 로드(122a)와, 전극부(121)의 제2 전극(121b)과 연결되며 반응기(110)의 바닥과 수직한 방향으로 설치되는 제2 실리콘 코어 로드(122b)와, 제1 실리콘 코어 로드(122a) 및 제2 실리콘 코어 로드(122b)를 연결하는 제3 실리콘 코어 로드(122c)를 포함한다.
실리콘 코어 로드 가열부(123)는 실리콘 코어 로드부(122)에 전류를 입력하기 전에 실리콘 코어 로드부(122)를 가열하는 역할을 한다. 실리콘 코어 로드 가열부(123)는 제1 실리콘 코어 로드(122a)로부터 소정 간격만큼 떨어져 제1 실리콘 코어 로드(122a)를 둘러싸며 내부에 발열수단(1231)이 설치되는 제1 발열체(123a)와, 제2 실리콘 코어 로드(122b)로부터 소정 간격만큼 떨어져 제2 실리콘 코어 로드(122b)를 둘러싸며 내부에 발열수단(1231)이 설치되는 제2 발열체(123b)를 포함한다.
발열수단(1231)은 SiC(탄화규소), MoSi2(규화몰리브덴), 그라파이트 등 세라믹 히터 또는 Fe-Cr(철-크롬)계, Ni-Cr(니켈-크롬)계, Fe-Cr-Al(철-크롬-알루미늄)계 금속 히터로 구현될 수 있다.
여기서, 도 2를 참조하면, 일실시예에 있어서, 제1 발열체(123a)의 내부에 형성되는 발열수단(1231)은 제1 발열체(123a)의 높이 방향으로 설치되는 다수개의 히터를 포함하되, 다수개의 히터는 제1 발열체(123a)의 둘레에 일정한 간격, 예컨대 60도 간격으로 6개의 히터가 설치될 수 있고, 90도 간격으로 4개의 히터가 설치될 수 있다.
다시 도 1을 참조하면, 복수개의 가스 분사 노즐(124)은 반응기(110)의 가스 투입구(111)를 통해 제1, 제2 발열체(123a, 123b) 내부에 투입되는 원료가스가 각각 제1, 제2 실리콘 코어 로드(122a, 122b)를 향하여 흐르도록 제1, 제2 발열체(123a, 123b)의 표면에 형성된다. 복수개의 가스 분사 노즐(124)을 통해 분사되는 원료가스는 열분해되고, 분해된 실리콘 기체는 제1, 제2 실리콘 코어 로드(122a, 122b)에 증착된다. 원료가스는 제1, 제2 발열체(123a, 123b) 내부에 투입되어 발열수단(1231)에 의해 예열되어 제1, 제2 실리콘 코어 로드(122a, 122b)로 분사됨으로 인해, 본 발명의 폴리 실리콘 증착장치는 원료가스의 열분해가 빠르게 일어날 수 있다.
도 1과 도 2를 참조하면, 일실시예에 있어서, 복수개의 가스 분사 노즐(124)은 제1 발열체(123a)의 표면의 높이 방향으로 일정한 간격만큼 떨어진 위치에 설치되는 적어도 2 개이상의 노즐(124)을 포함하는 다수의 노즐군(1241)을 포함한다. 또한, 복수개의 가스 분사 노즐(124)에 포함되는 다수의 노즐군(1241)은 제1 발열체(123a)의 표면 둘레에 일정한 간격으로 설치된다. 이에 따라 가스 분사 노즐(124)이 제1 실리콘 코어 로드(122a)와 매우 가까운 위치에 골고루 형성되어 실리콘 증착효율이 높다. 즉, 가스 분사 노즐(124)에서 빠져나온 원료가스에서 분해된 실리콘 기체는 제1 실리콘 코어 로드(122a)에 바로 증착되어 실리콘 로드(210)를 형성한다.
또한, 제1 발열체(123a)의 표면 둘레에 일정한 간격으로 설치 노즐군(1241)은, 제1 발열체(123a)의 둘레에 일정한 간격으로 설치되는 다수개의 히터(1231)들 사이에 설치된다. 이에 따라 다수개의 히터(1231)들의 복사열이 가스 분사 노즐(124)을 통해 제1 실리콘 코어 로드(122a)로 전달되어 원료가스에서 분해된 실리콘 기체가 제1 실리콘 코어 로드(122a)에 불균일하게 증착되는 것을 방지할 수 있다.
도 1을 참조하면, 반응기(110)는 내부에 제1 냉각로드(113a)가 설치된 바닥 냉각체(113)와, 바닥 냉각체(113)의 일 단에 제1,제2 실리콘 코어 로드(122a, 112b)와 평행한 방향으로 설치되며 내부에 제2 냉각로드(114a)가 형성된 하부 냉각체(114)와, 하부 냉각체(114)의 상부면에 설치되며 내부에 각각 제3 냉각로드(115a)가 형성되는 상부 냉각체(115)와, 상부 냉각체(116) 상부에 설치되며 내부에 제4 냉각로드(116a)가 형성된 돔 냉각체(116)를 포함한다.
도 1에는 도시되지 않았지만, 반응기(110)는 제1 내지 제 4 냉각로드(113a∼116a) 각각에 냉각수를 공급하는 냉각수 공급장치를 포함한다. 바람직한 실시예에 있어서, 냉각수 공급장치는 원료가스가 반응기 내부로 공급되는 시점부터 하부 냉각체(114)의 제2냉각로드(114a)에 가장 낮은 온도를 갖는 냉각수를 공급한다.
대부분의 공급된 원료 가스는 열분해에 되어 제1, 제2 실리콘 코어 로드(112a, 112b)에 증착되지만, 일부 실리콘 분말은 실리콘 제1, 제2 실리콘 코어 로드(112a, 112b)에 증착되지 않고 반응기(110) 내부에 증착되기도 한다. 실리콘 분말의 증착 반응은 온도가 낮은 곳일수록 용이하게 일어나므로, 하부 냉각체(114)의 온도를 가장 낮게 제어하여 하부 냉각체(114)에 실리콘 분말을 증착하도록 유도한다. 돔 냉각체(116)나 상부 냉각체(115)에 실리콘 분말이 많이 증착될 경우, 실리콘 로드(210)의 품질에 악영향을 미칠 수 있고, 바닥 냉각체(113)에 실리콘 분말이 많이 증착될 경우에는 가스 배출구(112)을 막을 위험이 있기 때문이다.
일 실시예에 있어서, 본 발명에 따른 폴리 실리콘 증착장치(100)는 반응기(110)의 내부를 외부에서 확인할 수 있도록 해주는 투시창(117)을 더 포함한다. 투시창(117)은 실리콘 로드(도 2의 도면부호 210)의 직경을 측정하기 위한 것으로, 일례로 상부 냉각체(115)에 설치될 수 있다. 또한, 투시창(117)에 실리콘 분말이 많이 증착되어 내부를 확인하기 어려울 수 있으므로 투시창(117)의 유리에 열선을 부착하여 온도를 높여 실리콘 분말의 증착을 최대한 억제하여 내부 확인을 용이하게 할 수 있다.
도 3 은 본 발명에 따른 실리콘 코어 로드의 온도 분포도를 나타낸 것이다.
통상적으로, 실리콘 코어 로드(122a)의 표면 온도가 고르게 분포되어야 원료가스에서 분해된 실리콘 기체가 실리콘 코어 로드(122a)에 증착되는 증착효율이 높아진다. 도 3은 본 발명에 따른 폴리 실리콘 증착장치를 이용하여 실리콘 코어 로드(122a)의 표면 온도 분포를 실험한 결과로서, 히터(1231)와 실리콘 코어 로드(122a) 사이의 온도분포(31)는 850℃∼950℃ 범위 내에 있다. 이에 따라 본 발명에 따른 폴리 실리콘 증착장치는 원료가스에서 분해된 실리콘 기체가 실리콘 코어 로드(122a)에 증착되는 증착효율을 높일 수 있는 것으로 예상된다.
지금까지, 본 명세서에는 본 발명이 하는 기술 분야에서 통상의 지식을 지닌 자가 본 발명을 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예들을 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에 통상의 지식을 지닌 자라면 본 발명의 실시예들로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해서만 정해져야 할 것이다.

Claims (6)

  1. 원료가스가 투입되는 가스 투입구 및 외부로 가스를 배출하는 가스 배출구가 형성되는 반응기의 내부공간에 설치되며 상기 원료가스를 열분해하여 폴리 실리콘을 증착하는 폴리 실리콘 증착장치에 있어서, 상기 폴리 실리콘 증착장치가 :
    상기 반응기의 바닥에 설치되며, 소정 거리만큼 이격되게 설치되는 제1 전극과 제2 전극을 포함하는 전극부;
    상기 전극부의 제1 전극과 연결되며 상기 반응기의 바닥과 수직한 방향으로 설치되는 제1 실리콘 코어 로드와, 상기 전극부의 제2 전극과 연결되며 상기 반응기의 바닥과 수직한 방향으로 설치되는 제2 실리콘 코어 로드와, 상기 제1 실리콘 코어 로드 및 제2 실리콘 코어 로드를 연결하는 제3 실리콘 코어 로드를 포함하는 실리콘 코어 로드부;
    상기 제1 실리콘 코어 로드로부터 소정 간격만큼 떨어져 상기 제1 실리콘 코어 로드를 둘러싸며 내부에 발열수단이 설치되는 제1 발열체와, 상기 제2 실리콘 코어 로드로부터 소정 간격만큼 떨어져 상기 제2 실리콘 코어 로드를 둘러싸며 내부에 발열수단이 설치되는 제2 발열체를 포함하는 실리콘 코어 로드 가열부; 및
    상기 반응기의 가스 투입구를 통해 상기 제1, 제2 발열체 내부에 투입되는 원료가스가 각각 상기 제1, 제2 실리콘 코어 로드를 향하여 흐르도록 상기 제1, 제2 발열체의 표면에 형성되는 복수개의 가스 분사 노즐;
    를 포함하는 것을 특징으로 하는 폴리 실리콘 증착장치.
  2. 제 1 항에 있어서,
    상기 제1, 제2 발열체의 내부에 형성되는 발열수단이,
    상기 제1, 제2 발열체의 높이 방향으로 설치되는 다수개의 히터를 포함하되,
    상기 다수개의 히터는 상기 제1, 제2 발열체의 둘레에 일정한 간격으로 설치되는 것을 특징으로 하는 폴리 실리콘 증착장치.
  3. 제 1 항에 있어서,
    상기 복수개의 가스 분사 노즐이:
    상기 제1, 제2 발열체의 표면의 높이 방향으로 일정한 간격만큼 떨어진 위치에 설치되는 적어도 2 개이상의 노즐을 포함하는 다수의 노즐군을 포함하되,
    상기 다수의 노즐군은 상기 제1, 제2 발열체의 표면 둘레에 일정한 간격으로 설치되는 것을 특징으로 하는 폴리 실리콘 증착장치.
  4. 제 3 항에 있어서,
    상기 제1, 제2 발열체의 표면에 설치되는 노즐군은,
    상기 제1, 제2 발열체의 둘레에 일정한 간격으로 설치되는 다수개의 히터들 사이에 설치되는 것을 특징으로 하는 폴리 실리콘 증착장치.
  5. 제 1 항에 있어서, 상기 반응기가:
    내부에 제1 냉각로드가 설치된 바닥 냉각체;
    상기 바닥 냉각체의 일 단에 수직한 방향으로 설치되며 내부에 제2 냉각로드가 형성된 하부 냉각체;
    상기 하부 냉각체의 상부면에 설치되며 내부에 각각 제3 냉각로드가 형성되는 상부 냉각체;
    상기 상부 냉각체의 상부면에 설치되며 내부에 제4 냉각로드가 형성된 돔 냉각체; 및
    상기 제1 내지 제 4 냉각로드 각각에 냉각수를 공급하는 냉각수 공급장치;를 포함하되,
    여기서, 상기 냉각수 공급장치는 원료가스가 반응기 내부로 공급되는 시점부터 상기 하부 냉각체의 제2 냉각로드에 가장 낮은 온도를 갖는 냉각수를 공급하는 것을 특징으로 하는 폴리 실리콘 증착장치.
  6. 제 5 항에 있어서, 상기 반응기가:
    상기 반응기의 내부를 외부에서 확인할 수 있도록 해주는 투시창; 및
    상기 투시창에 부착되는 열선;
    을 더 포함하는 것을 특징으로 하는 폴리 실리콘 증착장치.
PCT/KR2009/006974 2008-12-31 2009-11-25 폴리 실리콘 증착장치 WO2010076974A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801007471A CN101919028B (zh) 2008-12-31 2009-11-25 多晶硅沉积装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080137844A KR100921210B1 (ko) 2008-12-31 2008-12-31 폴리 실리콘 증착장치
KR10-2008-0137844 2008-12-31

Publications (2)

Publication Number Publication Date
WO2010076974A2 true WO2010076974A2 (ko) 2010-07-08
WO2010076974A3 WO2010076974A3 (ko) 2010-08-19

Family

ID=41572212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006974 WO2010076974A2 (ko) 2008-12-31 2009-11-25 폴리 실리콘 증착장치

Country Status (3)

Country Link
KR (1) KR100921210B1 (ko)
CN (1) CN101919028B (ko)
WO (1) WO2010076974A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030330A (zh) * 2010-11-12 2011-04-27 天津大学 带有出口气体收集器的多晶硅还原炉

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439326B1 (ko) * 2010-08-31 2014-09-11 주식회사 엘지화학 폴리실리콘 제조용 cvd 반응기의 노즐 겸용 척 및 이를 포함하는 폴리실리콘 제조용 cvd 반응기
KR101133151B1 (ko) * 2011-10-19 2012-04-06 주식회사 대산머트리얼즈 증착 공정용 전극 제조 방법
CN103482629B (zh) * 2012-06-08 2016-01-06 半材料株式会社 多晶硅沉积装置
CN115744913A (zh) * 2022-11-21 2023-03-07 青海黄河上游水电开发有限责任公司新能源分公司 多晶硅还原炉及其底盘和启动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980073303A (ko) * 1997-03-13 1998-11-05 이서봉 발열반응을 이용한 다결정 실리콘의 제조 방법
US20020014197A1 (en) * 1997-12-15 2002-02-07 Keck David W. Chemical vapor deposition system for polycrystalline silicon rod production
KR20050062994A (ko) * 2003-12-19 2005-06-28 주식회사 실트론 웨이퍼의 기상 화학 증착장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278611A (ja) * 2000-03-31 2001-10-10 Mitsubishi Materials Polycrystalline Silicon Corp 多結晶シリコンの製造方法および装置
WO2006110481A2 (en) * 2005-04-10 2006-10-19 Rec Silicon Inc Production of polycrystalline silicon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980073303A (ko) * 1997-03-13 1998-11-05 이서봉 발열반응을 이용한 다결정 실리콘의 제조 방법
US20020014197A1 (en) * 1997-12-15 2002-02-07 Keck David W. Chemical vapor deposition system for polycrystalline silicon rod production
KR20050062994A (ko) * 2003-12-19 2005-06-28 주식회사 실트론 웨이퍼의 기상 화학 증착장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030330A (zh) * 2010-11-12 2011-04-27 天津大学 带有出口气体收集器的多晶硅还原炉

Also Published As

Publication number Publication date
CN101919028A (zh) 2010-12-15
WO2010076974A3 (ko) 2010-08-19
CN101919028B (zh) 2012-06-20
KR100921210B1 (ko) 2009-10-13

Similar Documents

Publication Publication Date Title
WO2010076973A2 (ko) 폴리 실리콘 증착장치
CA1083728A (en) Method and apparatus for manufacturing high-purity silicon rods
WO2010076974A2 (ko) 폴리 실리콘 증착장치
US8399072B2 (en) Process for improved chemcial vapor deposition of polysilicon
JP5444839B2 (ja) トリクロロシラン製造装置及び製造方法
US6365225B1 (en) Cold wall reactor and method for chemical vapor deposition of bulk polysilicon
SK5872002A3 (en) Method and apparatus for chemical vapor deposition of polysilicon
WO1999031013A1 (en) Chemical vapor deposition system for polycrystalline silicon rod production
CN102140678B (zh) 生产均匀多晶硅棒的方法、装置和cvd-西门子系统
KR20120119011A (ko) 유동층 반응기
JP5859569B2 (ja) 四塩化ケイ素をトリクロロシランに転化するための方法および装置
KR101329035B1 (ko) 유동층 반응기
KR101048006B1 (ko) 폴리실리콘 제조장치 및 제조방법
KR101850830B1 (ko) 입상 폴리실리콘 제조용 반응기 및 제조 방법
CN108662901A (zh) 用于陶瓷的烧结窑炉
WO2011087186A1 (ko) 폴리실리콘 증착장치
US10363534B2 (en) Fluidized bed reactor for producing polycrystalline silicon granules and method for the assembly of such a fluidized bed reactor
KR101039659B1 (ko) 폴리실리콘 증착장치
KR101034030B1 (ko) 폴리 실리콘 증착장치
KR101033165B1 (ko) 폴리실리콘 증착장치
RU2278076C2 (ru) Устройство для гидрирования тетрахлорида кремния
KR101033163B1 (ko) 폴리실리콘 증착장치
WO2015174705A1 (ko) 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
WO2020004779A1 (ko) 고주파 유도 가열을 이용한 수소 생산용 개질 반응 장치
WO2012063431A1 (ja) 多結晶シリコンの製造方法および多結晶シリコンの製造システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100747.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836295

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.10.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09836295

Country of ref document: EP

Kind code of ref document: A2