WO2010073743A1 - 同軸反転式コアレス発電機 - Google Patents

同軸反転式コアレス発電機 Download PDF

Info

Publication number
WO2010073743A1
WO2010073743A1 PCT/JP2009/054254 JP2009054254W WO2010073743A1 WO 2010073743 A1 WO2010073743 A1 WO 2010073743A1 JP 2009054254 W JP2009054254 W JP 2009054254W WO 2010073743 A1 WO2010073743 A1 WO 2010073743A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreless
generator
generator shaft
coil body
outer rotor
Prior art date
Application number
PCT/JP2009/054254
Other languages
English (en)
French (fr)
Inventor
明緒 原
Original Assignee
のあい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by のあい株式会社 filed Critical のあい株式会社
Priority to JP2010543932A priority Critical patent/JP5543371B2/ja
Priority to CN2009801411465A priority patent/CN102187551A/zh
Priority to EP09834549.9A priority patent/EP2383870A4/en
Priority to US13/141,961 priority patent/US20110266903A1/en
Priority to AU2009332169A priority patent/AU2009332169A1/en
Priority to CA2748183A priority patent/CA2748183A1/en
Priority to BRPI0923656A priority patent/BRPI0923656A2/pt
Priority to SG2011046489A priority patent/SG172373A1/en
Publication of WO2010073743A1 publication Critical patent/WO2010073743A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2788Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/005Machines with only rotors, e.g. counter-rotating rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/60Motors or generators having rotating armatures and rotating excitation field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/16Structural association with mechanical loads, e.g. with hand-held machine tools or fans for operation above the critical speed of vibration of the rotating parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a coaxial reversing coreless power generator, and more particularly to a coaxial reversing coreless power generator that can save space with a simple structure using, for example, the rotational force of a windmill and achieves a large output.
  • Patent Document 1 as a technology related to the present invention, a pair of power generation rotors is provided, and power generation is performed by their relative rotation, and the planets transmit rotation of the rotor as rotation in the reverse direction of the other rotor.
  • a power generation mechanism with a speed increasing function that uses the rotational force of a windmill that is equipped with a transmission mechanism consisting of a gear mechanism and that is configured such that both rotors rotate relative to each other in the opposite direction by the rotational force input to the rotor.
  • a machine has been proposed.
  • the problem to be solved by the present invention is that, for example, there is no coaxial inversion type coreless generator that uses a rotational force of a windmill, can save space with a simple structure, and realizes a large output.
  • a coaxial inversion coreless generator includes a generator shaft fixedly supported, an outer rotor with a magnet rotatably supported by the generator shaft and driven to rotate by an external force, and coaxially disposed in the outer rotor.
  • a coreless type coil body supported by a generator shaft and rotatably incorporated therein and having a coil portion disposed corresponding to the magnet, and a circular arrangement on both the outer rotor and the coreless type coil body supported by the generator shaft.
  • a reverse gear that rotates the coreless coil body in the reverse direction in accordance with the rotation of the outer rotor by coupling with a circular gear provided on the outer rotor, and by rotating the outer rotor and the coreless coil body in the reverse direction.
  • the power generation output corresponding to the increase in relative speed between the magnet and the coil part is forward from the coil part output end of the coreless type coil body.
  • the first aspect of the present invention it is possible to obtain, for example, twice the relative speed between the outer rotor having a coaxial reversal structure and the coreless coil body as compared with a generator using a normal rotor and stator. It is possible to provide a coaxial inversion coreless generator capable of obtaining a power generation output larger than that of a wind power generator.
  • the coreless coil bodies are arranged in multiple stages, so that the wind energy is particularly large.
  • a coaxial inversion coreless generator capable of obtaining a power generation output can be provided.
  • a coaxial that can obtain a larger power generation output than a normal wind power generator.
  • a reversing coreless generator can be provided.
  • the present invention has an object to provide a coaxial reversing coreless generator that uses, for example, the rotational force of a windmill, can achieve a space saving with a simple structure, and realizes a large output.
  • a coaxial inversion coreless generator includes a generator shaft fixedly supported, a rotation chamber that is rotatably supported by the generator shaft, is rotationally driven by an external force, and includes a multistage accommodation chamber in a direction along the generator shaft.
  • An outer rotor in which magnets are arranged on the wall surfaces of the storage chambers, and coaxially arranged in each of the storage chambers and rotatably supported by a generator shaft.
  • a multi-stage coreless type coil body arranged and a shaft connected to the generator shaft, and each outer gear and each circular gear provided in a circular arrangement on each stage are coupled with each other to rotate the outer rotor.
  • Example 1 A coaxial inversion coreless generator 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3.
  • the coaxial inversion coreless generator 1 has, for example, a lower end of a gyromill type (vertical shaft type) wind turbine 2 and the wind turbine 2 at a predetermined height from the ground.
  • the power generation output is obtained using the rotational force of the wind turbine 2 that is disposed between the upper end of the pole 3 that is supported by the wind turbine and rotates by wind energy.
  • the windmill 2 is configured such that, for example, three blades 5 are attached to the windmill shaft 3 via an arm 4, and the lower end portion 3 a of the windmill shaft 3 is attached to the coaxial inversion coreless generator 1.
  • the coaxial inversion coreless generator 1 according to the first embodiment will be specifically described with reference to FIGS.
  • the coaxial inversion coreless generator 1 includes a generator body 10 and a shaft support body 11 that rotatably supports the generator body 10.
  • the generator body 10 includes an outer rotor 12 that rotates in response to the rotational force of the windmill 2, a generator shaft 13 that pivotally supports the central portion of the outer rotor 12, and that allows the outer rotor 12 to rotate. And a disk-like coreless coil body (a bundle of coils compressed into a disk shape) 14 incorporated in the outer rotor 12 in a state where the central portion is supported by the generator shaft 13.
  • the generator shaft 13 is provided with a screw 13a at the lower end, a large diameter portion 13b at the upper end side, and a protruding disk portion 13c below the large diameter portion 13b.
  • the outer rotor 12 has a dish-disk-shaped upper rotor 21 having an opening on the lower side and a dish-disk-shaped lower rotor 31 having an opening on the upper side but joined to each other in a vertical arrangement, and is arranged in a circle at a position near the outer periphery of both. Are fixed together using a number of fixing bolts 22.
  • the upper rotor 21 of the outer rotor 12 is fitted with the upper end portion of the generator shaft 13 on the lower side of the central portion thereof, and is provided with a cylindrical windmill mounting portion 21a protruding upward on the central portion thereof.
  • the wind turbine mounting portion 21a is provided with a number of screw holes 21b in a circular arrangement, and is joined to the lower end portion 3a of the wind turbine shaft 3 to connect the upper rotor 21 and the lower end portion 3a of the wind turbine shaft 3 with mounting bolts (not shown). They are integrally connected and configured to transmit the rotational force of the wind turbine shaft 3.
  • a main bearing 23 is disposed between the upper surface side of the large-diameter portion 13b of the generator shaft 13 and the inner bottom portion of the upper rotor 21 in the vicinity thereof, so that the upper rotor 21, and thus the outer rotor 12 can be rotatably supported. is doing.
  • a circular protrusion 25 having an inner diameter slightly larger than that of the large-diameter portion 13b is provided at an outer position of the main bearing 23 in the inner bottom portion of the upper rotor 21, and the lower end surface of the circular protrusion 25 is circular over the entire circumference.
  • a gear 26 is provided.
  • the required number of magnets 24 are embedded in a circular arrangement in the vicinity of the outer periphery of the inner bottom portion of the upper rotor 21 with the end surface facing the inner bottom surface.
  • the lower rotor 31 is formed in a substantially symmetrical shape with the upper rotor 21 in the vertical direction. That is, a circular concave step portion 32 into which the protruding disc portion 13c enters is provided on the upper surface of the central portion, and the generator shaft 13 is configured to penetrate the central position of the circular concave step portion 32.
  • a required number of magnets 24 are embedded in a circular arrangement in such a manner that the end surface faces the inner bottom surface and is opposed to the magnets 24 on the upper rotor 21 side. is doing.
  • an accommodation chamber 33 for accommodating the coreless type coil body 14 is formed inside of both.
  • a columnar mounting portion 34 protruding downward is provided at the center portion, and a screw hole 35 is provided in the mounting portion 34 in a circular arrangement.
  • the coreless coil body 14 is coaxially arranged with the outer rotor 12 in the accommodation chamber 33, and an upper hole having an inner diameter into which the circular protrusion 25 of the upper rotor 21 enters, A slightly larger diameter hole than the large-diameter portion 13b of the generator shaft 13 is provided so that the large-diameter portion 13b passes therethrough.
  • the coreless coil body 14 is rotatably supported by the generator shaft 13 via a bearing 46 disposed between the outer periphery of the lower end of the large diameter portion 13b and the lower hole of the coreless coil body 14.
  • a coil portion 41 is disposed on the upper surface of the coreless coil body 14 so as to correspond to and close to the magnet 24 on the upper rotor 21 side.
  • the lower rotor 31 is disposed on the lower surface thereof.
  • the coil part 41 is arranged in a state of being in a corresponding arrangement with the magnet 24 on the side and in the proximity thereof.
  • each coil part output end 42 in each of the upper and lower coil parts 41 in the coreless type coil body 14 is disposed at a position facing the lower surface of the coreless type coil body 14, and the power generation located in the circular concave step part 32. It is comprised so that the protrusion disc part 13c in the axis 13 may be made to oppose.
  • a brushless type collector or a sparkless type collector may be used.
  • the generator main body 10 is connected to each brush (collector) 43 disposed on the upper surface of the projecting disk portion 13 c corresponding to each coil portion output end 42 via an output cable 44 connected to each brush 43. It is configured to take out the power generation output by.
  • a circular gear 45 similar to the circular gear 26 of the circular protrusion 25 is provided over the entire circumference on the upper surface side (upper hole side) of the circular protrusion 14 a that forms the lower hole in the coreless coil body 14. .
  • a plurality of reverse gears 51 are mounted on the outer periphery of the large-diameter portion 13b of the generator shaft 13 so as to be positioned in the upper hole and have a rotational axis in the horizontal direction.
  • the reverse gears 51 are connected to the circular gear 26.
  • the gears are respectively coupled to the circular gears 45.
  • the coreless coil body 14 is configured to reversely rotate in the direction of arrow b shown in FIG. Yes.
  • the outer rotor 12 and the coreless type coil body 14 are configured to be coaxially reversed using the reverse rotation gear 51.
  • the shaft support 11 has a fixed support 61 for fixing and supporting the generator shaft 13 by fitting the generator shaft 13 into a central hole 61a and projecting it downward, and screwing a nut 62 into the screw 13a of the generator shaft 13 from below.
  • a superposed structure is formed with the rotating support 71 through which the generator shaft 13 passes through a through-hole 71a having the same diameter as the central hole 61a provided in the central portion in close contact with the fixed support 61.
  • the rotary support 71 is rotatably supported with respect to the fixed support 61 via a bearing 63 provided therebetween, and is rotated in a circular groove 61b provided on the outer periphery of the upper surface of the fixed support 61.
  • a circular ridge 71 b provided on the outer peripheral portion of the lower surface of the support 71 is fitted, whereby the rotation support 71 is configured to be able to rotate smoothly while closely contacting on the fixed support 61.
  • a screw hole 64 is provided on the side surface of the fixed support 61 in an arrangement perpendicular to the axial direction of the central hole 61a.
  • the upper end of the pole 3 is fitted from below the fixed support 61, and a bolt 65 is used.
  • the shaft support 11 is configured to be attached to the upper end of the pole 3.
  • a mounting bolt 72 is disposed on the rotary support 71 in a position corresponding to the screw hole 35 of the mounting portion 34 in the lower rotor 31, and this rotation is performed before the rotary support 71 and the fixed support 61 are assembled.
  • the support 71 is attached to the lower rotor 31, and then the fixed support 61 is assembled to the rotation support 71.
  • a support bearing 73 for the generator shaft 13 is disposed at the upper end of the through hole 71a in the rotary support 71.
  • reference numerals 52 denote roller bearings disposed between the upper rotor 21 and the coreless coil body 14 and between the lower rotor 31 and the coreless coil body 14, respectively.
  • the outer rotor 12 when the windmill 2 rotates in the direction of arrow a shown in FIG. 2 by wind energy, for example, the outer rotor 12 also rotates in the direction of arrow a. The rotational force of the outer rotor 12 is transmitted to the reverse gear 51. As a result, the coreless coil body 14 rotates in the direction of the arrow b shown in FIG.
  • the outer rotor 12 and the coreless coil body 14 are simply configured as a reverse gear 51 according to the rotation of the windmill 2.
  • the relative speed can be doubled between the outer rotor 12 and the coreless type coil body 14 as compared with a generator using a normal rotor and stator. It is possible to obtain a larger power output than a normal wind power generator under the condition of wind energy.
  • the coaxial inversion coreless power generator 1 when it is assumed that the power generation output is 100 at a rotational speed of 100 in a normal power generator, the coaxial inversion coreless power generator 1 according to the first embodiment has a speed of 100 at a rotational speed of 50. Power generation output can be obtained. Or, if the rotational speed is 100, 200 power generation outputs can be obtained.
  • the coaxial reversing coreless generator 1A of the modification is basically based on the same principle as the coaxial reversing coreless generator 1 described above, and has a similar configuration.
  • the same elements as those of the machine 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the modified coaxial coaxial coreless generator 1A adopts the generator main body 10A shown in FIG. 4 in place of the generator main body 10 in the coaxial inverted coreless generator 1 described above.
  • the intermediate rotor 30 is interposed between the upper rotor 21 and the lower rotor 31 integrally with the upper rotor 21 and the lower rotor 31, and the upper rotor 21 and the intermediate rotor 30 and the intermediate rotor 30 and the lower rotor 31 are vertically arranged in two stages.
  • the two coreless coil bodies 14 having the same configuration as those described above are disposed in the two accommodating chambers 33 in the outer rotor 12A, and the generator shaft 13 is also vertically moved correspondingly.
  • the reverse rotation gear 51 is arranged over two stages, and the two coreless type coil bodies 14 are driven to be coaxially reversed.
  • the brushes 43 are arranged over the generator shaft 13 over two stages, and an output cable is connected to each brush 43. 44 is connected and the power generation output is taken out through the upper and lower brushes 43.
  • coaxial reversing coreless generator 1A of the modified example is supported by the shaft support 11 although not shown in FIG.
  • the outer rotor 12 For example, it is possible to obtain, for example, twice the relative speed between the coreless type coil bodies 14 and 14, and it is possible to obtain a power generation output larger than that of a normal wind power generator under the same wind energy conditions. .
  • the coreless type coil body 14 is arranged in two stages. As a result, a larger power generation output can be obtained.
  • the coaxial reversing coreless generator 1A of the modified example the case where the two-stage coreless type coil body 14 is arranged in the outer rotor 12A is shown, but in addition to this, there are three stages, four stages, etc. in the outer rotor.
  • a multi-stage coreless type coil body may be arranged, and in these cases, the same operation and effect as in the case of the coaxial reversal type coreless generator 1 ⁇ / b> A can be exhibited.
  • Example 2 A coaxial inversion coreless generator 1B according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the coaxial inversion coreless generator 1B according to the second embodiment is characterized by adopting the same configuration as that of the coaxial inversion coreless generator 1 according to the first embodiment while being an inner rotor type.
  • the coaxial inversion coreless generator 1B includes an inner rotor type generator main body 80 fixedly disposed on a shaft support 81.
  • the generator main body 80 includes a housing 83, an inner rotor 82 having substantially the same structure as the outer rotor 12 that rotates by receiving the rotational force of the windmill 2, and a housing 83 that pivotally supports a central portion of the inner rotor 82.
  • the generator shaft 13 similar to the above-described case where the inner rotor 82 is rotatable and the center portion is supported by the generator shaft 13 and is built in the inner rotor 82.
  • a disk-like coreless type coil body 14 similar to the above case.
  • the housing 83 is configured to cover an upper surface, a side surface, and a lower surface of the upper rotor 21 constituting the inner rotor 82 excluding the wind turbine mounting portion 21a.
  • An attachment portion 83a is provided on the lower surface side, and the attachment portion 83a is in close contact with the shaft support 81 and is configured to be attached to the shaft support 81 integrally.
  • the shaft support 81 has substantially the same configuration as that of the shaft support 11, but the configuration of the rotation support 71 is omitted, and includes, for example, an upper support 91 and a lower support 92 in a vertically divided structure.
  • a bolt 93 projecting upward from the inside of the upper support 91 is screwed into a screw hole 83 a provided in the mounting portion 83 a of the housing 83 so as to be integrated with the housing 83.
  • the inner rotor 82 and the coreless type coil body 14 are rotated between the magnets 24 and the coil portion 41 in the reverse direction.
  • a large power generation output corresponding to an increase in relative speed can be taken out from the coil portion output end 42 of the coreless coil body 14 via the brush 43 and the output cable 44.
  • the relative speed between the inner rotor 82 and the coreless coil body 14 is doubled, for example, compared to a generator using a normal rotor and stator. It is possible to obtain a power generation output larger than that of a normal wind power generator under the condition of the same wind energy.
  • the multi-stage coreless type coil body 14 in the inner rotor 82 in two stages, three stages, four stages, and the like.
  • the same operation and effect as in the case of the coaxial inversion coreless generator 1A and the like can be exhibited.
  • the present invention can be applied to a wind turbine type regardless of whether it is a vertical shaft type or a horizontal shaft type, and is applied to the case where power is generated by rotating a wind turbine by natural wind, as well as artificial air flow such as exhaust air from an air conditioner. It can be widely applied as a coaxial reversing coreless generator when generating power by rotating a windmill with a strong wind.
  • FIG. 1 is a schematic exploded sectional view of a coaxial inversion coreless generator according to a first embodiment.
  • 1 is a schematic plan view of a coaxial inversion coreless generator according to a first embodiment.
  • FIG. 5 is a schematic exploded cross-sectional view of a coaxial inversion coreless generator that is a modification of the first embodiment. It is a general

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Wind Motors (AREA)

Abstract

【課題】本発明は、例えば風車の回転力を利用し、簡略構造で省スペース化が図れ、しかも大出力を実現する同軸反転式コアレス発電機を提供する。 【解決手段】本発明に係る同軸反転式コアレス発電機1は、固定支持された発電機軸13と、発電機軸13により回転可能に支持され、風力により回転駆動されるマグネット24付きのアウターロータ12と、アウターロータ12内に同軸配置にかつ発電機軸13により支持されて回転可能に内蔵され、前記マグネット24と対応配置にコイル部41を配置したコアレス型コイル体14と、発電機軸13により軸支され、アウターロータ12、コアレス型コイル体14双方に円形配置に設けた円形ギア26、45とギア結合してアウターロータ12の回転に応じてコアレス型コイル体14を逆方向に回転させる逆転用ギア51と、を有し、アウターロータ12、コアレス型コイル体14の逆方向の回転によるマグネット24とコイル部41との相対速度の上昇に応じた発電出力を取り出すように構成したものである。

Description

同軸反転式コアレス発電機
 本発明は、同軸反転式コアレス発電機に関し、詳しくは、例えば風車の回転力を利用し簡略構造で省スペース化が図れ、しかも大出力を実現する同軸反転式コアレス発電機に関するものである。
 近年、二酸化炭素の排出削減、化石燃料の消費削減等の観点から風力エネルギー、太陽エネルギー等の各種自然エネルギーを利用する発電機が注目されている。
 このうち、風力エネルギーを利用する風車発電機の場合には、例えば風車の回転を増速機により増速して発電部に伝達し、該発電部により、単に風車の回転力のみを利用する発電機の場合よりも大きい発電出力を得るようにしたものが提案されている。
 しかしながら、このような風車発電機の場合、増速機と発電部とは別置きとされており、省スペースを図る上で好ましくない。
 特許文献1には、本発明に関連する技術として、対の発電用ロータが備えられ、それらの相対回転で発電をするようになされ、ロータの回転を他のロータの逆方向の回転として伝える遊星ギア機構からなる伝動機構が備えられ、ロータに入力した回転力で両ロータがそれぞれ逆方向に相対回転をして発電をするようように構成した風車の回転力を利用する回転増速機能付き発電機が提案されている。
 この回転増速機能付き発電機の場合、遊星ギア機構からなる伝動機構を採用しているため、伝動機構の構成が複雑となってしまう。
特開2005-287215号公報
 本発明が解決しようとする問題点は、例えば風車の回転力を利用し、簡略構造で省スペース化が図れ、しかも大出力を実現する同軸反転式コアレス発電機が存在しない点である。
 本発明に係る同軸反転式コアレス発電機は、固定支持された発電機軸と、発電機軸により回転可能に支持され、外力により回転駆動されるマグネット付きのアウターロータと、前記アウターロータ内に同軸配置にかつ発電機軸により支持されて回転可能に内蔵され、前記マグネットと対応配置にコイル部を配置したコアレス型コイル体と、前記発電機軸により軸支され、前記アウターロータ、コアレス型コイル体双方に円形配置に設けた円形ギアとギア結合してアウターロータの回転に応じてコアレス型コイル体を逆方向に回転させる逆転用ギアと、を有し、前記アウターロータ、コアレス型コイル体の逆方向の回転による前記マグネットとコイル部との相対速度の上昇に応じた発電出力を前記コアレス型コイル体のコイル部出力端から前記発電機軸の周りに固定配置した集電子を介して取り出すように構成したことを最も主要な特徴とする。
 請求項1記載の発明によれば、通常のロータ、ステータを使用する発電機に比べて同軸反転構造としたアウターロータ、コアレス型コイル体間に例えば2倍の相対速度を得ることができ、通常の風力発電用の発電機よりも大きい発電出力を得ることが可能な同軸反転式コアレス発電機を提供することができる。
 請求項2記載の発明によれば、請求項1記載の発明と同様な効果を奏することに加え、コアレス型コイル体を多段に配置しているので、特に風エネルギーが大きいような場合、より大きい発電出力を得ることが可能な同軸反転式コアレス発電機を提供することができる。
 請求項3記載の発明によれば、インナーロータタイプの構造の基に、請求項1記載の発明の場合と同様、通常の風力発電用の発電機よりも大きい発電出力を得ることが可能な同軸反転式コアレス発電機を提供することができる。
 請求項4記載の発明によれば、インナーロータタイプの構造の基に、請求項3記載の発明と同様な効果を奏し、さらに、コアレス型コイル体を多段に配置しているので、特に風エネルギーが大きいような場合、より大きい発電出力を得ることが可能な同軸反転式コアレス発電機を提供することができる。
 本発明は、例えば風車の回転力を利用し、簡略構造で省スペース化が図れ、しかも大出力を実現する同軸反転式コアレス発電機を提供するという目的を有する。
 本発明に係る同軸反転式コアレス発電機は、固定支持された発電機軸と、該発電機軸により回転可能に支持され、外力により回転駆動されるとともに、内部に発電機軸に沿う方向の多段にわたる収容室を設け、該収容室の壁面に各々マグネットを配置したアウターロータと、前記各収容室内に同軸配置にかつ発電機軸により回転可能に支持されて内蔵され、前記各マグネットと対応配置に各コイル部を配置した多段のコアレス型コイル体と、前記発電機軸により軸支され、前記アウターロータと各段のコアレス型コイル体双方に円形配置に設けた各円形ギアと各々ギア結合してアウターロータの回転に応じて各コアレス型コイル体を逆方向に回転させる多段の逆転用ギアと、を有し、前記アウターロータ、各コアレス型コイル体の逆方向の回転による前記各マグネットと各コイル部との相対速度の上昇に応じた発電出力を前記各コアレス型コイル体の各コイル部出力端から前記発電機軸の周りに多段にわたって固定配置した各集電子を介して取り出す構成により上記目的を実現した。
 以下に、本発明の実施例に係る同軸反転式コアレス発電機について図面を参照して詳細に説明する。
(実施例1)
 図1乃至図3を参照して本発明の実施例1に係る同軸反転式コアレス発電機1について説明する。
 本実施例1に係る同軸反転式コアレス発電機1は、図1に示すように、例えばジャイロミル形(垂直軸タイプ)の風車2の下端と、この風車2を地上から所定の高さとなるように支持するポール3の上端との間に配置され、風エネルギーで回転する風車2の回転力を利用して発電出力を得るように構成している。前記風車2は、風車軸3に対してアーム4を介して例えば3枚のブレード5を取り付け、風車軸3の下端部3aを前記同軸反転式コアレス発電機1に取り付けるように構成している。
 本実施例1に係る同軸反転式コアレス発電機1について、図2、図3を参照して具体的に説明する。
 本実施例1に係る同軸反転式コアレス発電機1は、発電機本体10と、この発電機本体10を回転可能に支持する軸支体11とを有している。
 前記発電機本体10は、前記風車2の回転力を受けて回転するアウターロータ12と、このアウターロータ12の中央部を軸支し、該アウターロータ12を回転可能とする発電機軸13と、前記発電機軸13により中央部が支持される状態でアウターロータ12内に内蔵した円盤状のコアレス型コイル体(円盤状に圧縮されたコイルの束)14と、を有している。
 前記発電機軸13は、下端にネジ13aを、上端側に大径部13bを、この大径部13bの下側に突出円板部13cを設けている。
 前記アウターロータ12は、下側が開口した皿円盤状の上部ロータ21と、上側が開口した皿円盤状の下部ロータ31とを上下配置に突き合わせて接合し、両者の外周近傍位置において、円形に配列する多数の固定ボルト22を用いて一体的に固定されるようになっている。
 前記アウターロータ12のうちの上部ロータ21は、その中央部下側に発電機軸13の上端部を嵌合させるとともに、その中央部に上側に突出する円柱状の風車取り付け部21aを設けている。
 前記風車取り付け部21aには、円形配置に多数のネジ孔21bが設けられ、前記風車軸3の下端部3aに接合して図示しない取り付けボルトにより上部ロータ21と風車軸3の下端部3aとを一体的に結合し、風車軸3の回転力を伝達するように構成している。
 また、前記発電機軸13における大径部13bの上面側と、その近傍の上部ロータ21の内底部との間に主軸受23を配置し、上部ロータ21、したがってアウターロータ12を回転可能に軸支している。
 前記上部ロータ21の内底部における前記主軸受23の外側位置には、大径部13bよりも若干大きい内径を有する円形突部25が設けられ、この円形突部25の下端面に全周にわたって円形ギア26を設けている。
 前記上部ロータ21の内底部における外周近傍位置には、端面を内底面に臨ませる状態で所要数のマグネット24を円形配置に埋設している。
 前記下部ロータ31は、前記上部ロータ21と上下略対称形状に形成されている。すなわち、その中央部上面には前記突出円板部13cが入り込む円形凹段部32が設けられるとともに、この円形凹段部32の中心位置を前記発電機軸13が貫通するように構成している。
 また、下部ロータ31の内底部における外周近傍位置には、端面を内底面に臨ませる状態で、かつ、前記上部ロータ21側のマグネット24と対向する配置で所要数のマグネット24を円形配置に埋設している。
 このような上部ロータ21、下部ロータ31の構成により、両者の内部にコアレス型コイル体14を収容する収容室33を形成している。
 前記下部ロータ31の下面側には、その中央部に下側に突出する円柱状の取り付け部34を設け、この取り付け部34に円形配置にネジ孔35を設けている。
 前記コアレス型コイル体14は、前記収容室33内において前記アウターロータ12と同軸配置されるとともに、その中央部には、前記上部ロータ21の円形突部25が入り込む内径を有する上孔と、前記発電機軸13の大径部13bより若干大径の下孔とが設けられ、大径部13bが貫通するように構成している。
 そして、大径部13bの下端外周と、前記コアレス型コイル体14の下孔との間に配置した軸受46を介してコアレス型コイル体14を前記発電機軸13により回転可能に支持している。
 また、前記コアレス型コイル体14の上面には、前記上部ロータ21側のマグネット24と対応配置で、かつ、近接する状態にコイル部41を配置し、同様にその下面には、前記下部ロータ31側のマグネット24と対応配置で、かつ、近接する状態にコイル部41を配置している。
 さらに、前記コアレス型コイル体14における上下の各コイル部41における各コイル部出力端42は、このコアレス型コイル体14の下面に臨む位置に配置され、前記円形凹段部32内に位置する発電機軸13における突出円板部13cに対向させるように構成している。
 前記コイル部出力端42、ブラシ43の構成に替えて、例えばブラシレス型の集電子、スパークレス型の集電子を用いることもできる。
 そして、前記突出円板部13cの上面に設けた前記各コイル部出力端42に対応する配置の各ブラシ(集電子)43、この各ブラシ43に接続した出力ケーブル44を介して発電機本体10による発電出力を取り出すように構成している。
 前記前記コアレス型コイル体14における下孔を形成する円形突出部14aの上面側(上孔側)には、前記円形突部25の円形ギア26と同様な円形ギア45を全周にわたって設けている。
 また、前記発電機軸13の大径部13b外周には、前記上孔内に位置して回転軸を水平方向とした複数の逆転用ギア51が取り付けられ、この逆転用ギア51を前記円形ギア26、円形ギア45に各々ギア結合している。
 このような構成により、前記アウターロータ12が図2に示す矢印a方向に回転するとき、コアレス型コイル体14は逆転用ギア51により図2に示す矢印b方向に逆回転するように構成している。
 すなわち、前記アウターロータ12と、コアレス型コイル体14とを逆転用ギア51を用いて同軸反転するように構成している。
 前記軸支体11は、前記発電機軸13を中央孔61a内に嵌装して下方に突出させ、発電機軸13のネジ13aに下側からナット62をねじ込んで固定支持する固定支持体61と、この固定支持体61上に密接状態で配置され中央部に設けた前記中央孔61aと同径の貫通孔71aを前記発電機軸13が貫通する回転支持体71との重合構造としている。
 すなわち、前記回転支持体71は固定支持体61に対してこれら両者間に設けた軸受63を介して回転可能に支持されるとともに、固定支持体61の上面外周部に設けた円形溝61bに回転支持体71の下面外周部に設けた円形突条71bを嵌め込み、これにより、回転支持体71は固定支持体61上で密接しつつ円滑に回転し得るように構成している。
 前記固定支持体61の側面には、中央孔61aの軸線方向と直交する配置にネジ孔64が設けられ、固定支持体61の下側から前記ポール3の上端部を嵌め込み、ボルト65を用いて前記軸支体11をポール3の上端部に取り付けるように構成している。
 前記回転支持体71には、前記下部ロータ31における取り付け部34のネジ孔35に対応する配置に取り付けボルト72が配置され、回転支持体71と固定支持体61とを組み付ける前段階において、この回転支持体71を前記下部ロータ31に取り付け、その後固定支持体61を回転支持体71に組み付けるように構成している。
 前記回転支持体71における貫通孔71aの上端部には、発電機軸13用の支持軸受73を配置している。
 尚、図2において、52は上部ロータ21とコアレス型コイル体14間、及び、下部ロータ31とコアレス型コイル体14間に各々配置したコロ軸受である。
 本実施例1に係る同軸反転式コアレス発電機1によれば、前記風車2が風エネルギーにより例えば図2に示す矢印a方向に回転するとき、前記アウターロータ12も矢印a方向に回転し、このアウターロータ12の回転力は、逆転用ギア51に伝達され、この結果逆転用ギア51を介してコアレス型コイル体14は図2に示す矢印b方向に回転する(同軸反転)。
 この結果、前記各マグネット24とコイル部41との相対速度の上昇に応じた大きい発電出力を前記コアレス型コイル体14のコイル部出力端42から前記ブラシ43、出力ケーブル44を介して外部に取り出すことができる。
 さらに詳述すると、本実施例1に係る同軸反転式コアレス発電機1によれば、前記アウターロータ12とコアレス型コイル体14とを前記風車2の回転に応じて逆転用ギア51という簡略な要素のみで同軸反転させるように構成しているので、通常のロータ、ステータを使用する発電機に比べてアウターロータ12、コアレス型コイル体14間に例えば2倍の相対速度を得ることができ、同一の風エネルギーという条件下において通常の風力発電用の発電機よりも大きい発電出力を得ることが可能となる。
 具体的には、通常の発電機において100の回転速度で発電出力が100であると仮定した場合、本実施例1に係る同軸反転式コアレス発電機1によれば、50の回転速度で100の発電出力を得ることができる。又は、100の回転速度であれば200の発電出力を得ることができる。
 次に、図4を参照して本実施例1に係る同軸反転式コアレス発電機1の変形例である同軸反転式コアレス発電機1Aについて説明する。
 変形例の同軸反転式コアレス発電機1Aは、基本的には既述した同軸反転式コアレス発電機1と同様な原理に基づくものであり、構成も近似していることから前記同軸反転式コアレス発電機1の場合と同一要素には同一符号を付し、その詳細説明は省略する。
 変形例の同軸反転式コアレス発電機1Aは、既述した同軸反転式コアレス発電機1における発電機本体10に替えて、図4に示す発電機本体10Aを採用している。
 すなわち、上部ロータ21、下部ロータ31の間にこれらと一体的に中ロータ30を介在させ、上部ロータ21と中ロータ30間、中ロータ30と下部ロータ31間に上下2段からなる既述した場合と同様な構成からなる収容室33、33を備えたアウターロータ12Aを用いている。
 そして、このアウターロータ12A内の2個の収容室33に各々既述した場合と同様な構成からなる2個のコアレス型コイル体14を配置したこと、これに対応して発電機軸13にも上下2段にわたって逆転用ギア51を配置し、2個のコアレス型コイル体14を同軸反転駆動する構成としたこと、発電機軸13に上下2段にわたって各ブラシ43を配置し、各ブラシ43に出力ケーブル44を接続して上下2段の各ブラシ43を介して発電出力を取り出すように構成したことが特徴である。
 また、変形例の同軸反転式コアレス発電機1Aは、図4には示していないが前記軸支体11により支持されるものである。
 変形例の同軸反転式コアレス発電機1Aによっても、実施例1に係る同軸反転式コアレス発電機1の場合と同様に、通常のロータ、ステータを使用する発電機に比べてアウターロータ12と、各コアレス型コイル体14、14間に例えば各々2倍の相対速度を得ることができ、同一の風エネルギーという条件下において通常の風力発電用の発電機よりも大きい発電出力を得ることが可能となる。
 また、変形例の同軸反転式コアレス発電機1Aによれば、コアレス型コイル体14を2段に配置しているので、特に風エネルギーが大きいような場合、前記同軸反転式コアレス発電機1に比してより大きい発電出力を得ることが可能となる。
 変形例の同軸反転式コアレス発電機1Aにおいては、2段のコアレス型コイル体14をアウターロータ12A内に配置した場合を示しているが、この他、アウターロータ内に3段、4段等さらに多段のコアレス型コイル体を配置した構成とすることも可能であり、これらの場合も変形例の同軸反転式コアレス発電機1Aの場合と同様な作用、効果を発揮させることができる。
(実施例2)
 図5を参照して本発明の実施例2に係る同軸反転式コアレス発電機1Bについて説明する。本実施例2に係る同軸反転式コアレス発電機1Bは、実施例1に係る同軸反転式コアレス発電機1と同様な構成を採用しつつ、インナーロータタイプとしたことが特徴である。
 尚、図5において、実施例1に係る同軸反転式コアレス発電機1の場合と同一の構成要素には同一の符号を付し、その詳細説明は省略する。
 本発明の実施例2に係る同軸反転式コアレス発電機1Bは、軸支体81上に固定配置されるインナーロータタイプの発電機本体80を具備している。
 前記発電機本体80は、ハウジング83と、前記風車2の回転力を受けて回転する前記アウターロータ12と略同様な構造のインナーロータ82と、このインナーロータ82の中央部を軸支しハウジング83から下方に突出するとともに、前記インナーロータ82を回転可能とする既述した場合と同様な発電機軸13と、前記発電機軸13により中央部が支持される状態でインナーロータ82内に内蔵した既述した場合と同様な円盤状のコアレス型コイル体14と、を有している。
 前記ハウジング83は、インナーロータ82を構成する上部ロータ21の風車取り付け部21aを除く上面、側面及び下面を覆うように構成している。そして、下面側に取り付け部83aを設け、この取り付け部83aを軸支体81上に密接し、軸支体81に一体的に取り付けられるように構成している。
 前記軸支体81は、前記軸支体11と略同様な構成であるが、前記回転支持体71の構成を省略し、例えば上下分割構造の上支持体91、下支持体92を具備し、上支持体91の内部から上方に突出させたボルト93を前記ハウジング83の取り付け部83aに設けたネジ孔83aに螺着することでハウジング83と一体化するように構成している。
 この他の構成は、実施例1に係る同軸反転式コアレス発電機1の場合と同様である。
 本実施例2に係る同軸反転式コアレス発電機1Bによれば、既述した場合と同様、前記インナーロータ82、コアレス型コイル体14の逆方向の回転による前記各マグネット24とコイル部41との相対速度の上昇に応じた大きい発電出力を前記コアレス型コイル体14のコイル部出力端42から前記ブラシ43、出力ケーブル44を介して外部に取り出すことができる。
 これにより、実施例1の同軸反転式コアレス発電機1の場合と同様、通常のロータ、ステータを使用する発電機に比べてインナーロータ82、コアレス型コイル体14間に例えば2倍の相対速度を得ることができ、同一の風エネルギーという条件下において通常の風力発電用の発電機よりも大きい発電出力を得ることが可能となる。
 本実施例2においても、インナーロータ82内に2段、3段、4段等のように多段のコアレス型コイル体14を配置する構成とすることももちろん可能であり、これらの場合も変形例の同軸反転式コアレス発電機1A等の場合と同様な作用、効果を発揮させることができる。
 本発明は、風車のタイプとして垂直軸型、水平軸型を問わず適用でき、また、自然風により風車を回転させて発電する場合に適用する場合の他、空調機の排風等の人工的な風により風車を回転させて発電する場合等の同軸反転式コアレス発電機として広範に応用可能である。
本発明の実施例1に係る同軸反転式コアレス発電機を含む風力発電設備を示す概略図である。 本実施例1に係る同軸反転式コアレス発電機の概略分解断面図である。 本実施例1に係る同軸反転式コアレス発電機の概略平面図である。 実施例1の変形例である同軸反転式コアレス発電機の概略分解断面図である。 本発明の実施例2に係る同軸反転式コアレス発電機の概略分解断面図である。
符号の説明
  1  同軸反転式コアレス発電機
  1A 同軸反転式コアレス発電機
  1B 同軸反転式コアレス発電機
  2  風車
  3  ポール
  3  風車軸
  3a 下端部
  4  アーム
  5  ブレード
 10  発電機本体
 11  軸支体
 12  アウターロータ
 13  発電機軸
 13a ネジ
 13b 大径部
 13c 突出円板部
 14  コアレス型コイル体
 14a 円形突出部
 21  上部ロータ
 21a 風車取り付け部
 21b ネジ孔
 22  固定ボルト
 23  主軸受
 24  マグネット
 25  円形突部
 26  円形ギア
 30  中ロータ
 31  下部ロータ
 32  円形凹段部
 33  収容室
 34  取り付け部
 35  ネジ孔
 41  コイル部
 42  コイル部出力端
 43  ブラシ
 44  出力ケーブル
 45  円形ギア
 46  軸受
 51  逆転用ギア
 52  コロ軸受
 61  固定支持体
 61a 中央孔
 61b 円形溝
 62  ナット
 63  軸受
 64  ネジ孔
 65  ボルト
 71  回転支持体
 71a 貫通孔
 71b 円形突条
 72  取り付けボルト
 73  支持軸受
 80  発電機本体
 81  軸支体
 82  インナーロータ
 83  ハウジング
 83a 取り付け部
 91  上支持体
 92  下支持体
 93  ボルト

Claims (4)

  1.  固定支持された発電機軸と、
    発電機軸により回転可能に支持され、外力により回転駆動されるマグネット付きのアウターロータと、
     前記アウターロータ内に同軸配置にかつ発電機軸により支持されて回転可能に内蔵され、前記マグネットと対応配置にコイル部を配置したコアレス型コイル体と、
     前記発電機軸により軸支され、前記アウターロータ、コアレス型コイル体双方に円形配置に設けた円形ギアとギア結合してアウターロータの回転に応じてコアレス型コイル体を逆方向に回転させる逆転用ギアと、
     を有し、
     前記アウターロータ、コアレス型コイル体の逆方向の回転による前記マグネットとコイル部との相対速度の上昇に応じた発電出力を前記コアレス型コイル体のコイル部出力端から前記発電機軸の周りに固定配置した集電子を介して取り出すように構成したことを特徴とする同軸反転式コアレス発電機。
  2.  固定支持された発電機軸と、
     該発電機軸により回転可能に支持され、外力により回転駆動されるとともに、内部に発電機軸に沿う方向の多段にわたる収容室を設け、該収容室の壁面に各々マグネットを配置したアウターロータと、
     前記各収容室内に同軸配置にかつ発電機軸により回転可能に支持されて内蔵され、前記各マグネットと対応配置に各コイル部を配置した多段のコアレス型コイル体と、
     前記発電機軸により軸支され、前記アウターロータと各段のコアレス型コイル体双方に円形配置に設けた各円形ギアと各々ギア結合してアウターロータの回転に応じて各コアレス型コイル体を逆方向に回転させる多段の逆転用ギアと、
     を有し、
     前記アウターロータ、各コアレス型コイル体の逆方向の回転による前記各マグネットと各コイル部との相対速度の上昇に応じた発電出力を前記各コアレス型コイル体の各コイル部出力端から前記発電機軸の周りに多段にわたって固定配置した各集電子を介して取り出すように構成したことを特徴とする同軸反転式コアレス発電機。
  3.  固定配置のハウジングと、
     前記ハウジング内に固定支持された発電機軸と、
     前記ハウジング内において発電機軸により回転可能に支持されるとともに、外力により回転駆動されるマグネット付きのインナーロータと、
     前記ハウジング内に同軸配置にかつ発電機軸により回転可能に内蔵され、前記マグネットと対応配置にコイル部を配置したコアレス型コイル体と、
     前記発電機軸により軸支され、前記インナーロータ、コアレス型コイル体双方に円形配置に設けた円形ギアとギア結合してインナーロータの回転に応じてコアレス型コイル体を逆方向に回転させる逆転用ギアと、
     を有し、
     前記インナーロータ、コアレス型コイル体の逆方向の回転による前記マグネットとコイル部との相対速度の上昇に応じた発電出力を前記コアレス型コイル体のコイル部出力端から前記発電機軸の周りに固定配置した集電子を介して取り出すように構成したことを特徴とする同軸反転式コアレス発電機。
  4.  固定配置のハウジングと、
     前記ハウジング内に固定支持された発電機軸と、
     前記ハウジング内において発電機軸により回転可能に支持され、外力により回転駆動されるとともに、内部に発電機軸に沿う方向の多段にわたる収容室を設け、該収容室の壁面に各々マグネットを配置したインナーロータと、
     前記各収容室内に同軸配置にかつ発電機軸により各々回転可能に支持されて内蔵され、前記各マグネットと対応配置に各コイル部を配置した多段のコアレス型コイル体と、
     前記発電機軸により軸支され、前記インナーロータ、コアレス型コイル体双方に多段にわたって円形配置に設けた各円形ギアとギア結合してインナーロータの回転に応じて各コアレス型コイル体を逆方向に回転させる多段の逆転用ギアと、
     を有し、
     前記インナーロータ、各コアレス型コイル体の逆方向の回転による前記各マグネットと各コイル部との相対速度の上昇に応じた発電出力を前記コアレス型コイル体の各コイル部出力端から前記発電機軸の周りに多段にわたって固定配置した各集電子を介して取り出すように構成したことを特徴とする同軸反転式コアレス発電機。
PCT/JP2009/054254 2008-12-25 2009-03-06 同軸反転式コアレス発電機 WO2010073743A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010543932A JP5543371B2 (ja) 2008-12-25 2009-03-06 同軸反転式コアレス発電機
CN2009801411465A CN102187551A (zh) 2008-12-25 2009-03-06 同轴反转式无铁心发电机
EP09834549.9A EP2383870A4 (en) 2008-12-25 2009-03-06 Coaxial inversion coreless generator
US13/141,961 US20110266903A1 (en) 2008-12-25 2009-03-06 Coaxial inversion coreless generator
AU2009332169A AU2009332169A1 (en) 2008-12-25 2009-03-06 Coaxial inversion coreless generator
CA2748183A CA2748183A1 (en) 2008-12-25 2009-03-06 Coaxial inversion coreless generator
BRPI0923656A BRPI0923656A2 (pt) 2008-12-25 2009-03-06 gerador sem núcleo de inversão coaxial.
SG2011046489A SG172373A1 (en) 2008-12-25 2009-03-06 Coaxial inversion coreless generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-329144 2008-12-25
JP2008329144 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010073743A1 true WO2010073743A1 (ja) 2010-07-01

Family

ID=42287375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054254 WO2010073743A1 (ja) 2008-12-25 2009-03-06 同軸反転式コアレス発電機

Country Status (10)

Country Link
US (1) US20110266903A1 (ja)
EP (1) EP2383870A4 (ja)
JP (1) JP5543371B2 (ja)
KR (1) KR101548348B1 (ja)
CN (1) CN102187551A (ja)
AU (1) AU2009332169A1 (ja)
BR (1) BRPI0923656A2 (ja)
CA (1) CA2748183A1 (ja)
SG (1) SG172373A1 (ja)
WO (1) WO2010073743A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029168A1 (ja) * 2010-09-03 2012-03-08 株式会社Winpro 円盤型同軸反転式発電機及び該円盤型同軸反転式発電機を用いた風力発電装置
WO2012035610A1 (ja) * 2010-09-14 2012-03-22 株式会社Winpro 水上自然エネルギー利用装置及び水上自然エネルギー利用発電装置集合体
JP2016046888A (ja) * 2014-08-21 2016-04-04 津野 康宏 直流発電機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110304150A1 (en) * 2009-01-07 2011-12-15 Akio Hara Fixing structure for generator shaft of wind driven generator of outer rotor coreless type
JP5594811B2 (ja) * 2009-03-24 2014-09-24 のあい株式会社 複合型風力発電装置
KR101293053B1 (ko) * 2012-02-07 2013-08-05 헵시바주식회사 외전형 방식 영구자석 발전기가 채용된 수직축 풍력발전기의 구조
PT106273A (pt) * 2012-04-26 2013-10-28 Francisco Jose Marques Da Cruz Rosa Gerador elétrico
WO2013169943A1 (en) 2012-05-08 2013-11-14 Empire Magnetics Inc. Wind turbine generator and coupling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195354U (ja) * 1986-06-02 1987-12-11
JP2005287215A (ja) 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd 回転増速機能付き発電機及び回転減速機能付き電動機
JP2008508843A (ja) * 2004-07-27 2008-03-21 ガス パワー エナジー アーベー モータ関連或いは発電機関連構成
JP2008082251A (ja) * 2006-09-27 2008-04-10 Masaharu Kato 発電装置
JP2008187872A (ja) * 2007-01-31 2008-08-14 A−Wingインターナショナル株式会社 発電機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117571U (ja) * 1985-01-09 1986-07-24
JPS62160053A (ja) * 1985-12-31 1987-07-16 Tanabe Masakazu 二重反転式発電機
JPH0578179U (ja) * 1992-03-13 1993-10-22 大蔵 前田 自転車用発電機
JPH10313563A (ja) * 1997-05-08 1998-11-24 Masahiko Morishita ツインローター効果による発電機
JP3684355B2 (ja) * 2002-02-08 2005-08-17 二郎 廣瀬 発電機
JP2004304920A (ja) * 2003-03-31 2004-10-28 Koyo Seiko Co Ltd フライホイール式電力貯蔵装置
US20060273686A1 (en) * 2004-06-21 2006-12-07 Edelson Jonathan S Hub motors
WO2006016360A2 (en) * 2004-08-10 2006-02-16 Cm2E Ltd. Mechanism for the generation of electrical and/or mechanical power
CN1749559A (zh) * 2005-07-27 2006-03-22 王文明 多级组合磁力连接传动式风力发电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195354U (ja) * 1986-06-02 1987-12-11
JP2005287215A (ja) 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd 回転増速機能付き発電機及び回転減速機能付き電動機
JP2008508843A (ja) * 2004-07-27 2008-03-21 ガス パワー エナジー アーベー モータ関連或いは発電機関連構成
JP2008082251A (ja) * 2006-09-27 2008-04-10 Masaharu Kato 発電装置
JP2008187872A (ja) * 2007-01-31 2008-08-14 A−Wingインターナショナル株式会社 発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2383870A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029168A1 (ja) * 2010-09-03 2012-03-08 株式会社Winpro 円盤型同軸反転式発電機及び該円盤型同軸反転式発電機を用いた風力発電装置
JP5594853B2 (ja) * 2010-09-03 2014-09-24 株式会社Winpro 円盤型同軸反転式発電機及び該円盤型同軸反転式発電機を用いた風力発電装置
RU2538101C2 (ru) * 2010-09-03 2015-01-10 Винпро Ко., Лтд. Дискообразный инверсионный генератор и ветроэнергетическое генерирующее оборудование, включающее его
AU2010359965B2 (en) * 2010-09-03 2015-09-17 Winpro Co.,Ltd. Disc-type coaxial counter-rotation generator and wind power generation device using disc-type coaxial counter-rotation generator
WO2012035610A1 (ja) * 2010-09-14 2012-03-22 株式会社Winpro 水上自然エネルギー利用装置及び水上自然エネルギー利用発電装置集合体
JP2016046888A (ja) * 2014-08-21 2016-04-04 津野 康宏 直流発電機

Also Published As

Publication number Publication date
EP2383870A1 (en) 2011-11-02
US20110266903A1 (en) 2011-11-03
EP2383870A4 (en) 2017-04-12
SG172373A1 (en) 2011-07-28
KR20110126106A (ko) 2011-11-22
CA2748183A1 (en) 2010-07-01
AU2009332169A1 (en) 2011-08-11
JPWO2010073743A1 (ja) 2012-06-14
KR101548348B1 (ko) 2015-08-31
CN102187551A (zh) 2011-09-14
BRPI0923656A2 (pt) 2016-01-19
JP5543371B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5543371B2 (ja) 同軸反転式コアレス発電機
KR100752510B1 (ko) 단일 메인베어링을 갖는 풍력 발전기
JP5557392B2 (ja) アウターロータ・コアレス型風力発電機の発電機軸の固定構造
US8373299B2 (en) Axial gap rotating electrical machine
JP5904352B2 (ja) 該遊星マグネットギアドライブ式発電機を用いた風力発電装置
RU2007138974A (ru) Система генерации электроэнергии типа ветряной мельницы
US20080236318A1 (en) Compact Axial Flux Motor Drive
JP5594811B2 (ja) 複合型風力発電装置
JP2020072641A (ja) 減速装置及び電気設備
JP2006329106A (ja) 風力発電装置
CN102364094A (zh) 一种双向风筒式磁悬浮风力发电装置
JP5594853B2 (ja) 円盤型同軸反転式発電機及び該円盤型同軸反転式発電機を用いた風力発電装置
CN102594019A (zh) 轮毂发电电机
AU2015201365A1 (en) Double acting generator
US20090302808A1 (en) Flywheel electricity generator
CN104763589A (zh) 流体发电装置
KR101757123B1 (ko) 이중날개를 갖는 풍력 발전장치
KR102205549B1 (ko) 방향키 풍력을 이용한 다극형 풍력 발전 시스템
JP2010151006A (ja) アウターロータ・コアレス型風力発電機の発電機軸の固定構造
JP6418477B2 (ja) 羽根車支持装置及び垂直軸型流体発電装置
KR101505435B1 (ko) 풍력발전기
KR102038615B1 (ko) 고효율 발전장치
KR20220004270A (ko) 발전 장치
JP2020159306A (ja) 風力発電装置
KR101028757B1 (ko) 풍력발전기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141146.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2748183

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13141961

Country of ref document: US

Ref document number: 2009332169

Country of ref document: AU

Ref document number: 5600/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117017483

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009834549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009332169

Country of ref document: AU

Date of ref document: 20090306

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0923656

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0923656

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110624