WO2010076858A1 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
WO2010076858A1
WO2010076858A1 PCT/JP2009/061944 JP2009061944W WO2010076858A1 WO 2010076858 A1 WO2010076858 A1 WO 2010076858A1 JP 2009061944 W JP2009061944 W JP 2009061944W WO 2010076858 A1 WO2010076858 A1 WO 2010076858A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchanger
heat pump
pump type
water heater
Prior art date
Application number
PCT/JP2009/061944
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 吉井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/127,345 priority Critical patent/US20110214444A1/en
Priority to EP09836198.3A priority patent/EP2375195B1/en
Publication of WO2010076858A1 publication Critical patent/WO2010076858A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Definitions

  • the present invention relates to a heat pump type water heater employing a reverse type defrost system.
  • JP 2004-218861 A page 3 to page 4, FIG. 2, FIG. 4 to FIG. 5
  • a part of the high-pressure side refrigerant pipe and a part of the hot water supply water pipe may be placed in close contact with each other on the drain pan in order to efficiently transfer heat.
  • the mounting structure of the refrigerant pipe and the water pipe is complicated.
  • the drain water drainage path generated during defrost operation is hindered by the routed refrigerant pipe and water pipe.
  • drain accumulation may occur due to the difficulty of securing the gradient of the water distribution route.
  • the present invention has been made to solve such problems, and a first object of the present invention is to obtain a heat pump type water heater having a drain pan freeze prevention system having a simple structure with a small number of parts.
  • the second object of the present invention is to obtain a heat pump type water heater provided with a drain pan freezing prevention system in which drain accumulation is unlikely to occur without obstructing the drainage path of drain water generated during defrost operation.
  • the heat pump water heater includes a compressor, a four-way valve that switches the flow direction of the refrigerant, a water heat exchanger that exchanges heat between the refrigerant and water, an expansion mechanism that adjusts the flow rate of the refrigerant and depressurizes, and the air and the refrigerant are heated.
  • the control unit is based on preset information during defrost operation.
  • the four-way valve is switched to switch the flow direction of the refrigerant in the refrigeration cycle, and the path switching valve is switched to allow hot water in the hot water storage tank to flow to the water flow pipe of the air heat exchanger
  • the hot circulating water in the hot water storage tank is circulated to the lower path of the air heat exchanger during the defrost operation, and the drain water generated in the upper stage of the air heat exchanger is heated and poured into the drain pan.
  • the drain pan is prevented from freezing, and there is an effect that the mounting structure is simplified without arranging a part of the high-pressure side refrigerant pipe or a part of the hot water supply water pipe on the drain pan.
  • the drain water does not obstruct the drain water drainage path and the drain water drainage is smooth. Therefore, there is an effect of suppressing that the drain water in the drain pool is cooled and frozen during the heating operation.
  • FIG. FIG. 1 is a circuit diagram at the time of defrosting operation of the heat pump type water heater according to Embodiment 1 of the present invention.
  • the heat pump type water heater according to Embodiment 1 of the present invention includes a compressor 1, a four-way valve 2 for switching a refrigerant circuit during defrost operation, and water heat exchange in which water and refrigerant exchange heat.
  • the apparatus 3 includes an electronic expansion valve 4 that adjusts the flow rate of the refrigerant and depressurizes, and an air heat exchanger 5 that exchanges heat between the air and the refrigerant through a refrigerant pipe 6 in order.
  • a water circuit 10 between the water heat exchanger 3 and the hot water storage tank 7 is connected by a water outlet side connection joint 8 and a water inlet side connection joint 9, and water is circulated by a pump 11. Between the water inlet side connection joint 9 and the water heat exchanger 3, the water circuit is connected to the water heat exchanger 3 during heating operation, and to the water heat exchanger 3 via the air heat exchanger lower path 5a during defrost operation.
  • a three-way valve 12 for switching to 10 is provided.
  • the three-way valve 12 constitutes a path switching valve.
  • the air heat exchanger lower stage path 5a constitutes a water flow path pipe.
  • FIG. 2 is a block diagram showing a configuration relating to control of operation of the heat pump type water heater according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration relating to control of operation of the heat pump type water heater according to Embodiment 1 of the present invention.
  • reference numeral 21 denotes a control unit, which is constituted by a microcomputer, a DSP, or the like.
  • a memory 22 stores various data and tables.
  • Reference numeral 23 denotes a ROM that stores programs executed by the control unit 21 and fixed data.
  • Reference numeral 24 denotes an input / output bus, and information on all devices is exchanged with the control unit 21 via the input / output bus 24.
  • Reference numeral 25 denotes a four-way valve drive unit that drives switching of the four-way valve 2 based on a command from the control unit 24.
  • Reference numeral 26 denotes a three-way valve drive unit that drives switching of the three-way valve 12 based on a command from the control unit 24.
  • a communication unit 27 receives setting information from a remote controller (hereinafter also referred to as a remote controller) 28 and sends the setting information to the control unit via the input / output bus 24.
  • the air heat exchanger lower stage path 5a constitutes a water passage pipe.
  • FIG. 3 is a flowchart showing the operation of the control unit 21 relating to the control of the operation of the heat pump type water heater according to Embodiment 1 of the present invention.
  • the operation of the control unit 21 in the first embodiment will be described with reference to FIGS. While the power switch of the water heater is turned on, the operation of the water heater is executed, but this is not described here because it is irrelevant to the present application.
  • the processing shown in FIG. 3 is periodically started with a relatively short cycle (for example, a cycle of several milliseconds to several seconds).
  • the control unit 21 performs initial value setting such as clearing of the timer value (step S301), and then receives from the remote controller 28 (step S302).
  • the control unit 21 examines the content received from the remote controller 28 and determines whether or not there is a defrost operation start command (step S303).
  • the air heat exchanger 5 that exchanges heat between the air acting as an evaporator and the refrigerant has a low temperature of 0 ° C. or lower, and the air that passes through the air heat exchanger 5 Is cooled, moisture in the air is solidified on the surface of the air heat exchanger 5 to become frost and block the air passage.
  • the defrost operation when the defrost operation start command signal is transmitted from the remote controller 28 based on the operation of the remote controller by the user, and the control unit 21 receives this command via the communication unit 27 and the input / output bus 24 in sequence, The unit 21 recognizes that the defrosting operation is started by this command signal, and controls the four-way valve driving unit 25 and the three-way valve driving unit 26 based on the defrosting operation information set in the memory 22 in advance.
  • the three-way valve 12 is switched (steps S304 to S305).
  • control part 21 drives the compressor 1, and starts a defrost driving
  • the timer is counted and the defrost operation is continuously executed until a predetermined time elapses (steps S307 to S308).
  • the frost attached to the surface of the air heat exchanger is warmed, becomes drain water, falls on the drain pan 13 while being transmitted through the fins, flows through the drain groove of the drain pan 13 and is drained from the drain port to the outside of the machine.
  • control unit 21 switches based on the four-way valve 2 and the three-way valve 12, further stops the compressor and stops the defrost operation (step S309), and ends the process. Thereafter, the water heater is operated.
  • the drain water flowing down the fins is moved to the lower stage of the air heat exchanger 5. It is possible to prevent the drain water from freezing on the drain pan 13 by heating with
  • the defrost operation is instructed by the remote controller 28 has been described, but it is needless to say that the instruction may be performed by operating the switch on the operation panel on the main body side of the water heater.
  • FIG. 4 is a flowchart showing the operation of the control unit regarding the control of the operation of the heat pump type hot water heater according to Embodiment 2 of the present invention. 4 is the same as the flow in FIG. 3 except that steps S301 to S302 in FIG. 3 are replaced with steps S401 to S402. Next, operation
  • the control unit 21 calculates the operating efficiency of the heat pump water heater (step S401).
  • a known method is used as a method for calculating the operating efficiency.
  • the operating efficiency is calculated based on the rotational speed of the compressor 1.
  • the rotation speed of the compressor 1 is detected by attaching a rotation detector (not shown) to the rotation shaft of the compressor 1. Or you may calculate the rotation speed of the compressor 1 based on the output of the inverter output current detector which is not illustrated using the current detector (current transformer etc.) which is not illustrated.
  • the control unit 21 compares the calculated driving efficiency with a preset reference value (step S402).
  • step S401 If the operation efficiency is equal to or higher than the reference value, the process returns to step S401 to repeat the calculation of the operation efficiency and the comparison with the reference value.
  • the comparison in step S402 when the operation efficiency falls below a preset reference value, the operation is performed in the same manner as in step S304 and subsequent steps in FIG. Accordingly, since the defrost operation is automatically performed, the user does not need to perform an operation for instructing the defrost operation. In addition, since the defrost operation is surely executed, efficient operation is always possible.
  • FIG. FIG. 5 is an exploded perspective view of a heat pump type water heater according to Embodiment 2 of the present invention.
  • the water heat exchanger 3, the air heat exchanger lower-stage path 5 a, and the water inlet side connection joint 9 are provided in the vicinity of the three-way valve 12 used for switching the water circuit during the defrost operation. It is possible to reduce the manufacturing cost by shortening the pipe length and making the structure simple.
  • the three-way valve 12 used for switching the water circuit during the defrost operation on the inlet side of the water heat exchanger 3, the high temperature circulated from the hot water storage tank 7 in the water heat exchanger 3 as an evaporator during the defrost operation. It becomes possible to supply the air heat exchanger to the lower stage path 5a without lowering the temperature of the water.
  • the fins in the path portion through which the refrigerant flows are eliminated from cutting, so that the fins around the path portion where the low-temperature refrigerant flows and becomes an evaporator during heating operation. Since it improves, it is possible to suppress the growth of frost.

Abstract

Provided is a heat pump type water heater, which has a small number of parts, which has a simple structure but can prevent the freeze of a drain pan, and which has a drain residual hardly left in a drain pan.  The heat pump type water heater comprises a refrigerating cycle, a water circuit and a three-way valve (12).  The refrigerating cycle is constituted by sequentially connecting, with use of piping, a compressor (1), a four-way valve (2) for switching the flow direction of a coolant, a water heat exchanger (3) for causing the coolant and the water to exchange heat, an expansion valve (4) for adjusting the flow rate of the coolant thereby lowering the pressure, and an air heat exchanger (5) for causing the air and the coolant to exchange the heat.  The water circuit is constituted by sequentially connecting the water heat exchanger (3), a hot water tank (7) for reserving the water heated by the water heat exchanger (3), and a pump (11).  The three-way valve (12) is so interposed between the pump (11) and the water heat exchanger (3) that the water circuit may flow to an air heat exchanger lower-stage path (5a) and may return to the water heat exchanger (3).  Further comprised is a control unit for switching the three-way valve (12) of the water circuit, thereby causing the hot water in the hot water tank to flow to the air heat exchanger lower-stage path (5a).

Description

ヒートポンプ式給湯器Heat pump water heater
 本発明はリバース式のデフロスト方式を採用したヒートポンプ式給湯器に関するものである。 The present invention relates to a heat pump type water heater employing a reverse type defrost system.
 リバース式のデフロスト方式を採用する従来のヒートポンプ式給湯器においては、低外気温時の温度条件下で除霜運転機能により蒸発器の表面から滴り落ちたドレン水がドレンパン上で凍結・成長することを、ヒートポンプサイクルの高圧側冷媒配管の一部または給湯用水配管の一部をドレンパン上に配策することで防止する方式が提案されている(例えば、特許文献1参照)。 In a conventional heat pump water heater that uses a reverse type defrost system, the drain water dripped from the surface of the evaporator by the defrosting operation function under the temperature conditions at low outside temperatures freezes and grows on the drain pan. A method has been proposed in which a part of the high-pressure side refrigerant pipe of the heat pump cycle or a part of the hot water supply water pipe is arranged on the drain pan (see, for example, Patent Document 1).
特開2004-218861号公報(第3頁~第4頁、図2、図4~図5)JP 2004-218861 A (page 3 to page 4, FIG. 2, FIG. 4 to FIG. 5)
 しかし、上記従来のヒートポンプ式給湯器のドレンパン凍結防止方式では、ドレンパン上に、高圧側冷媒配管の一部や給湯用水配管の一部を効率よく熱伝達するために密着させて配策することが重要であるが、冷媒配管や水配管の取付構造が複雑になるという問題がある。また、高圧側冷媒配管の一部や給湯用水配管の一部がドレンパン上に配策されていることにより、デフロスト運転時に発生するドレン水の排水経路が配策した冷媒配管や水配管によって阻害されたり、配水経路の勾配の確保が困難となったりして、ドレン溜りが発生する可能性があるという問題があった。 However, in the conventional heat pump type hot water heater drain pan freezing prevention method, a part of the high-pressure side refrigerant pipe and a part of the hot water supply water pipe may be placed in close contact with each other on the drain pan in order to efficiently transfer heat. Although important, there is a problem that the mounting structure of the refrigerant pipe and the water pipe is complicated. In addition, because part of the high-pressure side refrigerant pipe and part of the hot water supply water pipe are routed on the drain pan, the drain water drainage path generated during defrost operation is hindered by the routed refrigerant pipe and water pipe. There is a problem that drain accumulation may occur due to the difficulty of securing the gradient of the water distribution route.
 本発明はかかる問題点を解決するためになされたもので、本発明の第1の目的は部品点数が少なく簡単な構造のドレンパン凍結防止方式を備えたヒートポンプ式給湯器を得ることにある。
 本発明の第2の目的は、デフロスト運転時に発生するドレン水の排水経路を阻害することなくドレン溜りが発生しにくいドレンパン凍結防止方式を備えたヒートポンプ式給湯器を得ることにある。
The present invention has been made to solve such problems, and a first object of the present invention is to obtain a heat pump type water heater having a drain pan freeze prevention system having a simple structure with a small number of parts.
The second object of the present invention is to obtain a heat pump type water heater provided with a drain pan freezing prevention system in which drain accumulation is unlikely to occur without obstructing the drainage path of drain water generated during defrost operation.
 本発明に係るヒートポンプ式給湯器は、圧縮機、冷媒の流れ方向を切り換える四方弁、冷媒と水が熱交換する水熱交換器、冷媒の流量を調整し減圧する膨張機構、空気と冷媒が熱交換する空気熱交換器を順次配管で環状に接続した冷凍サイクルと、水熱交換器、水熱交換器で加熱された水を貯留する貯湯タンク、ポンプを順次配管で環状に接続した水回路と、空気熱交換器の下段に設けられた水流路配管と、ポンプと水熱交換器の間の水回路に設けられた経路切替弁と、経路切替弁と水流路配管の入口との間と接続し、水流路配管の出口を経路切替弁と水熱交換器の入口との間の水回路に接続して成るバイパス回路と、四方弁及び経路切替弁を切替え制御する制御部と、を備え、制御部は、デフロスト運転時に、予め設定された情報に基づいて四方弁を切替えて冷凍サイクルの冷媒の流れ方向を切換えさせるとともに、経路切替弁を切替えて貯湯タンクの高温水をバイパス回路経由で空気熱交換器の水流路配管に流すようにしたものである。 The heat pump water heater according to the present invention includes a compressor, a four-way valve that switches the flow direction of the refrigerant, a water heat exchanger that exchanges heat between the refrigerant and water, an expansion mechanism that adjusts the flow rate of the refrigerant and depressurizes, and the air and the refrigerant are heated. A refrigeration cycle in which air heat exchangers to be replaced are sequentially connected in a ring, a water heat exchanger, a hot water storage tank for storing water heated by the water heat exchanger, and a water circuit in which pumps are connected in a ring in a sequential manner , A water flow pipe provided in the lower stage of the air heat exchanger, a path switching valve provided in a water circuit between the pump and the water heat exchanger, and a connection between the path switching valve and the inlet of the water flow pipe A bypass circuit formed by connecting the outlet of the water passage pipe to a water circuit between the path switching valve and the inlet of the water heat exchanger, and a control unit that switches and controls the four-way valve and the path switching valve, The control unit is based on preset information during defrost operation. The four-way valve is switched to switch the flow direction of the refrigerant in the refrigeration cycle, and the path switching valve is switched to allow hot water in the hot water storage tank to flow to the water flow pipe of the air heat exchanger via the bypass circuit. .
 本発明に係るヒートポンプ式給湯器においては、デフロスト運転時に貯湯タンクの高温の循環水を空気熱交換器の下段パスに循環させ、空気熱交換器上段にて発生したドレン水を加熱しドレンパンに流し込むことによりドレンパンの凍結を防止するので、ドレンパン上に高圧側冷媒配管の一部や給湯用水配管の一部を配策することなく、取付構造が簡単となる効果がある。
 また、ドレンパン上に高圧側冷媒配管の一部や給湯用水配管の一部を配策しないため、ドレン水の排水経路を阻害することなくドレン溜りが発生しにくくドレン水の排水がスムースであることから、暖房運転中にドレン溜りのドレン水が冷却されて凍結することを抑制する効果がある。
In the heat pump type water heater according to the present invention, the hot circulating water in the hot water storage tank is circulated to the lower path of the air heat exchanger during the defrost operation, and the drain water generated in the upper stage of the air heat exchanger is heated and poured into the drain pan. Thus, the drain pan is prevented from freezing, and there is an effect that the mounting structure is simplified without arranging a part of the high-pressure side refrigerant pipe or a part of the hot water supply water pipe on the drain pan.
In addition, because part of the high-pressure side refrigerant pipe and part of the hot water supply water pipe are not arranged on the drain pan, the drain water does not obstruct the drain water drainage path and the drain water drainage is smooth. Therefore, there is an effect of suppressing that the drain water in the drain pool is cooled and frozen during the heating operation.
本発明の実施の形態1に係るヒートポンプ式給湯器のデフロスト運転時の回路図である。It is a circuit diagram at the time of the defrost operation | movement of the heat pump type water heater which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ式給湯器の運転の制御に関する構成を示すブロック図である。It is a block diagram which shows the structure regarding control of the driving | operation of the heat pump type water heater which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ式給湯器の運転の制御に関する制御部の動作を示すフローチャートである(その1)。It is a flowchart which shows operation | movement of the control part regarding control of the driving | operation of the heat pump type water heater which concerns on Embodiment 1 of this invention (the 1). 本発明の実施の形態2に係るヒートポンプ式給湯器の運転の制御に関する制御部の動作を示すフローチャートである(その2)。It is a flowchart which shows operation | movement of the control part regarding control of the driving | operation of the heat pump type water heater which concerns on Embodiment 2 of this invention (the 2). 本発明の実施の形態2に係るヒートポンプ式給湯器の分解斜視図である。It is a disassembled perspective view of the heat pump type water heater which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は本発明の実施の形態1に係るヒートポンプ式給湯器のデフロスト運転時の回路図である。
 図1に示すように、本発明の実施の形態1に係るヒートポンプ式給湯器は、圧縮機1、デフロスト運転時に冷媒回路を切り換えるための四方弁2、水と冷媒が熱交換をする水熱交換器3、冷媒の流量を調整し減圧する電子膨張弁4、空気と冷媒が熱交換をする空気熱交換器5を順次冷媒配管6で接続して構成されている。
 水熱交換器3と貯湯タンク7間の水回路10を水出口側接続ジョイント8、水入口側接続ジョイント9にて接続し、ポンプ11によって水を循環させる。水入口側接続ジョイント9と水熱交換器3の間に、暖房運転時は水熱交換器3へ、デフロスト運転時は空気熱交換器下段パス5aを経由し水熱交換器3へ繋がる水回路10に切替える三方弁12を設ける。なお、三方弁12は経路切替弁を構成する。また、空気熱交換器下段パス5aは水流路配管を構成する。また、三方弁12(経路切替弁)と空気熱交換器下段パス5a(水流路配管)の入口との間と接続し、空気熱交換器下段パス5a(水流路配管)の出口を三方弁12(経路切替弁)と水熱交換器3の入口との間の水回路10に接続してバイパス回路14を構成する。
 また、図1における太い矢印は水(または湯)の流れる方向を示しており、破線は冷媒の流れる方向を示している。
 図2は本発明の実施の形態1に係るヒートポンプ式給湯器の運転の制御に関する構成を示すブロック図である。
 図2において、21は制御部であり、マイクロコンピュータやDSPなどで構成される。また、22はメモリーで、各種データ、テーブル類を保管する。また、23は制御部21が実行するプログラムや固定データを保存するROMである。また、24は入出力バスであり、すべての機器の情報はこの入出力バス24を介して制御部21とやり取りされる。
25は四方弁駆動部であり、制御部24からの指令に基づいて四方弁2の切替えを駆動する。また、26は三方弁駆動部であり、制御部24からの指令に基づいて三方弁12の切替えを駆動する。また、27は通信部であり、リモートコントローラー(以下、リモコンと呼ぶ場合がある)28からの設定情報を受信して入出力バス24を介して制御部へ送る。
 なお、空気熱交換器下段パス5aは水流路配管を構成する。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram at the time of defrosting operation of the heat pump type water heater according to Embodiment 1 of the present invention.
As shown in FIG. 1, the heat pump type water heater according to Embodiment 1 of the present invention includes a compressor 1, a four-way valve 2 for switching a refrigerant circuit during defrost operation, and water heat exchange in which water and refrigerant exchange heat. The apparatus 3 includes an electronic expansion valve 4 that adjusts the flow rate of the refrigerant and depressurizes, and an air heat exchanger 5 that exchanges heat between the air and the refrigerant through a refrigerant pipe 6 in order.
A water circuit 10 between the water heat exchanger 3 and the hot water storage tank 7 is connected by a water outlet side connection joint 8 and a water inlet side connection joint 9, and water is circulated by a pump 11. Between the water inlet side connection joint 9 and the water heat exchanger 3, the water circuit is connected to the water heat exchanger 3 during heating operation, and to the water heat exchanger 3 via the air heat exchanger lower path 5a during defrost operation. A three-way valve 12 for switching to 10 is provided. The three-way valve 12 constitutes a path switching valve. The air heat exchanger lower stage path 5a constitutes a water flow path pipe. The three-way valve 12 (path switching valve) is connected to the inlet of the air heat exchanger lower stage path 5a (water channel pipe), and the outlet of the air heat exchanger lower stage path 5a (water channel pipe) is connected to the three-way valve 12 A bypass circuit 14 is configured by connecting to the water circuit 10 between the (path switching valve) and the inlet of the water heat exchanger 3.
Moreover, the thick arrow in FIG. 1 has shown the direction through which water (or hot water) flows, and the broken line has shown the direction through which a refrigerant | coolant flows.
FIG. 2 is a block diagram showing a configuration relating to control of operation of the heat pump type water heater according to Embodiment 1 of the present invention.
In FIG. 2, reference numeral 21 denotes a control unit, which is constituted by a microcomputer, a DSP, or the like. A memory 22 stores various data and tables. Reference numeral 23 denotes a ROM that stores programs executed by the control unit 21 and fixed data. Reference numeral 24 denotes an input / output bus, and information on all devices is exchanged with the control unit 21 via the input / output bus 24.
Reference numeral 25 denotes a four-way valve drive unit that drives switching of the four-way valve 2 based on a command from the control unit 24. Reference numeral 26 denotes a three-way valve drive unit that drives switching of the three-way valve 12 based on a command from the control unit 24. A communication unit 27 receives setting information from a remote controller (hereinafter also referred to as a remote controller) 28 and sends the setting information to the control unit via the input / output bus 24.
The air heat exchanger lower stage path 5a constitutes a water passage pipe.
 次に、本実施の形態1の動作を説明する。
 図3は、本発明の実施の形態1に係るヒートポンプ式給湯器の運転の制御に関する制御部21の動作を示すフローチャートである。次に、本実施の形態1における制御部21の動作を図1~図3を用いて説明する。
 給湯器の電源スイッチを投入されている間は、給湯器の運転が実行されるが、これについては本願とは無関係のためここでは記述しない。この給湯器の運転中、比較的短い周期(例えば数ミリ秒~数秒の周期)で図3に示す処理が周期的に起動される。図3の処理が起動されると、制御部21はタイマー値クリアなどの初期値設定を行った(ステップS301)後、リモコン28からの受信を行なう(ステップS302)。次に、制御部21はリモコン28から受信した内容を調べ、デフロスト運転開始指令があるか否かを判定する(ステップS303)。
 ヒートポンプ式給湯器は、低い外気温度で運転を実施すると、蒸発器として作用する空気と冷媒が熱交換をする空気熱交換器5が0℃以下の低温となり、空気熱交換器5を通過する空気は冷却され、空気中の水分が空気熱交換器5の表面で凝固して霜となり風路を塞ぐこととなる。空気熱交換器5の性能を好ましいものに確保するためには、空気熱交換器5の表面に付着した霜を除去する動きが必要となりデフロスト運転を行う必要がある。デフロスト運転は、ユーザーによるリモートコントローラーの操作に基づいて、リモートコントローラー28からデフロスト運転開始指令信号が送信され、この指令を通信部27、入出力バス24を順次介して制御部21が受信すると、制御部21は、この指令信号によりデフロスト運転開始であることを認識し、予めメモリー22に設定されているデフロスト運転情報に基づいて四方弁駆動部25、三方弁駆動部26を制御し、四方弁2及び三方弁12を切り替える(ステップS304~S305)。そして、制御部21は圧縮機1を駆動してデフロスト運転を開始する(ステップS306)。同時にタイマーをカウントして所定時間経過するまでデフロスト運転を継続実行する(ステップS307~S308)。このデフロスト運転により空気熱交換器の表面に付着した霜は温められ、ドレン水となりフィンを伝わりながらドレンパン13上に落下し、ドレンパン13の排水溝を流れ排水口から機外へ排水される。所定時間が経過したら、制御部21は四方弁2及び三方弁12を元に切り替え、さらに圧縮機を停止してデフロスト運転を停止し(ステップS309)、処理を終了する。以降は、給湯器の運転が実行される。
Next, the operation of the first embodiment will be described.
FIG. 3 is a flowchart showing the operation of the control unit 21 relating to the control of the operation of the heat pump type water heater according to Embodiment 1 of the present invention. Next, the operation of the control unit 21 in the first embodiment will be described with reference to FIGS.
While the power switch of the water heater is turned on, the operation of the water heater is executed, but this is not described here because it is irrelevant to the present application. During the operation of the water heater, the processing shown in FIG. 3 is periodically started with a relatively short cycle (for example, a cycle of several milliseconds to several seconds). When the processing of FIG. 3 is started, the control unit 21 performs initial value setting such as clearing of the timer value (step S301), and then receives from the remote controller 28 (step S302). Next, the control unit 21 examines the content received from the remote controller 28 and determines whether or not there is a defrost operation start command (step S303).
When the heat pump type water heater is operated at a low outside air temperature, the air heat exchanger 5 that exchanges heat between the air acting as an evaporator and the refrigerant has a low temperature of 0 ° C. or lower, and the air that passes through the air heat exchanger 5 Is cooled, moisture in the air is solidified on the surface of the air heat exchanger 5 to become frost and block the air passage. In order to ensure that the performance of the air heat exchanger 5 is favorable, a movement to remove frost attached to the surface of the air heat exchanger 5 is required, and it is necessary to perform a defrost operation. In the defrost operation, when the defrost operation start command signal is transmitted from the remote controller 28 based on the operation of the remote controller by the user, and the control unit 21 receives this command via the communication unit 27 and the input / output bus 24 in sequence, The unit 21 recognizes that the defrosting operation is started by this command signal, and controls the four-way valve driving unit 25 and the three-way valve driving unit 26 based on the defrosting operation information set in the memory 22 in advance. The three-way valve 12 is switched (steps S304 to S305). And the control part 21 drives the compressor 1, and starts a defrost driving | operation (step S306). At the same time, the timer is counted and the defrost operation is continuously executed until a predetermined time elapses (steps S307 to S308). By this defrost operation, the frost attached to the surface of the air heat exchanger is warmed, becomes drain water, falls on the drain pan 13 while being transmitted through the fins, flows through the drain groove of the drain pan 13 and is drained from the drain port to the outside of the machine. When the predetermined time has elapsed, the control unit 21 switches based on the four-way valve 2 and the three-way valve 12, further stops the compressor and stops the defrost operation (step S309), and ends the process. Thereafter, the water heater is operated.
 以上のように、デフロスト運転時に三方弁12を切替えて貯湯タンク7から供給される高温水を空気熱交換器下段パス5aに流すことにより、フィンを伝わり落ちるドレン水を空気熱交換器5の下段にて加熱しドレンパン13上でのドレン水の凍結を防ぐことが可能となる。
 なお、上記の例では、リモートコントローラー28によってデフロスト運転を指示された場合について説明したが、給湯器の本体側の操作盤のスイッチ操作により指示を行ってもよいことはいうまでもない。
 また、制御部21がヒートポンプ式給湯器の運転効率を計算して、所定の運転効率以下になった場合、あるいは給湯器内の湯の温度が所定の温度以上に上昇しない場合に、デフロスト運転を自動的に開始するように構成してもよい。
 次に、このような場合の制御部21の動作について説明する。
 図4は本発明の実施の形態2に係るヒートポンプ式給湯器の運転の制御に関する制御部の動作を示すフローチャートである。図4において、図3のステップS301~S302をステップS401~S402に置き換えている以外は図3のフローと同じである。
 次に、制御部21の動作を図4を用いて説明する。
 制御部21は、初期値設定(ステップS301)の後、ヒートポンプ式給湯器の運転効率を計算する(ステップS401)。運転効率の計算方法としては公知の方法を利用する。例えば、圧縮機1の回転数に基づいて運転効率を計算する。この圧縮機1の回転数は圧縮機1の回転軸に図示しない回転検出器を取り付けて検出する。あるいは図示しない電流検出器(カレントトランスなど)を用いて図示しないインバータ出力電流検出器の出力に基づいて圧縮機1の回転数を算出しても良い。
 次に、制御部21は、算出した運転効率が予め設定した基準値と比較する(ステップS402)。運転効率が基準値以上であれば、ステップS401へ戻って運転効率の計算と基準値との比較を繰り返す。ステップS402の比較において、運転効率が予め設定した基準値を下回った場合、図3のステップS304以降と同様に動作する。
 これにより、デフロスト運転を自動的に行うので、ユーザーはデフロスト運転を指令するための操作をする必要がなくなる。また、確実にデフロスト運転を実行するので、常に効率の良い運転が可能になる。
As described above, by switching the three-way valve 12 during the defrost operation and flowing the high-temperature water supplied from the hot water storage tank 7 to the air heat exchanger lower path 5a, the drain water flowing down the fins is moved to the lower stage of the air heat exchanger 5. It is possible to prevent the drain water from freezing on the drain pan 13 by heating with
In the above example, the case where the defrost operation is instructed by the remote controller 28 has been described, but it is needless to say that the instruction may be performed by operating the switch on the operation panel on the main body side of the water heater.
In addition, when the control unit 21 calculates the operating efficiency of the heat pump type hot water heater and becomes lower than the predetermined operating efficiency, or when the temperature of the hot water in the hot water heater does not rise above the predetermined temperature, the defrost operation is performed. It may be configured to start automatically.
Next, the operation of the control unit 21 in such a case will be described.
FIG. 4 is a flowchart showing the operation of the control unit regarding the control of the operation of the heat pump type hot water heater according to Embodiment 2 of the present invention. 4 is the same as the flow in FIG. 3 except that steps S301 to S302 in FIG. 3 are replaced with steps S401 to S402.
Next, operation | movement of the control part 21 is demonstrated using FIG.
After the initial value setting (step S301), the control unit 21 calculates the operating efficiency of the heat pump water heater (step S401). A known method is used as a method for calculating the operating efficiency. For example, the operating efficiency is calculated based on the rotational speed of the compressor 1. The rotation speed of the compressor 1 is detected by attaching a rotation detector (not shown) to the rotation shaft of the compressor 1. Or you may calculate the rotation speed of the compressor 1 based on the output of the inverter output current detector which is not illustrated using the current detector (current transformer etc.) which is not illustrated.
Next, the control unit 21 compares the calculated driving efficiency with a preset reference value (step S402). If the operation efficiency is equal to or higher than the reference value, the process returns to step S401 to repeat the calculation of the operation efficiency and the comparison with the reference value. In the comparison in step S402, when the operation efficiency falls below a preset reference value, the operation is performed in the same manner as in step S304 and subsequent steps in FIG.
Accordingly, since the defrost operation is automatically performed, the user does not need to perform an operation for instructing the defrost operation. In addition, since the defrost operation is surely executed, efficient operation is always possible.
実施の形態2.
 図5は本発明の実施の形態2に係るヒートポンプ式給湯器の分解斜視図である。
Embodiment 2. FIG.
FIG. 5 is an exploded perspective view of a heat pump type water heater according to Embodiment 2 of the present invention.
 デフロスト運転時に水回路の切替えに用いる三方弁12の近傍に、水熱交換器3、空気熱交換器下段パス5a、水入口側接続ジョイント9を設けることにより、それら同士を接続する水回路10の配管長を短く、単純な構成とし製造コストを低く抑えることが可能となる。 The water heat exchanger 3, the air heat exchanger lower-stage path 5 a, and the water inlet side connection joint 9 are provided in the vicinity of the three-way valve 12 used for switching the water circuit during the defrost operation. It is possible to reduce the manufacturing cost by shortening the pipe length and making the structure simple.
 また、デフロスト運転時に水回路の切替えに用いる三方弁12を水熱交換器3の入口側に設けることにより、デフロスト運転時に蒸発器である水熱交換器3にて貯湯タンク7から循環される高温水の温度を低下させることなく空気熱交換器下段パス5aへ供給することが可能となる。 Further, by providing the three-way valve 12 used for switching the water circuit during the defrost operation on the inlet side of the water heat exchanger 3, the high temperature circulated from the hot water storage tank 7 in the water heat exchanger 3 as an evaporator during the defrost operation. It becomes possible to supply the air heat exchanger to the lower stage path 5a without lowering the temperature of the water.
 また、空気熱交換器5に設けるフィンにおいて、冷媒が流れるパス部のフィンは切り起こしをなくすことにより、暖房運転時に蒸発器となり低温となっている冷媒が流れるパス部周辺のフィンの水切り性がよくなるため、霜の成長を抑制することが可能である。 Further, in the fins provided in the air heat exchanger 5, the fins in the path portion through which the refrigerant flows are eliminated from cutting, so that the fins around the path portion where the low-temperature refrigerant flows and becomes an evaporator during heating operation. Since it improves, it is possible to suppress the growth of frost.
 1 圧縮機、2 四方弁、3 水熱交換器、4 電子膨張弁、5 空気熱交換器、5a 空気熱交換器下段パス、6 冷媒配管、7 貯湯タンク、8 水出口側接続ジョイント、9 水入口側接続ジョイント、10 水回路、11 ポンプ、12 三方弁、13 ドレンパン、14 バイパス回路、21 制御部、22 メモリー、23 ROM、24 入出力バス、25 四方弁駆動部、26 三方弁駆動部、27 通信部、28 リモートコントローラー。 1 compressor, 2 way valve, 3 water heat exchanger, 4 electronic expansion valve, 5 air heat exchanger, 5a air heat exchanger lower stage path, 6 refrigerant piping, 7 hot water storage tank, 8 water outlet side connection joint, 9 water Inlet connection joint, 10 water circuit, 11 pump, 12 three-way valve, 13 drain pan, 14 bypass circuit, 21 control unit, 22 memory, 23 ROM, 24 I / O bus, 25 four-way valve drive unit, 26 three-way valve drive unit, 27 Communication section, 28 Remote controller.

Claims (8)

  1.  圧縮機、冷媒の流れ方向を切り換える四方弁、前記冷媒と水が熱交換する水熱交換器、冷媒の流量を調整し減圧する膨張機構、空気と冷媒が熱交換する空気熱交換器を順次配管で環状に接続した冷凍サイクルと、
     前記水熱交換器、該水熱交換器で加熱された水を貯留する貯湯タンク、ポンプを順次配管で環状に接続した水回路と、
     前記空気熱交換器の下段に設けられた水流路配管と、
     前記ポンプと前記水熱交換器の間の水回路に設けられた経路切替弁と、
     該経路切替弁と前記水流路配管の入口との間と接続し、前記水流路配管の出口を前記経路切替弁と前記水熱交換器の入口との間の水回路に接続して成るバイパス回路と、
     前記四方弁及び前記経路切替弁を切替え制御する制御部と、を備え、
     前記制御部は、デフロスト運転時に、予め設定された情報に基づいて前記四方弁を切替えて前記冷凍サイクルの冷媒の流れ方向を切換えさせるとともに、前記経路切替弁を切替えて前記貯湯タンクの高温水を前記バイパス回路経由で前記空気熱交換器の水流路配管に流すことを特徴とするヒートポンプ式給湯器。
    A compressor, a four-way valve that switches the flow direction of the refrigerant, a water heat exchanger that exchanges heat between the refrigerant and water, an expansion mechanism that adjusts the flow rate of the refrigerant and depressurizes, and an air heat exchanger that exchanges heat between the air and the refrigerant are sequentially piped A refrigeration cycle connected in a ring with
    The water heat exchanger, a hot water storage tank for storing water heated by the water heat exchanger, and a water circuit in which pumps are sequentially connected in an annular shape by piping;
    A water passage pipe provided in a lower stage of the air heat exchanger;
    A path switching valve provided in a water circuit between the pump and the water heat exchanger;
    A bypass circuit connected between the path switching valve and the inlet of the water flow path pipe, and connecting an outlet of the water flow path pipe to a water circuit between the path switching valve and the inlet of the water heat exchanger When,
    A control unit for switching and controlling the four-way valve and the path switching valve,
    In the defrost operation, the control unit switches the four-way valve based on preset information to switch the refrigerant flow direction of the refrigeration cycle, and switches the path switching valve to supply hot water in the hot water storage tank. A heat pump type hot water heater which is caused to flow through the bypass circuit to the water flow pipe of the air heat exchanger.
  2.  前記空気熱交換器の下方に、前記空気熱交換器の水流路配管により加熱されて前記空気熱交換器から落下したドレン水を捕集するドレンパンを備えたことを特徴とする請求項1記載のヒートポンプ式給湯器。 The drain pan which collects the drain water which was heated by the water flow-path piping of the said air heat exchanger, and fell from the said air heat exchanger below the said air heat exchanger is characterized by the above-mentioned. Heat pump water heater.
  3.  前記空気熱交換器の水流路配管部のフィンは切り起しを設けないことを特徴とする請求項1または2に記載のヒートポンプ式給湯器。 The heat pump type hot water heater according to claim 1 or 2, wherein the fin of the water flow path piping portion of the air heat exchanger is not cut and raised.
  4.  前記経路切替弁の近傍に、前記水熱交換器、前記空気熱交換器の水流路配管、水入口側回路接続ジョイントを設けたことを特徴とする請求項1~3のいずれか一項に記載のヒートポンプ式給湯器。 The water heat exchanger, the water flow pipe of the air heat exchanger, and the water inlet side circuit connection joint are provided in the vicinity of the path switching valve. Heat pump type water heater.
  5.  前記経路切替弁を前記水熱交換器の入口側に設けることを特徴とする請求項1~4のいずれか一項に記載のヒートポンプ式給湯器。 The heat pump type water heater according to any one of claims 1 to 4, wherein the path switching valve is provided on an inlet side of the water heat exchanger.
  6.  前記経路切替弁は三方弁であることを特徴とする請求項1~5のいずれか一項に記載のヒートポンプ式給湯器。 The heat pump type water heater according to any one of claims 1 to 5, wherein the path switching valve is a three-way valve.
  7.  前記制御部は、ユーザーからの指令に基づいてデフロスト運転を実行することを特徴とする請求項1~6のいずれか一項に記載のヒートポンプ式給湯器。 The heat pump type water heater according to any one of claims 1 to 6, wherein the control unit executes a defrost operation based on a command from a user.
  8.  前記制御部は、効率が予め設定された基準値を下回るとき、デフロスト運転を実行することを特徴とする請求項1~6のいずれか一項に記載のヒートポンプ式給湯器。 The heat pump hot water heater according to any one of claims 1 to 6, wherein the control unit executes a defrost operation when the efficiency falls below a preset reference value.
PCT/JP2009/061944 2009-01-05 2009-06-30 Heat pump type water heater WO2010076858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/127,345 US20110214444A1 (en) 2009-01-05 2009-06-30 Heat pump water heater
EP09836198.3A EP2375195B1 (en) 2009-01-05 2009-06-30 Heat pump type water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009000180A JP5713536B2 (en) 2009-01-05 2009-01-05 Heat pump water heater
JP2009-000180 2009-01-05

Publications (1)

Publication Number Publication Date
WO2010076858A1 true WO2010076858A1 (en) 2010-07-08

Family

ID=42309911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061944 WO2010076858A1 (en) 2009-01-05 2009-06-30 Heat pump type water heater

Country Status (4)

Country Link
US (1) US20110214444A1 (en)
EP (1) EP2375195B1 (en)
JP (1) JP5713536B2 (en)
WO (1) WO2010076858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765665A (en) * 2020-06-17 2020-10-13 珠海格力电器股份有限公司 Automatic and accurate defrosting control method and device and heat pump water heater

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729910B2 (en) * 2010-03-05 2015-06-03 三菱重工業株式会社 Hot water heat pump and control method thereof
JP5594220B2 (en) * 2011-04-18 2014-09-24 三菱電機株式会社 Heat pump type water heater
CN103629872A (en) * 2012-08-29 2014-03-12 青岛海信日立空调系统有限公司 Hot water defrosting circulation system for multi-connected air conditioner
JP5494770B2 (en) * 2012-09-25 2014-05-21 三菱電機株式会社 Heat pump water heater
GB2497171B (en) * 2012-11-02 2013-10-16 Asd Entpr Ltd Improvements to thermodynamic solar heat transfer systems
CN103216970A (en) * 2013-04-11 2013-07-24 王子忠 Environment-friendly energy-saving three-source cold-warm heat pump hot water machine system
US9464840B2 (en) * 2013-06-05 2016-10-11 Hill Phoenix, Inc. Gas defrosting system for refrigeration units using fluid cooled condensers
JP2015001356A (en) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 Heat pump heat exchanging device
CN104501403B (en) * 2013-07-09 2018-05-08 广东美的暖通设备有限公司 Hot water machine control system and hot water machine control method
KR102165353B1 (en) * 2014-06-09 2020-10-13 엘지전자 주식회사 Refrigerant system
KR102181204B1 (en) * 2014-06-09 2020-11-20 엘지전자 주식회사 Refrigerant system
WO2016059536A1 (en) * 2014-10-13 2016-04-21 Giamblanco Vincenzo A heat pump apparatus with energy recovery
US9869475B2 (en) * 2015-01-12 2018-01-16 Haier Us Appliance Solutions, Inc. Heat pump water heater appliance and a method for operating the same
CN105135747B (en) * 2015-08-17 2017-06-16 Tcl空调器(中山)有限公司 Heat pump type air conditioner water heater
CN105258331B (en) * 2015-10-30 2017-04-12 广东美的暖通设备有限公司 Anti-freezing control method and system for heat pump water heater
CN105674559B (en) * 2016-01-04 2018-07-13 广东美的暖通设备有限公司 The control method of hot water machine and hot water machine
CN105783356B (en) * 2016-03-29 2019-03-22 合肥美的暖通设备有限公司 Air conditioner is except defrosting system, air conditioner, air conditioner defrosting and heat recovery method
CN105757827B (en) * 2016-03-29 2019-09-17 合肥美的暖通设备有限公司 The method that air conditioner heat recovery system defrosts
CN108317727B (en) * 2018-02-05 2020-08-25 广东美的暖通设备有限公司 Water heater and anti-freezing control method, controller and storage medium of water path system of water heater
KR20210108242A (en) * 2020-02-25 2021-09-02 엘지전자 주식회사 Heat pump air-conditioner
CN111692705B (en) * 2020-06-08 2021-06-18 广东美的制冷设备有限公司 Control method, control device, air conditioning system, and computer-readable storage medium
US20240068714A1 (en) * 2022-08-30 2024-02-29 Daikin Comfort Technologies Manufacturing, LP Thermal energy reservoirs and heat pump systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218944A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat pump air conditioning and water heater
JP2004218861A (en) 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method
JP2008249298A (en) * 2007-03-30 2008-10-16 Daikin Ind Ltd Fin tube type heat exchanger

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257816A (en) * 1964-01-02 1966-06-28 Charles W Parce Air conditioning apparatus
US3664150A (en) * 1970-12-30 1972-05-23 Velt C Patterson Hot gas refrigeration defrosting system
US3683636A (en) * 1971-05-10 1972-08-15 Whirlpool Co Refrigeration system defrosting means
JPS5765547A (en) * 1980-10-08 1982-04-21 Mitsubishi Electric Corp Hot water feeder
JPS5818070A (en) * 1981-07-27 1983-02-02 松下電器産業株式会社 Air-cooling waste heat hot-water supply device
US4399664A (en) * 1981-12-07 1983-08-23 The Trane Company Heat pump water heater circuit
US4550770A (en) * 1983-10-04 1985-11-05 White Consolidated Industries, Inc. Reverse cycle room air conditioner with auxilliary heat actuated at low and high outdoor temperatures
JPS6179958A (en) * 1984-09-26 1986-04-23 松下電器産業株式会社 Air conditioner
JPS6321444A (en) * 1986-07-15 1988-01-29 Matsushita Electric Ind Co Ltd Hot water supply device utilizing solar heat
US4796437A (en) * 1987-10-23 1989-01-10 James Larry S Multifluid heat pump system
JPH0213765A (en) * 1988-06-30 1990-01-18 Toshiba Corp Refrigerating cycle system
JPH06341740A (en) * 1993-05-28 1994-12-13 Mitsubishi Heavy Ind Ltd Operating method for heat pump type air conditioner
NZ286458A (en) * 1996-04-26 1999-01-28 Fisher & Paykel Evaporation tray to catch defrost water from refrigerator, bottom consists of flexible membrane
JP4078034B2 (en) * 2001-02-06 2008-04-23 東芝キヤリア株式会社 Heat pump water heater
JP2003028582A (en) * 2001-07-11 2003-01-29 Denso Corp Heat exchanger
US6981385B2 (en) * 2001-08-22 2006-01-03 Delaware Capital Formation, Inc. Refrigeration system
JP3918786B2 (en) * 2003-07-30 2007-05-23 株式会社デンソー Hot water storage type heat pump water heater
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device
JP2008170015A (en) * 2005-04-25 2008-07-24 Matsushita Electric Ind Co Ltd Refrigeration cycle device with warm water container
US7466734B1 (en) * 2005-06-15 2008-12-16 Daylight Solutions, Inc. Compact external cavity mid-IR optical lasers
JP3876911B2 (en) * 2005-06-29 2007-02-07 ダイキン工業株式会社 Water heater
JP2007198691A (en) * 2006-01-27 2007-08-09 Corona Corp Heat pump water heater
JP4592616B2 (en) * 2006-02-27 2010-12-01 三洋電機株式会社 Refrigeration cycle equipment
KR101291271B1 (en) * 2006-07-27 2013-07-30 엘지전자 주식회사 Ice melting method drum type washing machine
JP4856489B2 (en) * 2006-07-31 2012-01-18 サンデン株式会社 Water heater
JP2008145003A (en) * 2006-12-07 2008-06-26 Sharp Corp Heat pump unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218861A (en) 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2004218944A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat pump air conditioning and water heater
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method
JP2008249298A (en) * 2007-03-30 2008-10-16 Daikin Ind Ltd Fin tube type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765665A (en) * 2020-06-17 2020-10-13 珠海格力电器股份有限公司 Automatic and accurate defrosting control method and device and heat pump water heater

Also Published As

Publication number Publication date
EP2375195A4 (en) 2016-08-24
EP2375195B1 (en) 2019-05-15
JP5713536B2 (en) 2015-05-07
EP2375195A1 (en) 2011-10-12
US20110214444A1 (en) 2011-09-08
JP2010156523A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
WO2010076858A1 (en) Heat pump type water heater
KR900000809B1 (en) Room-warming/cooling and hot-water supplying heat-pump apparatus
JP5378504B2 (en) Heat pump water heater
JP2008514895A (en) Reverse Peltier defrost system
JP6190388B2 (en) Heat pump hot water heater
JP2002228258A (en) Heat pump water heater
JP2005049002A (en) Air conditioner
KR20130115123A (en) Heating system
JP6771302B2 (en) Air conditioner
JP2018066515A (en) Method of controlling heat pump hot water heating system
JP6557085B2 (en) Air conditioner
JP5769684B2 (en) Heat pump equipment
JP2008281282A (en) Water heater
JP6465332B2 (en) Heat pump hot water supply system
JP6428373B2 (en) Heat pump type hot water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP5773897B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP5150225B2 (en) Heat pump system
JP5166840B2 (en) Heat pump system
JP2015021643A (en) Heat pump device
JP2007127302A (en) Refrigeration unit
JP2011127778A (en) Fluid utilization system and operation control method of the same
JP2006029637A (en) Heat storage type air conditioner and its operation method
JP6327499B2 (en) Heat pump water heater
JP6152689B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13127345

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009836198

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE