WO2010074248A1 - 無線通信システム、無線基地局および閾値設定方法 - Google Patents

無線通信システム、無線基地局および閾値設定方法 Download PDF

Info

Publication number
WO2010074248A1
WO2010074248A1 PCT/JP2009/071643 JP2009071643W WO2010074248A1 WO 2010074248 A1 WO2010074248 A1 WO 2010074248A1 JP 2009071643 W JP2009071643 W JP 2009071643W WO 2010074248 A1 WO2010074248 A1 WO 2010074248A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
channel
base station
radio base
communication
Prior art date
Application number
PCT/JP2009/071643
Other languages
English (en)
French (fr)
Inventor
慎士 中野
正光 錦戸
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/142,169 priority Critical patent/US20110261782A1/en
Priority to CN2009801525146A priority patent/CN102265692A/zh
Publication of WO2010074248A1 publication Critical patent/WO2010074248A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio communication system, a radio base station, and a threshold setting method for allocating at least one communication channel whose interference level is lower than a channel allocation threshold among a plurality of communication channels to a radio terminal.
  • the radio base station measures the interference level in a plurality of communication channels, and determines a low-interference communication channel whose measured interference level is lower than the channel allocation threshold as an empty channel.
  • a radio base station allocates a low interference communication channel to a radio terminal using carrier sense.
  • the channel assignment threshold used for carrier sense is generally set to the same value in each radio base station and each communication channel.
  • a broadband wireless communication system employing a multicarrier wireless communication scheme such as orthogonal frequency division multiple access (OFDMA) has recently attracted attention (see, for example, Patent Document 1).
  • OFDMA orthogonal frequency division multiple access
  • a plurality of communication channels called subchannels can be assigned to one wireless terminal.
  • the wireless base station and the wireless terminal can increase the communication capacity in the wireless communication.
  • a wireless base station assigns a channel to one wireless terminal using carrier sense. Many communication channels may be assigned to wireless terminals. In this case, the following problem occurs.
  • the second radio base station located around the first radio base station performs carrier sense.
  • the number of communication channels determined as empty channels decreases, and the number of communication channels that can be allocated to the second wireless terminal under its own station decreases. For this reason, the communication capacity and communication quality in the second radio base station are not guaranteed, and there is a problem that fairness between the first radio base station and the second radio base station is not ensured.
  • the present invention guarantees the communication capacity and communication quality in each radio base station when a plurality of communication channels can be assigned to radio terminals and channel assignment is performed using carrier sense. It is an object of the present invention to provide a radio communication system, a radio base station, and a threshold setting method that can ensure fairness of data.
  • the present invention has the following features.
  • the first feature of the present invention is that a first low-interference communication with a first wireless terminal (for example, the wireless terminal 2A) in which the interfered level of a plurality of communication channels within a predetermined frequency band is lower than a threshold value.
  • the first radio base station radio base station 1A
  • the second radio terminal the interfered level among the interfered levels in the plurality of communication channels within the predetermined frequency band is lower than the threshold value.
  • a wireless communication system (wireless communication system 10) comprising a second wireless base station (wireless base station 1B) to which a second low interference communication channel is assigned, and a channel assignment threshold for determining the first low interference communication channel
  • the first channel allocation threshold is different from the second channel allocation threshold that is a channel allocation threshold for determining the second low-interference communication channel.
  • a second feature of the present invention relates to the first feature of the present invention, wherein the first threshold setting unit (threshold setting unit 122A) for setting the first channel allocation threshold and the second channel allocation threshold are set.
  • a second threshold value setting unit (threshold value setting unit 122B), wherein the first threshold value setting unit uses the first random number generated based on a value unique to the first radio base station, and uses the channel allocation threshold value. Is set for each communication channel, and the second threshold setting unit sets the channel allocation threshold for each communication channel using a second random number generated based on a value unique to the second radio base station. The gist is to set.
  • the first threshold setting unit sets the first channel allocation threshold for each communication channel, thereby defining a communication channel with a high allocation priority and a communication channel with a low allocation priority. Is done.
  • the second threshold setting unit sets the second channel allocation threshold for each communication channel, a communication channel with a high allocation priority and a communication channel with a low allocation priority are defined.
  • the first threshold setting unit uses a first random number generated for each communication channel based on a value unique to the first radio base station, and the second threshold setting unit is unique to the second radio base station. Since the second random number generated for each communication channel based on the value is used, different priorities are assigned to the first radio base station and the second radio base station.
  • a third feature of the present invention relates to the second feature of the present invention, wherein the first threshold value setting unit includes a difference between the first random number generated for each communication channel and the first channel allocation threshold value. Is multiplied by a predetermined coefficient (coefficient ⁇ ) for adjusting the result, and the result obtained by multiplying the multiplication result of the first random number and the predetermined coefficient and a reference value serving as a reference for the channel allocation threshold is obtained as the communication channel. And the second threshold value setting unit multiplies the second random number generated for each communication channel by the predetermined coefficient to obtain the second random number and the predetermined threshold value.
  • the gist of the present invention is to set a result of adding a multiplication result with a coefficient and the reference value as the second channel allocation threshold value corresponding to the communication channel.
  • a fourth feature of the present invention relates to the second or third feature of the present invention, wherein the first threshold value setting unit is provided in the first radio base station, and the second threshold value setting unit is The gist is that it is provided in two radio base stations.
  • a fifth feature of the present invention relates to the second or third feature of the present invention, and further comprises a server device (server 4) for managing the first radio base station and the second radio base station,
  • server 4 for managing the first radio base station and the second radio base station
  • the gist is that the first threshold value setting unit and the second threshold value setting unit are provided in the server device.
  • a sixth feature of the present invention is according to any one of the first to fifth features of the present invention, and is characterized in that the communication channel is configured according to an orthogonal frequency division multiple access scheme and a time division multiple access scheme. To do.
  • a seventh feature of the present invention relates to the sixth feature of the present invention, wherein the first threshold value setting unit is responsive to the orthogonal frequency division multiple access scheme in addition to a value unique to the first radio base station.
  • the first channel allocation threshold is set for each communication channel using the first random number generated for each communication channel based on a subchannel number and a time slot number corresponding to the time division multiple access method.
  • the second threshold value setting unit uses the second random number generated for each communication channel based on the subchannel number and the time slot number in addition to a value unique to the second radio base station.
  • the second channel allocation threshold is set for each communication channel.
  • the eighth feature of the present invention is that at least one interference level in a plurality of communication channels is measured, and at least one low interference communication channel whose measured interference level is lower than a channel allocation threshold is set to a wireless terminal (for example, wireless terminal 2A).
  • a threshold setting unit (threshold setting unit 122A) that sets the channel allocation threshold for each of the communication channels, and the threshold setting unit is connected to the radio base station. The gist is to set the channel allocation threshold for each communication channel using a random number generated for each communication channel based on a unique value.
  • the ninth feature of the present invention is that the first radio base station communicates with the first radio terminal the first low-interference communication in which the interfered level of a plurality of communication channels within a predetermined frequency band is lower than the channel allocation threshold. Allocating a channel, and second low-interference communication in which a second radio base station has a level of interference among a plurality of communication channels within the predetermined frequency band lower than the channel allocation threshold for a second radio terminal.
  • a threshold setting method for setting the channel allocation threshold, the channel allocation threshold being a channel allocation threshold for determining the first low interference communication channel, and the second low allocation The gist is that it is different from the second channel allocation threshold value, which is a channel allocation threshold value for determining the interference communication channel.
  • a plurality of communication channels can be allocated to radio terminals and channel allocation is performed using carrier sense, communication capacity and communication quality in each radio base station are guaranteed, and between radio base stations Wireless communication system, wireless base station, and threshold setting method can be provided.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system according to an embodiment of the present invention. It is a functional block diagram which shows the structure of the wireless base station which concerns on embodiment of this invention. It is a figure which shows a channel allocation state in case the channel allocation threshold value is set to the fixed value as a comparative example of embodiment of this invention. It is a figure which shows an example of the channel allocation state in the radio
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the wireless communication system 10 has a configuration based on the next generation PHS (Personal Handyphone System).
  • the radio communication system 10 employs an orthogonal frequency division multiple access (OFDMA) system and a time division multiple access (TDMA) system as multiplexing systems, and a time division duplex (TDD) system as duplex systems.
  • OFDMA orthogonal frequency division multiple access
  • TDMA time division multiple access
  • TDD time division duplex
  • the radio communication system 10 includes a radio base station 1A, a radio base station 1B, a radio terminal 2A, a radio terminal 2B, and a radio terminal 2C.
  • the wireless base station 1A assigns a communication channel to the wireless terminal 2A in response to an assignment request from the wireless terminal 2A located in its own cell (microcell) 3A, and wirelessly communicates with the wireless terminal 2A using the assigned communication channel. Execute communication. Similarly, the radio base station 1A allocates a communication channel to the radio terminal 2C, and executes radio communication with the radio terminal 2C using the assigned communication channel.
  • the radio base station 1B allocates a communication channel to the radio terminal 2B located in its own cell (microcell) 3B, and executes radio communication with the radio terminal 2B using the assigned communication channel.
  • the radio base station 1A can assign a plurality of communication channels to the radio terminal 2A and the radio terminal 2C, respectively, and dynamically change the assigned communication channel.
  • the radio base station 1B can allocate a plurality of communication channels to the radio terminal 2B and dynamically change the assigned communication channels.
  • the entire frequency band in the radio communication system 10 is frequency-divided into a subchannels according to the OFDMA scheme, and b times each of uplink and downlink in one frame period of the radio communication system 10 according to the TDMA scheme. Time is divided into slots.
  • a ⁇ b communication channels are configured in each uplink and downlink.
  • Each communication channel configured in this way is configured using one time slot and one subchannel, and is called a physical resource unit (PRU) in the next generation PHS.
  • PRU physical resource unit
  • the radio base station 1A and the radio base station 1B perform autonomous distributed channel assignment. That is, the radio base station 1A detects a radio signal transmitted / received by the radio base station 1B, determines a communication channel to which the radio base station 1B is assigned, and sets a communication channel to which the radio base station 1B has not been assigned to the radio terminal 2A. Alternatively, it is assigned to the wireless terminal 2C. Similarly, the radio base station 1B detects a radio signal transmitted / received by the radio base station 1A, determines a communication channel to which the radio base station 1A is assigned, and assigns a communication channel to which the radio base station 1A has not been assigned to the radio terminal. Assign to 2B. Such processing is called carrier sense as described above, and interference between the radio base station 1A and the radio base station 1B is autonomously avoided.
  • the radio base station 1A allocates to the radio terminal 2A a communication channel whose interference level from an interference source (for example, the radio base station 1B and the radio terminal 2B) is lower than the channel allocation threshold among the a ⁇ b communication channels. That is, in the present embodiment, the radio base station 1A measures the interfered level in a plurality of communication channels, and designates the first low-interference communication channel whose measured interfered level is lower than the first channel allocation threshold as the first radio terminal ( A first radio base station assigned to at least one radio terminal 2A or 2C) is configured.
  • the radio base station 1B wirelessly transmits a communication channel whose interference level from an interference source (for example, the radio base station 1A, the radio terminal 2A, and the radio terminal 2C) is lower than the channel allocation threshold among the a ⁇ b communication channels. Assign to terminal 2A.
  • the radio base station 1B measures the interfered level in a plurality of communication channels, and designates the second low-interference communication channel whose measured interfered level is lower than the second channel allocation threshold as the second radio terminal (wireless terminal).
  • 2B) constitutes a second radio base station to be assigned at least one.
  • the plurality of communication channels have a predetermined frequency band (see FIGS. 3 and 4).
  • the radio base station 1B allocates and allocates the communication channel to the radio terminal 2B. Voice communication or data communication is performed using the communication channel.
  • the radio base station 1B performs carrier sense even when other radio terminals communicate, but the carrier sense result in the communication channel to which the radio base station 1A is assigned exceeds the channel assignment threshold. For this reason, the radio base station 1B allocates communication channels specified by other subchannels and time slots that have a carrier sense result equal to or less than the channel allocation threshold.
  • the radio base station 1A occupies the frequency band and the communication time zone the radio base station 1B cannot communicate.
  • the radio base station 1B occupies the frequency band and the communication time zone the radio base station 1A cannot communicate.
  • the channel allocation threshold value is optimally set for each of the radio base station 1A and the radio base station 1B, thereby guaranteeing the lower limit of the communication capacity in each radio base station / radio terminal, and each radio base station / radio terminal.
  • FIG. 2A is a functional block diagram showing the configuration of the radio base station 1A.
  • the radio base station 1A includes an antenna unit 101A, a radio communication unit 110A, a control unit 120A, a wired communication unit 130A, and a storage unit 140A.
  • the wireless communication unit 110A transmits / receives a wireless signal to / from the wireless terminal 2A or the wireless terminal 2C via the antenna unit 101A.
  • the antenna unit 101A may be an adaptive array antenna configured using a plurality of antennas.
  • 120 A of control parts are comprised by CPU, for example, and control the various functions which 1 A of radio base stations comprise.
  • the storage unit 140A is configured by a memory, for example, and stores various information used for control and the like in the radio base station 1A.
  • the wired communication unit 130A functions as an interface with a wired communication network.
  • the radio communication unit 110A includes a radio signal transmission unit 111A, a radio signal reception unit 112A, a signal processing unit 113A, and an interference level measurement unit 114A.
  • the signal processing unit 113A encodes data to be transmitted to the wireless terminal 2A or the wireless terminal 2C, and modulates the encoded data.
  • the signal processing unit 113A performs serial / parallel conversion and inverse fast Fourier transform (IFFT) on the modulated data.
  • IFFT inverse fast Fourier transform
  • the OFDM signal generated in this way is input to the radio signal transmission unit 111A.
  • the radio signal transmission unit 111A includes a power amplifier, an up-converter, and the like, converts the input OFDM signal into a radio signal, and transmits the radio signal to the radio terminal 2A or the radio terminal 2C.
  • the radio signal reception unit 112A includes a low noise amplifier, a down converter, and the like, converts the radio signal received from the radio terminal 2A into an OFDM signal, and inputs the OFDM signal to the signal processing unit 113A.
  • the signal processing unit 113A performs demodulation and decoding after fast Fourier transform (FFT) and parallel / serial conversion of the OFDM signal.
  • FFT fast Fourier transform
  • the interference level measurement unit 114A measures the received power of the radio signal received from the interference source (for example, the radio base station 1B and the radio terminal 2B) as the interfered level. Specifically, the interference level measurement unit 114A measures the interfered level for each of the a ⁇ b communication channels.
  • the control unit 120A includes an information acquisition unit 121A, a threshold setting unit 122A, and a channel allocation unit 123A.
  • the information acquisition unit 121A acquires various types of information used for setting the first channel allocation threshold from the storage unit 140A.
  • the information acquisition unit 121A acquires a value unique to the radio base station 1A, a subchannel number that identifies a subchannel, and a time slot number that identifies a time slot.
  • a base station identifier BSID
  • a serial number of the radio base station 1A or the like can be used as the value unique to the radio base station 1A.
  • BSID base station identifier
  • the threshold setting unit 122A constitutes a first threshold setting unit that sets the first channel allocation threshold for each of the a ⁇ b communication channels based on the information acquired by the information acquisition unit 121A.
  • the threshold setting unit 122A generates a random number for each communication channel (hereinafter referred to as a first random number) based on the BSID, and sets a first channel allocation threshold for each communication channel.
  • the threshold setting unit 122A uses the BSID / subchannel number / slot number as an initial value of a random code (PN code), and obtains an individual first channel allocation threshold for each BSID / subchannel number / slot number. Details of the method for setting the first channel allocation threshold will be described later.
  • the first channel allocation threshold set by the threshold setting unit 122A is stored in the storage unit 140A. Note that the setting of the first channel allocation threshold is executed, for example, when the radio base station 1A is installed.
  • the channel allocation unit 123A has a function of allocating a communication channel to the radio terminal 2A or the radio terminal 2C, a function of managing information of an allocated communication channel (hereinafter, allocation information), and a function of releasing the allocated communication channel. .
  • the channel assignment unit 123A compares the interfered level measured for each communication channel by the interference level measurement unit 114A with the first channel assignment threshold, and the first low interference communication channel whose interference level is lower than the first channel assignment threshold. Is identified. At that time, the channel allocation unit 123A acquires the corresponding first channel allocation threshold value from the storage unit 140A for each communication channel, and uses the acquired first channel allocation threshold value for comparison with the interfered level. Then, the channel assignment unit 123A assigns the specified first low interference communication channel to the wireless terminal 2A or the wireless terminal 2C.
  • FIG. 2B is a functional block diagram showing the configuration of the radio base station 1B. Here, the description overlapping with that of the radio base station 1B is omitted.
  • the radio base station 1B includes an antenna unit 101B, a radio communication unit 110B, a control unit 120B, a wired communication unit 130B, and a storage unit 140B.
  • the radio communication unit 110B includes a radio signal transmission unit 111B, a radio signal reception unit 112B, a signal processing unit 113B, and an interference level measurement unit 114B.
  • the control unit 120B includes an information acquisition unit 121B, a threshold setting unit 122B, and a channel allocation unit 123B.
  • the interference level measurement unit 114B measures the received power of the radio signal received from the interference source (for example, the radio base station 1A, the radio terminal 2A, and the radio terminal 2C) as the interfered level. Specifically, the interference level measurement unit 114B measures the interfered level for each of the a ⁇ b communication channels.
  • the information acquisition unit 121B acquires a value specific to the radio base station 1B (here, BSID), a subchannel number that identifies a subchannel, and a time slot number that identifies a time slot. .
  • BSID a value specific to the radio base station 1B
  • subchannel number that identifies a subchannel
  • time slot number that identifies a time slot.
  • the threshold setting unit 122B configures a second threshold setting unit that sets the second channel allocation threshold for each of the a ⁇ b communication channels based on the information acquired by the information acquisition unit 121B.
  • the threshold setting unit 122B generates a random number (hereinafter referred to as a second random number) for each communication channel based on the BSID, and sets a second channel allocation threshold for each communication channel.
  • the second channel allocation threshold set by the threshold setting unit 122B is stored in the storage unit 140B. Note that the setting of the second channel assignment threshold is executed, for example, when the radio base station 1B is installed.
  • the channel assignment unit 123B has a function of assigning a communication channel to the wireless terminal 2B, a function of managing assignment information of the assigned communication channel, and a function of releasing the assigned communication channel.
  • the channel assignment unit 123B compares the interfered level measured for each communication channel by the interference level measurement unit 114B with the second channel assignment threshold, and identifies a low-interference communication channel whose interference level is lower than the second channel assignment threshold. To do.
  • the channel allocation unit 123B acquires the corresponding second channel allocation threshold value from the storage unit 140B for each communication channel, and uses the acquired second channel allocation threshold value for comparison with the interfered level. Then, the channel assignment unit 123B assigns the specified second low interference communication channel to the radio terminal 2B.
  • FIG. 3 is a diagram showing a relationship between the channel assignment threshold and the interfered level when the channel assignment threshold is set to a constant value as a comparative example of the present embodiment.
  • the channel allocation threshold is set to ⁇ 80 dBm for all the communication channels that can be specified by the radio base station 1A and the communication channels that can be specified by the radio base station 1B. It is assumed that all communication channels are assigned to the terminal 2A and the wireless terminal 2C. That is, the radio base station 1A occupies a frequency band and a communication time band. In such a situation, since the interfered level exceeds the channel allocation threshold in all communication channels, the radio base station 1B cannot allocate a communication channel to the radio terminal 2B.
  • FIG. 4 is a diagram showing a channel allocation situation when channel allocation thresholds are set unevenly in the radio base station 1A and the radio base station 1B according to the present embodiment.
  • a communication channel that is not allocated is indicated by shading.
  • a different first channel assignment threshold is set for each communication channel and a different channel assignment threshold is set for each second communication channel within a range of minimum -120 dBm to maximum -45 dBm.
  • a communication channel having a high first channel assignment threshold and a communication channel having a high second channel assignment threshold are being assigned.
  • the first channel allocation threshold of the communication channel of the subchannel number 1 and the time slot number 1 is ⁇ 55 dBm, which is high, and is being allocated.
  • the second channel allocation threshold value of the communication channel of subchannel number 1 and time slot number 1 is ⁇ 105 dBm, which is low, and is not being allocated.
  • the first channel allocation threshold of the communication channels of the subchannel number 1 and the time slot number 2 is ⁇ 100 dBm, which is low, and is not being allocated.
  • the second channel allocation threshold of the communication channels of subchannel number 1 and time slot number 2 is -50 dBm, which is high, and is being allocated.
  • a communication channel is defined.
  • each wireless base station is assigned in order from the communication channel with the highest priority, and conversely, the communication channel with the lower priority is difficult to use. Therefore, the possibility that each radio base station occupies the frequency band and communication time zone can be reduced, and even when there is a bias in the number of radio terminals accommodated between radio base stations, communication channel allocation between radio base stations is Evenly close.
  • FIG. 5 is a flowchart showing the detailed operation of the radio base station 1A, specifically, the details of the first channel allocation threshold setting method. The processing flow of FIG. 5 is also executed in the radio base station 1B.
  • a first channel allocation threshold is set for one communication channel that is a threshold setting target.
  • step S1 the information acquisition unit 121A acquires each information of the BSID lower x bits of the radio base station 1A, the subchannel number of the communication channel targeted for threshold setting, and the time slot number.
  • the threshold setting unit 122A sets the information acquired by the information acquisition unit 121A in step S1 as the initial value of the random code. Note that the threshold setting unit 122A incorporates an encoder (or an arithmetic algorithm) that generates a random code.
  • step S3 the threshold setting unit 122A extracts a random number (first random number) y bits from the encoder and converts it into a decimal (decimal number) display.
  • step S4 the threshold value setting unit 122A multiplies the first random number converted into the decimal display in step S3 by a coefficient ⁇ .
  • the coefficient ⁇ is used to adjust the difference between the first channel allocation thresholds assigned to the communication channels.
  • the coefficient ⁇ is determined empirically from simulation or the like. In the example of FIG. 4, the difference in the first channel allocation threshold is set to 5 dB by the coefficient ⁇ .
  • step S5 the threshold value setting unit 122A adds the multiplication result of the first random number and the coefficient ⁇ obtained in step S4 and the reference value serving as a reference for the first channel allocation threshold value.
  • step S6 the threshold setting unit 122A sets the addition result obtained in step S5 as the first channel allocation threshold of the communication channel targeted for threshold setting.
  • step S7 the threshold setting unit 122A determines whether or not the setting of the first channel allocation threshold has been completed for all communication channels. If there is a communication channel for which the first channel allocation threshold is not set, the process returns to step S1, and the threshold setting process for the next communication channel targeted for threshold setting is executed.
  • the threshold setting unit 122A sets the first channel allocation threshold for each communication channel, so that the communication channel with the higher allocation priority is allocated.
  • a communication channel with a low priority is defined.
  • the threshold setting unit 122B sets the second channel allocation threshold for each communication channel, thereby defining a communication channel with a high allocation priority and a communication channel with a low allocation priority.
  • the threshold setting unit 122A uses a first random number generated for each communication channel based on a value unique to the radio base station 1A, and the threshold setting unit 122B is based on a value unique to the radio base station 1B. Since the second random number generated for each communication channel is used, different priorities are assigned to the radio base station 1A and the radio base station 1B.
  • the threshold setting unit 122A multiplies the first random number generated for each communication channel by the coefficient ⁇ for adjusting the difference between the channel assignment thresholds, and multiplies the first random number and the coefficient ⁇ .
  • a result obtained by adding the result and a reference value serving as a reference for the channel assignment threshold is set as a channel assignment threshold corresponding to the first communication channel.
  • the coefficient ⁇ the difference between channel assignment thresholds can be adjusted, and the degree of prioritization can be determined. Further, by using the reference value, the channel allocation threshold can be set to a practically appropriate value.
  • the threshold setting unit 122A uses the first random number generated for each communication channel based on the value unique to the radio base station 1A, the subchannel number, and the time slot number, An allocation threshold is set for each communication channel.
  • the threshold setting unit 122B uses the second random number generated for each communication channel based on the value unique to the radio base station 1B, the subchannel number, and the time slot number to set the second channel allocation threshold to the communication channel. Set every time. By using the subchannel number and the time slot number for generation of random numbers, the channel allocation threshold value for each communication channel can be made different more reliably.
  • the threshold setting unit 122A is provided in the radio base station 1A and the threshold setting unit 122B is provided in the radio base station 1B.
  • the threshold setting unit 122A and the threshold setting unit 122B are included in other devices. It is also possible to provide it.
  • a threshold setting unit 122A and a threshold setting unit 122B may be provided in the server 4 (server device) as shown in FIG.
  • the server 4 is connected to the radio base station 1A and the radio base station 1B via a wired communication network, and manages the radio base station 1A and the radio base station 1B.
  • step S3 an example of setting the channel allocation threshold value by the processing flow of FIG. 5 has been described.
  • step S3 when a favorable result is obtained in step S3, the processes in steps S4 and S5 are omitted. Also good.
  • the channel assignment threshold value may be set by switching.
  • the wireless communication system 10 has a configuration based on the next generation PHS.
  • the wireless communication system 10 is not limited to the next generation PHS.
  • a CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the present invention is applicable.
  • the present invention may be applied to a wireless LAN (IEEE802.11) system or a conventional PHS.
  • the present invention can be similarly applied to a wireless communication system that employs LTE (Long Term Evolution), which is a standard established by 3GPP (Third Generation Partnership Project).
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • the wireless communication system, the wireless base station, and the threshold setting method according to the present invention can assign a plurality of communication channels to wireless terminals, and perform channel assignment using carrier sense.
  • the communication capacity and the communication quality in the base station are guaranteed, and the fairness between the radio base stations can be ensured, which is useful as a communication system.

Abstract

 本発明に係る無線通信システムは、キャリアセンスにおけるチャネル割当閾値を通信チャネルそれぞれについて設定する閾値設定部122Aと、チャネル割当閾値を通信チャネルそれぞれについて設定する閾値設定部122Bとを備える。閾値設定部122Aは、無線基地局1Aに固有の値を基に通信チャネル毎に発生させた第1乱数を用いて、第1チャネル割当閾値を通信チャネル毎に設定する。閾値設定部122Bは、無線基地局1Bに固有の値を基に通信チャネル毎に発生させた第2乱数を用いて、第2チャネル割当閾値を通信チャネル毎に設定する。

Description

無線通信システム、無線基地局および閾値設定方法
本発明は、複数の通信チャネルの中から被干渉レベルがチャネル割当閾値よりも低い通信チャネルを無線端末に少なくとも1つ割り当てる無線通信システム、無線基地局および閾値設定方法に関する。
 従来、自律分散型のチャネル割り当てを行う無線基地局では、キャリアセンスと呼ばれる空きチャネル判定が行われている。具体的には、無線基地局は、複数の通信チャネルにおける被干渉レベルを測定し、測定した被干渉レベルがチャネル割当閾値よりも低い低干渉通信チャネルを空きチャネルと判定する。このような無線通信システムにおいて無線基地局は、キャリアセンスを利用して低干渉通信チャネルを無線端末に割り当てる。なお、キャリアセンスに用いられるチャネル割当閾値は、各無線基地局および各通信チャネルにおいて同一の値に設定されることが一般的である。
 また、有限な周波数資源を有効に活用するために、直交周波数分割多元接続(OFDMA)などのマルチキャリア無線通信方式を採用する広帯域無線通信システムが近年注目されている(例えば、特許文献1参照)。マルチキャリア無線通信方式では、サブチャネルと呼ばれる通信チャネルを1つの無線端末に複数割り当てることが可能である。無線基地局および無線端末は、無線通信に用いる通信チャネル数が多いほど、当該無線通信における通信容量を増加させることができる。
特開2003-169036号公報
 上記OFDMA方式を用いたマルチキャリア無線通信方式では、1つの無線端末が通信に用いる周波数帯域が広いため、1つの無線端末に対し、キャリアセンスを利用して無線基地局がチャネル割り当てを行う場合において、多くの通信チャネルが無線端末に割り当てられる可能性がある。この場合、次のような問題が生じる。
 具体的には、第1無線基地局が自局配下の第1無線端末に多くの通信チャネルを割り当てていると、第1無線基地局の周辺に位置する第2無線基地局においては、キャリアセンスにより空きチャネルと判定される通信チャネルの数が少なくなり、自局配下の第2無線端末に割り当て可能な通信チャネルが少なくなる。このため、第2無線基地局における通信容量や通信品質が保証されず、第1無線基地局と第2無線基地局との間の公平性が確保されない問題があった。
 そこで、本発明は、通信チャネルを無線端末に複数割り当て可能であり、且つキャリアセンスを利用してチャネル割り当てを行う場合において、各無線基地局における通信容量や通信品質を保証し、無線基地局間の公平性を担保できる無線通信システム、無線基地局および閾値設定方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。まず、本発明の第1の特徴は、第1無線端末(例えば無線端末2A)に対し、所定周波数帯域内にある複数の通信チャネルのうちの被干渉レベルが閾値よりも低い第1低干渉通信チャネルを割り当てる第1無線基地局(無線基地局1A)と、第2無線端末に対し、前記所定周波数帯域内にある複数の通信チャネルにおける被干渉レベルのうちの被干渉レベルが前記閾値よりも低い第2低干渉通信チャネルを割り当てる第2無線基地局(無線基地局1B)とを備える無線通信システム(無線通信システム10)であって、前記第1低干渉通信チャネルを決定するためのチャネル割当閾値である第1チャネル割当閾値と、前記第2低干渉通信チャネルを決定するためのチャネル割当閾値である第2チャネル割当閾値とは、異なることを要旨とする。
 本発明の第2の特徴は、本発明の第1の特徴に係り、前記第1チャネル割当閾値を設定する第1閾値設定部(閾値設定部122A)と、前記第2チャネル割当閾値を設定する第2閾値設定部(閾値設定部122B)とを備え、前記第1閾値設定部は、前記第1無線基地局に固有の値を基に発生させた第1乱数を用いて、前記チャネル割当閾値を前記通信チャネル毎に設定し、前記第2閾値設定部は、前記第2無線基地局に固有の値を基に発生させた第2乱数を用いて、前記チャネル割当閾値を前記通信チャネル毎に設定することを要旨とする。
このような無線通信システムによれば、第1閾値設定部が第1チャネル割当閾値を通信チャネル毎に設定することにより、割り当て優先順位の高い通信チャネルと、割り当て優先順位の低い通信チャネルとが定義される。
 同様に、第2閾値設定部が第2チャネル割当閾値を通信チャネル毎に設定することにより、割り当て優先順位の高い通信チャネルと、割り当て優先順位の低い通信チャネルとが定義される。
 さらに、第1閾値設定部は、第1無線基地局に固有の値を基に通信チャネル毎に発生させた第1乱数を使用し、第2閾値設定部は、第2無線基地局に固有の値を基に通信チャネル毎に発生させた第2乱数を使用するため、第1無線基地局および第2無線基地局において異なる優先順位付けがなされる。
 このため、割り当て優先順位の高い通信チャネルが割り当て優先順位の低い通信チャネルと干渉する可能性を低減できるとともに、割り当て優先順位の高い通信チャネルが割り当て優先順位の低い通信チャネルと干渉する可能性を低減できる。したがって、各無線基地局において、他の無線基地局よりも優先して割り当て可能な通信チャネルが確保されるため、各無線基地局における通信容量や通信品質を保証し、無線基地局間の公平性を担保できる。
 本発明の第3の特徴は、本発明の第2の特徴に係り、前記第1閾値設定部は、前記通信チャネル毎に発生させた前記第1乱数と、前記第1チャネル割当閾値間の差分を調整するための所定係数(係数α)とを乗算し、前記第1乱数と前記所定係数との乗算結果と、前記チャネル割当閾値の基準となる基準値とを加算した結果を、前記通信チャネルに対応する前記第1チャネル割当閾値として設定し、前記第2閾値設定部は、前記通信チャネル毎に発生させた前記第2乱数と、前記所定係数とを乗算し、前記第2乱数と前記所定係数との乗算結果と、前記基準値とを加算した結果を、前記通信チャネルに対応する前記第2チャネル割当閾値として設定することを要旨とする。
 本発明の第4の特徴は、本発明の第2または第3の特徴に係り、前記第1閾値設定部は、前記第1無線基地局に設けられ、前記第2閾値設定部は、前記第2無線基地局に設けられることを要旨とする。
 本発明の第5の特徴は、本発明の第2または第3の特徴に係り、前記第1無線基地局および前記第2無線基地局を管理するサーバ装置(サーバ4)をさらに備え、前記第1閾値設定部および前記第2閾値設定部は、前記サーバ装置に設けられることを要旨とする。
 本発明の第6の特徴は、本発明の第1~第5の何れかの特徴に係り、前記通信チャネルは、直交周波数分割多元接続方式および時分割多元接続方式に従って構成されることを要旨とする。
 本発明の第7の特徴は、本発明の第6の特徴に係り、前記第1閾値設定部は、前記第1無線基地局に固有の値に加え、前記直交周波数分割多元接続方式に応じたサブチャネル番号と、前記時分割多元接続方式に応じた時間スロット番号とを基に前記通信チャネル毎に発生させた前記第1乱数を用いて、前記第1チャネル割当閾値を前記通信チャネル毎に設定し、前記第2閾値設定部は、前記第2無線基地局に固有の値に加え、前記サブチャネル番号と前記時間スロット番号とを基に前記通信チャネル毎に発生させた前記第2乱数を用いて、前記第2チャネル割当閾値を前記通信チャネル毎に設定することを要旨とする。
 本発明の第8の特徴は、複数の通信チャネルにおける被干渉レベルを測定し、測定した被干渉レベルがチャネル割当閾値よりも低い低干渉通信チャネルを無線端末(例えば無線端末2A)に対し少なくとも1つ割り当てる無線基地局(無線基地局1A)であって、前記チャネル割当閾値を前記通信チャネルそれぞれについて設定する閾値設定部(閾値設定部122A)を備え、前記閾値設定部は、前記無線基地局に固有の値を基に前記通信チャネル毎に発生させた乱数を用いて、前記チャネル割当閾値を前記通信チャネル毎に設定することを要旨とする。
 本発明の第9の特徴は、第1無線基地局が第1無線端末に対し、所定周波数帯域内にある複数の通信チャネルのうちの被干渉レベルがチャネル割当閾値よりも低い第1低干渉通信チャネルを割り当てるステップと、第2無線基地局が第2無線端末に対し、前記所定周波数帯域内にある複数の前記通信チャネルのうちの被干渉レベルが前記チャネル割当閾値よりも低い第2低干渉通信チャネルを割り当てるステップとを含み、前記チャネル割当閾値を設定する閾値設定方法であって、前記第1低干渉通信チャネルを決定するためのチャネル割当閾値である第1チャネル割当閾値と、前記第2低干渉通信チャネルを決定するためのチャネル割当閾値である第2チャネル割当閾値とは、異なることを要旨とする。
 本発明によれば、通信チャネルを無線端末に複数割り当て可能であり、且つキャリアセンスを利用してチャネル割り当てを行う場合において、各無線基地局における通信容量や通信品質を保証し、無線基地局間の公平性を担保できる無線通信システム、無線基地局および閾値設定方法を提供できる。
本発明の実施形態に係る無線通信システムの全体概略構成図である。 本発明の実施形態に係る無線基地局の構成を示す機能ブロック図である。 本発明の実施形態の比較例として、チャネル割当閾値が一定値に設定されている場合のチャネル割り当て状態を示す図である。 本発明の実施形態に係る無線通信システムにおけるチャネル割り当て状態の一例を示す図である。 本発明の実施形態に係る無線基地局の詳細動作、具体的には、チャネル割当閾値の設定方法の詳細を示すフローチャートである。 その他の実施形態に係る無線通信システムの全体概略構成図である。
 次に、図面を参照して、本発明の実施形態を説明する。具体的には、(1)無線通信システムの全体概略構成、(2)無線基地局の構成、(3)無線基地局の概略動作、(4)無線基地局の詳細動作、(5)作用・効果、(6)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。
 本実施形態では、無線通信システム10が次世代PHS(Personal Handyphone System)に基づく構成を有しているものとする。無線通信システム10には、多重化方式として直交周波数分割多元接続(OFDMA)方式と時分割多重接続(TDMA)方式とが採用され、複信方式として時分割複信(TDD)方式が採用されている。
 図1の例では、無線通信システム10は、無線基地局1A、無線基地局1B、無線端末2A、無線端末2Bおよび無線端末2Cを有する。
 無線基地局1Aは、自局のセル(マイクロセル)3A内に位置する無線端末2Aからの割り当て要求に応じて無線端末2Aに通信チャネルを割り当て、割り当てた通信チャネルを用いて無線端末2Aと無線通信を実行する。同様にして、無線基地局1Aは、無線端末2Cに通信チャネルを割り当て、割り当てた通信チャネルを用いて無線端末2Cと無線通信を実行する。
 無線基地局1Bは、自局のセル(マイクロセル)3B内に位置する無線端末2Bに通信チャネルを割り当て、割り当てた通信チャネルを用いて無線端末2Bと無線通信を実行する。
 無線基地局1Aは、無線端末2Aおよび無線端末2Cそれぞれに、複数の通信チャネルを割り当て、割り当てた通信チャネルを動的に変更できる。無線基地局1Bは、無線端末2Bに複数の通信チャネルを割り当て、割り当てた通信チャネルを動的に変更できる。
 無線通信システム10では、OFDMA方式に従って、無線通信システム10における全周波数帯域がa個のサブチャネルに周波数分割され、TDMA方式に従って、無線通信システム10の1フレーム期間における上り下りそれぞれがb個の時間スロットに時間分割されている。
 これにより、上り下りそれぞれにおいて、a×b個の通信チャネルが構成される。このようにして構成された各通信チャネルは、1つの時間スロットと1つのサブチャネルとを用いて構成され、次世代PHSでは物理リソースユニット(PRU)と呼ばれる。
 無線基地局1Aおよび無線基地局1Bは、自律分散型のチャネル割り当てを行う。すなわち、無線基地局1Aは、無線基地局1Bが送受信する無線信号を検出し、無線基地局1Bが割り当て中の通信チャネルを判定し、無線基地局1Bが未割り当てである通信チャネルを無線端末2Aまたは無線端末2Cに割り当てる。同様に、無線基地局1Bは、無線基地局1Aが送受信する無線信号を検出し、無線基地局1Aが割り当て中の通信チャネルを判定し、無線基地局1Aが未割り当てである通信チャネルを無線端末2Bに割り当てる。このような処理は、上述したようにキャリアセンスと呼ばれ、無線基地局1Aおよび無線基地局1B間の干渉が自律的に回避される。
 無線基地局1Aは、a×b個の通信チャネルのうち干渉源(例えば無線基地局1Bおよび無線端末2B)からの被干渉レベルがチャネル割当閾値よりも低い通信チャネルを無線端末2Aに割り当てる。すなわち、本実施形態において無線基地局1Aは、複数の通信チャネルにおける被干渉レベルを測定し、測定した被干渉レベルが第1チャネル割当閾値よりも低い第1低干渉通信チャネルを第1無線端末(無線端末2Aまたは無線端末2C)に少なくとも1つ割り当てる第1無線基地局を構成する。
 また、無線基地局1Bは、a×b個の通信チャネルのうち干渉源(例えば無線基地局1A、無線端末2Aおよび無線端末2C)からの被干渉レベルがチャネル割当閾値よりも低い通信チャネルを無線端末2Aに割り当てる。本実施形態において無線基地局1Bは、複数の通信チャネルにおける被干渉レベルを測定し、測定した被干渉レベルが第2チャネル割当閾値よりも低い第2低干渉通信チャネルを第2無線端末(無線端末2B)に少なくとも1つ割り当てる第2無線基地局を構成する。ここで複数の通信チャネルは、所定の周波数帯域を有する(図3および図4参照)。
 具体的には、無線基地局1Bは、あるサブチャネルおよび時間スロットによって指定される通信チャネルにおけるキャリアセンス結果がチャネル割当閾値以下である場合には、その通信チャネルを無線端末2Bに割り当て、割り当てた通信チャネルを用いて音声通信またはデータ通信を行う。
 その後、無線基地局1Bは、他の無線端末が通信を行う際にもキャリアセンスを行うが、無線基地局1Aが割り当て中の通信チャネルにおけるキャリアセンス結果はチャネル割当閾値を超えてしまう。このため、無線基地局1Bは、他のサブチャネルおよび時間スロットによって指定される通信チャネルのうちキャリアセンス結果がチャネル割当閾値以下となるものを割当てる。
 特に、広帯域無線通信システムにおいては1つの無線端末当たりの使用可能周波数帯域が非常に広いため、無線基地局1Aが指定する通信チャネルと無線基地局1Bが指定する通信チャネルとが衝突し合う可能性が非常に高くなる。無線基地局1Aが周波数帯域および通信時間帯を占有すると、無線基地局1Bは通信不可能となる。また、無線基地局1Bが周波数帯域および通信時間帯を占有すると、無線基地局1Aは通信不可能となる。
 本実施形態では、無線基地局1Aおよび無線基地局1Bそれぞれについてチャネル割当閾値を最適に設定することにより、各無線基地局/無線端末における通信容量の下限値の保証、各無線基地局/無線端末におけるQoSの保証、各無線基地局/無線端末間におけるフェアネスの保証を実現する。
 (2)無線基地局の構成
 次に、(2.1)無線基地局1Aの構成、(2.2)無線基地局1Bの構成について説明する。
 (2.1)無線基地局1Aの構成
 図2(a)は、無線基地局1Aの構成を示す機能ブロック図である。図2(a)に示すように、無線基地局1Aは、アンテナ部101A、無線通信部110A、制御部120A、有線通信部130Aおよび記憶部140Aを有する。
 無線通信部110Aは、アンテナ部101Aを介して、無線信号を無線端末2Aまたは無線端末2Cと送受信する。なお、アンテナ部101Aは、複数のアンテナを用いて構成されるアダプティブアレイアンテナであってもよい。制御部120Aは、例えばCPUによって構成され、無線基地局1Aが具備する各種機能を制御する。記憶部140Aは、例えばメモリによって構成され、無線基地局1Aにおける制御などに用いられる各種情報を記憶する。有線通信部130Aは、有線通信網とのインタフェースとして機能する。
 無線通信部110Aは、無線信号送信部111A、無線信号受信部112A、信号処理部113Aおよび干渉レベル測定部114Aを有する。
 信号処理部113Aは、無線端末2Aまたは無線端末2Cに送信するデータを符号化し、符号化したデータを変調する。信号処理部113Aは、変調されたデータをシリアル/パラレル変換および逆高速フーリエ変換(IFFT)する。このようにして生成されたOFDM信号は、無線信号送信部111Aに入力される。無線信号送信部111Aは、パワーアンプおよびアップコンバータなどを含み、入力されたOFDM信号を無線信号に変換して、無線端末2Aまたは無線端末2Cに送信する。
 無線信号受信部112Aは、ローノイズアンプおよびダウンコンバータなどを含み、無線端末2Aから受信した無線信号をOFDM信号に変換して信号処理部113Aに入力する。信号処理部113Aは、OFDM信号を高速フーリエ変換(FFT)およびパラレル/シリアル変換した後、復調および復号を行う。
 干渉レベル測定部114Aは、干渉源(例えば無線基地局1Bおよび無線端末2B)から受信する無線信号の受信電力を被干渉レベルとして測定する。具体的には、干渉レベル測定部114Aは、a×b個の通信チャネルそれぞれについて被干渉レベルを測定する。
 制御部120Aは、情報取得部121A、閾値設定部122Aおよびチャネル割当部123Aを有する。
 情報取得部121Aは、第1チャネル割当閾値の設定に用いられる各種の情報を記憶部140Aから取得する。本実施形態では、情報取得部121Aは、無線基地局1Aに固有の値と、サブチャネルを識別するサブチャネル番号と、時間スロットを識別する時間スロット番号とを取得する。ここで、無線基地局1Aに固有の値とは、無線基地局1Aを識別する基地局識別子(BSID)、または無線基地局1Aの製造番号などが使用できる。以下では、無線基地局1Aに固有の値として、BSIDを用いる一例について説明する。
 閾値設定部122Aは、情報取得部121Aによって取得された情報に基づいて第1チャネル割当閾値をa×b個の通信チャネルそれぞれについて設定する第1閾値設定部を構成する。閾値設定部122Aは、BSIDを基に通信チャネル毎に乱数(以下、第1乱数)を発生させ、第1チャネル割当閾値を通信チャネル毎に設定する。
 例えば、閾値設定部122Aは、BSID/サブチャネル番号/スロット番号をランダム符号(PN符号)の初期値として利用し、各BSID/サブチャネル番号/スロット番号で個別の第1チャネル割当閾値を得る。第1チャネル割当閾値を設定する方法の詳細については後述する。閾値設定部122Aによって設定された第1チャネル割当閾値は、記憶部140Aに記憶される。なお、第1チャネル割当閾値の設定は、例えば無線基地局1Aの設置時に実行される。
 チャネル割当部123Aは、無線端末2Aまたは無線端末2Cに通信チャネルを割り当てる機能と、割り当てた通信チャネルの情報(以下、割り当て情報)を管理する機能と、割り当てた通信チャネルを解放する機能とを有する。
 チャネル割当部123Aは、干渉レベル測定部114Aによって通信チャネル毎に測定された被干渉レベルを第1チャネル割当閾値と比較し、被干渉レベルが第1チャネル割当閾値よりも低い第1低干渉通信チャネルを特定する。その際、チャネル割当部123Aは、通信チャネル毎に、対応する第1チャネル割当閾値を記憶部140Aから取得し、取得した第1チャネル割当閾値を被干渉レベルとの比較に用いる。そして、チャネル割当部123Aは、特定した第1低干渉通信チャネルを無線端末2Aまたは無線端末2Cに割り当てる。
 (2.2)無線基地局1Bの構成
 図2(b)は、無線基地局1Bの構成を示す機能ブロック図である。ここでは、無線基地局1Bと重複する説明については省略する。
 無線基地局1Bは、アンテナ部101B、無線通信部110B、制御部120B、有線通信部130Bおよび記憶部140Bを有する。無線通信部110Bは、無線信号送信部111B、無線信号受信部112B、信号処理部113Bおよび干渉レベル測定部114Bを有する。制御部120Bは、情報取得部121B、閾値設定部122Bおよびチャネル割当部123Bを有する。
 干渉レベル測定部114Bは、干渉源(例えば無線基地局1A、無線端末2Aおよび無線端末2C)から受信する無線信号の受信電力を被干渉レベルとして測定する。具体的には、干渉レベル測定部114Bは、a×b個の通信チャネルそれぞれについて被干渉レベルを測定する。
 情報取得部121Bは、情報取得部121Bは、無線基地局1Bに固有の値(ここでは、BSID)と、サブチャネルを識別するサブチャネル番号と、時間スロットを識別する時間スロット番号とを取得する。
 閾値設定部122Bは、情報取得部121Bによって取得された情報に基づいて第2チャネル割当閾値をa×b個の通信チャネルそれぞれについて設定する第2閾値設定部を構成する。閾値設定部122Bは、BSIDを基に通信チャネル毎に乱数(以下、第2乱数)を発生させ、第2チャネル割当閾値を通信チャネル毎に設定する。閾値設定部122Bによって設定された第2チャネル割当閾値は、記憶部140Bに記憶される。なお、第2チャネル割当閾値の設定は、例えば無線基地局1Bの設置時に実行される。
 チャネル割当部123Bは、無線端末2Bに通信チャネルを割り当てる機能と、割り当てた通信チャネルの割り当て情報を管理する機能と、割り当てた通信チャネルを解放する機能とを有する。チャネル割当部123Bは、干渉レベル測定部114Bによって通信チャネル毎に測定された被干渉レベルを第2チャネル割当閾値と比較し、被干渉レベルが第2チャネル割当閾値よりも低い低干渉通信チャネルを特定する。その際、チャネル割当部123Bは、通信チャネル毎に、対応する第2チャネル割当閾値を記憶部140Bから取得し、取得した第2チャネル割当閾値を被干渉レベルとの比較に用いる。そして、チャネル割当部123Bは、特定した第2低干渉通信チャネルを無線端末2Bに割り当てる。
 (3)無線基地局の概略動作
 次に、図3および図4を用いて、無線基地局1Aおよび無線基地局1Bの概略動作について説明する。
 図3は、本実施形態の比較例として、チャネル割当閾値が一定値に設定されている場合のチャネル割当閾値と被干渉レベルとの関係を示す図である。
 図3の例では、無線基地局1Aの指定し得る通信チャネルおよび無線基地局1Bの指定し得る通信チャネルの全てに対してチャネル割当閾値が-80dBmに設定されており、無線基地局1Aが無線端末2Aおよび無線端末2Cに全ての通信チャネルを割り当てているものとする。すなわち、無線基地局1Aは、周波数帯域および通信時間帯を占有している。このような状況では、全ての通信チャネルにおいて被干渉レベルがチャネル割当閾値を超えているため、無線基地局1Bは、無線端末2Bに通信チャネルを割り当てることができない。
 図4は、本実施形態に係る無線基地局1Aおよび無線基地局1Bにおいて、チャネル割当閾値が不均一に設定されている場合のチャネル割り当て状況を示す図である。なお、非割当中の通信チャネルを網掛けで表す。
 図4の例では、最小-120dBm~最大-45dBmの範囲内で、通信チャネル毎に異なる第1チャネル割当閾値が設定され、第2通信チャネル毎に異なるチャネル割当閾値が設定されている。また、第1チャネル割当閾値が高い通信チャネルと、第2チャネル割当閾値が高い通信チャネルとが割り当て中になっている。
 例えば、サブチャネル番号1および時間スロット番号1の通信チャネルの第1チャネル割当閾値は-55dBmであり高いため、割り当て中になっている。一方、サブチャネル番号1および時間スロット番号1の通信チャネルの第2チャネル割当閾値は-105dBmであり低いため、非割り当て中になっている。
 サブチャネル番号1および時間スロット番号2の通信チャネルの第1チャネル割当閾値は-100dBmであり低いため、非割り当て中になっている。一方、サブチャネル番号1および時間スロット番号2の通信チャネルの第2チャネル割当閾値は-50dBmであり高いため、割り当て中になっている。
このように、図4の例では、同一サブチャネル且つ同一時間スロットである通信チャネルおよび通信チャネルにおいて、一方の通信チャネルのチャネル割当閾値が高く設定され、他方の通信チャネルのチャネル割当閾値が低く設定されている。チャネル割当閾値が高いほど、被干渉レベルがチャネル割当閾値を下回る可能性が高くなるため、割り当て優先順位が高くなる。
 つまり、各サブチャネル/時間スロット毎にチャネル割当閾値をランダムに設定し、且つ、そのランダム性を周辺基地局間で異なるように設定することにより、無線基地局毎に異なる優先順位が付与された通信チャネルが定義される。
 その結果、各無線基地局では優先順位の高い通信チャネルから順に割り当てることとなり、逆に優先順位の低い通信チャネルは使用され難くなる。したがって、各無線基地局が周波数帯域および通信時間帯を占有する可能性を低減でき、無線基地局間で収容する無線端末数に偏りが発生する場合においても無線基地局間での通信チャネル配分は均等に近くなる。
 (4)無線基地局の詳細動作
 図5は、無線基地局1Aの詳細動作、具体的には、第1チャネル割当閾値の設定方法の詳細を示すフローチャートである。無線基地局1Bにおいても図5の処理フローが実行される。
 ステップS1~S6において、閾値設定対象となる1つの通信チャネルに対して第1チャネル割当閾値の設定が行われる。
 まず、ステップS1において、情報取得部121Aは、無線基地局1AのBSID下位xビット、閾値設定対象の通信チャネルのサブチャネル番号、および時間スロット番号の各情報を取得する。
 ステップS2において、閾値設定部122Aは、ステップS1において情報取得部121Aが取得した情報をランダム符号の初期値として設定する。なお、閾値設定部122Aには、ランダム符号を発生させる符号器(または演算アルゴリズム)が組み込まれている。
 ステップS3において、閾値設定部122Aは、乱数(第1乱数)yビットを符号器から取り出し、デシマル(10進数)表示に変換する。
 ステップS4において、閾値設定部122Aは、ステップS3においてデシマル表示に変換された第1乱数に係数αを乗算する。係数αは、各通信チャネルに割り振る第1チャネル割当閾値の差分を調整するために用いられる。係数αは、シミュレーションなどから経験的に決定される。図4の例では、係数αにより第1チャネル割当閾値の差分は5dBに設定されている。
 ステップS5において、閾値設定部122Aは、ステップS4において得られた第1乱数と係数αとの乗算結果と、第1チャネル割当閾値の基準となる基準値とを加算する。
 ステップS6において、閾値設定部122Aは、ステップS5において得られた加算結果を、閾値設定対象の通信チャネルの第1チャネル割当閾値に設定する。
 ステップS7において、閾値設定部122Aは、全ての通信チャネルに対して第1チャネル割当閾値の設定が終了したか否かを判定する。第1チャネル割当閾値が設定されていない通信チャネルが存在する場合、ステップS1に処理が戻り、次の閾値設定対象の通信チャネルについての閾値設定処理が実行される。
 (5)作用・効果
 以上説明したように、無線通信システム10によれば、閾値設定部122Aが第1チャネル割当閾値を通信チャネル毎に設定することにより、割り当て優先順位の高い通信チャネルと、割り当て優先順位の低い通信チャネルとが定義される。同様に、閾値設定部122Bが第2チャネル割当閾値を通信チャネル毎に設定することにより、割り当て優先順位の高い通信チャネルと、割り当て優先順位の低い通信チャネルとが定義される。
 さらに、閾値設定部122Aは、無線基地局1Aに固有の値を基に通信チャネル毎に発生させた第1乱数を使用し、閾値設定部122Bは、無線基地局1Bに固有の値を基に通信チャネル毎に発生させた第2乱数を使用するため、無線基地局1Aおよび無線基地局1Bにおいて異なる優先順位付けがなされる。
 このため、割り当て優先順位の高い通信チャネルが、割り当て優先順位の低い通信チャネルと干渉する可能性を低減できるとともに、割り当て優先順位の高い通信チャネルが、割り当て優先順位の低い通信チャネルと干渉する可能性を低減できる。したがって、各無線基地局において、他の無線基地局よりも優先して割り当て可能な通信チャネルが確保されるため、各無線基地局における通信容量や通信品質を保証し、無線基地局間の公平性を担保できる。
 本実施形態では、閾値設定部122Aは、通信チャネル毎に発生させた第1乱数と、チャネル割当閾値間の差分を調整するための係数αとを乗算し、第1乱数と係数αとの乗算結果と、チャネル割当閾値の基準となる基準値とを加算した結果を、第1通信チャネルに対応するチャネル割当閾値として設定する。係数αを用いることにより、チャネル割当閾値間の差分を調整でき、優先順位付けの度合いを決定できる。また、基準値を用いることにより、チャネル割当閾値を実用上適切な値に設定できる。
 本実施形態では、閾値設定部122Aは、無線基地局1Aに固有の値と、サブチャネル番号と、時間スロット番号とを基に通信チャネル毎に発生させた第1乱数を用いて、第1チャネル割当閾値を通信チャネル毎に設定する。閾値設定部122Bは、無線基地局1Bに固有の値と、サブチャネル番号と、時間スロット番号とを基に通信チャネル毎に発生させた第2乱数を用いて、第2チャネル割当閾値を通信チャネル毎に設定する。サブチャネル番号と時間スロット番号とを乱数の発生に用いることにより、通信チャネル毎のチャネル割当閾値をより確実に異ならせることができる。
 (6)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、閾値設定部122Aは無線基地局1Aに設けられ、閾値設定部122Bは無線基地局1Bに設けられていたが、閾値設定部122Aおよび閾値設定部122Bを他の装置内に設けることも可能である。例えば、図6に示すようなサーバ4(サーバ装置)内に閾値設定部122Aおよび閾値設定部122Bを設けてもよい。サーバ4は、有線通信網を介して無線基地局1Aおよび無線基地局1Bに接続され、無線基地局1Aおよび無線基地局1Bを管理する。
 上述した実施形態では、図5の処理フローによりチャネル割当閾値を設定する一例について説明したが、ステップS3において、ある程度良好な結果が得られる場合には、ステップS4およびS5の各処理を省略してもよい。
 また、サブチャネル番号と時間スロット番号とを乱数の発生に用いていたが、これに限らず、BSIDのみを用いて乱数を発生させ、当該乱数をサブチャネル番号と時間スロット番号とを用いて並び替えることによって、チャネル割当閾値を設定してもよい。
 上述した実施形態では、無線通信システム10は、次世代PHSに基づく構成を有していたが、次世代PHSに限らず、キャリアセンスを行う方式であるCSMA/CD(Carrier Sense Multiple Access/Collision Detection)またはCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)方式を採用する採用する無線通信システムであれば、本発明を適用可能である。例えば、無線LAN(IEEE802.11)システムや、従来型のPHSに対して本発明を適用してもよい。更には、3GPP(Third Generation Partnership Project)で策定された規格であるLTE(Long Term Evolution)を採用する無線通信システムにも、同様に本発明を適用できる。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2008-331607号(2008年12月25日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線通信システム、無線基地局および閾値設定方法は、通信チャネルを無線端末に複数割り当て可能であり、且つキャリアセンスを利用してチャネル割り当てを行う場合において、各無線基地局における通信容量や通信品質を保証し、無線基地局間の公平性を担保でき、通信システム等として有用である。

Claims (9)

  1.  第1無線端末に対し、所定周波数帯域内にある複数の通信チャネルのうちの被干渉レベルがチャネル割当閾値よりも低い第1低干渉通信チャネルを割り当てる第1無線基地局と、
     第2無線端末に対し、前記所定周波数帯域内にある複数の前記通信チャネルのうちの被干渉レベルがチャネル割当閾値よりも低い第2低干渉通信チャネルを割り当てる第2無線基地局と
    を備える無線通信システムであって、
     前記第1低干渉通信チャネルを決定するためのチャネル割当閾値である第1チャネル割当閾値と、前記第2低干渉通信チャネルを決定するためのチャネル割当閾値である第2チャネル割当閾値とは、異なることを特徴とする無線通信システム。
  2.  前記第1チャネル割当閾値を設定する第1閾値設定部と、
     前記第2チャネル割当閾値を設定する第2閾値設定部と
    を備え、
     前記第1閾値設定部は、前記第1無線基地局に固有の値を基に発生させた第1乱数を用いて、前記第1チャネル割当閾値を前記通信チャネル毎に設定し、
     前記第2閾値設定部は、前記第2無線基地局に固有の値を基に発生させた第2乱数を用いて、前記第2チャネル割当閾値を前記通信チャネル毎に設定する請求項1に記載の無線通信システム。
  3.  前記第1閾値設定部は、
     前記通信チャネル毎に発生させた前記第1乱数と、前記第1チャネル割当閾値間の差分を調整するための所定係数とを乗算し、
     前記第1乱数と前記所定係数との乗算結果と、前記チャネル割当閾値の基準となる基準値とを加算した結果を、前記通信チャネルに対応する前記第1チャネル割当閾値として設定し、
     前記第2閾値設定部は、
     前記通信チャネル毎に発生させた前記第2乱数と、前記所定係数とを乗算し、
     前記第2乱数と前記所定係数との乗算結果と、前記基準値とを加算した結果を、前記通信チャネルに対応する前記第2チャネル割当閾値として設定する請求項2に記載の無線通信システム。
  4.  前記第1閾値設定部は、前記第1無線基地局に設けられ、
     前記第2閾値設定部は、前記第2無線基地局に設けられる請求項2または3に記載の無線通信システム。
  5.  前記第1無線基地局および前記第2無線基地局を管理するサーバ装置をさらに備え、
     前記第1閾値設定部および前記第2閾値設定部は、前記サーバ装置に設けられる請求項2または3に記載の無線通信システム。
  6.  前記通信チャネルは、直交周波数分割多元接続方式および時分割多元接続方式に従って構成される請求項1に記載の無線通信システム。
  7.  前記第1閾値設定部は、前記第1無線基地局に固有の値に加え、前記直交周波数分割多元接続方式に応じたサブチャネル番号と、前記時分割多元接続方式に応じた時間スロット番号とを基に前記通信チャネル毎に発生させた前記第1乱数を用いて、前記第1チャネル割当閾値を前記通信チャネル毎に設定し、
     前記第2閾値設定部は、前記第2無線基地局に固有の値に加え、前記サブチャネル番号と前記時間スロット番号とを基に前記通信チャネル毎に発生させた前記第2乱数を用いて、前記第2チャネル割当閾値を前記通信チャネル毎に設定する請求項6に記載の無線通信システム。
  8.  複数の通信チャネルにおける被干渉レベルを測定し、測定した被干渉レベルがチャネル割当閾値よりも低い低干渉通信チャネルを無線端末に対し少なくとも1つ割り当てる無線基地局であって、
     前記チャネル割当閾値を前記通信チャネルそれぞれについて設定する閾値設定部を備え、
     前記閾値設定部は、前記無線基地局に固有の値を基に、前記チャネル割当閾値を前記通信チャネル毎に設定する無線基地局。
  9.  第1無線基地局が第1無線端末に対し、所定周波数帯域内にある複数の通信チャネルのうちの被干渉レベルがチャネル割当閾値よりも低い第1低干渉通信チャネルを割り当てるステップと、
     第2無線基地局が第2無線端末に対し、前記所定周波数帯域内にある複数の前記通信チャネルのうちの被干渉レベルがチャネル割当閾値よりも低い第2低干渉通信チャネルを割り当てるステップと
    を含み、前記チャネル割当閾値を設定する閾値設定方法であって、
     前記第1低干渉通信チャネルを決定するためのチャネル割当閾値である第1チャネル割当閾値と、前記第2低干渉通信チャネルを決定するためのチャネル割当閾値である第2チャネル割当閾値とは、異なることを特徴とする閾値設定方法。
PCT/JP2009/071643 2008-12-25 2009-12-25 無線通信システム、無線基地局および閾値設定方法 WO2010074248A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/142,169 US20110261782A1 (en) 2008-12-25 2009-12-25 Radio communication system, radio base station, and threshold setting method
CN2009801525146A CN102265692A (zh) 2008-12-25 2009-12-25 无线通信系统、无线基站以及阈值设置方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008331607A JP5406520B2 (ja) 2008-12-25 2008-12-25 無線通信システム、無線基地局および閾値設定方法
JP2008-331607 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010074248A1 true WO2010074248A1 (ja) 2010-07-01

Family

ID=42287852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071643 WO2010074248A1 (ja) 2008-12-25 2009-12-25 無線通信システム、無線基地局および閾値設定方法

Country Status (5)

Country Link
US (1) US20110261782A1 (ja)
JP (1) JP5406520B2 (ja)
KR (1) KR20110091887A (ja)
CN (1) CN102265692A (ja)
WO (1) WO2010074248A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119918A1 (ko) * 2013-02-01 2014-08-07 엘지전자 주식회사 간섭 제거 수신 방법 및 단말
KR101449373B1 (ko) 2013-03-26 2014-10-08 엘지전자 주식회사 스퓨리어스 방사를 최소화하기 위한 상향링크 전송 방법 및 사용자 장치
EP3192316B1 (en) * 2014-09-12 2020-04-29 LG Electronics Inc. Method and apparatus for supporting coexistence in unlicensed band among cells of different operators in wireless communication system
US9936400B2 (en) * 2015-09-12 2018-04-03 Qualcomm Incorporated Channel selection in a shared communication medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125331A (ja) * 1998-10-13 2000-04-28 Matsushita Electric Ind Co Ltd Phs(登録商標)システムおよびそのphs端末並びにphsシステムの待ち受け基地局選択方法
JP2004023211A (ja) * 2002-06-13 2004-01-22 Hitachi Kokusai Electric Inc 干渉回避処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI981635A (fi) * 1998-07-17 2000-01-18 Nokia Networks Oy Dynaaminen kanavanosoitusmenetelmä solukkoradioverkossa ja järjestelmä kanavanosoituksen suorittamiseksi
US6442151B1 (en) * 1999-04-06 2002-08-27 Ericsson Inc. System and method for variable reassignment of transmission channels
JP3844968B2 (ja) * 2001-02-01 2006-11-15 株式会社エヌ・ティ・ティ・ドコモ 呼受付制御装置及び方法
WO2008026260A1 (fr) * 2006-08-30 2008-03-06 Mitsubishi Electric Corporation Appareil de communication sans fil, procédé et programme de communication sans fil
US8280444B1 (en) * 2008-02-26 2012-10-02 Adaptix, Inc. Reducing multi-cell interference using cooperative random beam forming
US20100061346A1 (en) * 2008-09-05 2010-03-11 Nokia Siemens Networks Oy Channel quality feedback signal for wireless networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125331A (ja) * 1998-10-13 2000-04-28 Matsushita Electric Ind Co Ltd Phs(登録商標)システムおよびそのphs端末並びにphsシステムの待ち受け基地局選択方法
JP2004023211A (ja) * 2002-06-13 2004-01-22 Hitachi Kokusai Electric Inc 干渉回避処理方法

Also Published As

Publication number Publication date
JP5406520B2 (ja) 2014-02-05
US20110261782A1 (en) 2011-10-27
KR20110091887A (ko) 2011-08-16
CN102265692A (zh) 2011-11-30
JP2010154369A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
KR100805492B1 (ko) 제한적인 재사용 세트 관리
US8559364B2 (en) Method and system for transmitting/receiving data in a communication system
US8121549B2 (en) Method and system for allocating resource in a communication system
US20130136013A1 (en) Handshaking Protocol Using Bursts in OFDMA Frame Structure
US8902874B2 (en) Sounding channel apparatus and method
JP5645038B2 (ja) 無線通信システム、基地局、リソースブロック割当方法及びプログラム
EP2104391B1 (en) A transceiver apparatus and a method for transceiving data packets in a mobile communication network
US11832257B2 (en) Uplink cancellation indication
Pateromichelakis et al. A graph coloring based inter-slice resource management for 5G dynamic TDD RANs
US20120287881A1 (en) Resource allocation
JP5406520B2 (ja) 無線通信システム、無線基地局および閾値設定方法
JP4664261B2 (ja) 動的なサブチャネル割り当てのための方法、送信機、受信機およびシステム
Salameh et al. Traffic-driven exclusive resource sharing algorithm for mitigating self-coexistence problem in WRAN systems
KR101532436B1 (ko) 셀간 간섭 조정을 위한 자원할당방법
WO2014046577A1 (en) Method in a network node and method in a telecommunication system for cell edge band allocation and network node
KR101528175B1 (ko) 무선통신시스템에서 상향링크 자원 할당 장치 및 방법
JP5133223B2 (ja) 無線通信装置および無線通信方法
KR100661435B1 (ko) 직교주파수분할다중방식에서의 부반송파 동적할당방법
JP6305947B2 (ja) 無線通信システム、無線通信装置および無線通信方法
Van Nguyen et al. Interference-dependent contention control in multi-hop wireless ad-hoc networks: An optimal cognitive MAC protocol
Ansari et al. Fuzzy Rule based Channel Allocation for Efficient Spectrum Management in WiMAX Networks
JP2011151748A (ja) 基地局及び無線リソースの割り当て方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152514.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13142169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117015132

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09835044

Country of ref document: EP

Kind code of ref document: A1