WO2010076445A1 - Composition de verre adaptée a la réalisation d'éléments optiques plans - Google Patents

Composition de verre adaptée a la réalisation d'éléments optiques plans Download PDF

Info

Publication number
WO2010076445A1
WO2010076445A1 PCT/FR2009/052362 FR2009052362W WO2010076445A1 WO 2010076445 A1 WO2010076445 A1 WO 2010076445A1 FR 2009052362 W FR2009052362 W FR 2009052362W WO 2010076445 A1 WO2010076445 A1 WO 2010076445A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical elements
zro
planar optical
substrate
Prior art date
Application number
PCT/FR2009/052362
Other languages
English (en)
Inventor
Jérôme LALANDE
Arnaud Huignard
Julien Sellier
David Louapre
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2010076445A1 publication Critical patent/WO2010076445A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • the present invention relates to the field of optical glasses intended to be integrated in imaging devices. More specifically, it relates to glass compositions suitable for the manufacture of flat optical elements, in particular flat lenses having a refractive index gradient.
  • the invention is more particularly concerned with imaging devices
  • Computer such as mobile phones, car navigation devices, medical diagnostic devices (endoscopes, ...) that incorporate miniature cameras.
  • These cameras include planar optical elements that have a specific refractive index or a particular refractive index gradient.
  • the optical elements are usually glued to the other elements of the camera. These elements combine very small dimensions and excellent optical quality. They can be glass, quartz, ceramic or an organic polymer.
  • optical glass elements are obtained in greater or lesser number from a single substrate by a process combining photolithography (for producing a mask on the surface of the glass in the form of the desired optical patterns) and the ion exchange (to obtain the refractive index gradient).
  • Ion exchange has been used for many years to form refractive index gradient patterns in glass. This is a technique based on the ability of some ions of different polarizabilities, particularly alkaline ions, to be able to exchange with one another and thus form an ionic pattern.
  • the ion exchange is carried out by treating the glass in a bath of molten salts of said ions at an elevated temperature, generally between 200 and 500 ° C., for a period of time. sufficient to achieve the desired level of exchange.
  • An electric field can be applied during the ion exchange to accelerate the ion exchange rate and also to control their trajectory in the glass in order to limit migration and / or lateral diffusion phenomena.
  • the ion exchange can also be operated by silver ions which achieve a level of refractive index comparable to that obtained with thallium avoiding the associated risks of toxicity.
  • Glass compositions which provide a high refractive index change contain a substantial proportion of alkali metal oxides, particularly Na 2 O, which are beneficial for ion exchange.
  • the glasses obtained also have a high coefficient of thermal expansion.
  • glass compositions which contain a moderate proportion of alkali metal oxides have a low thermal expansion coefficient but the variation of the refractive index after the ion exchange is also of low amplitude.
  • the flat optical elements are glued to the other elements of the camera, one of which is a slice or wafer ("wafer" in English) of a semiconductor material such as silicon. It is It is important for the planar optical element and the silicon wafer to have very close thermal expansion coefficients so as to avoid the appearance of tensions which induce a curvature of the bonded assembly. The greater the curvature, the more precautions to be taken for the assembly of the assembly bonded in the final imaging device are important and the greater the risk of breakage is high.
  • the object of the present invention is to provide a glass composition which makes it possible to obtain a substrate having a low coefficient of thermal expansion and which, after an ion exchange treatment with silver ions, is capable of giving ionic patterns having a high refractive index variation.
  • the invention aims to obtain that the glass has a thermal expansion coefficient OC 25-300 less than or equal to 65 10 "7 .K" 1 and the ground (s) (s) ion (s) have (in) t a variation of refractive index at least equal to 0.03 to a depth greater than 10 microns.
  • the first glass composition according to the present invention comprises the constituents below in the following proportions, expressed as a percentage by weight:
  • Total iron (expressed as Fe 2 O 3 ) 0 - 0.5%, preferably 0 - 0.2%
  • the sum of the ZrO 2 and Al 2 O 3 contents in this glass composition varies from 6 to 27% and advantageously from 12 to 21%.
  • the second glass composition according to the present invention comprises the constituents below in the following proportions, expressed as a percentage by weight:
  • AI 2 O 3 0 - 18.0%, preferably 0 - 12%
  • Total iron (expressed as Fe 2 O 3 ) 0 - 0.5%, preferably 0 - 0.2%
  • the sum of the contents of ZrO 2 and Al 2 O 3 in this second glass composition is less than 27% and advantageously varies from 12 to 21%.
  • the sum of the contents of ZrO 2 , Al 2 O 3 and B 2 O 3 varies from 8 to 39%, especially from 14 to 30%.
  • ZrO 2 makes it possible to lower the coefficient of thermal expansion.
  • Maintaining the ZrO 2 and Al 2 O 3 content below 27% provides the glass compositions with good meltability and resistance to devitrification.
  • these compositions have a liquidus temperature less than 1700 0 C, preferably less than 1400 0 C.
  • the glass compositions according to the present invention make it possible to obtain a glass which advantageously has a coefficient thermal expansion OC 25-300 or less 50 10 "7 .K" 1 after treatment exchange by silver ions.
  • the glass obtained from these compositions exhibits a variation in refractive index of at least 0.04 over a depth greater than 50 microns and advantageously greater than 100 microns after the ion exchange treatment. money.
  • the glass compositions according to the invention make it possible to obtain a glass which has, at ionic unit level, a luminous transmission coefficient measured at 410 nanometers (TL 4 I 0 ) greater than or equal to 80%, corresponding to a weak yellow coloration.
  • the low yellowing is made possible by the combined use of a total content of ZrO 2, Al 2 O 3 and B 2 O 3 of at least 8% and a low iron content of less than or equal to 0.5%, preferably less than 0%. 2% and advantageously less than 0.05%.
  • the method of manufacturing planar optical elements constitutes another object according to the present invention.
  • This method comprises the steps of: a) fabricating a substrate from a glass composition selected from the above compositions, b) contacting the glass substrate with an external source of silver ions, c) treating the together at a temperature ranging from 200 to 400 0 C, preferably 250 to 350 0 C for a time sufficient to at least partially replace the alkaline ions with silver ions, d) optionally, subjecting the substrate to a heat treatment for diffusion the silver ions laterally in the glass.
  • the substrate is obtained by melting the glass compositions according to the invention under conventional conditions for producing and forming the glass, for example by casting, rolling or floating the glass in the state. melted on a bath of molten metal such as tin.
  • the substrate is generally in the form of a sheet or a cylinder whose thickness can range from 300 microns to 30 mm.
  • the external source of silver ions may be a bath of one or more known molten silver salts, for example a chloride or a nitrate.
  • the silver ion source is applied to one side of the substrate according to a pattern or a pattern network of predefined shape.
  • the pattern can be obtained through the silver ion source, which then has a geometry to provide the desired pattern, or by forming on the surface of the glass a diffusion mask capable of withstanding the ion exchange treatment and having appropriate openings to obtain the shape of the pattern.
  • the mask may be, for example, a mechanical mask made according to known lithography and / or etching techniques, for example a dielectric, conductive or resin mask, or an ion mask having patterns complementary to the desired patterns formed by diffusion from an ionic species with a lower mobility than the mobility of silver ions.
  • the face opposite to the first face of the substrate in contact with the silver ions is brought into contact with a bath of molten salts of a second ionic species which allows the diffusion of the alkaline ions coming from the glass, for example a sodium nitrate and or potassium nitrate.
  • a second ionic species which allows the diffusion of the alkaline ions coming from the glass
  • a sodium nitrate and or potassium nitrate for example a sodium nitrate and or potassium nitrate.
  • a mixture of equal molar parts of sodium nitrate and potassium nitrate is used, which makes it possible to carry out the ion exchange at a relatively low temperature, of the order of 300 to 330 ° C.
  • the external source of silver ions may consist of a solid layer based on metallic silver (Ag °) or ionic (Ag + ) deposited on one side of the substrate according to the desired pattern or pattern of patterns.
  • the deposition of the solid layer may be carried out by known methods, for example: by screen printing a paste based on metallic silver or silver oxide, or a paste comprising a silver salt, in particular a chloride, a nitrate or a sulphate of silver, and a polymer; by sputtering metallic silver; depositing a solution comprising a silver salt, especially a chloride, a nitrate or a silver sulfate, and a polymer, followed by a treatment to evaporate the liquid phase.
  • the silver single pattern has a sufficient size or the silver patterns form a continuous pattern
  • said pattern or said network acts as an electrode; it can thus be connected directly to the voltage generator so that the ion exchange can occur during the next step c).
  • an electrode ie when the single pattern is small or the patterns are discrete (i.e. unrelated to each other), it is necessary to apply an electrode to said patterns.
  • This electrode may be solid or perforated and may have a shape and a variable dimension adapted to the reasons for silver.
  • the face of the substrate opposite to the coated face of the silver pattern or units is provided with an electrode capable of accepting the alkaline ions extracted from the glass during the exchange.
  • step c) an electric field is applied between the baths or the electrodes in contact respectively with the first and second faces of the substrate. It is thus possible to increase the diffusion rate of the silver ions in the glass, which reduces the ion exchange time, and more effectively control the migration profile of the silver ions in the glass.
  • the electric field can vary to a large extent depending on the conductivity of the glass substrate used and its thickness, for example from 0.1 to 1000 V / mm glass thickness, preferably 1 to 200 V / mm.
  • step d) aims to reroute the ions in the ionic pattern in a plane parallel to the first face of the substrate.
  • This treatment is carried out under the known temperature conditions, for example 300 to 800 ° C.
  • the duration of the treatment varies according to the shape and the dimension of the ionic unit.
  • the resulting glass substrate may optionally be cut around said patterns to obtain the planar optical elements in the desired shape and size.
  • these elements generally comprise a single ionic motif, one can not exclude those which contain several, especially two.
  • the flat optical elements may further undergo an additional step to reduce their thickness.
  • This thinning step can be done by the non-exchanged face, in particular to remove the glass containing no silver ions when the ion exchange is not operated over the entire thickness of the substrate, or by the exchanged face, in particular to remove the mask or the solid layer of metallic or ionic silver.
  • the plane optical elements in particular obtained by the aforementioned method, constitute another object of the invention.
  • These elements may be in the form of refractive index gradient lenses or waveguides integrated in the glass. They find their application in the realization of miniature imaging devices such as mobile phone cameras, navigation devices and medical diagnostic equipment.
  • the elements according to the invention may further be incorporated into lighting devices, in particular which comprise one or more organic light-emitting diodes (OLEDs).
  • OLEDs organic light-emitting diodes
  • the glass compositions according to the invention can also be used to form glass substrates for the production of building glazings, photovoltaic modules, lighting devices and decorative elements, in particular in the field of household appliances. .
  • the following examples illustrate the invention without limiting it.
  • Substrates are formed from the glass compositions comprising the constituents shown in Table 1 (in percent by weight).
  • the substrates are 4 cm square and 2 mm thick.
  • Each substrate is subjected to an ion exchange treatment in a silver nitrate bath, without application of an electric field, and optionally in a device operating under the action of an electric field shown in FIG. a (cross section) and 1 b (longitudinal section along the AA axis).
  • the device comprises the substrate 1 provided with two compartments 2 and 3, forming reservoirs, applied facing one another.
  • the compartments 2 and 3 are attached to the substrate by means of an adhesive 4 which also acts as a seal with respect to the contents of the reservoir.
  • the compartment 2 contains a bath 7 of AgNOs and the compartment 3 is filled with a KNO3: NaNO3 mixture (1: 1; mol: mol).
  • the device is further provided with electrodes 5 and 6.
  • the alkali ions of the glass migrate to the bath 8 and are gradually replaced by the Ag + ions contained in the bath 7 (direction of migration indicated by the arrows).
  • the substrate is taken out of the bath 7 and washed with water. On the substrate, we determine:
  • the glass substrates of Examples 1 to 6 according to the invention combine a lower coefficient of thermal expansion 65 10 -7 .K "1 and, after the ion exchange, a variation in refractive index at least equal to 0.03 on an exchange depth of at least 10 ⁇ m.
  • these substrates have a light transmission at 410 nm greater than 85%, which means that the glass has no yellow color, contrary to Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

La présente invention concerne des compositions de verre adaptées à la fabrication d'éléments optiques plans destinés notamment à la réalisation de dispositifs d'imagerie. Les éléments optiques plans sont constitués d'un verre ayant un faible coefficient d'expansion thermique et ils comprennent un motif ionique formé par un traitement d'échange des ions alcalins du verre par des ions argent qui présente une variation d'indice de réfraction élevée. L'invention concerne également le procédé de fabrication desdits éléments optiques plans.

Description

COMPOSITION DE VERRE ADAPTEE A LA REALISATION D'ELEMENTS
OPTIQUES PLANS
La présente invention se rapporte au domaine des verres optiques destinés à être intégrés dans des dispositifs d'imagerie. Elle concerne plus précisément des compositions de verre adaptées à la fabrication d'éléments optiques plans, en particulier des lentilles planes présentant un gradient d'indice de réfraction.
L'invention s'intéresse plus particulièrement aux dispositifs d'imagerie
« compacts » tels que les téléphones portables, les appareils de navigation automobile, les dispositifs de diagnostic médical (endoscopes,...) qui incorporent des caméras miniatures. Ces caméras comprennent des éléments optiques plans qui présentent un indice de réfraction spécifique ou un gradient d'indice de réfraction particulier. Les éléments optiques sont généralement collés aux autres éléments de la caméra. Ces éléments combinent des dimensions très faibles et une excellente qualité optique. Ils peuvent être en verre, en quartz, en céramique ou en un polymère organique.
Les éléments optiques en verre sont obtenus en nombre plus ou moins important à partir d'un substrat unique par un procédé combinant la photolithographie (pour la réalisation d'un masque à la surface du verre à la forme des motifs optiques désirés) et l'échange ionique (pour l'obtention du gradient d'indice de réfraction).
L'échange ionique est utilisé depuis de nombreuses années pour former des motifs à gradient d'indice de réfraction dans du verre. Il s'agit d'une technique basée sur la capacité que présentent certains ions de polarisabilités différentes, en particulier les ions alcalins, de pouvoir s'échanger l'un avec l'autre et former ainsi un motif ionique. L'échange ionique est effectué en traitant le verre dans un bain de sels fondus desdits ions à une température élevée, généralement comprise entre 200 et 5000C, pendant une durée suffisante pour obtenir le niveau d'échange souhaité. Un champ électrique peut être appliqué pendant l'échange ionique pour accélérer la vitesse d'échange des ions et aussi pour contrôler leur trajectoire dans le verre afin de limiter les phénomènes de migration et/ou de diffusion latérale. II est bien connu que les ions sodium d'un verre peuvent être remplacés par des ions potassium, cuivre et/ou lithium (voir US-A-3 524 737, US-A-3 615 322 et US-A-3 615 323). La variation de l'indice de réfraction dans le verre final reste toutefois modeste.
Il est également connu d'utiliser le thallium comme ion dopant permettant de créer des motifs ayant un indice de réfraction plus élevé.
Cependant, le caractère fortement toxique du thallium impose qu'il soit mis en œuvre dans des installations adaptées pour préserver la santé des opérateurs et ne pas nuire à l'environnement.
L'échange ionique peut aussi être opéré par des ions argent qui permettent d'atteindre un niveau d'indice de réfraction comparable à celui qui est obtenu avec du thallium en évitant les risques de toxicité associés.
A cet égard, il a été proposé de nombreuses compositions de verre qui permettent d'obtenir des substrats pouvant être soumis à l'échange ionique par des ions argent : il s'agit pour l'essentiel de compositions de verre de type silicate alcalin (US-A-3 873 408, US-A-4 952 037 et EP-A-O 380 468) et de type borosilicate (US-A-3 880 630, US-A-4 952 037, US-A 5 958 810, US-A-
6 066 273, US-A-2001 /0003724, US-A-2003/0161048 et US-A-2005/0137075).
Les compositions de verre qui permettent d'obtenir une variation d'indice de réfraction élevée renferment une proportion importante d'oxydes de métal alcalin, en particulier de Na2O, qui sont bénéfiques pour l'échange ionique. Les verres obtenus présentent aussi un coefficient d'expansion thermique élevé.
A l'inverse, les compositions de verre qui renferment une proportion modérée en oxydes de métal alcalin présentent un coefficient d'expansion thermique peu important mais la variation de l'indice de réfraction après l'échange ionique est aussi de faible amplitude.
Comme déjà indiqué, les éléments optiques plans sont collés aux autres éléments de la caméra dont l'un est une tranche ou une galette (« wafer » en anglais) d'un matériau semi-conducteur tel que le silicium. Il est important que l'élément optique plan et le wafer de silicium possèdent des coefficients d'expansion thermique très proches de manière à éviter l'apparition de tensions qui induisent une courbure de l'ensemble collé. Plus la courbure est accentuée, plus les précautions à prendre pour l'assemblage de l'ensemble collé dans le dispositif d'imagerie final sont importantes et plus le risque de casse est élevé.
Le but de la présente invention est de fournir une composition de verre qui permet d'obtenir un substrat ayant un faible coefficient d'expansion thermique et qui, après un traitement d'échange ionique par des ions argent, est apte à donner des motifs ioniques présentant une variation d'indice de réfraction élevée.
Plus précisément, l'invention vise à obtenir que le verre présente un coefficient d'expansion thermique OC25-300 inférieur ou égal à 65 10"7.K"1 et que le(s) motif(s) ionique(s) ai(en)t une variation d'indice de réfraction au moins égale à 0,03 sur une profondeur supérieure à 10 micromètres.
Ces buts sont atteints selon l'invention par les deux compositions de verre suivantes.
La première composition de verre conforme à la présente invention comprend les constituants ci-après dans les proportions suivantes, exprimées en pourcentage massique :
SiO2 60,0 - 78,0 %
ZrO2 0,5 - 23,0 %
AI2O3 0 - 23,0 %
B2O3 0 - 15,0 %, de préférence 0 - 8,0 %
Na2O > 6,0 - 14,0 %, de préférence > 6,0 - 11 ,0 %
K2O 0 - 11 ,0 %, de préférence 0 - 5 %
Li2O 0 - 8,0 %, de préférence 0 - 5 %
Na2O + K2O + Li2O < 14 %, de préférence < 11 %
MgO 0 - 10 %
ZnO 0 - 10 %
TiO2 0 - 5 %
Fer total (exprimé en Fe2O3) 0 - 0,5 %, de préférence 0 - 0,2 %
Autres (HfO2, CaO, SrO, BaO,
SO3et/ou P2O5) 0 - 5,0 % De préférence, la somme des teneurs en ZrÛ2 et en AI2O3 dans cette composition de verre varie de 6 à 27 % et avantageusement de 12 à 21 %.
La deuxième composition de verre conforme à la présente invention comprend les constituants ci-après dans les proportions suivantes, exprimées en pourcentage massique :
SiO2 60,0 - 78,0 %
ZrO2 5 - 23,0 %, de préférence 5 - 20 %
AI2O3 0 - 18,0 %, de préférence 0 - 12 %
B2O3 0 - 15,0 %, de préférence 0 - 8,0 %
Na2O 0 - 6,0 %
K2O 0 - 6,0 %
Li2O 1 - 6,0 %, de préférence 2 - 5 %
Na2O + K2O + Li2O < 12 %, de préférence < 10 %
MgO 0 - 10 %
ZnO 0 - 10 %
TiO2 0 - 5 %
Fer total (exprimé en Fe2O3) 0 - 0,5 %, de préférence 0 - 0,2 %
Autres (HfO2, CaO, SrO, BaO,
SO3 et/ou P2O5) 0 - 5,0 %
De préférence, la somme des teneurs en ZrO2 et en AI2O3 dans cette deuxième composition de verre est inférieure à 27 % et avantageusement varie de 12 à 21 %.
De manière avantageuse, dans les compositions précitées, la somme des teneurs en ZrO2, en AI2O3 et en B2O3 varie de 8 à 39 %, notamment de 14 à 30 %.
Dans les compositions de verre selon l'invention, ZrO2 permet d'abaisser le coefficient d'expansion thermique.
Le maintien de la teneur en ZrO2 et en AI2O3 à une valeur inférieure à 27 % assure aux compositions de verre une bonne aptitude à la fusion et une capacité de résistance à la dévitrification. Notamment, ces compositions présentent une température au liquidus inférieure à 17000C, de préférence inférieure à 14000C.
Les compositions de verre conformes à la présente invention permettent d'obtenir un verre qui présente avantageusement un coefficient d'expansion thermique OC25-300 inférieur ou égal à 50 10"7.K"1 après le traitement d'échange par les ions argent.
De la même manière, le verre obtenu à partir de ces compositions présente une variation d'indice de réfraction au moins égale à 0,04 sur une profondeur supérieure à 50 micromètres et avantageusement supérieure à 100 micromètres après le traitement d'échange par les ions argent.
Les compositions de verre selon l'invention permettent d'obtenir un verre qui présente au niveau des motifs ioniques un coefficient de transmission lumineuse mesuré à 410 nanomètres (TL4I0) supérieur ou égal à 80 %, correspondant à une faible coloration jaune. Le faible jaunissement est rendu possible par l'usage combiné d'une teneur totale en Zrθ2, AI2O3 et B2O3 au moins égale à 8 % et une faible teneur en fer, inférieure ou égale à 0,5 %, de préférence inférieure à 0,2 % et avantageusement inférieure à 0,05 %.
Le procédé de fabrication des éléments optiques plans constitue un autre objet selon la présente invention.
Ce procédé comprend les étapes consistant à : a) fabriquer un substrat à partir d'une composition de verre choisie parmi les compositions précitées, b) mettre en contact le substrat en verre avec une source extérieure d'ions argent, c) traiter l'ensemble à une température variant de 200 à 4000C, de préférence 250 à 3500C pendant un temps suffisant pour remplacer au moins partiellement les ions alcalins par les ions argent, d) éventuellement, soumettre le substrat à un traitement thermique pour faire diffuser les ions argent latéralement dans le verre.
Dans l'étape a), le substrat est obtenu par fusion des compositions de verre selon l'invention dans des conditions classiques d'élaboration et de formage du verre, par exemple par coulée, par laminage ou par flottage du verre à l'état fondu sur un bain de métal en fusion tel que de l'étain. Le substrat se présente généralement sous la forme d'une feuille ou d'un cylindre dont l'épaisseur peut varie de 300 μm à 30 mm.
Dans l'étape b) la source extérieure d'ions argent peut être un bain d'un ou plusieurs sels d'argent fondus connus, par exemple un chlorure ou un nitrate. La source d'ions argent est appliquée sur une face du substrat selon un motif ou un réseau de motifs de forme prédéfinie. Le motif peut être obtenu par le biais de la source d'ions argent, qui présente alors une géométrie propre à fournir le motif désiré, ou en formant à la surface du verre un masque de diffusion apte à résister au traitement par échange ionique et présentant des ouvertures appropriées pour obtenir la forme du motif. Le masque peut être par exemple un masque mécanique réalisé selon les techniques connues de lithographie et/ou de gravure, par exemple un masque diélectrique, conducteur ou de résine, ou encore un masque ionique présentant des motifs complémentaires aux motifs désirés formé par diffusion à partir d'une espèce ionique ayant une mobilité plus faible que la mobilité des ions argent.
La face opposée à la première face du substrat en contact avec les ions argent, est mise en contact avec un bain de sels fondus d'une deuxième espèce ionique qui autorise la diffusion des ions alcalins venant du verre, par exemple un nitrate de sodium et/ou un nitrate de potassium. De préférence, on utilise un mélange à parts molaires égales de nitrate de sodium et de nitrate de potassium, ce qui permet de réaliser l'échange ionique à une température relativement basse, de l'ordre de 300 à 3300C.
Selon un mode de réalisation préféré applicable lorsque l'étape c) est mise en œuvre en présence d'un champ électrique comme expliqué plus loin, la source extérieure d'ions argent peut être constituée d'une couche solide à base d'argent métallique (Ag°) ou ionique (Ag+) déposée sur une face du substrat selon le motif ou le réseau de motifs souhaité. Le dépôt de la couche solide peut être effectué par des méthodes connues, par exemple : par sérigraphie d'une pâte à base d'argent métallique ou d'oxyde d'argent, ou d'une pâte comprenant un sel d'argent, notamment un chlorure, un nitrate ou un sulfate d'argent, et un polymère ; par pulvérisation cathodique d'argent métallique ; par dépôt d'une solution comprenant un sel d'argent, notamment un chlorure, un nitrate ou un sulfate d'argent, et un polymère, suivi d'un traitement visant à évaporer la phase liquide. Dans ce mode de réalisation, si le motif unique à l'argent a une dimension suffisante ou que les motifs à l'argent forment un réseau continu, ledit motif ou ledit réseau fait office d'électrode ; il peut ainsi être raccordé directement au générateur de tension afin que l'échange ionique puisse se produire au cours de l'étape suivante c). Dans le cas contraire, à savoir lorsque le motif unique est de faible taille ou que les motifs sont discrets (c'est-à-dire non reliés les uns aux autres), il est nécessaire d'appliquer une électrode sur lesdits motifs. Cette électrode peut être pleine ou ajourée et peut avoir une forme et une dimension variables adaptées aux motifs à l'argent.
Dans l'un ou l'autre cas, la face du substrat opposée à la face revêtue du ou des motifs à l'argent est pourvue d'une électrode apte à accepter les ions alcalins extraits du verre lors de l'échange.
Toujours dans ce mode de réalisation, dans l'étape c) on applique un champ électrique entre les bains ou les électrodes en contact respectivement avec les première et deuxième faces du substrat. Il est ainsi possible d'augmenter la vitesse de diffusion des ions argent dans le verre, ce qui diminue le temps d'échange ionique, et de contrôler plus efficacement le profil de migration des ions argent dans le verre. Le champ électrique peut varier dans une large mesure en fonction de la conductivité du substrat en verre utilisé et de son épaisseur, par exemple de 0,1 à 1000 V/mm d'épaisseur de verre, de préférence 1 à 200 V/mm.
Le traitement thermique supplémentaire appliqué le cas échéant à l'étape d) vise à faire rediffuser les ions dans le motif ionique dans un plan parallèle à la première face du substrat. Ce traitement est opéré dans les conditions de température connues, par exemple 300 à 8000C. La durée du traitement varie en fonction de la forme et de la dimension du motif ionique.
Le substrat en verre obtenu peut le cas échéant être découpé autour desdits motifs pour obtenir les éléments optiques plans à la forme et la dimension souhaitée. Bien que ces éléments comprennent généralement un seul motif ionique, on ne saurait exclure ceux qui en contiennent plusieurs, notamment deux.
Les éléments optiques plans peuvent en outre subir une étape supplémentaire visant à réduire leur épaisseur. Cette étape d'amincissement peut se faire par la face non échangée, notamment pour éliminer le verre ne contenant pas d'ions argent quand l'échange ionique n'est pas opéré sur toute l'épaisseur du substrat, ou par la face échangée, notamment pour supprimer le masque ou la couche solide d'argent métallique ou ionique. Les éléments optiques plans, notamment obtenus par le procédé précité, constituent un autre objet de l'invention.
Ces éléments peuvent se présenter sous la forme de lentilles à gradient d'indice de réfraction ou de guides d'onde intégrés dans le verre. Ils trouvent leur application dans la réalisation de dispositifs d'imagerie miniatures tels que des caméras pour téléphone portable, appareils de navigation et matériels de diagnostic médical. Les éléments conformes à l'invention peuvent encore être incorporés dans des dispositifs d'éclairage, en particulier qui comprennent une ou plusieurs diodes électroluminescentes organiques (OLED).
Les compositions de verre conformes à l'invention peuvent aussi servir à former des substrats en verre pour la réalisation de vitrages pour le bâtiment, de modules photovoltaïques, de dispositifs d'éclairage et d'éléments décoratifs, notamment dans le domaine de l'électroménager. Les exemples qui suivent permettent d'illustrer l'invention sans toutefois la limiter.
EXEMPLES 1 A 6
On forme des substrats à partir des compositions de verre comprenant les constituants indiqués dans le tableau 1 (en pourcentage massique). Les substrats sont des carrés de 4 cm de côté et 2 mm d'épaisseur.
Chaque substrat est soumis à un traitement d'échange ionique dans un bain de nitrate d'argent, sans application d'un champ électrique, et le cas échéant dans un dispositif opérant sous l'action d'un champ électrique représenté dans la figure 1 a (coupe transversale) et 1 b (coupe longitudinale selon l'axe AA).
Le dispositif comprend le substrat 1 muni de deux compartiments 2 et 3, formant des réservoirs, appliqués en regard l'un de l'autre. Les compartiments 2 et 3 sont fixés au substrat par l'intermédiaire d'un adhésif 4 qui joue également le rôle de joint d'étanchéité au regard du contenu du réservoir. Le compartiment 2 contient un bain 7 d'AgNOs et le compartiment 3 est rempli d'un mélange KNθ3 :NaNθ3 (1 :1 ; mole:mole). Le dispositif est muni en outre des électrodes 5 et 6. Les ions alcalins du verre migrent vers le bain 8 et sont remplacés progressivement par les ions Ag+ contenus dans le bain 7 (sens de migration indiqué par les flèches).
Après l'échange ionique, le substrat est sorti du bain 7 et lavé à l'eau. Sur le substrat, on détermine :
- la variation de l'indice de réfraction à 500 nm (Δn5Oo) du verre avant et après l'échange ionique,
- la profondeur de diffusion des ions Ag+ dans le verre, en micromètres,
- le facteur de transmission lumineuse à 410 nm (TL4I0), en %. Les résultats figurent dans le tableau 1 comparativement à des substrats en verre silico-sodo-calcique (Exemple comparatif 1 ) et en verre contenant du bore (Exemple comparatif 2).
Les substrats en verre des exemples 1 à 6 conformes à l'invention combinent un coefficient d'expansion thermique inférieur à 65 10~7 .K"1 et, après l'échange ionique, une variation d'indice de réfraction au moins égale à 0,03 sur une profondeur d'échange au moins égale à 10 μm.
En outre, ces substrats présentent une transmission lumineuse à 410 nm supérieure à 85 %, ce qui signifie que le verre ne présente aucune coloration jaune, contrairement à l'exemple comparatif 1.
TABLEAU 1
Figure imgf000012_0001

Claims

REVENDICATIONS
1. Composition de verre pour la fabrication d'éléments optiques plans, caractérisée en ce qu'elle comprend les constituants ci-après dans les proportions suivantes, exprimées en pourcentage massique :
SiO2 60,0 - 78,0 % ZrO2 0,5 - 23,0 % AI2O3 0 - 23,0 % B2O3 0 - 15,0 %, de préférence 0 - 8,0 % Na2O > 6,0 - 14,0 %, de préférence > 6,0 - 11 ,0 % K2O 0 - 11 ,0 %, de préférence 0 - 5 % Li2O 0 - 8,0 %, de préférence 0 - 5 %
Na2O + K2O + Li2O < 14 %, de préférence < 11 % MgO 0 - 10 % ZnO 0 - 10 % TiO2 0 - 5 %
Fer total (exprimé en Fe2O3) 0 - 0,5 %, de préférence 0 - 0,2 %
Autres (HfO2, CaO, SrO, BaO,
SO3 et/ou P2O5) 0 - 5,0 %
2. Composition selon la revendication 1 , caractérisée en ce que la somme des teneurs en ZrO2 et en AI2O3 varie de 6 à 27 % et avantageusement de 12 à 21 %.
3. Composition de verre pour la fabrication d'éléments optiques plans, caractérisée en ce qu'elle comprend les constituants ci-après dans les proportions suivantes, exprimées en pourcentage massique :
SiO2 60,0 - 78,0 %
ZrO2 5 - 23,0 %, de préférence 5 - 20 %
AI2O3 0 - 18,0 %, de préférence 0 - 12 %
B2O3 0 - 15,0 %, de préférence 0 - 8,0 %
Na2O 0 - 6,0 %
K2O 0 - 6,0 %
Li2O 1 - 6,0 %, de préférence 2 - 5 %
Na2O + K2O + Li2O < 12 %, de préférence < 10 %
MgO 0 - 10 %
ZnO 0 - 10 % TiO2 0 - 5 %
Fer total (exprimé en Fe2O3) 0 - 0,5 %, de préférence 0 - 0,2 %
Autres (HfO2, CaO, SrO, BaO,
SO3 et/ou P2O5) 0 - 5,0 %
4. Composition selon la revendication 3, caractérisée en ce que la somme des teneurs en ZrO2 et en AI2O3 est inférieure à 27 % et avantageusement varie de 12 à 21 %.
5. Composition selon l'une des revendications 1 à 4, caractérisée en ce que la somme des teneurs en ZrO2, en AI2O3 et en B2O3 varie de 8 à 39 %, notamment de 14 à 30 %.
6. Procédé de fabrication d'éléments optiques plans qui comprend les étapes consistant à : a) fabriquer un substrat à partir d'une composition de verre selon l'une des revendications 1 à 5, b) mettre en contact le substrat en verre avec une source extérieure d'ions argent, c) traiter l'ensemble à une température variant de 200 à 4000C, de préférence 250 à 3500C pendant un temps suffisant pour remplacer au moins partiellement les ions alcalins par les ions argent, d) éventuellement, soumettre le substrat à un traitement thermique pour faire diffuser les ions argent latéralement dans le verre.
7. Procédé selon la revendication 6, caractérisé en ce qu'on applique un champ électrique au cours de l'étape c).
8. Procédé selon la revendication 7, caractérisé en ce que le champ électrique varie de 0,1 à 1000 V/mm d'épaisseur de verre, de préférence 1 à 200 V/mm.
9. Elément optique plan comprenant un ou plusieurs motifs ioniques, caractérisé en ce qu'il est constitué d'un verre de composition selon l'une des revendications 1 à 5 ayant un coefficient d'expansion thermique OC25-300 inférieur ou égal à 65 10~7 .K"1 et en ce qu'il présente au niveau du ou des motifs ioniques une variation d'indice de réfraction au moins égale à 0,03 sur une profondeur supérieure à 10 micromètres.
10. Elément selon la revendication 9, caractérisé en ce que le coefficient d'expansion thermique OC25-300 est inférieur ou égal à 50 10"7.K"1.
11. Elément selon la revendication 9 ou 10, caractérisé en ce que la variation d'indice de réfraction est au moins égale à 0,04 sur une profondeur supérieure à 50 micromètres et de préférence supérieure à 100 micromètres.
12. Elément selon l'une des revendications 9 à 11 , caractérisé en ce qu'il s'agit d'une lentille à gradient d'indice de réfraction ou d'un guide d'onde intégré dans le verre.
13. Utilisation de la composition de verre selon l'une des revendications 1 à 5 pour la fabrication de vitrage pour le bâtiment, de module photovoltaïque, de dispositif d'éclairage, notamment comprenant une ou plusieurs diodes électroluminescentes organiques (OLED), et d'élément décoratif, notamment dans le domaine de l'électroménager.
PCT/FR2009/052362 2008-12-15 2009-12-02 Composition de verre adaptée a la réalisation d'éléments optiques plans WO2010076445A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858605A FR2939787A1 (fr) 2008-12-15 2008-12-15 Composition de verre adaptee a la realisation d'elements optiques plans
FR0858605 2008-12-15

Publications (1)

Publication Number Publication Date
WO2010076445A1 true WO2010076445A1 (fr) 2010-07-08

Family

ID=40551962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052362 WO2010076445A1 (fr) 2008-12-15 2009-12-02 Composition de verre adaptée a la réalisation d'éléments optiques plans

Country Status (2)

Country Link
FR (1) FR2939787A1 (fr)
WO (1) WO2010076445A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633434A (zh) * 2012-05-04 2012-08-15 上海光芯集成光学股份有限公司 一种集成光学用玻璃基片材料及其制备方法
EP3339263A4 (fr) * 2016-05-03 2018-12-19 LG Chem, Ltd. Verre borosilicaté, plaque de guidage de lumière comprenant celui-ci et procédé de fabrication de ladite plaque de guidage de lumière
CN111533443A (zh) * 2020-05-27 2020-08-14 成都光明光电股份有限公司 光学玻璃

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524737A (en) 1967-06-01 1970-08-18 Corning Glass Works Method for thermochemical strengthening of glass articles
US3615323A (en) 1968-03-07 1971-10-26 Philips Corp Method of increasing the mechanical strength of glass articles
US3615322A (en) 1968-09-30 1971-10-26 Anchor Hocking Glass Corp Chemical strengthening of glass articles produced with flame treatment
US3873408A (en) 1969-10-06 1975-03-25 Bausch & Lomb Method of producing a refractive index gradient in glass
US3880630A (en) 1971-12-01 1975-04-29 Nippon Telegraph & Telephone Method for forming optical waveguides
FR2578658A1 (fr) * 1985-03-05 1986-09-12 Nippon Sheet Glass Co Ltd Plaque a microlentilles et son procede de fabrication
EP0380468A2 (fr) 1989-01-23 1990-08-01 Polaroid Corporation Méthode de fabrication de guides d'ondes enterrés
US5958810A (en) 1995-01-18 1999-09-28 Optische Werke G. Rodenstock Optical glass with varying refraction index
US6066273A (en) 1997-11-20 2000-05-23 Nippon Sheet Glass Co., Ltd. Axial refractive index distributed lens
EP1106586A1 (fr) * 1999-12-01 2001-06-13 Nippon Sheet Glass Co., Ltd. Lentille à gradient d'index
WO2003046657A2 (fr) * 2001-11-23 2003-06-05 Btg International Limited Dispositif optique
US20030161048A1 (en) 2002-02-22 2003-08-28 Nippon Sheet Glass Co., Ltd. Planar lens
US20050137075A1 (en) 2003-12-19 2005-06-23 Bernhard Messerschmidt Aluminoborosilicate glass and method for the production of crystallite-free gradient index lenses

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524737A (en) 1967-06-01 1970-08-18 Corning Glass Works Method for thermochemical strengthening of glass articles
US3615323A (en) 1968-03-07 1971-10-26 Philips Corp Method of increasing the mechanical strength of glass articles
US3615322A (en) 1968-09-30 1971-10-26 Anchor Hocking Glass Corp Chemical strengthening of glass articles produced with flame treatment
US3873408A (en) 1969-10-06 1975-03-25 Bausch & Lomb Method of producing a refractive index gradient in glass
US3880630A (en) 1971-12-01 1975-04-29 Nippon Telegraph & Telephone Method for forming optical waveguides
US4952037A (en) 1985-03-05 1990-08-28 Nippon Sheet Glass Co., Ltd. Plate microlens and method for manufacturing the same
FR2578658A1 (fr) * 1985-03-05 1986-09-12 Nippon Sheet Glass Co Ltd Plaque a microlentilles et son procede de fabrication
EP0380468A2 (fr) 1989-01-23 1990-08-01 Polaroid Corporation Méthode de fabrication de guides d'ondes enterrés
US5958810A (en) 1995-01-18 1999-09-28 Optische Werke G. Rodenstock Optical glass with varying refraction index
US6066273A (en) 1997-11-20 2000-05-23 Nippon Sheet Glass Co., Ltd. Axial refractive index distributed lens
EP1106586A1 (fr) * 1999-12-01 2001-06-13 Nippon Sheet Glass Co., Ltd. Lentille à gradient d'index
US20010003724A1 (en) 1999-12-01 2001-06-14 Jun Yamaguchi Graded index lens
WO2003046657A2 (fr) * 2001-11-23 2003-06-05 Btg International Limited Dispositif optique
US20030161048A1 (en) 2002-02-22 2003-08-28 Nippon Sheet Glass Co., Ltd. Planar lens
US20050137075A1 (en) 2003-12-19 2005-06-23 Bernhard Messerschmidt Aluminoborosilicate glass and method for the production of crystallite-free gradient index lenses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633434A (zh) * 2012-05-04 2012-08-15 上海光芯集成光学股份有限公司 一种集成光学用玻璃基片材料及其制备方法
EP3339263A4 (fr) * 2016-05-03 2018-12-19 LG Chem, Ltd. Verre borosilicaté, plaque de guidage de lumière comprenant celui-ci et procédé de fabrication de ladite plaque de guidage de lumière
US10662107B2 (en) 2016-05-03 2020-05-26 Lg Chem, Ltd. Borosilicate glass, light guide plate comprising the same and fabricating methods thereof
CN111533443A (zh) * 2020-05-27 2020-08-14 成都光明光电股份有限公司 光学玻璃

Also Published As

Publication number Publication date
FR2939787A1 (fr) 2010-06-18

Similar Documents

Publication Publication Date Title
EP2197803A1 (fr) Substrat en verre a gradient d&#39;indice de refraction et procede de fabrication
EP2683665B1 (fr) Substrat pour cellule photovoltaïque
EP2260009A2 (fr) Procede de fabrication d&#39;elements optiques plans et elements obtenus.
ATE192125T1 (de) Transparentes substrat mit antireflektionsbeschichtung
TWI565674B (zh) 含鈉之熔融可成形玻璃
TW201118054A (en) Fusion formable silica and sodium containing glasses
RU2666962C2 (ru) Слоистый материал для светоизлучающего прибора и способ его изготовления
EP2958867A1 (fr) Substrat pour dispositif a diode electroluminescente organique
EP3485305A1 (fr) Article de guide d&#39;ondes optiques à structure stratifiée et son procédé de formation
WO2010076445A1 (fr) Composition de verre adaptée a la réalisation d&#39;éléments optiques plans
KR20120056288A (ko) 광전지 장치용 표면 핵형성 유리
FR2937798A1 (fr) Substrat verrier avec electrode notamment destine a un dispositif a diode electroluminescente organique
FR2972724A1 (fr) Substrat pour cellule photovoltaique
KR20180014749A (ko) 금속 종결 층 및 산화된 전-종결 층을 갖는 열 특성을 갖는 스택이 제공된 기판
KR20170031142A (ko) 투명 확산성 oled 기판 및 이러한 기판의 제조 방법
FR2838118A1 (fr) Espaceurs possedant une conductivite electronique, procede de fabrication et applications notamment pour les ecrans de visualisation
US20120145308A1 (en) Methods for anodic bonding material layers to one another and resultant apparatus
JP2019002036A (ja) 酸化物被膜及びその酸化物被膜を備える構造体
FR2982256A1 (fr) Substrat pour cellule photovoltaique
US20170088458A1 (en) Low reflective glass member and method for producing low reflective glass member
JPWO2013099768A1 (ja) ガラス基板およびガラス基板の製造方法
FR3002533A1 (fr) Substrat pour dispositif a diode electroluminescente organique
WO2013068698A1 (fr) Feuille de verre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802157

Country of ref document: EP

Kind code of ref document: A1