WO2010073602A1 - Ac-dc converter - Google Patents

Ac-dc converter Download PDF

Info

Publication number
WO2010073602A1
WO2010073602A1 PCT/JP2009/007093 JP2009007093W WO2010073602A1 WO 2010073602 A1 WO2010073602 A1 WO 2010073602A1 JP 2009007093 W JP2009007093 W JP 2009007093W WO 2010073602 A1 WO2010073602 A1 WO 2010073602A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
auxiliary
main switching
converter
resonance
Prior art date
Application number
PCT/JP2009/007093
Other languages
French (fr)
Japanese (ja)
Inventor
嶋田尊衛
塚本創
叶田玲彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN200980151999.7A priority Critical patent/CN102265499B/en
Publication of WO2010073602A1 publication Critical patent/WO2010073602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to an AC-DC converter having a zero voltage switching function.
  • a conventional AC-DC converter is composed of a rectifier circuit composed of a diode bridge, and a power factor correction circuit composed of a switching element, a smoothing reactor, a diode, and a smoothing capacitor, and rectifies AC power and converts it into DC.
  • a rectifier circuit composed of a diode bridge
  • a power factor correction circuit composed of a switching element, a smoothing reactor, a diode, and a smoothing capacitor
  • Non-Patent Document 1 includes an auxiliary circuit including a switching element, a reactor, and a diode in order to reduce switching loss.
  • This auxiliary circuit realizes zero voltage switching that turns on and off the switching element when the voltage applied to the switching element is approximately zero, and reduces switching loss.
  • Patent Documents 2 and 3 also disclose mixed bridge type AC-DC converters as in Patent Document 1.
  • Patent Documents 4 and 5 also disclose AC-DC converters that improve efficiency.
  • the mixed bridge type AC-DC converter of Patent Document 1 can reduce the conduction loss of the diode bridge. However, the switching loss is large.
  • Non-Patent Document 1 The auxiliary circuit of Non-Patent Document 1 can realize zero voltage switching and reduce switching loss. However, the conduction loss of the diode bridge is large.
  • the switching element of the auxiliary circuit cannot perform zero voltage switching, and the switching loss of the switching element of the auxiliary circuit is large.
  • the circuit may be complicated and the cost may be increased.
  • An object of the present invention is to provide an AC-DC converter that realizes zero voltage switching with all the switching elements with one auxiliary circuit configured with a relatively small number of elements.
  • Another object of the present invention is to provide a highly efficient AC-DC converter that reduces both conduction loss and switching loss.
  • Another object of the present invention is to provide an AC-DC converter that realizes zero voltage switching by relatively simple switching control of a switching element.
  • a converter main switching circuit formed by connecting two upper and lower arms each having a rectifying element and a main switching element connected in series, connected in parallel to each of the main switching elements.
  • an AC-DC converter provided with a smoothing capacitor and a DC load connected in parallel between both ends of the AC power source and the main switching circuit which is a DC terminal of the converter, one DC terminal of the main switching circuit And one end of the smoothing capacitor.
  • a series connection body of an auxiliary switching element and a resonance capacitor connected to one end of the resonance reactor, an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; Control means for turning on and off the switching element and the auxiliary switching element is provided.
  • the first and second main switching elements, the first and second rectifying elements, the first rectifying element, and the first main switching element are connected in series.
  • a smoothing reactor connected between a series connection point of the main switching elements and rectifying elements of the first and second upper and lower arms and an AC power source, and connected between both ends of the main switching circuit and in parallel with a DC load
  • a connected smoothing capacitor a snubber capacitor connected in parallel to each of the main switching elements; and a diode and / or body die connected in antiparallel to each of the main switching elements.
  • the resonance reactor inserted between one end of the main switching circuit and one end of the smoothing capacitor, and the resonance A series connection body of an auxiliary switching element and a resonance capacitor connected to one end of the reactor, an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; Control means for turning on and off the main switching element and the auxiliary switching element is provided.
  • the auxiliary circuit includes a snubber capacitor in which a series connection body of the auxiliary switching element and the resonance capacitor is connected in parallel to the resonance reactor, and the auxiliary switching element is connected in parallel. And a diode and / or a body diode connected in reverse parallel to the auxiliary switching element.
  • the auxiliary circuit includes the auxiliary switching element connected between one end of the main switching circuit, a connection point of the resonance reactor, and the other end of the main switching circuit. And the resonance capacitor, a snubber capacitor connected in parallel to the auxiliary switching element, and a diode and / or a body diode connected in reverse parallel to the auxiliary switching element.
  • control means accumulates the energy of the AC power source in the smoothing reactor, accumulates the energy released by the smoothing reactor in the resonance capacitor, and The energy released by the capacitor is stored in the resonance reactor via the auxiliary switching element, and the energy stored in the resonance reactor is used to turn on the main switching element before the main switching element is turned on.
  • the electric charge stored in the snubber capacitors connected in parallel is extracted.
  • an AC-DC converter that performs zero voltage switching of all switching elements with one auxiliary circuit having one switching element.
  • an AC-DC converter that uses a main switching element and an auxiliary switching element and performs zero voltage switching with relatively simple switching control.
  • FIG. 1 is a circuit configuration diagram of an AC-DC converter according to Embodiment 1 of the present invention.
  • FIG. FIG. 2 is an operation explanatory circuit diagram of the AC-DC converter according to the first embodiment of the present invention.
  • FIG. 2 is an operation explanatory circuit diagram of the AC-DC converter according to the first embodiment of the present invention.
  • FIG. 3 is a basic waveform diagram for explaining the operation of the AC-DC converter according to the first embodiment of the present invention.
  • FIG. 3 is an operation explanatory circuit diagram of the AC-DC converter according to the first embodiment of the present invention.
  • FIG. 4 is a circuit diagram for explaining the operation of the AC-DC converter according to the first embodiment of the present invention.
  • FIG. 6 is a circuit configuration diagram of an AC-DC converter according to Embodiment 4 of the present invention.
  • 1 is a schematic configuration diagram of a power supply system of a plug-in hybrid vehicle employing an AC-DC converter according to the present invention.
  • FIG. 1 is a circuit configuration diagram of an AC-DC converter according to Embodiment 1 of the present invention.
  • Each of the two upper and lower arms in which the rectifying element Ds1 or Ds2 and the main switching element Q1 or Q2 are connected in series is connected in parallel to form a main switching circuit of the converter.
  • Snubber capacitors C1 and C2 are connected in parallel to these main switching elements, respectively.
  • a diode and / or body diodes D1 and D2 are connected to each main switching element in antiparallel.
  • AC power supply V1 is connected between the series connection points of two sets of upper and lower arms, which are AC terminals of the converter, via smoothing reactors Ls1 and Ls2. Further, a smoothing capacitor Cs and a DC load R1 are connected in parallel between both ends of the main switching circuit which is a DC terminal of the converter, that is, between the positive bus LN1 and the negative bus LN0.
  • the AC-DC converter 10 includes, as circuit elements of the auxiliary circuit 1, in addition to the first and second switching elements (MOSFETs) Q1 and Q2 of the main switching circuit, a third (auxiliary) switching element (MOSFET) Q3. It has.
  • a resonance reactor Lr and a resonance capacitor Cr are provided, and the auxiliary switching element Q3 is also provided with a snubber capacitor C3 and a diode and / or a body diode in antiparallel. .
  • the outputs of the voltage sensors 3 and 4 and the current sensors 5 and 6 are input to the control means 2 that controls each switching element.
  • the control means 2 controls each switching element.
  • one end of the current sensors 5 and 6 is connected to the negative bus LN0, and the other end of the current sensors 5 and 6 is connected to the source terminals of the MOSFETs Q1 and Q2, respectively.
  • a connection point between the MOSFET Q1 and the rectifying diode Ds1 is a node N1, and a connection point between the MOSFET Q2 and the rectifying diode Ds2 is a node N2.
  • a smoothing reactor Ls1 is connected between AC power supply V1 and node N1, and a smoothing reactor Ls2 is connected between AC power supply V1 and node N2.
  • a connection point of the cathodes of the rectifying diodes Ds1 and Ds2 is a node N3.
  • Resonance reactor Lr is connected between node N3 and positive bus LN1, and a connection point between positive bus LN1 and resonance reactor Lr is node N4.
  • the MOSFET Q3 and the resonance capacitor Cr are connected in series, and the source terminal of the MOSFET Q3 is connected between the node N3 and the node N4 so as to face the node N3.
  • the resonance reactor Lr, the resonance capacitor Cr, and the MOSFET Q3 Auxiliary circuit 1 is constituted by the above.
  • drain-source voltages VQ1 to VQ3 of MOSFETs Q1 to Q3 are positive on the drain side.
  • the combined currents IQD1 to IQD3 flowing in the MOSFETs Q1 to Q3 and the diodes D1 to D3 connected in parallel respectively have a positive direction from the drain to the source of the MOSFETs Q1 to Q3.
  • the voltage of AC power supply V1 is used as an input voltage
  • the current flowing through smoothing reactors Ls1 and Ls2 is used as an input current.
  • the current ICr flowing through the resonance capacitor Cr is positive when the forward current flows through the diode D3.
  • the current ILs1 flowing through the smoothing reactor Ls1 has a positive direction flowing from the AC power supply V1 to the node N1
  • the current ILs2 flowing through the smoothing reactor Ls2 has a positive direction flowing from the node N2 to the AC power supply V1.
  • the current ILr flowing through the resonance reactor Lr is positive in the direction flowing from the cathodes of the rectifying diodes Ds1 and Ds2 to the smoothing capacitor Cs.
  • FIG. 2 and FIG. 3 are circuit diagrams for explaining the operation when the currents ILs1 and ILs2 are positive. In this circuit, the MOSFET Q2 is always on.
  • FIG. 4 is a voltage / current waveform diagram illustrating the operation.
  • FIGS. 2A to 3I correspond to modes A to I shown in FIG.
  • Mode A First, in mode A, MOSFET Q1 is on and MOSFET Q3 is off.
  • the voltage of the AC power supply V1 is applied to the smoothing reactors Ls1, Ls2, and a current flows through the AC power supply V1, the smoothing reactor Ls1, the MOSFET Q1, the MOSFET Q2, and the smoothing reactor Ls2.
  • the currents ILs1 and ILs2 of the smoothing reactors Ls1 and Ls2 gradually increase, and the energy of the AC power supply V1 is accumulated in the smoothing reactors Ls1 and Ls2.
  • the snubber capacitor C3 and the resonance capacitor Cr are charged with the polarity shown in FIG.
  • the currents ILs1 and ILs2 flowing through the smoothing reactors Ls1 and Ls2 are divided into the resonance reactor Lr and the path of the diode D3-resonance capacitor Cr, and then merged and supplied to the output side. Further, part of the energy stored in the smoothing reactors Ls1 and Ls2 is stored in the resonance capacitor Cr, and the currents ILs1 and ILs2 decrease.
  • MOSFET Q3 is turned on at time t3.
  • the MOSFET Q3 is switched to a zero voltage and becomes a mode D.
  • the currents ILs1 and ILs2 of the smoothing reactors Ls1 and Ls2 are divided into the resonance reactor Lr and the MOSFET Q3-resonance capacitor Cr path, and then merged and supplied to the output side. Further, like the mode C, the currents ILs1 and ILs2 decrease.
  • Mode E Thereafter, charging of the resonance capacitor Cr is completed at time t4, and the mode E is entered.
  • the currents ILs1 and ILs2 of the smoothing reactors Ls1 and Ls2 flow through the resonance reactor Lr to the output side, and the currents ILs1 and ILs2 decrease.
  • the voltage of the resonance capacitor Cr is applied to the resonance reactor Lr.
  • the electric charge of the resonance capacitor Cr is discharged through the MOSFET Q3 and the resonance reactor Lr, and the energy of the resonance capacitor Cr is accumulated in the resonance reactor Lr.
  • MOSFET Q1 is turned on at time t7.
  • the MOSFET Q1 is zero-voltage switched and enters the mode H state.
  • the energy stored in the resonance reactor Lr is supplied to the smoothing capacitor Cs, and the current ILr gradually decreases.
  • the conduction current of the diode D1 also decreases.
  • AC-DC converter 10 has a period in which MOSFETs Q1 and Q3 are turned off when currents ILs1 and ILs2 are positive, and MOSFETs Q2 and Q3 are turned off when currents ILs1 and ILs2 are negative. It is provided and alternately turned on and off.
  • control means 2 zero voltage switching can be easily realized in all the switching elements.
  • MOSFET Q1 and the MOSFET Q2 may be turned on and off in synchronization with each other regardless of whether the currents ILs1 and ILs2 are positive or negative. In this case, MOSFETs Q1 and Q2 can be controlled relatively easily.
  • the ratio between the on time and the off time of the MOSFETs Q1, Q2 and MOSFET Q3 is controlled to easily control the output voltage to a constant voltage. Can do. Further, the voltage of the AC power supply V1 is detected by the voltage sensor 3, and the input current is detected by the current sensor 6 connected to the source terminal of the MOSFET Q2 while the currents ILs1 and ILs2 are positive. On the other hand, during periods when the currents ILs1 and ILs2 are negative, the input current can be easily detected by the current sensor 5 provided on the source side of the MOSFET Q1 to improve the power factor.
  • the voltage applied between the drain and source of the MOSFETs Q1 to Q3 is the sum of the voltage of the smoothing capacitor Cs and the voltage of the resonance capacitor Cr.
  • the output voltage is controlled to be constant, the voltage of the smoothing capacitor Cs is constant. Therefore, in order to reduce the voltage applied between the drain and source of the MOSFETs Q1 to Q3, it is necessary to reduce the voltage of the resonance capacitor Cr.
  • the voltage of the resonance capacitor Cr varies depending on the value of the resonance reactor Lr, the length of the mode C to mode E, and the amount of change in the current ILr of the resonance reactor Lr that increases during this period.
  • the input voltage decreases, the input current increases, the amount of change in the current ILr increases, and the period from mode C to mode E is shortened, and the voltage of the resonance capacitor Cr increases.
  • the amount of change in the current ILr increases as the output power increases, the voltage of the resonance capacitor Cr increases.
  • the switching frequency is lowered, the period from mode C to mode E becomes longer, and the voltage of the resonance capacitor Cr decreases.
  • the switching frequency is lowered, and when the input voltage increases or the output power decreases, the switching frequency is increased. By performing such an operation, it is possible to prevent an excessive voltage from being applied between the drain and source of the MOSFETs Q1 to Q3.
  • the switching frequency is decreased, and when the input current decreases, the switching frequency is increased. If such an operation is performed by detecting the input current, it is possible to prevent an excessive voltage from being applied between the drain and source of the MOSFETs Q1 to Q3 without detecting the input voltage or the output voltage.
  • the switching frequency decreases, the input current ripple may increase.
  • the ripple of the input current increases, it may cause a problem. Therefore, the voltage applied between the drain and source of the MOSFETs Q1 and Q2 may not be sufficiently reduced only by reducing the switching frequency.
  • the voltage applied between the drain and source of the MOSFETs Q1 and Q2 can be further reduced.
  • MOSFET Q3 is turned on before shifting from mode A to mode B, the energy stored in resonance capacitor Cr is supplied to resonance reactor Lr, and current ILr can be allowed to flow to some extent in advance.
  • the amount of change in current ILr during the period from mode C to mode E can be suppressed, so that the voltage applied to the drain-source voltage of MOSFETs Q1 and Q2 can be reduced.
  • a switching loss occurs because the MOSFET Q3 is turned on in a state where electric charge is accumulated in the snubber capacitor C3. At this time, only a voltage equivalent to the resonance capacitor Cr is applied to the snubber capacitor C3. This loss is not significant.
  • the loss can be reduced by stopping the on / off of the MOSFET Q3 and keeping it in the on state or the off state.
  • the third switching element Q3 uses a MOSFET, but the body diode connected in parallel to the MOSFET may have poor reverse recovery characteristics, and the body diode may not function well as a diode. In that case, the operation of the first embodiment can be maintained by changing the MOSFET to another type of switching element such as an IGBT.
  • the smoothing reactor may be changed from two to one. In this case, one smoothing reactor can be deleted, and the part cost can be reduced. Further, the connection location may be either the connection location of the smoothing reactors Ls1 and Ls2.
  • FIG. 7 is a circuit configuration diagram of an AC-DC converter according to the second embodiment of the present invention.
  • the AC-DC converter 11 has a configuration in which one end of the resonance capacitor Cr connected to the positive bus LN1 is disconnected and connected to the negative bus LN0 in the AC-DC converter 10 of the first embodiment shown in FIG. .
  • the circuit operation is the same as that of the first embodiment, and the operation of sending the energy of the AC power supply V1 to the DC load R1 and the zero voltage switching operation are possible.
  • the degree of freedom of layout on the substrate may be increased as compared with the first embodiment and the size may be reduced.
  • FIG. 8 is a circuit configuration diagram of the AC-DC converter 20 according to the third embodiment of the present invention.
  • the AC-DC converter 20 according to the third embodiment has a configuration in which the AC-DC converter 10 according to the first embodiment shown in FIG. 1 is changed from a single-phase AC power source to a three-phase AC power source.
  • the difference from the first embodiment is that the AC power supply V1 of the first embodiment shown in FIG. 1 is changed to a three-phase AC power supply V2, and a smoothing reactor Ls0, a rectifying diode Ds0, a MOSFET Q0, and a current sensor are changed. 15 and voltage sensors 13, 14, and 16 are added. Further, a diode and / or a body diode D0 of the MOSFET is connected between the drain and source of the MOSFET Q0 so that a current flows from the source to the drain. A snubber capacitor C0 is connected between the drain and source of the MOSFET Q0.
  • a connection point between the rectifying diode Ds0 and the MOSFET Q0 is a node N0.
  • a smoothing reactor Ls1 is connected between the U phase of the three-phase AC power supply V2 and the node N1, and a smoothing reactor Ls2 is connected between the V phase of the three-phase AC power supply V2 and the node N2.
  • a smoothing reactor Ls0 is connected between the W phase of V2 and the node N0.
  • the one end of the current sensor 15 is connected to the negative bus LN0, and the other end of the current sensor 15 is connected to the drain terminal of the MOSFET Q0.
  • the cathode of the rectifying diode Ds0 is connected to the node N3.
  • MOSFET Q1 is connected to the U phase of the three-phase AC power supply V2
  • MOSFET Q2 is connected to the V phase
  • MOSFET Q0 is connected to the W phase.
  • a positive current flows in the U phase and the V phase.
  • the MOSFETs Q1, Q2, and Q0 are in the on state, the currents flowing through the smoothing reactors Ls1 and Ls2 pass through the MOSFETs Q1 and Q2, and then merge and flow to the MOSFET Q0.
  • the MOSFETs Q1 and Q2 are alternately switched depending on the polarity of the single-phase AC voltage V1, but in this third embodiment, any two of the MOSFETs Q1, Q2 and Q0 and the MOSFET Q3 are controlled depending on the input voltage. Then, by providing a control means for alternately turning on and off the MOSFET Q3 and the MOSFET Q3 connected to the phase in which the positive current is flowing, the auxiliary circuit remains as one, and all the switching elements Zero voltage switching is easily realized. Also in the third embodiment, the conduction loss can be reduced by synchronous rectification as in the first embodiment.
  • FIG. 9 is a circuit configuration diagram of an AC-DC converter 30 according to the fourth embodiment of the present invention.
  • the MOSFET of the AC-DC converter 10 of the first embodiment shown in FIG. 1 is changed to an IGBT, and the rectifying diodes Ds1, Ds2 are changed to switching elements (IGBTs) Q11, Q12.
  • IGBTs switching elements
  • Diodes D11 and D12 are connected between the collectors and emitters of IGBTs Q11 and Q12 so that current flows from the emitter terminal to the collector terminal, respectively.
  • snubber capacitors C11 and C12 are connected between the collectors and emitters of the IGBTs Q11 and Q12, and a DC power source V3 is connected in parallel to the DC load R1.
  • zero voltage switching can be performed in the same way as in the first embodiment in both directions of transmitting energy from the AC power source V1 to the DC power source V3 or from the DC power source V3 to the AC power source V1.
  • zero voltage switching can be performed as in the first embodiment.
  • MOSFET Q3 When both IGBTQ11 and IGBTQ2 are on, and when both IGBTQ12 and IGBTQ1 are on, MOSFET Q3 is turned off, and at other times, MOSFET Q3 is turned on. Of course, a dead time is provided so that the MOSFET Q3 is not turned on when both the IGBT Q11 and the IGBT Q2 are turned on or when both the IGBT Q12 and the IGBT Q1 are turned on.
  • the MOSFET Q3 is turned off to bring the collector-emitter between the IGBTs Q1 and Q2 to zero voltage. If the IGBTs Q1 and Q2 are turned on at this time, zero voltage switching is performed.
  • zero voltage switching can be performed in both the AC-DC conversion and the DC-AC conversion operations.
  • the circuit can be reduced in size by using a switching module including a plurality of switching elements.
  • the efficiency of the solar power generation system and UPS can be improved.
  • FIG. 10 is a schematic configuration diagram of a power supply system for a plug-in hybrid vehicle employing the AC-DC converter 10 according to the present invention.
  • the AC-DC converter 10 is connected between the DC-DC converter 102 connected to the power storage battery 103 and the AC power supply 101. Note that the AC-DC converter 10 and the DC-DC converter 102 may be mounted on a vehicle or installed on the ground.
  • the AC-DC converter 10 according to the present invention, it is possible to improve the conversion efficiency and reduce the size of the power supply circuit, reduce the carbon dioxide emission, reduce the cost of the power supply device, and the running cost. Can be reduced.
  • FIG. 11 is a schematic configuration diagram of a power supply apparatus for an information storage apparatus that employs an AC-DC converter 10 according to the present invention.
  • the AC-DC converter 10 is connected between the DC-DC converter 105 connected to the controller 106, the hard disk 107, and the memory 108 and the AC power supply 104.
  • the AC-DC converter 10 converts AC power into DC power
  • the DC-DC converter 105 converts the AC power into voltages required for the controller 106, the hard disk 107, and the memory 108, and supplies power.
  • the AC-DC converter 10 by using the AC-DC converter 10 according to the present invention, it is possible to improve the conversion efficiency and reduce the size of the power supply circuit, thereby reducing the carbon dioxide emission amount, the cost reduction of the power supply device, and the consumption. Electric power can be reduced.
  • MOSFETs and IGBTs have been described as examples of switching elements, but other elements can of course be used.
  • the present invention can be applied to an AC-DC converter that requires a large amount of power or an AC-DC converter that operates at a high temperature, and the efficiency is similarly improved. be able to.

Abstract

Disclosed is an AC-DC converter equipped with: a hybrid bridge circuit formed with rectifier elements (Ds 1, 2) and main switching elements (Q1, 2); snubbers (C1, 2) and diodes (D1, 2), connected in parallel to each of the aforementioned elements (Q1, 2); an alternating current power supply (V1) connected between alternating current terminals via (Ls1, 2) used for smoothing; and a (Cs) used for smoothing and a direct current load (R1) which are connected in parallel between the direct current terminals of the bridge circuit; and being further equipped with an auxiliary circuit (1), which includes an (Lr) for resonance use between the direct current terminal (N3) and one end (LN1) of the (Cs) used for smoothing and a series-connected body comprised of an auxiliary switching element (Q3) and a (Cr) for resonance use which are connected to the one end, and with a control means that turns on/off the aforementioned (Q1, 2, 3). After the resonance-use (Cr) is charged with a portion of the energy accumulated in the smoothing-use (Ls1, 2), energy accumulates in the resonance-use (Lr), and the charges of snubbers (C1, 2) are discharged with this energy to achieve zero-voltage switching of MOSFETs Q1-3.

Description

AC-DCコンバータAC-DC converter
 本発明は、ゼロ電圧スイッチング機能を有するAC-DCコンバータに関する。 The present invention relates to an AC-DC converter having a zero voltage switching function.
 従来のAC-DCコンバータは、ダイオードブリッジからなる整流回路と、スイッチング素子と平滑用リアクトルとダイオードと平滑用コンデンサからなる力率改善回路で構成され、交流電力を整流し直流に変換する。しかし、整流回路で使用するダイオードブリッジに電流が流れることによる導通損失と、力率改善回路のスイッチング素子に電圧が印加されている状態でスイッチングすることによるスイッチング損失が大きく、効率が悪かった。 A conventional AC-DC converter is composed of a rectifier circuit composed of a diode bridge, and a power factor correction circuit composed of a switching element, a smoothing reactor, a diode, and a smoothing capacitor, and rectifies AC power and converts it into DC. However, the conduction loss due to the current flowing through the diode bridge used in the rectifier circuit and the switching loss due to switching in the state where the voltage is applied to the switching element of the power factor correction circuit are large, and the efficiency is poor.
 そこで、ダイオードブリッジの導通損失を低減し効率の改善を図ったブリッジレス(混合ブリッジ)方式のAC-DCコンバータが特許文献1に、またスイッチング損失を低減し効率の改善を図ったAC-DCコンバータが非特許文献1にそれぞれ開示されている。 Therefore, a bridgeless (mixed bridge) type AC-DC converter that improves the efficiency by reducing the conduction loss of the diode bridge is disclosed in Patent Document 1, and the AC-DC converter that reduces the switching loss and improves the efficiency. Are disclosed in Non-Patent Document 1, respectively.
 特許文献1の混合ブリッジ方式のAC-DCコンバータは、ダイオードの導通損失を低減するため、2つのダイオードをスイッチング素子に変更している。そして、交流電源とブリッジ回路の交流端子との間に接続される平滑用リアクトルと、ブリッジ回路の直流端子間に接続される平滑用コンデンサを備えている。 In the mixed bridge type AC-DC converter disclosed in Patent Document 1, two diodes are changed to switching elements in order to reduce conduction loss of the diodes. A smoothing reactor connected between the AC power supply and the AC terminal of the bridge circuit and a smoothing capacitor connected between the DC terminals of the bridge circuit are provided.
 また、非特許文献1は、スイッチング損失を低減するため、スイッチング素子とリアクトルとダイオードから構成される補助回路を備えている。この補助回路により、スイッチング素子に印加される電圧が概略ゼロの時にスイッチング素子をターンオン、ターンオフさせるゼロ電圧スイッチングを実現し、スイッチング損失を低減する。 Further, Non-Patent Document 1 includes an auxiliary circuit including a switching element, a reactor, and a diode in order to reduce switching loss. This auxiliary circuit realizes zero voltage switching that turns on and off the switching element when the voltage applied to the switching element is approximately zero, and reduces switching loss.
 特許文献2,3にも、特許文献1と同様に、混合ブリッジ方式のAC-DCコンバータが開示されている。また、特許文献4,5にも、効率向上を図ったAC-DCコンバータが開示されている。 Patent Documents 2 and 3 also disclose mixed bridge type AC-DC converters as in Patent Document 1. Patent Documents 4 and 5 also disclose AC-DC converters that improve efficiency.
特表2007―527687号公報Special table 2007-527687 特開2002-51563号公報JP 2002-51563 A 特開平10-337034号公報Japanese Patent Laid-Open No. 10-337034 特開平10-84674号公報Japanese Patent Laid-Open No. 10-84684 特開2000-217364号公報JP 2000-217364 A
 特許文献1の混合ブリッジ方式のAC-DCコンバータは、ダイオードブリッジの導通損失を低減することができる。しかしながら、スイッチング損失が大きい。 The mixed bridge type AC-DC converter of Patent Document 1 can reduce the conduction loss of the diode bridge. However, the switching loss is large.
 非特許文献1の補助回路は、ゼロ電圧スイッチングを実現し、スイッチング損失を低減することができる。しかしながら、ダイオードブリッジの導通損失が大きい。 The auxiliary circuit of Non-Patent Document 1 can realize zero voltage switching and reduce switching loss. However, the conduction loss of the diode bridge is large.
 そこで、特許文献1と非特許文献1の技術を併用すると、導通損失とスイッチング損失の両方を低減することが可能となる。しかし、スイッチング素子と同数すなわち2つの補助回路が必要であり、回路の複雑化、コストアップの原因となる。 Therefore, when the techniques of Patent Document 1 and Non-Patent Document 1 are used in combination, both conduction loss and switching loss can be reduced. However, the same number of switching elements as that of the switching elements, that is, two auxiliary circuits are required, which causes circuit complexity and cost increase.
 また、非特許文献1のAC-DCコンバータでは、補助回路のスイッチング素子はゼロ電圧スイッチングできず、補助回路のスイッチング素子のスイッチング損失が大きい。 In the AC-DC converter of Non-Patent Document 1, the switching element of the auxiliary circuit cannot perform zero voltage switching, and the switching loss of the switching element of the auxiliary circuit is large.
 このように、従来のAC-DCコンバータには、導通損失と、スイッチング損失の両方を低減するためには、回路の複雑化やコストアップを招く場合があった。 As described above, in order to reduce both the conduction loss and the switching loss in the conventional AC-DC converter, the circuit may be complicated and the cost may be increased.
 本発明の目的は、比較的少ない素子数で構成された1つの補助回路で、すべてのスイッチング素子で、ゼロ電圧スイッチングを実現するAC-DCコンバータを提供することである。 An object of the present invention is to provide an AC-DC converter that realizes zero voltage switching with all the switching elements with one auxiliary circuit configured with a relatively small number of elements.
 また、本発明の他の目的は、導通損失とスイッチング損失の両方を低減し、高効率なAC-DCコンバータを提供することである。 Also, another object of the present invention is to provide a highly efficient AC-DC converter that reduces both conduction loss and switching loss.
 また、本発明の他の目的は、スイッチング素子の比較的簡単なスイッチング制御でゼロ電圧スイッチングを実現するAC-DCコンバータを提供することである。 Another object of the present invention is to provide an AC-DC converter that realizes zero voltage switching by relatively simple switching control of a switching element.
 本発明はその一面において、各々が整流素子と主スイッチング素子とを直列接続した2組の上下アームを並列接続して形成されたコンバータの主スイッチング回路、前記各主スイッチング素子にそれぞれ並列接続されたスナバコンデンサ、前記各主スイッチング素子にそれぞれ逆並列接続されたとダイオード及び/又はボディダイオード、前記コンバータの交流端子である2組の前記上下アームの直列接続点間に、平滑用リアクトルを介して接続された交流電源、および前記コンバータの直流端子である前記主スイッチング回路の両端間に、それぞれ並列接続された平滑用コンデンサと直流負荷を備えたAC-DCコンバータにおいて、前記主スイッチング回路の一方の直流端子と前記平滑用コンデンサの一端との間に挿入された共振用リアクトル、前記共振用リアクトルの一端に接続された、補助スイッチング素子と共振用コンデンサとの直列接続体、前記補助スイッチング素子と前記共振用リアクトルと前記共振用コンデンサとを含む補助回路、及び前記各主スイッチング素子と前記補助スイッチング素子とをオンオフさせる制御手段を備えたことを特徴とする。 In one aspect of the present invention, a converter main switching circuit formed by connecting two upper and lower arms each having a rectifying element and a main switching element connected in series, connected in parallel to each of the main switching elements. Snubber capacitors, diodes and / or body diodes connected in reverse parallel to the main switching elements, and connected between the series connection points of the two upper and lower arms, which are AC terminals of the converter, are connected via a smoothing reactor. In an AC-DC converter provided with a smoothing capacitor and a DC load connected in parallel between both ends of the AC power source and the main switching circuit which is a DC terminal of the converter, one DC terminal of the main switching circuit And one end of the smoothing capacitor. A series connection body of an auxiliary switching element and a resonance capacitor connected to one end of the resonance reactor, an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; Control means for turning on and off the switching element and the auxiliary switching element is provided.
 本発明は他の一面において、第1,第2の主スイッチング素子と、第1,第2の整流素子と、前記第1の整流素子と前記第1の主スイッチング素子とを直列接続した第1の上下アームと、前記第2の整流素子と前記第2の主スイッチング素子とを直列接続した第2の上下アームと、前記第1,第2の上下アームを並列接続した主スイッチング回路と、前記第1,第2の上下アームの各主スイッチング素子と整流素子との直列接続点と交流電源との間に接続した平滑用リアクトルと、前記主スイッチング回路の両端間に接続し且つ直流負荷に並列接続した平滑用コンデンサと、前記各主スイッチング素子にそれぞれ並列接続されたスナバコンデンサと、前記各主スイッチング素子にそれぞれ逆並列接続されたダイオード及び/又はボディダイオードを備え、前記交流電源のエネルギーを前記直流負荷に供給するAC-DCコンバータにおいて、前記主スイッチング回路の一端と前記平滑用コンデンサの一端との間に挿入された共振用リアクトルと、前記共振用リアクトルの一端に接続された補助スイッチング素子と共振用コンデンサとの直列接続体と、前記補助スイッチング素子と前記共振用リアクトルと前記共振用コンデンサとを含む補助回路と、前記第1,第2の主スイッチング素子と前記補助スイッチング素子とをオンオフさせる制御手段とを備えたことを特徴とする。 In another aspect of the present invention, the first and second main switching elements, the first and second rectifying elements, the first rectifying element, and the first main switching element are connected in series. Upper and lower arms, a second upper and lower arm in which the second rectifying element and the second main switching element are connected in series, a main switching circuit in which the first and second upper and lower arms are connected in parallel, A smoothing reactor connected between a series connection point of the main switching elements and rectifying elements of the first and second upper and lower arms and an AC power source, and connected between both ends of the main switching circuit and in parallel with a DC load A connected smoothing capacitor; a snubber capacitor connected in parallel to each of the main switching elements; and a diode and / or body die connected in antiparallel to each of the main switching elements. In the AC-DC converter, the resonance reactor inserted between one end of the main switching circuit and one end of the smoothing capacitor, and the resonance A series connection body of an auxiliary switching element and a resonance capacitor connected to one end of the reactor, an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; Control means for turning on and off the main switching element and the auxiliary switching element is provided.
 本発明の望ましい実施態様においては、前記補助回路は、前記共振用リアクトルに、前記補助スイッチング素子と前記共振用コンデンサとの直列接続体が並列接続され、前記補助スイッチング素子に並列接続されたスナバコンデンサと、前記補助スイッチング素子に逆並列接続されたダイオード及び/又はボディダイオードを備えている。 In a preferred embodiment of the present invention, the auxiliary circuit includes a snubber capacitor in which a series connection body of the auxiliary switching element and the resonance capacitor is connected in parallel to the resonance reactor, and the auxiliary switching element is connected in parallel. And a diode and / or a body diode connected in reverse parallel to the auxiliary switching element.
 本発明の他の望ましい実施態様においては、前記補助回路は、前記主スイッチング回路の一端と前記共振用リアクトルの接続点と、前記主スイッチング回路の他端との間に接続された前記補助スイッチング素子と前記共振用コンデンサとの直列接続体と、前記補助スイッチング素子に並列接続されたスナバコンデンサと、前記補助スイッチング素子に逆並列接続されたダイオード及び/又はボディダイオードを備えて構成される。 In another preferred embodiment of the present invention, the auxiliary circuit includes the auxiliary switching element connected between one end of the main switching circuit, a connection point of the resonance reactor, and the other end of the main switching circuit. And the resonance capacitor, a snubber capacitor connected in parallel to the auxiliary switching element, and a diode and / or a body diode connected in reverse parallel to the auxiliary switching element.
 また、本発明の望ましい実施態様においては、前記制御手段は、前記交流電源のエネルギーを前記平滑用リアクトルに蓄積し、前記平滑用リアクトルが放出したエネルギーを前記共振用コンデンサに蓄積し、前記共振用コンデンサが放出したエネルギーを、前記補助スイッチング素子を介して前記共振用リアクトルに蓄積し、前記共振用リアクトルに蓄積されたエネルギーを利用して、前記主スイッチング素子がオンする前に、主スイッチング素子に並列接続された前記スナバコンデンサに蓄えられた電荷を引き抜くように構成している。 In a preferred embodiment of the present invention, the control means accumulates the energy of the AC power source in the smoothing reactor, accumulates the energy released by the smoothing reactor in the resonance capacitor, and The energy released by the capacitor is stored in the resonance reactor via the auxiliary switching element, and the energy stored in the resonance reactor is used to turn on the main switching element before the main switching element is turned on. The electric charge stored in the snubber capacitors connected in parallel is extracted.
 本発明の望ましい実施態様によれば、1つのスイッチング素子を有する1つの補助回路ですべてのスイッチング素子をゼロ電圧スイッチングするAC-DCコンバータを提供することができる。 According to a preferred embodiment of the present invention, it is possible to provide an AC-DC converter that performs zero voltage switching of all switching elements with one auxiliary circuit having one switching element.
 また、本発明の望ましい実施態様によれば、主スイッチング素子と補助スイッチング素子を利用し、比較的簡単なスイッチング制御でゼロ電圧スイッチングするAC-DCコンバータを提供することができる。 Further, according to a preferred embodiment of the present invention, it is possible to provide an AC-DC converter that uses a main switching element and an auxiliary switching element and performs zero voltage switching with relatively simple switching control.
 また、本発明の望ましい実施態様によれば、導通損失とスイッチング損失の両方を低減し、高効率なAC-DCコンバータを提供することができる。 Also, according to a preferred embodiment of the present invention, it is possible to provide a highly efficient AC-DC converter that reduces both conduction loss and switching loss.
 さらに、本発明の望ましい実施態様によれば、補助スイッチング素子のターンオン,ターンオフ、共にゼロ電圧スイッチングすることができるAC-DCコンバータを提供することができる。 Furthermore, according to a preferred embodiment of the present invention, it is possible to provide an AC-DC converter that can perform zero voltage switching both on and off of the auxiliary switching element.
 本発明によるその他の目的と特徴は、以下に述べる実施例の中で明らかにする。 Other objects and features of the present invention will be clarified in the embodiments described below.
本発明の実施例1によるAC-DCコンバータの回路構成図。1 is a circuit configuration diagram of an AC-DC converter according to Embodiment 1 of the present invention. FIG. 本発明の実施例1によるAC-DCコンバータの動作説明回路図その1。FIG. 2 is an operation explanatory circuit diagram of the AC-DC converter according to the first embodiment of the present invention. 本発明の実施例1によるAC-DCコンバータの動作説明回路図その2。FIG. 2 is an operation explanatory circuit diagram of the AC-DC converter according to the first embodiment of the present invention. 本発明の実施例1によるAC-DCコンバータの動作説明の基本波形図。FIG. 3 is a basic waveform diagram for explaining the operation of the AC-DC converter according to the first embodiment of the present invention. 本発明の実施例1によるAC-DCコンバータの動作説明回路図その3。FIG. 3 is an operation explanatory circuit diagram of the AC-DC converter according to the first embodiment of the present invention. 本発明の実施例1によるAC-DCコンバータの動作説明回路図その4。FIG. 4 is a circuit diagram for explaining the operation of the AC-DC converter according to the first embodiment of the present invention. 本発明の実施例2によるAC-DCコンバータの回路構成図。The circuit block diagram of the AC-DC converter by Example 2 of this invention. 本発明の実施例3によるAC-DCコンバータの回路構成図。The circuit block diagram of the AC-DC converter by Example 3 of this invention. 本発明の実施例4によるAC-DCコンバータの回路構成図。FIG. 6 is a circuit configuration diagram of an AC-DC converter according to Embodiment 4 of the present invention. 本発明によるAC-DCコンバータを採用したプラグインハイブリッド自動車の電源システムの概略構成図。1 is a schematic configuration diagram of a power supply system of a plug-in hybrid vehicle employing an AC-DC converter according to the present invention. 本発明によるAC-DCコンバータを採用したストレージ装置の電源装置の概略構成図。The schematic block diagram of the power supply device of the storage apparatus which employ | adopted the AC-DC converter by this invention.
 本発明の実施形態について図面を参照しながら詳細に説明する。また、実施例1では、スイッチング素子として、MOSFETを用いて説明する。また、オン状態のスイッチング素子またはダイオードの順方向降下電圧と同等程度かそれ以下の電圧をゼロ電圧と呼ぶことにする。 Embodiments of the present invention will be described in detail with reference to the drawings. In the first embodiment, description will be made using a MOSFET as a switching element. Further, a voltage equivalent to or lower than the forward voltage drop of the switching element or diode in the on state is referred to as zero voltage.
 図1は、本発明の実施例1によるAC-DCコンバータの回路構成図である。 FIG. 1 is a circuit configuration diagram of an AC-DC converter according to Embodiment 1 of the present invention.
 各々が整流素子Ds1またはDs2と、主スイッチング素子Q1またはQ2とを直列接続した2組の上下アームを並列接続して、コンバータの主スイッチング回路を形成している。これらの主スイッチング素子には、それぞれ、スナバコンデンサC1,C2を並列接続している。また、前記各主スイッチング素子には、それぞれ、逆並列にダイオード及び/又はボディダイオードD1,D2を接続している。 Each of the two upper and lower arms in which the rectifying element Ds1 or Ds2 and the main switching element Q1 or Q2 are connected in series is connected in parallel to form a main switching circuit of the converter. Snubber capacitors C1 and C2 are connected in parallel to these main switching elements, respectively. In addition, a diode and / or body diodes D1 and D2 are connected to each main switching element in antiparallel.
 コンバータの交流端子である2組の上下アームの直列接続点間に、平滑用リアクトルLs1,Ls2を介して交流電源V1を接続している。また、コンバータの直流端子である主スイッチング回路の両端間、すなわち、正母線LN1と負母線LN0との間には、平滑用コンデンサCsと直流負荷R1がそれぞれ並列接続されている。 AC power supply V1 is connected between the series connection points of two sets of upper and lower arms, which are AC terminals of the converter, via smoothing reactors Ls1 and Ls2. Further, a smoothing capacitor Cs and a DC load R1 are connected in parallel between both ends of the main switching circuit which is a DC terminal of the converter, that is, between the positive bus LN1 and the negative bus LN0.
 AC-DCコンバータ10は、補助回路1の回路要素として、主スイッチング回路の前記第1,第2のスイッチング素子(MOSFET)Q1,Q2の外に、第3の(補助)スイッチング素子(MOSFET)Q3を備えている。その外、補助回路1の回路要素として、共振用リアクトルLrと、共振用コンデンサCrを備え、前記補助スイッチング素子Q3にも、スナバコンデンサC3と、逆並列にダイオード及び/又はボディダイオードを備えている。 The AC-DC converter 10 includes, as circuit elements of the auxiliary circuit 1, in addition to the first and second switching elements (MOSFETs) Q1 and Q2 of the main switching circuit, a third (auxiliary) switching element (MOSFET) Q3. It has. In addition, as a circuit element of the auxiliary circuit 1, a resonance reactor Lr and a resonance capacitor Cr are provided, and the auxiliary switching element Q3 is also provided with a snubber capacitor C3 and a diode and / or a body diode in antiparallel. .
 各スイッチング素子を制御する制御手段2には、電圧センサ3,4及び電流センサ5,6の出力が入力される。例えば、分流抵抗方式の場合で言えば、電流センサ5,6の一端を負母線LN0に接続し、電流センサ5,6の他端をそれぞれMOSFETQ1,Q2のソース端子と接続する。 The outputs of the voltage sensors 3 and 4 and the current sensors 5 and 6 are input to the control means 2 that controls each switching element. For example, in the case of the shunt resistance method, one end of the current sensors 5 and 6 is connected to the negative bus LN0, and the other end of the current sensors 5 and 6 is connected to the source terminals of the MOSFETs Q1 and Q2, respectively.
 MOSFETQ1と整流用ダイオードDs1との接続点をノードN1、MOSFETQ2と整流用ダイオードDs2との接続点をノードN2とする。交流電源V1とノードN1との間に平滑用リアクトルLs1を接続し、交流電源V1とノードN2との間に平滑用リアクトルLs2を接続している。整流用ダイオードDs1,Ds2のカソードの接続点をノードN3とする。共振用リアクトルLrは、ノードN3と正母線LN1との間に接続し、正母線LN1と共振用リアクトルLrとの接続点をノードN4とする。 A connection point between the MOSFET Q1 and the rectifying diode Ds1 is a node N1, and a connection point between the MOSFET Q2 and the rectifying diode Ds2 is a node N2. A smoothing reactor Ls1 is connected between AC power supply V1 and node N1, and a smoothing reactor Ls2 is connected between AC power supply V1 and node N2. A connection point of the cathodes of the rectifying diodes Ds1 and Ds2 is a node N3. Resonance reactor Lr is connected between node N3 and positive bus LN1, and a connection point between positive bus LN1 and resonance reactor Lr is node N4.
 MOSFETQ3と共振用コンデンサCrとを直列接続して、ノードN3とノードN4との間に、MOSFETQ3のソース端子がノードN3を向くように接続され、共振用リアクトルLrと、共振用コンデンサCrと、MOSFETQ3とで補助回路1を構成している。 The MOSFET Q3 and the resonance capacitor Cr are connected in series, and the source terminal of the MOSFET Q3 is connected between the node N3 and the node N4 so as to face the node N3. The resonance reactor Lr, the resonance capacitor Cr, and the MOSFET Q3 Auxiliary circuit 1 is constituted by the above.
 (回路の動作説明)
 詳細な動作説明に先立って、図1の回路図において電流、電圧を表す記号を定義する。まず、MOSFETQ1~Q3のドレイン-ソース間電圧VQ1~VQ3は、ドレイン側を正とする。また、MOSFETQ1~Q3と、それぞれ並列に接続されたダイオードD1~D3とに流れる合成された電流IQD1~IQD3は、MOSFETQ1~Q3のドレインからソースへ流れる向きを正とする。さらに、交流電源V1の電圧を入力電圧とし、平滑用リアクトルLs1,Ls2に流れる電流を入力電流とする。
(Explanation of circuit operation)
Prior to the detailed description of the operation, symbols representing current and voltage are defined in the circuit diagram of FIG. First, drain-source voltages VQ1 to VQ3 of MOSFETs Q1 to Q3 are positive on the drain side. Further, the combined currents IQD1 to IQD3 flowing in the MOSFETs Q1 to Q3 and the diodes D1 to D3 connected in parallel respectively have a positive direction from the drain to the source of the MOSFETs Q1 to Q3. Furthermore, the voltage of AC power supply V1 is used as an input voltage, and the current flowing through smoothing reactors Ls1 and Ls2 is used as an input current.
 共振用コンデンサCrに流れる電流ICrは、ダイオードD3に順方向電流が流れる向きを正とする。平滑用リアクトルLs1に流れる電流ILs1は、交流電源V1からノードN1に流れる向きを正とし、平滑用リアクトルLs2に流れる電流ILs2は、ノードN2から交流電源V1に流れる向きを正とする。また、共振用リアクトルLrに流れる電流ILrは、整流用ダイオードDs1,Ds2のカソードから平滑用コンデンサCsに流れる向きを正とする。 The current ICr flowing through the resonance capacitor Cr is positive when the forward current flows through the diode D3. The current ILs1 flowing through the smoothing reactor Ls1 has a positive direction flowing from the AC power supply V1 to the node N1, and the current ILs2 flowing through the smoothing reactor Ls2 has a positive direction flowing from the node N2 to the AC power supply V1. The current ILr flowing through the resonance reactor Lr is positive in the direction flowing from the cathodes of the rectifying diodes Ds1 and Ds2 to the smoothing capacitor Cs.
 (電流ILs1,ILs2が正の期間)
 図2,図3は、電流ILs1,ILs2が正の期間の動作を説明する回路図である。また、この回路においては、MOSFETQ2は常時オン状態である。図4は、動作を説明する電圧・電流波形図である。
(Period in which the currents ILs1 and ILs2 are positive)
FIG. 2 and FIG. 3 are circuit diagrams for explaining the operation when the currents ILs1 and ILs2 are positive. In this circuit, the MOSFET Q2 is always on. FIG. 4 is a voltage / current waveform diagram illustrating the operation.
 以下、これらの図2,図3を参照しながら、本発明の実施例1における動作を詳細に説明する。図2,図3の(A)~(I)は、図4に示すモードAからモードIに対応する。 Hereinafter, the operation in the first embodiment of the present invention will be described in detail with reference to FIGS. 2A to 3I correspond to modes A to I shown in FIG.
 (モードA)
 まず、モードAでは、MOSFETQ1がオン状態、MOSFETQ3がオフ状態である。交流電源V1の電圧が平滑用リアクトルLs1,Ls2に印加され、交流電源V1,平滑用リアクトルLs1,MOSFETQ1,MOSFETQ2,平滑用リアクトルLs2に電流が流れる。平滑用リアクトルLs1、Ls2の電流ILs1とILs2が徐々に増加し、平滑用リアクトルLs1,Ls2に交流電源V1のエネルギーが蓄積される。この時、スナバコンデンサC3と共振用コンデンサCrは、図2(A)に示す極性で充電されている。
(Mode A)
First, in mode A, MOSFET Q1 is on and MOSFET Q3 is off. The voltage of the AC power supply V1 is applied to the smoothing reactors Ls1, Ls2, and a current flows through the AC power supply V1, the smoothing reactor Ls1, the MOSFET Q1, the MOSFET Q2, and the smoothing reactor Ls2. The currents ILs1 and ILs2 of the smoothing reactors Ls1 and Ls2 gradually increase, and the energy of the AC power supply V1 is accumulated in the smoothing reactors Ls1 and Ls2. At this time, the snubber capacitor C3 and the resonance capacitor Cr are charged with the polarity shown in FIG.
 (モードB)
 その後、時刻t1でMOSFETQ1をオフすると、MOSFETQ1に並列接続されているスナバコンデンサC1の電圧VQ1は、ゼロ電圧から徐々に増加していく。したがって、MOSFETQ1は、時刻t1でゼロ電圧スイッチングされる。整流ダイオードDs1は逆バイアスされており、平滑用リアクトルLs1,Ls2に流れる電流ILs1,ILs2は、スナバコンデンサC1へ流れる。
(Mode B)
Thereafter, when MOSFET Q1 is turned off at time t1, voltage VQ1 of snubber capacitor C1 connected in parallel to MOSFET Q1 gradually increases from zero voltage. Therefore, MOSFET Q1 is zero-voltage switched at time t1. The rectifier diode Ds1 is reverse-biased, and the currents ILs1 and ILs2 flowing through the smoothing reactors Ls1 and Ls2 flow to the snubber capacitor C1.
 (モードC)
 その後、電圧VQ1が増加し、時刻t2で整流ダイオードDs1が順バイアスされると、整流ダイオードDs1が導通し、モードCとなる。平滑用リアクトルLs1,Ls2に流れる電流ILs1,ILs2は、スナバコンデンサC3と共振用コンデンサCrへ流れる。この時、スナバコンデンサC3は蓄積していた電荷を放電し、電圧VQ3は減少する。電圧VQ3がゼロ電圧になるとダイオードD3が導通する。ここで、共振用リアクトルLrには、共振用コンデンサCrの電圧が印加され、共振用リアクトルLrに電流が徐々に流れる。したがって、平滑用リアクトルLs1,Ls2に流れる電流ILs1,ILs2は、共振用リアクトルLrと、ダイオードD3-共振用コンデンサCrの経路とに分流し、その後合流して出力側へ供給される。また、平滑用リアクトルLs1,Ls2に蓄積されたエネルギーの一部が共振用コンデンサCrに蓄積され、電流ILs1,ILs2は減少していく。
(Mode C)
After that, when the voltage VQ1 increases and the rectifier diode Ds1 is forward-biased at time t2, the rectifier diode Ds1 becomes conductive and enters the mode C. The currents ILs1 and ILs2 flowing through the smoothing reactors Ls1 and Ls2 flow into the snubber capacitor C3 and the resonance capacitor Cr. At this time, the snubber capacitor C3 discharges the accumulated charge, and the voltage VQ3 decreases. When the voltage VQ3 becomes zero voltage, the diode D3 becomes conductive. Here, the voltage of the resonance capacitor Cr is applied to the resonance reactor Lr, and a current gradually flows to the resonance reactor Lr. Therefore, the currents ILs1 and ILs2 flowing through the smoothing reactors Ls1 and Ls2 are divided into the resonance reactor Lr and the path of the diode D3-resonance capacitor Cr, and then merged and supplied to the output side. Further, part of the energy stored in the smoothing reactors Ls1 and Ls2 is stored in the resonance capacitor Cr, and the currents ILs1 and ILs2 decrease.
 (モードD)
 その後、時刻t3でMOSFETQ3をオンする。この時、電圧VQ3はゼロ電圧であるから、MOSFETQ3はゼロ電圧スイッチングされ、モードDとなる。モードCと同様に、平滑用リアクトルLs1,Ls2の電流ILs1,ILs2は、共振用リアクトルLrとMOSFETQ3-共振用コンデンサCrの経路とに分流し、その後合流して出力側へ供給される。また、モードCと同様に電流ILs1,ILs2は減少していく。
(Mode D)
Thereafter, MOSFET Q3 is turned on at time t3. At this time, since the voltage VQ3 is a zero voltage, the MOSFET Q3 is switched to a zero voltage and becomes a mode D. Similarly to mode C, the currents ILs1 and ILs2 of the smoothing reactors Ls1 and Ls2 are divided into the resonance reactor Lr and the MOSFET Q3-resonance capacitor Cr path, and then merged and supplied to the output side. Further, like the mode C, the currents ILs1 and ILs2 decrease.
 (モードE)
 その後、時刻t4で共振用コンデンサCrの充電が終了し、モードEの状態となる。平滑用リアクトルLs1,Ls2の電流ILs1,ILs2は、共振用リアクトルLrを通り、出力側へ流れ、電流ILs1,ILs2は減少する。引き続き、共振用リアクトルLrには、共振用コンデンサCrの電圧が印加される。共振用コンデンサCrの電荷は、MOSFETQ3,共振用リアクトルLrを介して放電し、共振用リアクトルLrに、共振用コンデンサCrのエネルギーが蓄積される。
(Mode E)
Thereafter, charging of the resonance capacitor Cr is completed at time t4, and the mode E is entered. The currents ILs1 and ILs2 of the smoothing reactors Ls1 and Ls2 flow through the resonance reactor Lr to the output side, and the currents ILs1 and ILs2 decrease. Subsequently, the voltage of the resonance capacitor Cr is applied to the resonance reactor Lr. The electric charge of the resonance capacitor Cr is discharged through the MOSFET Q3 and the resonance reactor Lr, and the energy of the resonance capacitor Cr is accumulated in the resonance reactor Lr.
 (モードF)
 その後、時刻t5でMOSFETQ3をオフすると、モードFの状態となる。この時、MOSFETQ3に並列に接続されているスナバコンデンサC3は、ゼロ電圧から徐々に増加するため、MOSFETQ3はゼロ電圧スイッチングされる。電圧VQ3の増加に伴い、MOSFETQ1の電圧VQ1は減少して、スナバコンデンサC1に蓄積されていた電荷が放電される。また、平滑用リアクトルLs1,Ls2に流れる電流ILs1,ILs2は、共振用リアクトルLrに流れ、平滑用リアクトルLs1,Ls2に蓄積されたエネルギーが出力側に供給され、電流ILs1,ILs2は徐々に減少する。
(Mode F)
Thereafter, when the MOSFET Q3 is turned off at time t5, the mode F is entered. At this time, since the snubber capacitor C3 connected in parallel to the MOSFET Q3 gradually increases from the zero voltage, the MOSFET Q3 is zero-voltage switched. As the voltage VQ3 increases, the voltage VQ1 of the MOSFET Q1 decreases and the charge accumulated in the snubber capacitor C1 is discharged. Further, the currents ILs1 and ILs2 flowing through the smoothing reactors Ls1 and Ls2 flow into the resonance reactor Lr, the energy accumulated in the smoothing reactors Ls1 and Ls2 is supplied to the output side, and the currents ILs1 and ILs2 gradually decrease. .
 (モードG)
 その後、時刻t6で電圧VQ1がゼロ電圧になると、ダイオードD1が導通し、モードGの状態になる。また、スナバコンデンサC3への充電が終了し、モードFで共振用コンデンサCrに流れていた電流が出力側へ流れる。ダイオードD1を流れる電流は、平滑用リアクトルLs1,Ls2に流れる電流ILs1,ILs2と合流し、共振用リアクトルLrを通り、出力側へ流れる。共振用リアクトルLrに蓄積されたエネルギーが平滑用コンデンサCsに供給され、電流ILrは徐々に減少していく。これに伴い、ダイオードD1の導通電流も減少していく。
(Mode G)
Thereafter, when the voltage VQ1 becomes zero voltage at time t6, the diode D1 becomes conductive and the mode G is entered. Further, the charging of the snubber capacitor C3 is completed, and the current that has been flowing through the resonance capacitor Cr in mode F flows to the output side. The current flowing through the diode D1 merges with the currents ILs1 and ILs2 flowing through the smoothing reactors Ls1 and Ls2, flows through the resonance reactor Lr, and flows to the output side. The energy accumulated in the resonance reactor Lr is supplied to the smoothing capacitor Cs, and the current ILr gradually decreases. Along with this, the conduction current of the diode D1 also decreases.
 (モードH)
 その後、時刻t7でMOSFETQ1をオンする。この時、すでに電圧VQ1はゼロ電圧であるから、MOSFETQ1はゼロ電圧スイッチングされ、モードHの状態になる。モードGと同様に、共振用リアクトルLrに蓄積されたエネルギーが平滑用コンデンサCsに供給され、電流ILrは徐々に減少していく。これに伴い、ダイオードD1の導通電流も減少していく。
(Mode H)
Thereafter, MOSFET Q1 is turned on at time t7. At this time, since the voltage VQ1 is already zero, the MOSFET Q1 is zero-voltage switched and enters the mode H state. As in the mode G, the energy stored in the resonance reactor Lr is supplied to the smoothing capacitor Cs, and the current ILr gradually decreases. Along with this, the conduction current of the diode D1 also decreases.
 (モードI)
 その後、時刻t8でダイオードD1に電流が流れなくなり、MOSFETQ1の電流IQD1が負から正に変化し、モードIとなる。また、引き続き、共振用リアクトルLrは平滑用コンデンサCsにエネルギーを供給するため、電流ILrは減少していく。
(Mode I)
Thereafter, at time t8, no current flows through the diode D1, the current IQD1 of the MOSFET Q1 changes from negative to positive, and mode I is set. Further, since the resonance reactor Lr supplies energy to the smoothing capacitor Cs, the current ILr decreases.
 (初期のモードへ)
 その後、共振用リアクトルLrの電流ILrがゼロに達すると、モードAの状態に戻る。この時、共振用コンデンサCrとスナバコンデンサC3と共振用リアクトルLrとで共振電流が流れ、波形が振動することがある。
(To the initial mode)
Thereafter, when the current ILr of the resonance reactor Lr reaches zero, the state returns to the mode A state. At this time, the resonance current flows through the resonance capacitor Cr, the snubber capacitor C3, and the resonance reactor Lr, and the waveform may vibrate.
 MOSFETQ2をオン状態に固定すると、ダイオードD2に流れる電流がMOSFETQ2に分流し導通損失を低減できる。このように、MOSFETをオンしてボディダイオードに流れる電流をMOSFETに分流させ,導通損失を低減する動作を同期整流という。 When the MOSFET Q2 is fixed to the ON state, the current flowing through the diode D2 is shunted to the MOSFET Q2, and the conduction loss can be reduced. The operation of turning on the MOSFET and diverting the current flowing through the body diode to the MOSFET and reducing the conduction loss is called synchronous rectification.
 (電流ILs1,ILs2が負の期間)
 電流ILs1,ILs2が負の期間は、図5,図6に示すような電流の流れになる。電流ILs1,ILs2が正の期間は、平滑用リアクトルLs1,MOSFETQ1,ダイオードD2,平滑用リアクトルLs2の順に流れる。一方、電流ILs1,ILs2が負の期間には、平滑用リアクトルLs2,MOSFETQ2,ダイオードD1,平滑用リアクトルLs1の順に電流が流れる。スイッチング動作をさせるスイッチング素子は、MOSFETQ1からMOSFETQ2に切り替わり、電流ILs1,ILs2が正の場合と同様の回路動作をする。
(Period in which the currents ILs1 and ILs2 are negative)
When the currents ILs1 and ILs2 are negative, the current flows as shown in FIGS. When the currents ILs1 and ILs2 are positive, the smoothing reactor Ls1, the MOSFET Q1, the diode D2, and the smoothing reactor Ls2 flow in this order. On the other hand, during the period when the currents ILs1 and ILs2 are negative, the current flows in the order of the smoothing reactor Ls2, the MOSFET Q2, the diode D1, and the smoothing reactor Ls1. The switching element that performs the switching operation is switched from the MOSFET Q1 to the MOSFET Q2, and performs the same circuit operation as when the currents ILs1 and ILs2 are positive.
 以上のように、AC-DCコンバータ10は、電流ILs1,ILs2が正の期間にはMOSFETQ1とQ3とを、電流ILs1,ILs2が負の期間にはMOSFETQ2とQ3とを、それぞれ共にオフする期間を設けて交互にオンオフさせる。このような制御手段2を備えることで、すべてのスイッチング素子でゼロ電圧スイッチングを容易に実現できる。また、電流ILs1、ILs2が正の期間にMOSFETQ2を、電流ILs1、ILs2が負の期間にMOSFETQ1をそれぞれ制御して、同期整流する制御手段2を備えることで、導通損失を低減することができる。 As described above, AC-DC converter 10 has a period in which MOSFETs Q1 and Q3 are turned off when currents ILs1 and ILs2 are positive, and MOSFETs Q2 and Q3 are turned off when currents ILs1 and ILs2 are negative. It is provided and alternately turned on and off. By providing such control means 2, zero voltage switching can be easily realized in all the switching elements. Further, by providing the control means 2 for controlling the MOSFET Q2 when the currents ILs1 and ILs2 are positive and controlling the MOSFET Q1 when the currents ILs1 and ILs2 are negative, and providing the synchronous rectification, the conduction loss can be reduced.
 一方、電流ILs1,ILs2の正負によらず、MOSFETQ1とMOSFETQ2を同期してオンオフしてもよい。この場合は、MOSFETQ1,Q2を比較的簡単に制御することができる。 On the other hand, the MOSFET Q1 and the MOSFET Q2 may be turned on and off in synchronization with each other regardless of whether the currents ILs1 and ILs2 are positive or negative. In this case, MOSFETs Q1 and Q2 can be controlled relatively easily.
 電圧センサ4で出力電圧を検出して、制御手段2に入力することでMOSFETQ1,Q2と、MOSFETQ3とのオン時間とオフ時間の割合を制御して容易に出力電圧を一定の電圧に制御することができる。また、交流電源V1の電圧を電圧センサ3で検出し、電流ILs1,ILs2が正の期間は、MOSFETQ2のソース端子に接続された電流センサ6で入力電流を検出する。一方、電流ILs1,ILs2が負の期間は、MOSFETQ1のソース側に備える電流センサ5で入力電流を検出することで、入力電流を容易に検出し、力率を改善することができる。 By detecting the output voltage with the voltage sensor 4 and inputting it to the control means 2, the ratio between the on time and the off time of the MOSFETs Q1, Q2 and MOSFET Q3 is controlled to easily control the output voltage to a constant voltage. Can do. Further, the voltage of the AC power supply V1 is detected by the voltage sensor 3, and the input current is detected by the current sensor 6 connected to the source terminal of the MOSFET Q2 while the currents ILs1 and ILs2 are positive. On the other hand, during periods when the currents ILs1 and ILs2 are negative, the input current can be easily detected by the current sensor 5 provided on the source side of the MOSFET Q1 to improve the power factor.
 また、入力電圧が低下すると、MOSFETQ1~Q3のドレイン-ソース間に印加される電圧が高くなる場合がある。そのため、許容印加電圧の高いスイッチング素子が必要となり、コストアップにつながる場合がある。 Also, when the input voltage decreases, the voltage applied between the drain and source of MOSFETs Q1 to Q3 may increase. For this reason, a switching element having a high allowable applied voltage is required, which may lead to an increase in cost.
 この、MOSFETQ1~Q3のドレイン-ソース間に印加される電圧は、平滑用コンデンサCsの電圧と共振用コンデンサCrの電圧との和となる。出力電圧を一定に制御する場合、平滑用コンデンサCsの電圧は一定である。したがって、MOSFETQ1~Q3のドレイン-ソース間に印加される電圧を低下させるためには、共振用コンデンサCrの電圧を減少させる必要がある。 The voltage applied between the drain and source of the MOSFETs Q1 to Q3 is the sum of the voltage of the smoothing capacitor Cs and the voltage of the resonance capacitor Cr. When the output voltage is controlled to be constant, the voltage of the smoothing capacitor Cs is constant. Therefore, in order to reduce the voltage applied between the drain and source of the MOSFETs Q1 to Q3, it is necessary to reduce the voltage of the resonance capacitor Cr.
 共振用コンデンサCrの電圧は、共振用リアクトルLrの値と、モードC~モードEの期間の長さと、この期間に増加する共振用リアクトルLrの電流ILrの変化量とによって変化する。入力電圧が低下すると、入力電流が増加して電流ILrの変化量が増加し、また、モードC~モードEの期間が短くなり、共振用コンデンサCrの電圧が増加する。また、出力電力が増加すると電流ILrの変化量が増加するため、共振用コンデンサCrの電圧は増加する。一方、スイッチング周波数が低くなるとモードC~モードEの期間は長くなり、共振用コンデンサCrの電圧は減少する。 The voltage of the resonance capacitor Cr varies depending on the value of the resonance reactor Lr, the length of the mode C to mode E, and the amount of change in the current ILr of the resonance reactor Lr that increases during this period. When the input voltage decreases, the input current increases, the amount of change in the current ILr increases, and the period from mode C to mode E is shortened, and the voltage of the resonance capacitor Cr increases. Moreover, since the amount of change in the current ILr increases as the output power increases, the voltage of the resonance capacitor Cr increases. On the other hand, when the switching frequency is lowered, the period from mode C to mode E becomes longer, and the voltage of the resonance capacitor Cr decreases.
 そこで、入力電圧が低下した場合や出力電力が増加した場合はスイッチング周波数を下げ、入力電圧が増加した場合や出力電力が減少した場合はスイッチング周波数を上げる。このような動作をすることにより、MOSFETQ1~Q3のドレイン-ソース間に過大な電圧が印加されないようにすることができる。 Therefore, when the input voltage decreases or the output power increases, the switching frequency is lowered, and when the input voltage increases or the output power decreases, the switching frequency is increased. By performing such an operation, it is possible to prevent an excessive voltage from being applied between the drain and source of the MOSFETs Q1 to Q3.
 また、入力電流が増加した場合はスイッチング周波数を下げ、入力電流が減少した場合はスイッチング周波数を上げる。入力電流を検出してこのような動作をすれば、入力電圧や出力電圧を検出しなくても、MOSFETQ1~Q3のドレイン-ソース間に過大な電圧が印加されないようにすることができる。 Also, when the input current increases, the switching frequency is decreased, and when the input current decreases, the switching frequency is increased. If such an operation is performed by detecting the input current, it is possible to prevent an excessive voltage from being applied between the drain and source of the MOSFETs Q1 to Q3 without detecting the input voltage or the output voltage.
 しかしながら、スイッチング周波数が低下すると入力電流のリップルが増加することがある。入力電流のリップルが増加すると問題になる場合があるため、スイッチング周波数の低下だけではMOSFETQ1,Q2のドレイン-ソース間に印加される電圧を十分に低減できない場合がある。この場合、モードAからモードBに移る前にMOSFETQ3をオンすることで、さらに、MOSFETQ1,Q2のドレイン-ソース間に印加される電圧を減少できる。モードAからモードBに移る前にMOSFETQ3をオンすると、共振用コンデンサCrに蓄積されているエネルギーが共振用リアクトルLrに供給され、予め電流ILrをある程度流しておくことができる。これにより、モードC~モードEの期間における電流ILrの変化量を抑えることができるため、MOSFETQ1,Q2のドレイン-ソース間電圧に印加される電圧を減少できる。この場合、スナバコンデンサC3に電荷が蓄積された状態でMOSFETQ3をオンするためにスイッチング損失が発生するが、このときスナバコンデンサC3には共振用コンデンサCrと同等程度の電圧しか印加されていないため、この損失は大きくはない。 However, when the switching frequency decreases, the input current ripple may increase. When the ripple of the input current increases, it may cause a problem. Therefore, the voltage applied between the drain and source of the MOSFETs Q1 and Q2 may not be sufficiently reduced only by reducing the switching frequency. In this case, by turning on the MOSFET Q3 before shifting from mode A to mode B, the voltage applied between the drain and source of the MOSFETs Q1 and Q2 can be further reduced. When MOSFET Q3 is turned on before shifting from mode A to mode B, the energy stored in resonance capacitor Cr is supplied to resonance reactor Lr, and current ILr can be allowed to flow to some extent in advance. As a result, the amount of change in current ILr during the period from mode C to mode E can be suppressed, so that the voltage applied to the drain-source voltage of MOSFETs Q1 and Q2 can be reduced. In this case, a switching loss occurs because the MOSFET Q3 is turned on in a state where electric charge is accumulated in the snubber capacitor C3. At this time, only a voltage equivalent to the resonance capacitor Cr is applied to the snubber capacitor C3. This loss is not significant.
 この実施例において、入力電圧の瞬時値が低い期間や、出力電力が少ない場合においては、十分にゼロ電圧スイッチングできない場合がある。このような場合には、MOSFETQ3のオンオフを停止し、オン状態やオフ状態に保つことにより損失を低減できる。 In this embodiment, when the instantaneous value of the input voltage is low or when the output power is low, there may be a case where the zero voltage switching cannot be sufficiently performed. In such a case, the loss can be reduced by stopping the on / off of the MOSFET Q3 and keeping it in the on state or the off state.
 また、スイッチング周波数を変化させる以外の方法として、リレー等を用いた切り替えによってLrの値を低下させることにより,過大な電圧が印加されないようにすることができる。しかし、スイッチング周波数を変化させれば,リレー等が不要になる。 Further, as a method other than changing the switching frequency, it is possible to prevent an excessive voltage from being applied by reducing the value of Lr by switching using a relay or the like. However, if the switching frequency is changed, a relay or the like becomes unnecessary.
 第3のスイッチング素子Q3は、本実施例ではMOSFETを用いているが、MOSFETに並列接続されているボディダイオードは逆回復特性が悪い場合があり、ボディダイオードがダイオードとしてうまく機能しない場合がある。その場合には、MOSFETをIGBTなど他の種類のスイッチング素子に変更することで、実施例1の動作を維持することができる。 In the present embodiment, the third switching element Q3 uses a MOSFET, but the body diode connected in parallel to the MOSFET may have poor reverse recovery characteristics, and the body diode may not function well as a diode. In that case, the operation of the first embodiment can be maintained by changing the MOSFET to another type of switching element such as an IGBT.
 実施例1において、平滑用リアクトルを2つから1つに変更してもよい。この場合、平滑用リアクトルを1つ削除することができ部品コストを低減することができる。また、接続する場所は平滑用リアクトルLs1、Ls2の接続場所のどちらでもかまわない。 In Example 1, the smoothing reactor may be changed from two to one. In this case, one smoothing reactor can be deleted, and the part cost can be reduced. Further, the connection location may be either the connection location of the smoothing reactors Ls1 and Ls2.
 図7は、本発明の実施例2によるAC-DCコンバータの回路構成図である。このAC-DCコンバータ11は、図1に示した実施例1のAC-DCコンバータ10において、正母線LN1に接続された共振用コンデンサCrの一端を切り離し、負母線LN0に接続替えした構成である。 FIG. 7 is a circuit configuration diagram of an AC-DC converter according to the second embodiment of the present invention. The AC-DC converter 11 has a configuration in which one end of the resonance capacitor Cr connected to the positive bus LN1 is disconnected and connected to the negative bus LN0 in the AC-DC converter 10 of the first embodiment shown in FIG. .
 回路動作は実施例1と同様であり、交流電源V1のエネルギーを直流負荷R1に送る動作、およびゼロ電圧スイッチング動作が可能である。 The circuit operation is the same as that of the first embodiment, and the operation of sending the energy of the AC power supply V1 to the DC load R1 and the zero voltage switching operation are possible.
 この実施例2の回路構成を採用すると、実施例1と比べて基板上のレイアウトの自由度が増えて小型化できる場合がある。 When the circuit configuration of the second embodiment is employed, the degree of freedom of layout on the substrate may be increased as compared with the first embodiment and the size may be reduced.
 図8は、本発明による実施例3によるAC-DCコンバータ20の回路構成図である。この実施例3によるAC-DCコンバータ20は、図1に示す実施例1によるAC-DCコンバータ10を単相交流電源用から3相交流電源用に変更した構成である。 FIG. 8 is a circuit configuration diagram of the AC-DC converter 20 according to the third embodiment of the present invention. The AC-DC converter 20 according to the third embodiment has a configuration in which the AC-DC converter 10 according to the first embodiment shown in FIG. 1 is changed from a single-phase AC power source to a three-phase AC power source.
 図8において、実施例1との違いは、図1に示す実施例1の交流電源V1を3相交流電源V2に変更し、平滑用リアクトルLs0と、整流用ダイオードDs0と、MOSFETQ0と、電流センサ15と電圧センサ13,14,16が追加されている。また、MOSFETQ0のドレインーソース間には、ソースからドレインへ電流を流すようにダイオード及び/又はMOSFETのボディダイオードD0が接続されている。また、MOSFETQ0のドレイン-ソース間には、スナバコンデンサC0が接続されている。 8, the difference from the first embodiment is that the AC power supply V1 of the first embodiment shown in FIG. 1 is changed to a three-phase AC power supply V2, and a smoothing reactor Ls0, a rectifying diode Ds0, a MOSFET Q0, and a current sensor are changed. 15 and voltage sensors 13, 14, and 16 are added. Further, a diode and / or a body diode D0 of the MOSFET is connected between the drain and source of the MOSFET Q0 so that a current flows from the source to the drain. A snubber capacitor C0 is connected between the drain and source of the MOSFET Q0.
 整流用ダイオードDs0とMOSFETQ0との接続点をノードN0とする。3相交流電源V2のU相とノードN1との間に平滑用リアクトルLs1が接続され、3相交流電源V2のV相とノードN2との間に平滑用リアクトルLs2が接続され、3相交流電源V2のW相とノードN0との間に平滑用リアクトルLs0が接続されている。 A connection point between the rectifying diode Ds0 and the MOSFET Q0 is a node N0. A smoothing reactor Ls1 is connected between the U phase of the three-phase AC power supply V2 and the node N1, and a smoothing reactor Ls2 is connected between the V phase of the three-phase AC power supply V2 and the node N2. A smoothing reactor Ls0 is connected between the W phase of V2 and the node N0.
 電流センサ15の一端を負母線LN0と接続し、電流センサ15の他端をMOSFETQ0のドレイン端子と接続する。整流用ダイオードDs0のカソードをノードN3に接続する。 The one end of the current sensor 15 is connected to the negative bus LN0, and the other end of the current sensor 15 is connected to the drain terminal of the MOSFET Q0. The cathode of the rectifying diode Ds0 is connected to the node N3.
 この実施例3における回路動作を説明する。この時、3相交流電源V2の各相の電圧は、W相から見てU相,V相の電圧が高い状態にあるとする。また、U相,V相,W相に流れる電流は、3相交流電源V2からノードN0,N1,N2に流れる向きを正とする。 The circuit operation in the third embodiment will be described. At this time, it is assumed that the voltage of each phase of the three-phase AC power supply V2 is high in the U phase and the V phase as viewed from the W phase. The current flowing in the U-phase, V-phase, and W-phase is positive in the direction flowing from the three-phase AC power supply V2 to the nodes N0, N1, and N2.
 基本的な回路動作は、実施例1と同様である。異なる点として、3相交流電源V2のU相にMOSFETQ1,V相にMOSFETQ2,W相にMOSFETQ0がそれぞれ接続されている。W相から見てU相,V相が高い電圧状態では、U相とV相に正の電流が流れる。MOSFETQ1,Q2,Q0がオン状態の時は、平滑用リアクトルLs1,Ls2に流れる電流は、MOSFETQ1,Q2を通り、その後合流し、MOSFETQ0に流れる。MOSFETQ1,Q2,Q0がオフ状態の時は、平滑用リアクトルLs1,Ls2に流れる電流は、整流用ダイオードDs1,Ds2を通って合流する。そして、共振用リアクトルLrと、MOSFETQ3のスナバコンデンサC3又はダイオードD3と、共振用コンデンサCrとに分流され、その後、再び合流し、出力側に流れる。 The basic circuit operation is the same as that of the first embodiment. As a different point, MOSFET Q1 is connected to the U phase of the three-phase AC power supply V2, MOSFET Q2 is connected to the V phase, and MOSFET Q0 is connected to the W phase. In a voltage state where the U phase and the V phase are high as viewed from the W phase, a positive current flows in the U phase and the V phase. When the MOSFETs Q1, Q2, and Q0 are in the on state, the currents flowing through the smoothing reactors Ls1 and Ls2 pass through the MOSFETs Q1 and Q2, and then merge and flow to the MOSFET Q0. When the MOSFETs Q1, Q2, and Q0 are in an off state, the currents flowing through the smoothing reactors Ls1 and Ls2 merge through the rectifying diodes Ds1 and Ds2. Then, the resonant reactor Lr, the snubber capacitor C3 or diode D3 of the MOSFET Q3, and the resonant capacitor Cr are shunted, and then merged again and flow to the output side.
 実施例1では、単相交流電圧V1の極性によって交互にMOSFETQ1,Q2を切り替えていたが、この実施例3では、入力電圧の状況によってMOSFETQ1,Q2,Q0のいずれか二つとMOSFETQ3を制御する。そして、正の電流が流れている相に接続されているMOSFETとMOSFETQ3を共にオフする期間を設けて、交互にオンオフさせる制御手段を備えることで、補助回路は1つのまま、すべてのスイッチング素子でゼロ電圧スイッチングを容易に実現する。また、この実施例3でも、実施例1と同様に同期整流させることで導通損失を低減することができる。 In the first embodiment, the MOSFETs Q1 and Q2 are alternately switched depending on the polarity of the single-phase AC voltage V1, but in this third embodiment, any two of the MOSFETs Q1, Q2 and Q0 and the MOSFET Q3 are controlled depending on the input voltage. Then, by providing a control means for alternately turning on and off the MOSFET Q3 and the MOSFET Q3 connected to the phase in which the positive current is flowing, the auxiliary circuit remains as one, and all the switching elements Zero voltage switching is easily realized. Also in the third embodiment, the conduction loss can be reduced by synchronous rectification as in the first embodiment.
 図9は、本発明の実施例4によるAC-DCコンバータ30の回路構成図である。このAC-DCコンバータ30は、図1に示す実施例1のAC-DCコンバータ10のMOSFETをIGBTに変更し、整流用ダイオードDs1,Ds2をスイッチング素子(IGBT)Q11,Q12に変更している。そして、IGBTQ11,Q12のコレクタ-エミッタ間には、エミッタ端子からコレクタ端子へ電流を流すように、ダイオードD11,D12がそれぞれ接続されている。また、IGBTQ11,Q12のコレクタ-エミッタ間には、スナバコンデンサC11,C12が接続され、直流負荷R1に直流電源V3が並列接続された構成である。 FIG. 9 is a circuit configuration diagram of an AC-DC converter 30 according to the fourth embodiment of the present invention. In the AC-DC converter 30, the MOSFET of the AC-DC converter 10 of the first embodiment shown in FIG. 1 is changed to an IGBT, and the rectifying diodes Ds1, Ds2 are changed to switching elements (IGBTs) Q11, Q12. Diodes D11 and D12 are connected between the collectors and emitters of IGBTs Q11 and Q12 so that current flows from the emitter terminal to the collector terminal, respectively. Further, snubber capacitors C11 and C12 are connected between the collectors and emitters of the IGBTs Q11 and Q12, and a DC power source V3 is connected in parallel to the DC load R1.
 この実施例4は、交流電源V1のエネルギーを直流電源V3に送る動作と、直流電源V3のエネルギーを交流電源V1へ送る動作との双方向の電力変換動作を可能にしている。すなわち、交流電源V1の交流を直流電源V3の直流に変換するAC-DC変換と、直流電源V3の直流を交流電源V1の交流に変換するDC-AC変換の機能を有する。 This Example 4 enables bidirectional power conversion operation of the operation of sending the energy of the AC power supply V1 to the DC power supply V3 and the operation of sending the energy of the DC power supply V3 to the AC power supply V1. That is, it has a function of AC-DC conversion that converts alternating current of the AC power supply V1 into direct current of the DC power supply V3 and DC-AC conversion that converts direct current of the DC power supply V3 into alternating current of the AC power supply V1.
 この実施例4は、交流電源V1から直流電源V3に、又は直流電源V3から交流電源V1にエネルギーを送る動作の双方向において、実施例1と同様にゼロ電圧スイッチングができる。 In the fourth embodiment, zero voltage switching can be performed in the same way as in the first embodiment in both directions of transmitting energy from the AC power source V1 to the DC power source V3 or from the DC power source V3 to the AC power source V1.
 交流電源V1から直流電源V3にエネルギーを送る動作においては、実施例1と同様にゼロ電圧スイッチングができる。 In the operation of sending energy from the AC power supply V1 to the DC power supply V3, zero voltage switching can be performed as in the first embodiment.
 直流電源V3から交流電源V1にエネルギーを送る場合は、例えば次のように動作させる。平滑用リアクトルLs1から交流電源V1へ電流を流す期間においては、IGBTQ11をオン状態に保ちながら、IGBTQ12とIGBTQ2とを相補にオンオフさせる。一方、平滑用リアクトルLs2から交流電源V1へ電流を流す期間においては、IGBTQ12をオン状態に保ちながら、IGBTQ11とIGBTQ1とを相補にオンオフさせる。 When energy is sent from the DC power supply V3 to the AC power supply V1, for example, the following operation is performed. In a period in which current flows from the smoothing reactor Ls1 to the AC power supply V1, the IGBTQ12 and the IGBTQ2 are complementarily turned on and off while the IGBTQ11 is kept on. On the other hand, during a period in which current flows from smoothing reactor Ls2 to AC power supply V1, IGBTQ11 and IGBTQ1 are complementarily turned on and off while IGBTQ12 is kept on.
 IGBTQ11とIGBTQ2とが共にオン状態の時、およびIGBTQ12とIGBTQ1とが共にオン状態の時にはMOSFETQ3をオフ状態とし、他の時にはMOSFETQ3をオン状態とする。もちろん、IGBTQ11とIGBTQ2とが共にオン状態の時やIGBTQ12とIGBTQ1とが共にオン状態の時に、MOSFETQ3がオン状態にならないよう、デッドタイムを設ける。 When both IGBTQ11 and IGBTQ2 are on, and when both IGBTQ12 and IGBTQ1 are on, MOSFET Q3 is turned off, and at other times, MOSFET Q3 is turned on. Of course, a dead time is provided so that the MOSFET Q3 is not turned on when both the IGBT Q11 and the IGBT Q2 are turned on or when both the IGBT Q12 and the IGBT Q1 are turned on.
 このように動作させれば、MOSFETQ3をターンオフさせることによりIGBTQ1,Q2のコレクタ-エミッタ間がゼロ電圧になるから、この時IGBTQ1,Q2をターンオンすればゼロ電圧スイッチングとなる。 If operated in this way, the MOSFET Q3 is turned off to bring the collector-emitter between the IGBTs Q1 and Q2 to zero voltage. If the IGBTs Q1 and Q2 are turned on at this time, zero voltage switching is performed.
 このように、実施例4のAC-DCコンバータ30では、AC-DC変換とDC-AC変換の両方の動作においてゼロ電圧スイッチングできる。 Thus, in the AC-DC converter 30 of the fourth embodiment, zero voltage switching can be performed in both the AC-DC conversion and the DC-AC conversion operations.
 また、この実施例4のAC-DCコンバータ30では、複数のスイッチング素子を含んだスイッチングモジュールを利用することで、回路を小型化することができる。 In the AC-DC converter 30 of the fourth embodiment, the circuit can be reduced in size by using a switching module including a plurality of switching elements.
 また、実施例4のAC-DCコンバータ30を適用すると、太陽光発電システムやUPSの効率を向上することができる。 Moreover, when the AC-DC converter 30 of the fourth embodiment is applied, the efficiency of the solar power generation system and UPS can be improved.
 図10は、本発明によるAC-DCコンバータ10を採用した、プラグインハイブリット自動車の電源システムの概要構成図である。動力用蓄電池103に接続されたDC-DCコンバータ102と、交流電源101との間にAC-DCコンバータ10が接続される。なお、AC-DCコンバータ10やDC-DCコンバータ102は、車両に搭載される場合と地上に設置される場合とがある。 FIG. 10 is a schematic configuration diagram of a power supply system for a plug-in hybrid vehicle employing the AC-DC converter 10 according to the present invention. The AC-DC converter 10 is connected between the DC-DC converter 102 connected to the power storage battery 103 and the AC power supply 101. Note that the AC-DC converter 10 and the DC-DC converter 102 may be mounted on a vehicle or installed on the ground.
 この実施例によれば、本発明によるAC-DCコンバータ10を用いることで、変換効率の向上と、電源回路の小型化が可能となり、二酸化炭素排出量の削減、電源装置のコスト削減、ランニングコストの低減ができる。 According to this embodiment, by using the AC-DC converter 10 according to the present invention, it is possible to improve the conversion efficiency and reduce the size of the power supply circuit, reduce the carbon dioxide emission, reduce the cost of the power supply device, and the running cost. Can be reduced.
 図11は、本発明によるAC-DCコンバータ10を採用した、情報ストレージ装置の電源装置の概略構成図である。コントローラ106とハードディスク107とメモリ108とに接続されたDC-DCコンバータ105と、交流電源104との間にAC-DCコンバータ10が接続される。AC-DCコンバータ10で交流電力を直流電力に変換し、DC-DCコンバータ105でコントローラ106,ハードディスク107,メモリ108に必要とされる電圧に変換し、電力を供給する。 FIG. 11 is a schematic configuration diagram of a power supply apparatus for an information storage apparatus that employs an AC-DC converter 10 according to the present invention. The AC-DC converter 10 is connected between the DC-DC converter 105 connected to the controller 106, the hard disk 107, and the memory 108 and the AC power supply 104. The AC-DC converter 10 converts AC power into DC power, and the DC-DC converter 105 converts the AC power into voltages required for the controller 106, the hard disk 107, and the memory 108, and supplies power.
 この実施例6によれば、本発明によるAC-DCコンバータ10を用いることで、変換効率の向上と、電源回路の小型化が可能となり、二酸化炭素排出量の削減、電源装置のコスト削減、消費電力の削減ができる。 According to the sixth embodiment, by using the AC-DC converter 10 according to the present invention, it is possible to improve the conversion efficiency and reduce the size of the power supply circuit, thereby reducing the carbon dioxide emission amount, the cost reduction of the power supply device, and the consumption. Electric power can be reduced.
 以上、スイッチング素子の一例として、MOSFETやIGBTを用いて説明したが、もちろん他の素子を用いることも可能である。また、ダイオードやスイッチング素子としてSiCデバイスを使用すれば、大電力を必要とするAC-DCコンバータや高温で動作するAC-DCコンバータにも本発明を適用することができ、同様に効率を向上させることができる。 As described above, MOSFETs and IGBTs have been described as examples of switching elements, but other elements can of course be used. In addition, if a SiC device is used as a diode or a switching element, the present invention can be applied to an AC-DC converter that requires a large amount of power or an AC-DC converter that operates at a high temperature, and the efficiency is similarly improved. be able to.
 10,11,20,30…AC-DCコンバータ、1…補助回路、2,12,22…制御手段、3,4,13,14,16…電圧センサ、5,6,15…電流センサ、V1…交流電源、V2…3相交流電源、V3…直流電源、R1…直流負荷、LN0…出力負母線、LN1…出力正母線、N0~N4…ノード、Ls0,Ls1,Ls2…平滑用リアクトル、Cs…平滑用コンデンサ、Ds0,Ds1,Ds2…整流用ダイオード、Q0,Q1,Q2,Q11,Q12…スイッチング素子、Lr…共振用リアクトル、Cr…共振用コンデンサ、C0,C1,C2,C11,C12…スナバコンデンサ、D0,D1,D2,D11,D12…ダイオード。 10, 11, 20, 30 ... AC-DC converter, 1 ... auxiliary circuit, 2, 12, 22 ... control means, 3, 4, 13, 14, 16 ... voltage sensor, 5, 6, 15 ... current sensor, V1 ... AC power supply, V2 ... 3-phase AC power supply, V3 ... DC power supply, R1 ... DC load, LN0 ... Output negative bus, LN1 ... Output positive bus, N0 to N4 ... Node, Ls0, Ls1, Ls2 ... Smoothing reactor, Cs ... smoothing capacitors, Ds0, Ds1, Ds2 ... rectifying diodes, Q0, Q1, Q2, Q11, Q12 ... switching elements, Lr ... resonant reactors, Cr ... resonant capacitors, C0, C1, C2, C11, C12 ... Snubber capacitors, D0, D1, D2, D11, D12 ... diodes.

Claims (14)

  1.  各々が整流素子と主スイッチング素子とを直列接続した2組の上下アームを並列接続して形成されたコンバータの主スイッチング回路、
     前記各主スイッチング素子にそれぞれ並列接続されたスナバコンデンサ、
     前記各主スイッチング素子にそれぞれ逆並列接続されたとダイオード及び/又はボディダイオード、
     前記コンバータの交流端子である2組の前記上下アームの直列接続点間に、平滑用リアクトルを介して接続された交流電源、および
     前記コンバータの直流端子である前記主スイッチング回路の両端間に、それぞれ並列接続された平滑用コンデンサと直流負荷を備えたAC-DCコンバータにおいて、
     前記主スイッチング回路の一方の直流端子と前記平滑用コンデンサの一端との間に挿入された共振用リアクトル、
     前記共振用リアクトルの一端に接続された、補助スイッチング素子と共振用コンデンサとの直列接続体、
     前記補助スイッチング素子と前記共振用リアクトルと前記共振用コンデンサとを含む補助回路、及び
     前記各主スイッチング素子と前記補助スイッチング素子とをオンオフさせる制御手段を備えたことを特徴とするAC-DCコンバータ。
    A main switching circuit of a converter formed by connecting in parallel two sets of upper and lower arms, each of which has a rectifying element and a main switching element connected in series;
    A snubber capacitor connected in parallel to each of the main switching elements,
    A diode and / or a body diode connected in reverse parallel to each of the main switching elements,
    Between the series connection points of the two sets of upper and lower arms that are AC terminals of the converter, between the AC power source connected via a smoothing reactor, and between both ends of the main switching circuit that is the DC terminal of the converter, In an AC-DC converter having a smoothing capacitor and a DC load connected in parallel,
    A resonant reactor inserted between one DC terminal of the main switching circuit and one end of the smoothing capacitor;
    A series connection body of an auxiliary switching element and a resonance capacitor connected to one end of the resonance reactor,
    An AC-DC converter comprising: an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; and control means for turning on and off each of the main switching elements and the auxiliary switching elements.
  2.  第1,第2の主スイッチング素子と、第1,第2の整流素子と、前記第1の整流素子と前記第1の主スイッチング素子とを直列接続した第1の上下アームと、前記第2の整流素子と前記第2の主スイッチング素子とを直列接続した第2の上下アームと、前記第1,第2の上下アームを並列接続した主スイッチング回路と、前記第1,第2の上下アームの各主スイッチング素子と整流素子との直列接続点と交流電源との間に接続した平滑用リアクトルと、前記主スイッチング回路の両端間に接続し且つ直流負荷に並列接続した平滑用コンデンサと、前記各主スイッチング素子にそれぞれ並列接続されたスナバコンデンサと、前記各主スイッチング素子にそれぞれ逆並列接続されたダイオード及び/又はボディダイオードを備え、前記交流電源のエネルギーを前記直流負荷に供給するAC-DCコンバータにおいて、前記主スイッチング回路の一端と前記平滑用コンデンサの一端との間に挿入された共振用リアクトルと、前記共振用リアクトルの一端に接続された補助スイッチング素子と共振用コンデンサとの直列接続体と、前記補助スイッチング素子と前記共振用リアクトルと前記共振用コンデンサとを含む補助回路と、前記第1,第2の主スイッチング素子と前記補助スイッチング素子とをオンオフさせる制御手段とを備えたことを特徴とするAC-DCコンバータ。 First and second main switching elements; first and second rectifying elements; a first upper and lower arm in which the first rectifying element and the first main switching element are connected in series; and the second A second upper and lower arm in which the rectifying element and the second main switching element are connected in series, a main switching circuit in which the first and second upper and lower arms are connected in parallel, and the first and second upper and lower arms A smoothing reactor connected between a series connection point of each main switching element and the rectifying element and an AC power supply, a smoothing capacitor connected between both ends of the main switching circuit and connected in parallel to a DC load, and The AC power supply comprising: a snubber capacitor connected in parallel to each main switching element; and a diode and / or a body diode connected in antiparallel to each main switching element. In the AC-DC converter for supplying energy to the DC load, a resonance reactor inserted between one end of the main switching circuit and one end of the smoothing capacitor, and an auxiliary connected to one end of the resonance reactor A series connection body of a switching element and a resonance capacitor, an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; the first and second main switching elements; and the auxiliary switching element; And an AC-DC converter characterized by comprising control means for turning on and off.
  3.  請求項1または2において、前記補助回路は、前記共振用リアクトルに、前記補助スイッチング素子と前記共振用コンデンサとの直列接続体が並列接続され、前記補助スイッチング素子に並列接続されたスナバコンデンサと、前記補助スイッチング素子に逆並列接続されたダイオード及び/又はボディダイオードを備えたことを特徴とするAC-DCコンバータ。 The auxiliary circuit according to claim 1 or 2, wherein the auxiliary circuit has a series connection body of the auxiliary switching element and the resonance capacitor connected in parallel to the resonance reactor, and a snubber capacitor connected in parallel to the auxiliary switching element; An AC-DC converter comprising a diode and / or a body diode connected in reverse parallel to the auxiliary switching element.
  4.  請求項1または2において、前記補助回路は、前記主スイッチング回路の一端と前記共振用リアクトルの接続点と、前記主スイッチング回路の他端との間に接続された前記補助スイッチング素子と前記共振用コンデンサとの直列接続体と、前記補助スイッチング素子に並列接続されたスナバコンデンサと、前記補助スイッチング素子に逆並列接続されたダイオード及び/又はボディダイオードを備えたことを特徴とするAC-DCコンバータ。 3. The auxiliary circuit according to claim 1, wherein the auxiliary circuit includes the auxiliary switching element connected between one end of the main switching circuit, a connection point of the resonance reactor, and the other end of the main switching circuit. An AC-DC converter comprising: a series connection body with a capacitor; a snubber capacitor connected in parallel to the auxiliary switching element; and a diode and / or a body diode connected in reverse parallel to the auxiliary switching element.
  5.  請求項1において、前記制御手段は、前記交流電源のエネルギーを前記平滑用リアクトルに蓄積し、前記平滑用リアクトルが放出したエネルギーを前記共振用コンデンサに蓄積し、前記共振用コンデンサが放出したエネルギーを、前記補助スイッチング素子を介して前記共振用リアクトルに蓄積し、前記共振用リアクトルに蓄積されたエネルギーを利用して、前記主スイッチング素子がオンする前に、主スイッチング素子に並列接続された前記スナバコンデンサに蓄えられた電荷を引き抜くように構成したことを特徴とするAC-DCコンバータ。 2. The control unit according to claim 1, wherein the control unit accumulates the energy of the AC power source in the smoothing reactor, accumulates the energy released by the smoothing reactor in the resonance capacitor, and stores the energy released by the resonance capacitor. The snubber is connected to the main switching element in parallel before the main switching element is turned on using the energy stored in the resonance reactor via the auxiliary switching element and the energy stored in the resonance reactor. An AC-DC converter characterized in that the electric charge stored in the capacitor is extracted.
  6.  請求項1において、前記制御手段は、前記交流電源の半周期内において、前記主スイッチング素子の一方をオンに固定した状態で、前記主スイッチング素子の他方と前記補助スイッチング素子を、共にオフする期間を挟んで、交互にオン/オフさせるように構成したことを特徴とするAC-DCコンバータ。 2. The period according to claim 1, wherein the control unit is configured to turn off the other of the main switching elements and the auxiliary switching element in a state where one of the main switching elements is fixed on in a half cycle of the AC power supply. An AC-DC converter characterized by being configured to be alternately turned on / off with a pinch interposed therebetween.
  7.  請求項1または2において、前記制御手段は、2つの前記主スイッチング素子を同期してオン/オフさせるとともに、それらの一方と、前記補助スイッチング素子を、共にオフする期間を挟んで、交互にオン/オフさせるように構成したことを特徴とするAC-DCコンバータ。 3. The control unit according to claim 1, wherein the control unit turns on / off the two main switching elements in synchronization and alternately turns on one of them and the auxiliary switching element with a period during which both of the auxiliary switching elements are turned off. An AC-DC converter characterized by being configured to be turned off.
  8.  請求項1または2において、前記制御手段は、2つの前記主スイッチング素子がオンの状態かつ前記補助スイッチング素子がオフの状態から、まず2つの前記主スイッチング素子がオン状態の時に、前記補助スイッチング素子をターンオンし、次に前記補助スイッチング素子がオン状態の時に、2つの前記主スイッチング素子をターンオフし、次に2つの前記主スイッチング素子がオフ状態の時に、前記補助スイッチング素子をターンオフし、最後に補助スイッチング素子がオフ状態の時に、2つの前記主スイッチング素子をターンオンし、2つの前記主スイッチング素子がオンの状態かつ前記補助スイッチング素子がオフの状態に戻るスイッチング動作を繰り返すようにしたことを特徴とするAC-DCコンバータ。 3. The auxiliary switching element according to claim 1, wherein the control means is configured such that when the two main switching elements are first turned on from the state where the two main switching elements are turned on and the auxiliary switching element is turned off, Then turn off the two main switching elements when the auxiliary switching element is on, and then turn off the auxiliary switching element when the two main switching elements are off, and finally When the auxiliary switching element is in the off state, the two main switching elements are turned on, and the switching operation for returning the two main switching elements to the on state and the auxiliary switching element to the off state is repeated. AC-DC converter.
  9.  請求項1において、前記平滑用コンデンサの電圧を検出する第1の電圧センサと前記平滑用リアクトルに流れる入力電流を検出する電流センサとを備え、前記制御手段は、2つの前記主スイッチング素子と前記補助スイッチング素子のオン期間とオフ期間の割合を制御するPWM制御と,前記入力電流を正弦波状に制御する力率改善制御とを備えたことを特徴とするAC-DCコンバータ。 2. The first voltage sensor for detecting a voltage of the smoothing capacitor and a current sensor for detecting an input current flowing through the smoothing reactor according to claim 1, wherein the control means includes the two main switching elements and the An AC-DC converter comprising PWM control for controlling a ratio between an on period and an off period of an auxiliary switching element and power factor improvement control for controlling the input current in a sine wave form.
  10.  請求項1において、前記制御手段は、2つの前記主スイッチング素子と前記補助スイッチング素子のスイッチング周波数を、前記交流電源の電圧が低下した場合には下げ、前記交流電源の電圧が増加した場合には上げるようにしたことを特徴とするAC-DCコンバータ。 2. The control means according to claim 1, wherein the control means lowers the switching frequency of the two main switching elements and the auxiliary switching element when the voltage of the AC power supply decreases and when the voltage of the AC power supply increases. An AC-DC converter characterized by being raised.
  11.  請求項1において、前記制御手段は、2つの前記主スイッチング素子と前記補助スイッチング素子のスイッチング周波数を、入力電流が増加した場合には下げ、前記入力電流が低下した場合には上げるようにしたことを特徴とするAC-DCコンバータ。 2. The control means according to claim 1, wherein the switching frequency of the two main switching elements and the auxiliary switching element is decreased when the input current is increased and is increased when the input current is decreased. AC-DC converter characterized by the above.
  12.  各々が整流素子と主スイッチング素子とを直列接続した3組の上下アームが並列接続されて形成されたコンバータの主スイッチング回路、
     前記各主スイッチング素子にそれぞれ並列接続されたスナバコンデンサ、
     前記各主スイッチング素子にそれぞれ逆並列接続されたダイオード及び/又はボディダイオード、
     前記コンバータの交流端子である3組の前記上下アーム内の直列接続点間に、平滑用リアクトルを介して接続された交流電源、および
     前記コンバータの直流端子である前記主スイッチング回路の両端間に、それぞれ並列接続された平滑用コンデンサと直流負荷を備えたAC-DCコンバータにおいて、
     前記主スイッチング回路の一方の直流端子と前記平滑用コンデンサの一端との間に挿入された共振用リアクトル、
     前記共振用リアクトルの一端に接続された、補助スイッチング素子と共振用コンデンサとの直列接続体、
     前記補助スイッチング素子と前記共振用リアクトルと前記共振用コンデンサとを含む補助回路、および
     前記3つの主スイッチング素子と前記補助スイッチング素子とをオン/オフさせる制御手段とを備えたことを特徴とするAC-DCコンバータ。
    A main switching circuit of a converter formed by connecting three sets of upper and lower arms, each of which is a series connection of a rectifying element and a main switching element, in parallel;
    A snubber capacitor connected in parallel to each of the main switching elements,
    A diode and / or a body diode connected in reverse parallel to each of the main switching elements,
    Between series connection points in three sets of the upper and lower arms that are AC terminals of the converter, between an AC power source connected via a smoothing reactor, and between both ends of the main switching circuit that is a DC terminal of the converter, In an AC-DC converter having a smoothing capacitor and a DC load connected in parallel,
    A resonant reactor inserted between one DC terminal of the main switching circuit and one end of the smoothing capacitor;
    A series connection body of an auxiliary switching element and a resonance capacitor connected to one end of the resonance reactor,
    An AC comprising: an auxiliary circuit including the auxiliary switching element, the resonance reactor, and the resonance capacitor; and control means for turning on / off the three main switching elements and the auxiliary switching element. -DC converter.
  13.  請求項12において、前記交流電源のエネルギーを前記平滑用リアクトルに蓄積し、前記平滑用リアクトルが放出したエネルギーを前記共振用コンデンサに蓄積し、前記共振用コンデンサが放出したエネルギーを、前記補助スイッチング素子を介して前記共振用リアクトルに蓄積し、前記共振用リアクトルに蓄積されたエネルギーを利用して、前記主スイッチング素子がオンする直前に、前記主スイッチング素子に並列接続された前記スナバコンデンサに蓄えられた電荷を引き抜くように構成したことを特徴とするAC-DCコンバータ。 13. The auxiliary switching element according to claim 12, wherein energy of the AC power source is stored in the smoothing reactor, energy released by the smoothing reactor is stored in the resonance capacitor, and energy released by the resonance capacitor is stored in the auxiliary switching element. Is stored in the snubber capacitor connected in parallel to the main switching element immediately before the main switching element is turned on using the energy stored in the resonance reactor. An AC-DC converter characterized in that it is configured to draw out the charged charges.
  14.  請求項1において、前記整流素子をスイッチング素子に変更し、前記平滑用コンデンサと並列に直流電源を接続し、双方向に電力変換するように構成したことを特徴とするAC-DCコンバータ。 2. The AC-DC converter according to claim 1, wherein the rectifying element is changed to a switching element, a DC power source is connected in parallel with the smoothing capacitor, and bidirectional power conversion is performed.
PCT/JP2009/007093 2008-12-23 2009-12-22 Ac-dc converter WO2010073602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980151999.7A CN102265499B (en) 2008-12-23 2009-12-22 Ac-dc converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008326675A JP5271691B2 (en) 2008-12-23 2008-12-23 AC-DC converter
JP2008-326675 2008-12-23

Publications (1)

Publication Number Publication Date
WO2010073602A1 true WO2010073602A1 (en) 2010-07-01

Family

ID=42287249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007093 WO2010073602A1 (en) 2008-12-23 2009-12-22 Ac-dc converter

Country Status (3)

Country Link
JP (1) JP5271691B2 (en)
CN (1) CN102265499B (en)
WO (1) WO2010073602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825410B1 (en) * 2014-08-06 2015-12-02 Tdk株式会社 Bridgeless power factor correction converter
CN109905043A (en) * 2019-04-02 2019-06-18 浙江大学 A kind of modulator approach of the three-phase four-wire system Sofe Switch rectifier with uniform voltage function
EP4075651A1 (en) * 2021-04-16 2022-10-19 Delta Electronics, Inc. Ac-dc power conversion system with zero voltage switching

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928865B2 (en) * 2010-11-18 2016-06-01 富士電機株式会社 Control method of non-contact power feeding device
JP2012175833A (en) * 2011-02-22 2012-09-10 Minebea Co Ltd Switching power supply device
JP5772357B2 (en) * 2011-08-02 2015-09-02 トヨタ自動車株式会社 CHARGE SYSTEM, VEHICLE MOUNTING THE SAME, AND CHARGING DEVICE CONTROL METHOD
JP5691925B2 (en) * 2011-08-03 2015-04-01 トヨタ自動車株式会社 CHARGE SYSTEM, VEHICLE MOUNTING THE SAME, AND CHARGING DEVICE CONTROL METHOD
CN102969885B (en) * 2012-10-31 2015-08-26 上海交通大学 Without auxiliary voltage zero voltage switch Bridgeless Power Factor Corrector and modulator approach
CN103001484B (en) * 2012-10-31 2015-10-14 上海交通大学 The modulator approach of low auxiliary voltage zero voltage switch Bridgeless Power Factor Corrector
CN104184344A (en) * 2013-05-23 2014-12-03 东林科技股份有限公司 Full-bridge AC/DC conversion device and conversion method thereof
CN103346686B (en) * 2013-05-29 2015-08-05 浙江大学 A kind of DC source based on the power taking of current transformer resonance
CN107342698B (en) * 2017-08-24 2019-06-21 浙江大学 A kind of the three-phase and four-line zero voltage switch rectifier circuit and its modulator approach of band balance bridge arm
JP6911671B2 (en) 2017-09-22 2021-07-28 Tdk株式会社 Bridgeless power factor improvement circuit
KR102042850B1 (en) * 2017-12-29 2019-11-08 주식회사 경신 Power converting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178781A (en) * 1996-12-17 1998-06-30 Shindengen Electric Mfg Co Ltd Power factor improvement circuit for three-phase rectifier
JP2004072846A (en) * 2002-08-02 2004-03-04 Fuji Electric Holdings Co Ltd Rectifying device
JP2004201373A (en) * 2002-12-16 2004-07-15 Nec Computertechno Ltd Switching power circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178781A (en) * 1996-12-17 1998-06-30 Shindengen Electric Mfg Co Ltd Power factor improvement circuit for three-phase rectifier
JP2004072846A (en) * 2002-08-02 2004-03-04 Fuji Electric Holdings Co Ltd Rectifying device
JP2004201373A (en) * 2002-12-16 2004-07-15 Nec Computertechno Ltd Switching power circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825410B1 (en) * 2014-08-06 2015-12-02 Tdk株式会社 Bridgeless power factor correction converter
CN109905043A (en) * 2019-04-02 2019-06-18 浙江大学 A kind of modulator approach of the three-phase four-wire system Sofe Switch rectifier with uniform voltage function
EP4075651A1 (en) * 2021-04-16 2022-10-19 Delta Electronics, Inc. Ac-dc power conversion system with zero voltage switching
JP7281578B2 (en) 2021-04-16 2023-05-25 台達電子工業股▲ふん▼有限公司 power converter

Also Published As

Publication number Publication date
JP5271691B2 (en) 2013-08-21
CN102265499A (en) 2011-11-30
CN102265499B (en) 2014-04-09
JP2010154582A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5271691B2 (en) AC-DC converter
JP4768498B2 (en) Bidirectional DC-DC converter and power supply device using the same
CN102422518B (en) Power converter
Han et al. A new active clamping zero-voltage switching PWM current-fed half-bridge converter
US9431917B2 (en) Switching power supply including a rectifier circuit having switching elements, and electric power converter
US9539910B2 (en) Electric power system
US20150131339A1 (en) Power conversion apparatus
CN106208769B (en) Power conversion device
US9203323B2 (en) Very high efficiency uninterruptible power supply
WO2011161729A1 (en) Dc-dc converter
US9487098B2 (en) Power conversion apparatus
CN108702104A (en) Five-electrical level inverter topological circuit and three-phase five-level inverter topological circuit
US20140153287A1 (en) System and method for improving power conversion efficiency
CN107070231B (en) Series-parallel converter with multiple inputs and charging facility using same
JP2009027815A (en) Grid-connected converter device
CN210807100U (en) Power transmission circuit
Babaei et al. High step-down bridgeless Sepic/Cuk PFC rectifiers with improved efficiency and reduced current stress
Yao et al. Push–pull forward three-level converter with reduced rectifier voltage stress
CN100377481C (en) Integration converton with three phase power factor correction
JP6467524B2 (en) Power converter and railway vehicle
JP5355283B2 (en) DC-DC converter circuit
JP2016208693A (en) Power conversion device
JP2015122903A (en) Switching power-supply device and power conversion device
JP2005184965A (en) Voltage converter and automobile mounting it
CN106972752A (en) Can wide scope regulation output DC DC converters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151999.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834410

Country of ref document: EP

Kind code of ref document: A1