WO2010075808A1 - 磁光晶体及其制备方法以及磁光晶体的应用装置 - Google Patents

磁光晶体及其制备方法以及磁光晶体的应用装置 Download PDF

Info

Publication number
WO2010075808A1
WO2010075808A1 PCT/CN2009/076352 CN2009076352W WO2010075808A1 WO 2010075808 A1 WO2010075808 A1 WO 2010075808A1 CN 2009076352 W CN2009076352 W CN 2009076352W WO 2010075808 A1 WO2010075808 A1 WO 2010075808A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magneto
pattern
optical crystal
stripe
Prior art date
Application number
PCT/CN2009/076352
Other languages
English (en)
French (fr)
Inventor
袁海骏
Original Assignee
上海舜宇海逸光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海舜宇海逸光电技术有限公司 filed Critical 上海舜宇海逸光电技术有限公司
Publication of WO2010075808A1 publication Critical patent/WO2010075808A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Definitions

  • the present invention relates to the field of optical applications, and in particular to a magneto-optical crystal, a method of fabricating the same, and an apparatus for applying a magneto-optical crystal.
  • Magneto-optical crystals are widely used in optical power, optical path control, and other fields of magnetic field and current measurement in optical fiber communication.
  • the garnet magneto-optical crystal is a magneto-optical crystal which is widely used at present. The following is an example of a garnet magneto-optical crystal. In the polycrystalline garnet magneto-optical crystal, a strip-shaped composite magnetic domain structure is formed in most cases. Fig.
  • Fig. 1 is a view showing the magnetic domain structure of a single crystal garnet magneto-optical crystal
  • Fig. 2 is a view showing the magnetic domain structure of a single crystal garnet magneto-optical crystal.
  • Fig. 1 even a single crystal garnet magneto-optical crystal usually forms a strip-shaped composite magnetic domain structure inside.
  • adjacent magnetic domains are perpendicular to the crystal surface.
  • the external magnetic field changes, the adjacent magnetic domain region changes with the intensity and direction of the external magnetic field, one becomes relatively large and the other becomes relatively small.
  • the composite magnetic domain transforms into a single uniform magnetic domain that is magnetized in a single direction.
  • a magneto-optical crystal is provided, the surface of which is provided with permanent magnets Magnetic thin film of a domain, the permanent magnetic domain includes a stripe having a direction of a magnetic field, and the stripe includes at least one of: a point, a continuous or a discontinuous line, and a gap between the stripe and a free energy state of the magneto-optical crystal or a natural formation
  • the gaps of the strip-shaped composite magnetic domains are matched.
  • the magneto-optical crystal described above is a garnet magneto-optical crystal.
  • a method for preparing a magneto-optical crystal comprising the steps of: disposing a magnetic film having a permanent magnetic domain on a surface of the magneto-optical crystal, the permanent magnetic domain including a stripe having a magnetic field direction, The stripe includes at least one of: a point, a continuous or a discontinuous line, and the gap between the strips is comparable to the free-energy condition of the magneto-optical crystal or the gap of the strip-shaped composite magnetic domain naturally formed.
  • the magnetic film having a permanent magnetic domain disposed on the surface of the magneto-optical crystal specifically comprises: selecting a smooth magneto-optical crystal; cleaning the surface of the magneto-optical crystal; cleaning the surface A magnetic film is plated thereon; a permanent magnetic domain is disposed on the magnetic film.
  • the setting of the permanent magnetic domain on the magnetic film specifically includes: designing a pattern according to the stripe in advance; placing the magneto-optical crystal in the magnetic field, the magnetic field strength of the magnetic field is sufficient under a certain laser intensity
  • the magnetic film is magnetized, but the magnetic film is not magnetized at normal temperature; a magnetic field is applied, and the laser is projected and focused on the magnetic film according to the pattern, so that the magnetic field magnetizes the magnetic film to form a permanent magnetic domain under the action of the laser intensity.
  • projecting and focusing the laser on the magnetic film according to the pattern specifically includes: moving the laser according to the pattern; or fixing the magneto-optical crystal on the controllable mobile platform, so that the magneto-optical crystal is opposite to the magnetic crystal
  • the laser moves according to the pattern.
  • the first design includes: designing the first pattern according to the stripe of the N-direction magnetic field in the stripe, and designing the second pattern according to the stripe of the S-direction magnetic field in the stripe.
  • Applying a magnetic field and projecting and focusing the laser onto the magnetic film according to the pattern specifically includes: applying a magnetic field in the N direction, and projecting and focusing the laser on the magnetic film according to the first pattern; applying a magnetic field in the S direction, and applying the second pattern according to the second pattern The laser is projected and focused on the magnetic film.
  • the pre-determination according to the stripe design pattern specifically includes: designing the first pattern according to the stripe of the N-direction magnetic field in the stripe; applying a magnetic field, and projecting and focusing the laser on the magnetic film according to the pattern Specifically, it includes: applying a magnetic field in the N direction, and casting the laser according to the first pattern Shooting and focusing on the magnetic film; or pre-designing the pattern according to the stripe specifically includes: designing the second pattern according to the stripe of the magnetic field in the S direction of the stripe; applying a magnetic field, and projecting and focusing the laser on the magnetic film according to the pattern specifically includes : Apply a magnetic field in the S direction and project and focus the laser onto the magnetic film in accordance with the second pattern.
  • the setting of the permanent magnetic domain on the magnetic film specifically includes: designing a pattern according to the stripe in advance; placing the magneto-optical crystal in a magnetic field, using a strong magnetic field or a temperature-increasing coercive force Method of magnetizing a magnetic film, and then etching the magnetic film according to the pattern to form a permanent magnetic domain; or etching the magnetic film according to the pattern, and then placing the magneto-optical crystal in a magnetic field, using a strong magnetic field or a method of warming the coercive force
  • the magnetic film is magnetized to form a permanent magnetic domain.
  • an apparatus for applying a magneto-optical crystal the magneto-optical crystal in the application device being the magneto-optical crystal described above.
  • the application device is a fiber optic magneto-optical probe device for measuring a magnetic field or a current.
  • the application device is a controllable polarization aperture device, wherein the stripes of the permanent magnetic domain are concentric rings, and the magnetic domains of the adjacent rings are opposite in direction.
  • the application device is a controllable polarization grating device, wherein the stripes of the permanent magnetic domain are grating stripes.
  • the application device is a controllable polarization Finnel lens device, wherein the stripe of the permanent magnetic domain is a plurality of concentric rings, and the spacing between the plurality of concentric rings is attached to the Philippine Neil H, the eyes of the pi are not in sight.
  • the magneto-optical crystal of the above embodiment, the preparation method thereof, and the application device of the magneto-optical crystal because the magnetic film having the permanent magnetic domain is used, overcomes the incomplete restoration of the composite magnetic domain of the existing magneto-optical crystal.
  • the random error problem in turn, achieves the effect of measurement accuracy.
  • FIG. 1 is a microscopic view of a magnetic domain structure of a single crystal garnet magneto-optical crystal
  • FIG. 2 is a schematic view showing a magnetic domain structure of a single crystal garnet magneto-optical crystal
  • FIG. 3 is a view showing an embodiment of the present invention according to an embodiment of the present invention.
  • FIG. 4 is a process diagram showing a magnetic thin film having a permanent magnetic domain on the surface of the magneto-optical crystal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the fringes of permanent magnetic domains of a magneto-optical crystal in the fiber-optic magneto-optical probe device of FIG. 5
  • FIG. 7 is a view showing a magnetic field or a current according to an embodiment of the present invention
  • FIG. A schematic diagram of a controllable polarization aperture scheme in accordance with one embodiment of the present invention is shown;
  • FIG. 8 is a schematic diagram of a controllable polarization grating scheme in accordance with one embodiment of the present invention.
  • An embodiment of the present invention provides a method for preparing a magneto-optical crystal, comprising the steps of: disposing a magnetic film having a permanent magnetic domain on a surface of the magneto-optical crystal, the permanent magnetic domain including a stripe having a magnetic field direction, and the stripe includes At least one of: a point, a continuous or discontinuous line, and the gap between the stripes matches the free-energy condition of the magneto-optical crystal or the gap of the naturally formed strip-shaped composite magnetic domain.
  • the preparation method is such that a magneto-optical crystal such as a garnet magneto-optical crystal forms a reproducible strip-shaped composite magnetic domain of a stable shape, thereby avoiding the occurrence of a composite magnetic domain in a conventional magneto-optical crystal.
  • step 4 collecting S 10, selecting a smooth magneto-optical crystal; step S20, The surface of the magneto-optical crystal is cleaned; in step S30, a magnetic film is plated on the surface of the cleaned surface; In step S40, permanent magnetic domains are disposed on the magnetic film.
  • the film should be easily magnetized in a direction perpendicular to the surface and have a high coercivity over the operating temperature range, and the working magnetic field of the device does not change its magnetization direction.
  • the above preparation process is simple and easy.
  • FIG. 4 is a process diagram showing a magnetic film having a permanent magnetic domain disposed on a surface of a magneto-optical crystal according to an embodiment of the present invention, specifically comprising: surface cleaning of a smooth ordinary garnet magneto-optical crystal; The surface of the net garnet magneto-optical crystal is coated with a magnetic film; the permanent magnetic domain according to the application requirements is disposed on the magnetic film; the garnet magneto-optical crystal forms a stable shape and repeatable strip shape due to the magnetic field of the permanent magnetic domain; Composite magnetic domain.
  • the step S40 specifically includes: designing a pattern according to the stripe in advance; placing the magneto-optical crystal in the magnetic field, the magnetic field strength of the magnetic field is sufficient to magnetize the magnetic film under a certain laser intensity, but does not magnetize the magnetic film at normal temperature Applying a magnetic field and projecting and focusing the laser onto the magnetic film in accordance with the pattern such that the magnetic field magnetizes the magnetic film to form a permanent magnetic domain under the action of the laser intensity.
  • a suitable permanent magnetic domain can be formed, so that the composite magnetic domain of the magneto-optical crystal matches the permanent magnetic domain.
  • the magnetic domain pattern can be designed according to the application requirements and the properties of the magneto-optical crystal.
  • the gap between the stripes should be the same as the gap between the free energy of the magneto-optical crystal or the strip-shaped composite magnetic domain formed naturally.
  • the magnetic film should have the following characteristics: It can be magnetized to form a permanent magnetized magnetic domain under the action of a higher external magnetic field under local heating or laser irradiation, and the magnetization direction is perpendicular to the surface. Additionally, the intensity of the laser can be computer controlled or modulated; the appropriate laser intensity and external magnetic field magnetize the magnetic thin film to form a local permanent magnetic domain.
  • the local permanent magnetic domains formed according to the preparation method may be point, continuous or discontinuous lines, the size being determined by the spot size of the laser beam on the magnetic film, and may be on the order of 1 to several meters.
  • the pattern formed by the local magnetic domain dotted lines can be formed during the magnetic domain writing process by a computer controlled mechanical mechanism according to the application.
  • projecting and focusing the laser on the magnetic film according to the pattern comprises: moving the laser according to the pattern; or fixing the magneto-optical crystal on the controllable mobile platform, so that the magneto-optical crystal is opposite to the excitation
  • the light moves according to the pattern. Both of these moves are possible.
  • the controllable mechanical mechanism is connected to the sample stage or the laser head, and a certain magnetic domain pattern is formed according to the pattern to form a relative movement between the sample and the laser in the magnetic domain writing process.
  • the first design includes: designing the first pattern according to the stripe of the N-direction magnetic field in the stripe, and designing the second pattern according to the stripe of the S-direction magnetic field in the stripe.
  • Applying a magnetic field and projecting and focusing the laser onto the magnetic film according to the pattern specifically includes: applying a magnetic field in the N direction, and projecting and focusing the laser on the magnetic film according to the first pattern; applying a magnetic field in the S direction, and applying the second pattern according to the second pattern
  • the laser is projected and focused on the magnetic film.
  • the magnetic domain pattern may be in a single magnetic direction, or the adjacent stripes may have opposite magnetic directions.
  • the pre-determination according to the stripe design pattern specifically includes: designing the first pattern according to the stripe of the N-direction magnetic field in the stripe; applying a magnetic field, and projecting and focusing the laser on the magnetic film according to the pattern
  • the method includes: applying a magnetic field in the N direction, and projecting and focusing the laser on the magnetic film according to the first pattern; or pre-designing the pattern according to the stripe specifically includes: designing the second pattern according to the stripe of the magnetic field in the S direction of the stripe; applying a magnetic field And projecting and focusing the laser on the magnetic film according to the pattern specifically includes: applying a magnetic field in the S direction, and projecting and focusing the laser on the magnetic film according to the second pattern.
  • the magnetic film obtained in the above embodiment is a complete magnetic film, and a magnetic pattern formed by magnetic traces is left on the magnetic film by the influence of laser light and a magnetic field to obtain a permanent magnetic domain.
  • the setting of the permanent magnetic domain on the magnetic film specifically includes: designing a pattern according to the stripe in advance; placing the magneto-optical crystal in a magnetic field, using a strong magnetic field or adding a temperature to reduce the coercive force;
  • the method magnetizes a magnetic film (i.e., forms a magnetization of a vertical surface;), and then etches (e.g., lithographically) the magnetic film in accordance with a pattern to form a permanent magnetic domain.
  • the setting of the permanent magnetic domain on the magnetic film specifically includes: designing a pattern according to the stripe in advance; etching the magnetic film according to the pattern, and then placing the magneto-optical crystal in the magnetic field, using a strong magnetic field or Magnetizing a magnetic film by heating to lower the coercive force (ie, forming a vertical table) The magnetization of the face) to form a permanent magnetic domain.
  • the magnetic film obtained by the above two methods is a hollow magnetic film, and a permanent magnetic domain is obtained by etching a magnetic pattern formed by the remaining portion.
  • One embodiment of the present invention provides a magneto-optical crystal having a magnetic film having a permanent magnetic domain on its surface, the permanent magnetic domain including a stripe having a magnetic field direction, and the stripe including at least one of: a point, a continuous or a Continuous lines, and the gap between the stripes matches the free energy of the magneto-optical crystal or the gap of the naturally formed strip-shaped composite magnetic domain.
  • a magneto-optical crystal such as a garnet magneto-optical crystal forms a reproducible strip-shaped composite magnetic domain of a stable shape, thereby avoiding random variations in the composite magnetic domain in a conventional magneto-optical crystal. In turn, random errors can be reduced.
  • the magneto-optical crystal can form a stable and repeatable composite magnetic domain for improving accuracy in magnetic field and current measurement.
  • Embodiments of the present invention provide an apparatus for applying a magneto-optical crystal, the magneto-optical crystal being the magneto-optical light described above.
  • Crystal. 5 shows a fiber optic magneto-optical probe apparatus for measuring a magnetic field or current according to an embodiment of the present invention, comprising: an input optical fiber 6, an input optical collimator 5a, a first polarization beam splitter 3d, and a magneto-optical The crystal 1, the 1/2 wave plate 2, the second polarization beam splitter 3e, the output light collimator 5b, and the output fiber 7.
  • the fiber-optic magneto-optical probe device performs wavelength division, magneto-optical induction, and multiplex processing on the orthogonal polarization components of the light by using light polarization processing.
  • the magneto-optical crystal 1 also called a Faraday magneto-optical rotator
  • a wave plate is arranged, and the wave plate is used for rotating the polarization plane of the two output lights of the Faraday magneto-optical rotator to avoid near-zero desensitization, and the magneto-optical Inductively, polarization detection is performed simultaneously and equally for two orthogonal polarization components;
  • the first polarization beam splitter 3d and the second polarization beam splitter 3e are made of a uniaxial crystal, and can be separated by two mutually orthogonal polarized lights of 4 bar.
  • the first polarization beam splitter 3d when the light passes through the first polarization beam splitter 3d, it is divided into two planes of polarization plane orthogonal to each other, and the propagation directions of the two beams are at a small angle while passing through the magneto-optical crystal 1 and the 1/2 waveplate 2; After they reach the second polarization beam splitter 3e, the plane of polarization of each beam of light is rotated by 90 relative to the original plane of polarization produced by the first polarization beam splitter 3d.
  • the direction of component propagation will be uniform, and although there is a slight spatial separation between the two beams, they can be received by the output optical collimator 5b and the output fiber 7 in equal amounts, while the other components will be isolated from the output fiber 7.
  • the magneto-optical crystal 1 is a square provided by the embodiment of the present invention. Law production.
  • the magnetic domains of the magneto-optical crystal are positioned by permanent magnetic domains on the written magnetic film.
  • the crystal magnetic domain is a strip-shaped magnetic domain of a uniform fixed pattern in the absence of an external magnetic field, and can be linear as shown in FIG.
  • the magneto-optical crystal becomes a saturated single magnetic domain under the action of a large external magnetic field, when the external magnetic field is weakened, the magneto-optical crystal returns to the strip-shaped cross-reverse magnetic domain of the same position of the same pattern. As a result, random errors due to magnetic domain position and shape variations during the measurement process are controlled.
  • the present invention provides the following embodiments: applying the material to measure a magnetic field or a current; applying the material to form a controllable polarization grating and a light hole; applying the material to form a controllable polarization grating; applying the material to make a controllable Polarized Fresnel lens.
  • the application device is a controllable polarization aperture device, wherein the stripes of the permanent magnetic domain are concentric rings, and the magnetic domains of the adjacent rings are opposite in direction.
  • Figure 7 shows a schematic diagram of a controlled polarization aperture scheme in accordance with one embodiment of the present invention.
  • a magneto-optical crystal having a magnetic domain of a concentric annular pattern is formed as shown in Fig. 7A, and the magnetic domains of adjacent rings are opposite in direction, as shown in Fig. 7A.
  • the magneto-optical crystal is placed in the coil, and when the intensity of the coil and the steering wheel are changed, the area of the reverse magnetic domain region changes relatively.
  • Fig. 7C depicts that the center magnetic domain becomes smaller when the current is forward;
  • Fig. 7D describes that the center magnetic domain becomes larger when the current is reversed. In this way, when the polarized light beam passes through the crystal, the beam cross section spatially produces a different polarization distribution.
  • the application device is a controllable polarization Finnel lens device, wherein the stripes of the permanent magnetic domain are a plurality of concentric rings, and the spacing between the plurality of concentric rings conforms to Fini
  • the distribution rule is that the magnetic domains of adjacent rings have opposite magnetization directions.
  • the application device is a controllable polarization grating device, wherein the stripes of the permanent magnetic domain are grating stripes.
  • 8 is a schematic diagram of a controllable polarization grating scheme according to an embodiment of the present invention: a magneto-optical crystal having a magnetic domain of a grid pattern is formed by the preparation method provided by the present invention.
  • FIG. 8A The magnetic domain magnetization directions of adjacent rings are opposite, as shown in Fig. 8A.
  • the magneto-optical crystal is placed in the coil, and when the intensity of the coil and the steering wheel are changed, the area of the reverse magnetic domain region changes relatively.
  • Figures 8C and 8D respectively depict magnetic domain patterns when the current is forward and reverse. In this way, when the polarized light beam passes through the crystal, two sets of polarization-orthogonal wave-array grid-like distributions are generated on the beam cross-section, which will generate two sets of polarized gratings on the jet. The effect of the two groups of "radio waves" can vary with the applied current.
  • the magneto-optical crystal is a garnet magneto-optical crystal
  • the garnet magneto-optical crystal is a magneto-optical crystal which is widely used at present.
  • the present invention affects the magnetic field of a permanent magnetic domain by applying a magnetic field, such as a garnet magneto-optical crystal, to form a reproducible strip-shaped composite magnetic domain of a stable shape, thereby avoiding random occurrence of composite magnetic domains in a conventional magneto-optical crystal. Variations, in turn, can reduce random errors in prior art measurement applications.
  • a magnetic field such as a garnet magneto-optical crystal

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

磁光晶体及其制备方法以及磁光晶体的应用装置 技术领域 本发明涉及光学应用领域, 具体而言, 涉及磁光晶体及其制备方法以及 磁光晶体的应用装置。 背景技术 磁光晶体广泛应用在光纤通信中的光强、 光路控制中、以及其他领域的 磁场和电流测量中。 石榴石磁光晶体是目前应用比较广泛的一种磁光晶体, 下面以石榴石磁光晶体进行举例说明。 多晶的石榴石磁光晶体内部多数情况下会形成条形状复合磁畴结构。图 1示出了单晶的石榴石磁光晶体的磁畴结构啟观图; 图 2示出了单晶的石榴 石磁光晶体的磁畴结构示意图。如图 1所示, 即使是单晶的石榴石磁光晶体, 通常情况下内部也会形成条形状复合磁畴结构。 如图 2所示, 多数情况下, 相邻的磁畴磁 ^匕方向相反垂直于晶体表面。 当在外磁场作用下, 相邻磁畴区域随着外磁场的强度和方向变化, 一种 相对地变大而另一种相对地变小。 当外磁场超过该材料的确饱和磁场时, 复 合磁畴转变为单一方向磁化的单一均匀磁畴。 而当外磁场强度减小时, 复合 磁畴又重新形成。 当外磁场 4款消时, 两种磁畴区域相对均衡。 这样的过程对 应了晶体不同的磁光效应及强度变化, 从而形成各类应用。 在实现本发明过程中,发明人发现在磁光晶体例如石榴石磁光晶体的多 种应用中, 由于从单一磁畴到条形符合结构的过程带有随机性, 每次形成的 结构尽管基本均衡但形状并不完全重复, 这造成了一定的磁滞现象, 并在测 量应用中造成一定的随机误差。 发明内容 本发明旨在提供一种磁光晶体及其制备方法以及磁光晶体的应用装置, 能够解决现有磁光晶体的随机误差问题。 在本发明的实施例中,提供了一种磁光晶体, 其表面设置了具有永久磁 畴的磁性薄膜,永久磁畴包括具有磁场方向的条紋,条紋包括以下至少之一: 点、 连续或不连续的线条, 并且条紋之间的间隙与磁光晶体自由能状况或自 然形成的条状复合磁畴的间隙相匹配。 可选的, 上述的磁光晶体是石榴石磁光晶体。 在本发明的实施例中, 还提供了一种磁光晶体的制备方法, 包括以下步 骤: 在磁光晶体的表面设置具有永久磁畴的磁性薄膜, 永久磁畴包括具有磁 场方向的条紋, 条紋包括以下至少之一: 点、 连续或不连续的线条, 并且条 紋之间的间隙与磁光晶体自由能状况或自然形成的条状复合磁畴的间隙相匹 己。 可选的, 在上述的制备方法中, 在磁光晶体的表面设置具有永久磁畴的 磁性薄膜具体包括: 选用光洁的磁光晶体; 对磁光晶体的表面进行清洗; 在 清洗千净的表面上镀上磁性薄膜; 在磁性薄膜上设置永久磁畴。 可选的, 在上述的制备方法中, 在磁性薄膜上设置永久磁畴具体包括: 预先根据条紋设计图样; 将磁光晶体放置于磁场中, 磁场的磁场强度足够在 一定激光强度的作用下磁化磁性薄膜, 但在常温下不会磁化磁性薄膜; 施加 磁场, 并按照图样将激光投射和聚焦在磁性薄膜上, 使得磁场在激光强度的 作用下使磁性薄膜磁化形成永久磁畴。 可选的, 在上述的制备方法中, 按照图样将激光投射和聚焦在磁性薄膜 上具体包括: 使激光按照图样移动; 或者 将磁光晶体固定在可控移动平台上 ,使磁光晶体相对于激光按照图样移 动。 可选的, 在上述的制备方法中, 预先根据条紋设计图样具体包括: 按照 条紋中 N方向磁场的条紋设计第一图样, 以及按照条紋中 S方向磁场的条紋 设计第二图样; 施加磁场, 并按照图样将激光投射和聚焦在磁性薄膜上具体 包括: 施加 N方向磁场, 并按照第一图样将激光投射和聚焦在磁性薄膜上; 施加 S方向磁场, 并按照第二图样将激光投射和聚焦在磁性薄膜上。 可选的, 在上述的制备方法中, 预先根据条紋设计图样具体包括: 按照 条紋中 N方向磁场的条紋设计第一图样; 施加磁场, 并按照图样将激光投射 和聚焦在磁性薄膜上具体包括: 施加 N方向磁场, 并按照第一图样将激光投 射和聚焦在磁性薄膜上; 或者 预先根据条紋设计图样具体包括:按照条紋中 S方向磁场的条紋设计第 二图样; 施加磁场, 并按照图样将激光投射和聚焦在磁性薄膜上具体包括: 施加 S方向磁场, 并按照第二图样将激光投射和聚焦在磁性薄膜上。 可选的, 在上述的制备方法中, 在磁性薄膜上设置永久磁畴具体包括: 预先根据条紋设计图样; 将磁光晶体放置于磁场中, 用强磁场或配以升温降 氐矫顽力的方法磁化磁性薄膜, 然后按照图样蚀刻磁性薄膜, 以形成永久磁 畴; 或者按照图样蚀刻磁性薄膜, 然后将磁光晶体放置于磁场中, 用强磁场 或配以升温降氏矫顽力的方法磁化磁性薄膜, 以形成永久磁畴。 在本发明的实施例中, 还提供了一种磁光晶体的应用装置, 该应用装置 中的磁光晶体是上述的磁光晶体。 可选的, 在上述的应用装置中, 应用装置是用于测量磁场或电流的光纤 磁光探头装置。 可选的, 在上述的应用装置中, 应用装置是可控偏振光孔装置, 其中, 永久磁畴的条紋是同心圓环, 相邻环的磁畴磁化方向相反。 可选的, 在上述的应用装置中, 应用装置是可控偏振光栅装置, 其中, 永久磁畴的条紋是光栅条紋。 可选的, 在上述的应用装置中, 应用装置是可控偏振菲尼尔透镜装置, 其中, 永久磁畴的条紋是多个同心圓环, 多个同心圓环之间的间距附合菲尼 尔 H 则, 目 pi不的兹 兹4匕 向 目 。 上述实施例的磁光晶体及其制备方法以及磁光晶体的应用装置,因为釆 用具有永久磁畴的磁性薄膜, 所以克服了现有的磁光晶体的复合磁畴变化后 不能完全复原导致的随机误差问题, 进而达到了测量精度的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1示出了单晶石榴石磁光晶体的磁畴结构微观图; 图 2示出了单晶石榴石磁光晶体的磁畴结构示意图; 图 3 示出了根据本发明一个实施例的在磁光晶体的表面设置具有永久 磁畴的磁性薄膜的流程图; 图 4 示出了根据本发明一个实施例的在磁光晶体的表面设置具有永久 磁畴的磁性薄膜的工艺过程图; 图 5示出了才艮据本发明一个实施例的用于测量磁场或电流的; 图 6示出了图 5的光纤磁光探头装置中的磁光晶体的永久磁畴的条紋示 意图; 图 7示出了才艮据本发明一个实施例的可控偏振光孔方案示意图; 图 8示出了才艮据本发明一个实施例的可控偏振光栅方案示意图。 具体实施方式 下面将参考附图并结合实施例, 来详细说明本发明。 本发明的一个实施例提供了一种磁光晶体的制备方法, 包括以下步骤: 在磁光晶体的表面设置具有永久磁畴的磁性薄膜, 永久磁畴包括具有磁场方 向的条紋, 条紋包括以下至少之一: 点、 连续或不连续的线条, 并且条紋之 间的间隙与磁光晶体自由能状况或自然形成的条状复合磁畴的间隙相匹配。 该制备方法使得受永久磁畴的磁场影响,磁光晶体例如石榴石磁光晶体 形成稳定形状的可重复条形的复合磁畴, 从而避免了常规的磁光晶体中的复 合磁畴所出现的随机变化, 进而可减少随机误差, 提高测量精度。 图 3 示出了根据本发明一个实施例的在磁光晶体的表面设置具有永久 磁畴的磁性薄膜的流程图, 具体包括: 步 4聚 S 10, 选用光洁的磁光晶体; 步骤 S20, 对磁光晶体的表面进行清洗; 步骤 S30, 在清洗千净的表面上镀上磁性薄膜; 步骤 S40, 在磁性薄膜上设置永久磁畴。 该薄膜应易于在垂直于表面的方向磁化,且在工作温度范围具有较高的 矫顽力, 器件的工作磁场不会改变其磁化方向。 上述制备过程简单易行。 图 4 示出了根据本发明一个实施例的在磁光晶体的表面设置具有永久 磁畴的磁性薄膜的工艺过程图, 具体包括: 将光洁的普通石榴石磁光晶体进 行表面清洗; 在清洗千净的石榴石磁光晶体表面上镀上一层磁性薄膜; 在磁 性薄膜上设置根据应用要求的永久磁畴; 受永久磁畴的磁场影响, 石榴石磁 光晶体形成稳定的形状可重复条形复合磁畴。 可选的, 步骤 S40具体包括: 预先根据条紋设计图样; 将磁光晶体放置于磁场中,磁场的磁场强度足够在一定激光强度的作用 下磁化磁性薄膜, 但在常温下不会磁化磁性薄膜; 施加磁场, 并按照图样将激光投射和聚焦在磁性薄膜上, 使得磁场在激 光强度的作用下使磁性薄膜磁化形成永久磁畴。 根据条紋设计好图样, 就可以形成合适的永久磁畴, 从而使磁光晶体的 复合磁畴与永久磁畴相匹配。 磁畴图样可以才艮据应用要求和磁光晶体的性质 来设计。 条紋之间的间隙应与磁光晶体自由能状况或自然形成的条状复合磁 畴的间隙 ^目匹 己。 应该注意的是, 所述的磁性薄膜应该具有如下特性: 在局部加温或激光 照射下在较高的外磁场作用下能被磁化形成永久磁化磁畴, 磁化方向与表面 垂直。 另外, 激光的强度可受计算机控制或调制; 适当的激光强度和外磁场 使所述的磁性薄膜磁化形成局部的永久磁畴。 根据该制备方法形成的所述的局部永久磁畴的可以是点、连续或不连续 的线条, 尺寸由激光束在磁性薄膜上的光斑尺寸决定, 可在 1到几啟米的量 级。 局部磁畴点线形成的图样可根据应用需要通过计算机控制的机械机构, 在磁畴写入的过程中形成。 可选的, 按照图样将激光投射和聚焦在磁性薄膜上具体包括: 使激光按 照图样移动; 或者将磁光晶体固定在可控移动平台上, 使磁光晶体相对于激 光按照图样移动。 这两种移动方式都是可行的。 例如, 将可控机械机构连接 样品台或激光头, 在磁畴写入过程中才艮据图样要求形成样品和激光之间的相 对移动来形成一定的磁畴图样。 可选的, 在上述的制备方法中, 预先根据条紋设计图样具体包括: 按照 条紋中 N方向磁场的条紋设计第一图样, 以及按照条紋中 S方向磁场的条紋 设计第二图样; 施加磁场, 并按照图样将激光投射和聚焦在磁性薄膜上具体 包括: 施加 N方向磁场, 并按照第一图样将激光投射和聚焦在磁性薄膜上; 施加 S方向磁场, 并按照第二图样将激光投射和聚焦在磁性薄膜上。 磁畴图 样可以是单一磁^ ^方向的, 也可以是相邻条紋具有相反磁^ ^方向的。 如果磁 光晶体自由能状况或自然形成的条状复合磁畴相邻条紋是反向的磁畴, 可以 在制备过程中施加反向的外加磁场, 分别制作各磁场方向的图样。 可选的, 在上述的制备方法中, 预先根据条紋设计图样具体包括: 按照 条紋中 N方向磁场的条紋设计第一图样; 施加磁场, 并按照图样将激光投射 和聚焦在磁性薄膜上具体包括: 施加 N方向磁场, 并按照第一图样将激光投 射和聚焦在磁性薄膜上; 或者 预先根据条紋设计图样具体包括:按照条紋中 S方向磁场的条紋设计第 二图样; 施加磁场, 并按照图样将激光投射和聚焦在磁性薄膜上具体包括: 施加 S方向磁场, 并按照第二图样将激光投射和聚焦在磁性薄膜上。 该实施例中, 仅制备一个磁场方向的永久磁畴。 如果磁光晶体自由能状 况或自然形成的条状复合磁畴相邻条紋是反向的, 则由于该磁性薄膜上单磁 场方向的永久磁畴的影响, 同样能保持复原。 上述实施例得到的磁性薄膜是完整的磁性薄膜, 通过激光和磁场的影 响, 在磁性薄膜上留下了磁性痕迹形成的磁性图样来获得永久磁畴。 可选的, 在上述的制备方法中, 在磁性薄膜上设置永久磁畴具体包括: 预先根据条紋设计图样; 将磁光晶体放置于磁场中, 用强磁场或配以升温降 低矫顽力的方法磁化磁性薄膜(即形成垂直表面的磁化;), 然后按照图样蚀刻 (例如光刻 )磁性薄膜, 以形成永久磁畴。 可选的, 在上述的制备方法中, 在磁性薄膜上设置永久磁畴具体包括: 预先根据条紋设计图样; 按照图样蚀刻磁性薄膜, 然后将磁光晶体放置于磁 场中, 用强磁场或配以升温降低矫顽力的方法磁化磁性薄膜 (即形成垂直表 面的磁化 ) , 以形成永久磁畴。 上述两种方法得到的磁性薄膜是被镂空的磁性薄膜,通过蚀刻剩下的部 分所形成的磁性图样来获得永久磁畴。 本发明的一个实施例提供了一种磁光晶体,其表面设置了具有永久磁畴 的磁性薄膜, 永久磁畴包括具有磁场方向的条紋, 条紋包括以下至少之一: 点、 连续或不连续的线条, 并且条紋之间的间隙与磁光晶体自由能状况或自 然形成的条状复合磁畴的间隙相匹配。 受永久磁畴的磁场影响,磁光晶体例如石榴石磁光晶体形成稳定形状的 可重复条形的复合磁畴, 从而避免了常规的磁光晶体中的复合磁畴所出现的 随机变^^ 进而可减少随机误差。 该磁光晶体可形成稳定的可重复的复合磁畴,用以提高在磁场和电流测 量中的精度, 本发明的实施例提供一种磁光晶体的应用装置, 磁光晶体是上 述的磁光晶体。 图 5 示出了才艮据本发明一个实施例的用于测量磁场或电流的光纤磁光 探头装置, 其包括: 输入光纤 6、 输入光准直器 5a、 第一偏振分光器 3d、 磁 光晶体 1、 1/2波片 2、 第二偏振分光器 3e、 输出光准直器 5b、 输出光纤 7。 该光纤磁光探头装置釆用光偏振处理,对所述的光正交偏振分量进行分 波、 磁光感应、 合波处理。 其中, 在磁光晶体 1 (也称法拉第磁光旋转器)后设置波片, 波片用于 对法拉第磁光旋转器两束输出光的偏振面进行旋转以避免近零失敏, 而磁光 感应, 偏振检测对两正交偏振分量同时、 等量进行; 第一偏振分光器 3d 和 第二偏振分光器 3e由单轴晶体制成,能 4巴两个相互正交的偏振光分开一定的 角度; 当光通过第一偏振分光器 3d 后, 它被分成偏振面相互正交两束, 两 束光的传播方向成一个小的角度同时通过磁光晶体 1和 1/2波片 2; 当它们 到达第二偏振分光器 3e后, 每束光中偏振面相对于第一偏振分光器 3d产生 的原始偏振面转 90。的分量传播方向将变一致, 尽管两束之间还有一微小的 空间分离, 它们还是可以被输出光准直器 5b和输出光纤 7等量接收, 而其 它分量将被隔离在输出光纤 7以外。 作为本发明的实施例,其中的磁光晶体 1是用本发明实施例所提供的方 法制作。 磁光晶体的磁畴被所写的磁性薄膜上的永久磁畴所定位。 所述的晶 体磁畴在没有外磁场状态下, 是均匀的固定图样的条形磁畴, 可如图 6所示 的直线型。 当在大的外磁场作用下,磁光晶体变为饱和的单一磁畴, 当外磁场减弱 时, 磁光晶体恢复到同样图样的同样位置的条状交叉反向磁畴。 这样一来, 在测量过程中由于磁畴位置和形状变动的引起的随机误差得到了控制。 该方 案并可用于直流电流或磁场的测量。 另外, 本发明提供如下实施例: 应用所述材料进行磁场或电流的测量; 应用所述材料制作可控偏振光栅、 光孔; 应用所述材料制作可控偏振光栅; 应用所述材料制作可控偏振菲尼尔透镜。 下面进行详细说明。 可选的, 在上述的应用装置中, 应用装置是可控偏振光孔装置, 其中, 永久磁畴的条紋是同心圓环, 相邻环的磁畴磁化方向相反。 图 7 示出了才艮据本发明一个实施例的可控偏振光孔方案示意图。 如图 7A 制成具有同心圓环图样的磁畴的磁光晶体, 其相邻环的磁畴磁化方向相 反, 如图 7A所示。 如图 7B所示, 将所述的磁光晶体置于线圏中, 当通过线 圏的强度和方向盘变化时, 反向的磁畴区域的面积发生相对变化。 图 7C描 述当电流正向时, 中心磁畴变小; 图 7D描述当电流反向时中心磁畴变大。 这样一来, 当偏振光束通过所述晶体时, 光束截面的空间上产生不同的偏振 分布。 如用偏振片在后面进行检偏, 不同的偏振态得到不同的拦光效果。 而 且, 拦光效果可随所加的电流变化而变化。 可选的, 在上述的应用装置中, 应用装置是可控偏振菲尼尔透镜装置, 其中, 永久磁畴的条紋是多个同心圓环, 多个同心圓环之间的间距符合菲尼 尔分布规则, 其相邻环的磁畴磁化方向相反。 例如, 利用本发明提供的制备方法, 制成具有同心圓环图样的磁畴的磁 光晶体, 而这些同心圓环之间的间距符合菲尼尔分布规则, 其相邻环的磁畴 磁化方向相反。 这样一来, 当偏振光束通过所述晶体时, 光束截面的空间上 产生两束偏振态正交的菲尼尔分布波阵面, 两组偏振光将才艮据菲尼尔透镜原 理聚焦于不同的地方。 而且, 聚焦效果可随所加的电流变化而变化。 可选的, 在上述的应用装置中, 应用装置是可控偏振光栅装置, 其中, 永久磁畴的条紋是光栅条紋。 图 8示出了根据本发明一个实施例的可控偏振光栅方案示意图:利用本 发明提供的制备方法, 制成具有栅状图样的磁畴的磁光晶体。 其相邻环的磁 畴磁化方向相反, 如图 8A所示。 将所述的磁光晶体置于线圏中, 当通过线 圏的强度和方向盘变化时, 反向的磁畴区域的面积发生相对变化。 图 8C、 8D 分别描述电流正反向时的磁畴图样。这样一来, 当偏振光束通过所述晶体时, 光束截面上产生两组偏振态正交的波阵面栅状分布, 这样将产生两组偏振的 光栅 于射波。 而两组^ "射波^ "射效果可随所加的电流变化而变化。 可选的, 上述磁光晶体是石榴石磁光晶体, 石榴石磁光晶体是目前应用 比较广泛的一种磁光晶体。 本发明通过施加永久磁畴的磁场影响,磁光晶体例如石榴石磁光晶体形 成稳定形状的可重复条形的复合磁畴, 从而避免了常规的磁光晶体中的复合 磁畴所出现的随机变化, 进而可减少现有技术测量应用中的随机误差。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种磁光晶体, 其特征在于, 其表面设置了具有永久磁畴的磁性薄膜, 所述永久磁畴包括具有磁场方向的条紋, 条紋包括以下至少之一: 点、 连续或不连续的线条, 并且条紋之间的间隙与磁光晶体自由能状况或 自然形成的条状复合磁畴的间隙相匹配。
2. 根据权利要求 1所述的磁光晶体, 其特征在于, 所述的磁光晶体是石 梅石磁光晶体。
3. —种磁光晶体的制备方法, 其特征在于, 包括以下步骤:
在磁光晶体的表面设置具有永久磁畴的磁性薄膜 ,所述永久磁畴包 括具有磁场方向的条紋, 条紋包括以下至少之一: 点、 连续或不连续的 线条, 并且条紋之间的间隙与磁光晶体自由能状况或自然形成的条状复 合磁畴的间隙相匹配。
4. 根据权利要求 3所述的制备方法, 其特征在于, 在磁光晶体的表面设 置具有永久磁畴的磁性薄膜具体包括:
选用光洁的磁光晶体;
对磁光晶体的表面进行清洗;
在清洗千净的表面上镀上磁性薄膜;
在磁性薄膜上设置所述永久磁畴。
5. 根据权利要求 4所述的制备方法, 其特征在于, 在磁性薄膜上设置所 述永久磁畴具体包括:
预先根据所述条紋设计图样;
将磁光晶体放置于磁场中,磁场的磁场强度足够在一定激光强度的 作用下磁化磁性薄膜, 但在常温下不会磁化磁性薄膜;
施加磁场, 并按照所述图样将激光投射和聚焦在磁性薄膜上, 使得 磁场在激光强度的作用下使磁性薄膜磁化形成所述永久磁畴。
6. 根据权利要求 5所述的制备方法, 其特征在于, 按照所述图样将激光 投射和聚焦在磁性薄膜上具体包括:
使激光按照所述图样移动; 或者
将磁光晶体固定在可控移动平台上,使磁光晶体相对于激光按照所 述图样移动。
7. 根据权利要求 5所述的制备方法, 其特征在于, 预先根据所述条紋设 计图样具体包括: 按照所述条紋中 N方向磁场的条紋设计第一图样, 以及按照所述条紋中 S方向磁场的条紋设计第二图样; 施加磁场, 并 按照所述图样将激光投射和聚焦在磁性薄膜上具体包括:
施加 N 方向磁场, 并按照所述第一图样将激光投射和聚焦在磁性 薄膜上;
施加 S方向磁场,并按照所述第二图样将激光投射和聚焦在磁性薄 膜上。
8. 根据权利要求 5所述的制备方法, 其特征在于,
预先根据所述条紋设计图样具体包括: 按照所述条紋中 N 方向磁 场的条紋设计第一图样; 施加磁场, 并按照所述图样将激光投射和聚焦 在磁性薄膜上具体包括: 施加 N方向磁场, 并按照所述第一图样将激光 投射和聚焦在磁性薄膜上; 或者
预先根据所述条紋设计图样具体包括:按照所述条紋中 S方向磁场 的条紋设计第二图样; 施加磁场, 并按照所述图样将激光投射和聚焦在 磁性薄膜上具体包括: 施加 S方向磁场, 并按照所述第二图样将激光投 射和聚焦在磁性薄膜上。
9. 根据权利要求 4所述的制备方法, 其特征在于, 在磁性薄膜上设置所 述永久磁畴具体包括:
预先根据所述条紋设计图样;
将磁光晶体放置于磁场中,用强磁场或配以升温降低矫顽力的方法 磁化磁性薄膜, 然后按照所述图样蚀刻磁性薄膜, 以形成所述永久磁畴; 或者按照所述图样蚀刻磁性薄膜, 然后将磁光晶体放置于磁场中, 用强 磁场或配以升温降氏矫顽力的方法磁化磁性薄膜,以形成所述永久磁畴。
10. —种磁光晶体的应用装置, 其特征在于, 所述磁光晶体是权利要求 1 或 2所述的磁光晶体。
11. 根据权利要求 10所述的应用装置, 其特征在于, 所述应用装置是用于 测量磁场或电流的光纤磁光探头装置。
12. 根据权利要求 10所述的应用装置, 其特征在于, 所述应用装置是可控 偏振光孔装置, 其中, 所述永久磁畴的所述条紋是同心圓环, 相邻环 的磁畴磁 4匕方向 目反。
13. 根据权利要求 10所述的应用装置, 其特征在于, 所述应用装置是可控 偏振光栅装置, 其中, 所述永久磁畴的所述条紋是光栅条紋。
14. 根据权利要求 10所述的应用装置, 其特征在于, 所述应用装置是可控 偏振菲尼尔透镜装置, 其中, 所述永久磁畴的所述条紋是多个同心圓 环, 所述多个同心圓环之间的间距附合菲尼尔分布规则, 相邻环的磁 畴磁^ ί匕方向 目反。
PCT/CN2009/076352 2009-01-04 2009-12-31 磁光晶体及其制备方法以及磁光晶体的应用装置 WO2010075808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910056802.3 2009-01-04
CN2009100568023A CN101458403B (zh) 2009-01-04 2009-01-04 磁光晶体及其制备方法以及磁光晶体的应用装置

Publications (1)

Publication Number Publication Date
WO2010075808A1 true WO2010075808A1 (zh) 2010-07-08

Family

ID=40769361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076352 WO2010075808A1 (zh) 2009-01-04 2009-12-31 磁光晶体及其制备方法以及磁光晶体的应用装置

Country Status (2)

Country Link
CN (1) CN101458403B (zh)
WO (1) WO2010075808A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074983B (zh) * 2006-05-17 2010-07-21 上海舜宇海逸光电技术有限公司 一种光纤磁光探头装置及其应用系统
CN101458403B (zh) * 2009-01-04 2012-01-25 上海舜宇海逸光电技术有限公司 磁光晶体及其制备方法以及磁光晶体的应用装置
CN101672870B (zh) * 2009-08-13 2011-09-14 中国科学院苏州纳米技术与纳米仿生研究所 一种磁光电流传感器的制造方法
CN102268733A (zh) * 2011-08-02 2011-12-07 中国科学院合肥物质科学研究院 具有矩形磁滞回线和高矫顽磁场的磁光晶体及制备方法
CN103116057B (zh) * 2013-01-18 2015-08-26 上海理工大学 石榴石型光电式电流传感器装置及制备方法
CN103197118A (zh) * 2013-03-26 2013-07-10 上海理工大学 石榴石型电流传感装置以及石榴石模块的制备方法
CN103824588B (zh) * 2014-03-12 2017-06-09 中国科学院微电子研究所 一种对磁多畴态进行调控的方法
CN107423506B (zh) * 2017-07-24 2020-10-23 广东工业大学 一种磁致伸缩材料对外产生最大磁化强度的计算方法
CN113253540B (zh) * 2021-04-25 2023-01-03 深圳市南天威视科技有限公司 一种光纤通信用数模转化器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576825A (en) * 1980-05-14 1982-01-13 Sab Industri Ab Magneto-optical converter
US20040027639A1 (en) * 2002-08-12 2004-02-12 Tdk Corporation Magneto-optic optical device
CN1687821A (zh) * 2005-04-19 2005-10-26 浙江大学 磁光晶体/磁光薄膜复合型结构法拉第旋转器
JP2006259074A (ja) * 2005-03-16 2006-09-28 Fdk Corp 磁気光学デバイス及びその製造方法
CN101311374A (zh) * 2008-04-28 2008-11-26 电子科技大学 钇铁石榴石薄膜结构及制备方法
CN101458403A (zh) * 2009-01-04 2009-06-17 上海舜宇海逸光电技术有限公司 磁光晶体及其制备方法以及磁光晶体的应用装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576825A (en) * 1980-05-14 1982-01-13 Sab Industri Ab Magneto-optical converter
US20040027639A1 (en) * 2002-08-12 2004-02-12 Tdk Corporation Magneto-optic optical device
JP2006259074A (ja) * 2005-03-16 2006-09-28 Fdk Corp 磁気光学デバイス及びその製造方法
CN1687821A (zh) * 2005-04-19 2005-10-26 浙江大学 磁光晶体/磁光薄膜复合型结构法拉第旋转器
CN101311374A (zh) * 2008-04-28 2008-11-26 电子科技大学 钇铁石榴石薄膜结构及制备方法
CN101458403A (zh) * 2009-01-04 2009-06-17 上海舜宇海逸光电技术有限公司 磁光晶体及其制备方法以及磁光晶体的应用装置

Also Published As

Publication number Publication date
CN101458403B (zh) 2012-01-25
CN101458403A (zh) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2010075808A1 (zh) 磁光晶体及其制备方法以及磁光晶体的应用装置
US6813077B2 (en) Method for fabricating an integrated optical isolator and a novel wire grid structure
Au et al. Direct excitation of propagating spin waves by focused ultrashort optical pulses
Zhang et al. High‐efficiency dielectric metasurfaces for polarization‐dependent terahertz wavefront manipulation
McCord Progress in magnetic domain observation by advanced magneto-optical microscopy
EP2696225B1 (en) Metamaterial-based depolarizer
Yamada et al. Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass
Brasselet Tunable high-resolution macroscopic self-engineered geometric phase optical elements
US7630132B2 (en) Polarization control device
Dodel et al. A far-infrared ‘polari-interferometer’for simultaneous electron density and magnetic field measurements in plasmas
Guo et al. Generation of radial polarized Lorentz beam with single layer metasurface
TWI484307B (zh) 以光纖作為空間濾波器與擴束器之雷射干涉微影設備
JP4785790B2 (ja) 偏光変換素子
JP2010054915A (ja) 光位相制御装置、及び光位相制御方法
CN103337271B (zh) 一种芯片表面的原子囚禁及光学晶格方法
US9291915B2 (en) Lithographic method with the capability of spectrum engineering to create complex microstructures
Zhen et al. Controlling the symmetry of the photonic spin Hall effect by an optical vortex pair
Baltrukonis et al. Realization of higher order vector Bessel beams for transparent material processing applications
JP2010197764A (ja) 偏光制御素子及びそれを使用した画像表示装置
Papp et al. Lens design for computing with anisotropic spin waves
Su et al. Optical metasurfaces for tunable vortex beams
Stenning et al. Low-power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays
CN108828787A (zh) 一种微纳结构大视场角消色差波片
JP2005099737A (ja) 磁気光学光部品
Zhang et al. Ultrafast Spin‐to‐Orbit and Orbit‐to‐Local‐Spin Conversions of Tightly Focused Hybridly Polarized Light Pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836095

Country of ref document: EP

Kind code of ref document: A1