JPH10178781A - Power factor improvement circuit for three-phase rectifier - Google Patents

Power factor improvement circuit for three-phase rectifier

Info

Publication number
JPH10178781A
JPH10178781A JP8353452A JP35345296A JPH10178781A JP H10178781 A JPH10178781 A JP H10178781A JP 8353452 A JP8353452 A JP 8353452A JP 35345296 A JP35345296 A JP 35345296A JP H10178781 A JPH10178781 A JP H10178781A
Authority
JP
Japan
Prior art keywords
phase rectifier
power factor
phase
circuit
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8353452A
Other languages
Japanese (ja)
Other versions
JP3493273B2 (en
Inventor
Shinya Ofuji
晋也 大藤
Tetsuya Oshikata
哲也 押方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP35345296A priority Critical patent/JP3493273B2/en
Publication of JPH10178781A publication Critical patent/JPH10178781A/en
Application granted granted Critical
Publication of JP3493273B2 publication Critical patent/JP3493273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

PROBLEM TO BE SOLVED: To make a switching loss and oscillation of main switching elements as small as possible by the resonance of a coil for resonance and a capacitor connected in parallel to the main switching elements and thereby increasing the efficiency and lowering the noise. SOLUTION: Between the drains of main swithcing elements Q1, Q3, Q5 of a conventional three-phase power factor improvement circuit and the plus side of a capacitor CO for smoothing the output, a diode is inserted in the forward direction. Capacitors C1-C6 are connected in parallel to the main switching elements Q1-Q6 respectively. A series combination of an auxiliary switching element Q7, a transformer T1, and a resonance choke coil L4 is connected between the anode of the diode D7 and the minus side of the capacitor CO for smoothing the output, and the secondary side of the transformer T1 is connected to the output through the diode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三相整流器の力率
改善回路に於けるスイッチング損失やサージ電圧及びノ
イズ低減に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to switching loss, surge voltage and noise reduction in a power factor improving circuit of a three-phase rectifier.

【0002】[0002]

【従来の技術】図1は従来の三相整流器の力率改善回
路、図2はこの回路の各部動作波形示す。 図1に於い
て、Q1〜Q6は主スイッチ素子、例えばFET、D1〜
D6は主スイッチ素子Q1〜Q6の寄生ダイオード、C1〜
C6は主スイッチ素子Q1〜Q6の寄生容量又は外付け容
量、L1〜L3は昇圧及び力率改善用のインダクタンス、
C0は 出力平滑用のコンデンサ及びR0は負荷である。
又、VU,VV,VWは三相交流電源の各相電圧、V0は出
力電圧を示す。
2. Description of the Related Art FIG. 1 shows a power factor improving circuit of a conventional three-phase rectifier, and FIG. 2 shows operation waveforms of various parts of the circuit. In FIG. 1, Q1 to Q6 are main switch elements, for example, FETs, D1 to D1.
D6 is a parasitic diode of the main switching elements Q1 to Q6, C1 to
C6 is the parasitic capacitance or external capacitance of the main switch elements Q1 to Q6, L1 to L3 are inductances for boosting and improving the power factor,
C0 is a capacitor for smoothing the output, and R0 is a load.
VU, VV, and VW represent the phase voltages of the three-phase AC power supply, and V0 represents the output voltage.

【0003】図2の各部動作波形において、(1)は主ス
イッチ素子Q1〜Q6の駆動信号VGS、(2)、(3)
は、それぞれ主スイッチ素子Q1〜Q6のドレイン電流I
DSとドレイン・ソース間電圧VDS、(4)は主スイッチ
素子Q1〜Q6のスイッチング時の損失電力PLである。
又、TON,TOFFは主スイッチ素子Q1〜Q6のオン時間
及びオフ時間、Tは一周期を示す。 (3)
[0003] In the operation waveforms of the respective parts in FIG. 2, (1) is a drive signal VGS of the main switch elements Q1 to Q6, (2) and (3).
Are the drain currents I of the main switch elements Q1 to Q6, respectively.
DS and the drain-source voltage VDS, (4) is the loss power PL at the time of switching of the main switch elements Q1 to Q6.
Further, TON and TOFF indicate the on-time and off-time of the main switch elements Q1 to Q6, and T indicates one cycle. (3)

【0004】ドレイン電流IDSとドレイン・ソース間電
圧VDSが重なる時間においては、(4)で示す様なスイ
ッチング時の損失電力PLが発生し、スイッチング動作
が高周波になる程、この損失電力は大きくなり効率が低
下する。
During the time when the drain current IDS and the drain-source voltage VDS overlap, a loss power PL at the time of switching occurs as shown in (4), and the higher the switching operation becomes, the greater this loss power becomes. Efficiency decreases.

【0005】又、図2の(2)、(3)に示す主スイッ
チ素子Q1〜Q6の電流IDS、電圧VDSが、スイッチング
時に配線等の寄生インダクタンスにより、サージ電圧や
ノイズを発生させる等の問題を起こす。尚、各スイッチ
素子Q1〜Q6のスイッチング時の動作波形は、いずれも
図2と同じである。
Also, the current IDS and voltage VDS of the main switching elements Q1 to Q6 shown in FIGS. 2 (2) and 3 (3) cause problems such as generation of surge voltage and noise due to parasitic inductance such as wiring during switching. Cause The switching operation waveforms of the switching elements Q1 to Q6 are the same as those in FIG.

【0006】[0006]

【発明が解決しようとする課題】本発明は、この様な従
来技術の問題を解決し、三相整流器の力率改善回路を高
効率化、サージ電圧の低減及び低ノイズ化する事を目的
とするものである。又、従来の準共振型コンバータにみ
られる主スイッチ素子の電圧、電流ストレスを軽減出
来、更に制御上の難かしさも解決出来、コストアップ等
の要因も少なくなる。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to make a power factor improving circuit of a three-phase rectifier highly efficient, reduce surge voltage and reduce noise. Is what you do. Further, the voltage and current stress of the main switch element which are seen in the conventional quasi-resonant type converter can be reduced, the difficulty in control can be solved, and factors such as cost increase can be reduced.

【課題を解決する手段】[Means to solve the problem]

【0007】本発明は、三相整流器の制御用スイッチ素
子(以下、主スイッチ素子と言う)がスイッチングする
時に、電圧と電流が重ならない様にして、スイッチング
ロスを低減する様に構成されている。更に、主スイッチ
素子の寄生容量を含む並列容量の電荷を負荷に帰還して
効率アップを図る様に構成されている。
The present invention is configured to reduce switching loss by preventing voltage and current from overlapping when a control switch element (hereinafter referred to as a main switch element) of a three-phase rectifier switches. . Further, the charge of the parallel capacitance including the parasitic capacitance of the main switch element is fed back to the load to increase the efficiency.

【0008】本発明はこれを実現するために、三相交流
入力の各相に昇圧及び力率改善用のインダクタンスを接
続し、定電圧制御された整流電圧を出力する様に構成さ
れた三相整流器の力率改善回路に於いて、三相整流器の
出力端子間に、負荷側の電位 (4) の影響を受けない様にブロッキング素子を介在して、例
えば負荷に順方向のダイオードを介在して、共振チョー
ク、トランスの1次巻線及び補助スイッチ素子がオンし
た時のエネルギー及びトランスの励磁エネルギーを、負
荷に供給するように接続した事を特徴とする。又、共振
チョークはトランスのリーケージインダクタンスであっ
ても構わない。
In order to achieve this, the present invention connects a three-phase AC input to each phase of an inductance for boosting and improving a power factor, and outputs a rectified voltage controlled at a constant voltage. In the power factor correction circuit of the rectifier, a blocking element is interposed between the output terminals of the three-phase rectifier so as not to be affected by the potential (4) on the load side. For example, a forward diode is interposed in the load. The resonance choke, the primary winding of the transformer and the energy when the auxiliary switch element is turned on, and the excitation energy of the transformer are connected so as to be supplied to the load. Further, the resonance choke may be the leakage inductance of the transformer.

【0009】そして、補助スイッチ素子がオンする時の
タイミングは、三相整流器の出力電圧制御用の主スイッ
チ素子がオンする前であり、かつ、主スイッチ素子のオ
フ時の並列容量の電荷が、主スイッチ素子がオンする時
にはゼロになるに充分な時間間隔がある必要がある。
又、補助スイッチ素子のオフ時のタイミングは、共振チ
ョークに蓄えられたエネルギーがゼロになった後である
必要がある。
The timing when the auxiliary switch element is turned on is before the main switch element for controlling the output voltage of the three-phase rectifier is turned on, and the charge of the parallel capacitance when the main switch element is turned off is: When the main switch element is turned on, there must be a sufficient time interval to reach zero.
Further, the timing of turning off the auxiliary switch element needs to be after the energy stored in the resonance choke becomes zero.

【0010】尚、三相整流器の主スイッチ素子は、三相
全波電圧を制御する様に構成した6個の制御素子でもよ
いし、三相ワンサイドスイッチを制御する様に構成した
3個の制御素子でもよい。また、主スイッチ素子は、三
相整流器を無制御素子で構成し、出力電圧を制御する様
に構成した1個の制御素子でもよい。そして、これらの
制御素子はFET、IGBT、サイリスタ、トランジス
タ等の制御機能を有する素子なら何でも構わない。又、
各主スイッチ素子には、並列にコンデンサ及び逆並列に
ダイオードが接続されており、これらの並列素子は主ス
イッチ素子の寄生容量や寄生ダイオードであっても構わ
ない。
The main switch elements of the three-phase rectifier may be six control elements configured to control a three-phase full-wave voltage, or three control elements configured to control a three-phase one-side switch. A control element may be used. In addition, the main switch element may be a single control element in which a three-phase rectifier is formed by a non-control element and the output voltage is controlled. These control elements may be any elements having a control function, such as FETs, IGBTs, thyristors, and transistors. or,
Each main switch element is connected with a capacitor in parallel and a diode in antiparallel, and these parallel elements may be a parasitic capacitance or a parasitic diode of the main switch element.

【0011】[0011]

【実施の形態】図3は、本発明の三相整流器の力率改善
回路に於ける第一の実施例である。又、図4は、図3の
回路各部動作波形を示す。本発明の回路に於いて、図1
の従来技術と同じ部分は同じ記号を付し、説明の (5) 重複はさける。
FIG. 3 shows a first embodiment of a power factor improving circuit for a three-phase rectifier according to the present invention. FIG. 4 shows operation waveforms of respective parts of the circuit of FIG. In the circuit of the present invention, FIG.
The same parts as those of the prior art are denoted by the same reference numerals, and the description (5) is omitted.

【0012】本発明は、三相整流器の出力端子間に、共
振チョークL4とトランスT1の1次巻線及び補助スイッ
チ素子Q7の直列回路を接続する。そしてこの直列回路
は、負荷R0及び平滑用のコンデンサC0の電圧の影響を
受けない様に、負荷側に対してブロッキングする様に回
路を構成する。すなわち、整流器の正側出力端子より順
方向のダイオードD7を介して平滑コンデンサC0及び負
荷R0の正極に接続し、このダイオードD7のアノードに
共振チョークL4の一端を接続し、直列回路の補助スイ
ッチ素子Q7の一端を負極に接続する。
According to the present invention, a series circuit of the resonance choke L4, the primary winding of the transformer T1, and the auxiliary switch element Q7 is connected between the output terminals of the three-phase rectifier. The series circuit is configured to block the load side so as not to be affected by the load R0 and the voltage of the smoothing capacitor C0. That is, the positive side output terminal of the rectifier is connected to the positive electrode of the smoothing capacitor C0 and the load R0 via the forward diode D7, one end of the resonant choke L4 is connected to the anode of the diode D7, and the auxiliary switch element of the series circuit is connected. One end of Q7 is connected to the negative electrode.

【0013】又、トランスT1の2次巻線の両端は、補
助スイッチ素子Q7がON時のトランスT1の電流及びト
ランスT1の励磁エネルギーを負荷に帰還する様に、ダ
イオードを介して負荷R0側の端子に接続する。図に示
すダイオードはD8の構成は、トランスT1の電流のみを
帰還する様になっているが、トランスT1の2次巻線を
センタータップにして、ダイオードを2ヶ用いて全波整
流構成にすれば、励磁エネルギーも負荷に帰還する事が
出来る。あるいはトランスT1の2次側をブリッジ構成
にして帰還してもよい。
Both ends of the secondary winding of the transformer T1 are connected via a diode to the load R0 via a diode so that the current of the transformer T1 and the excitation energy of the transformer T1 when the auxiliary switching element Q7 is ON are fed back to the load. Connect to terminal. Although the diode D8 shown in the figure has a configuration in which only the current of the transformer T1 is fed back, the secondary winding of the transformer T1 is used as a center tap, and a full-wave rectification configuration using two diodes is adopted. In this case, the excitation energy can be returned to the load. Alternatively, the secondary side of the transformer T1 may be bridged and fed back.

【0014】又、トランスT1の1次巻線NPと2次巻線
NSの巻数比nは、NS/NPとなる様に選ぶ。
The turns ratio n between the primary winding NP and the secondary winding NS of the transformer T1 is selected to be NS / NP.

【0015】図4は図3の回路の各部動作波形を示し
て、(1)は主スイッチ素子のゲート入力電圧VGS1、
(2)は補助スイッチ素子Q7のゲート入力電圧VGS2、
(3)はダイオードD7のアノード側の電圧Vr、(4)
は補助スイッチ素子Q7に流れるドレイン電流IQ7、
(5)はダイオードD7に流れる電流ID7を表す。又、
V0は出力電圧、IDは主スイッチ素子Q1、Q3、Q5ド
レイン電流の和である。 (6)
FIG. 4 shows the operation waveform of each part of the circuit of FIG. 3, and (1) shows the gate input voltage VGS1 of the main switch element,
(2) is the gate input voltage VGS2 of the auxiliary switch element Q7,
(3) is the voltage Vr on the anode side of the diode D7, (4)
Is a drain current IQ7 flowing through the auxiliary switch element Q7,
(5) represents the current ID7 flowing through the diode D7. or,
V0 is the output voltage, and ID is the sum of the main switch elements Q1, Q3 and Q5 drain currents. (6)

【0016】以下、本発明の三相整流器の力率改善回路
について、詳細動作を図3、図4を用いて説明する。説
明を簡単にするため、交流入力のインダクタンスL1〜
L3に流れる電流は、スイッチングの一周期においては
定電流源として扱い、又、主スイッチ素子Q1〜Q6、補
助スイッチ素子Q7、ダイオードD1〜D8、D11の電圧
降下及び配線による電圧降下は無いものとする。
The detailed operation of the power factor improving circuit for a three-phase rectifier according to the present invention will be described below with reference to FIGS. For simplicity of explanation, the AC input inductance L1 ~
The current flowing through L3 is treated as a constant current source during one cycle of switching, and there is no voltage drop of main switch elements Q1 to Q6, auxiliary switch element Q7, diodes D1 to D8, D11 and no voltage drop due to wiring. I do.

【0017】[0017]

【t1〜t2期間】時刻t1で補助スイッチ素子Q7がター
ンオンする。ダイオードのD7に流れていた電流ID7
は、補助スイッチ素子Q7の方へ分流し、時刻t2でゼロ
に達する。又、この時補助スイッチ素子Q7に流れる電
流IQ7の立上がり時間は、共振チョークL4とトランス
T1の1次巻線に発生する電圧、および出力電圧によっ
て決まる。
[Period t1 to t2] At time t1, the auxiliary switch element Q7 is turned on. Current ID7 flowing through diode D7
Shunts toward the auxiliary switching element Q7 and reaches zero at time t2. At this time, the rise time of the current IQ7 flowing through the auxiliary switch element Q7 is determined by the voltage generated in the resonance choke L4 and the primary winding of the transformer T1, and the output voltage.

【0018】補助スイッチQ7の電流IQ7の立上がり時
間は(1)式で表される。 △t1=t2−t1=L4・ID/(V0−V0/n) 但し、IDは主スイッチ素子Q1、Q3、Q5のドレイン
より流れ出る電流の和
The rise time of the current IQ7 of the auxiliary switch Q7 is expressed by equation (1). Δt1 = t2−t1 = L4 · ID / (V0−V0 / n) where ID is the sum of the currents flowing out of the drains of the main switch elements Q1, Q3 and Q5.

【0019】したがって、補助スイッチ素子Q7はゼロ
電流スイッチング(ZCS)動作 を行なうため、補助
スイッチング素子Q7のスイッチング損失は極めて少な
いも のとなる。
Therefore, since auxiliary switching element Q7 performs a zero current switching (ZCS) operation, the switching loss of auxiliary switching element Q7 is extremely small.

【0020】又、トランスT1の2次巻線には、ダイオ
ードD8を通して補助スイッチ素子Q7の電流IQ7のト
ランスの巻数比分の一の電流、すなわちIQ7/nが流
れる。
In the secondary winding of the transformer T1, a current equal to the transformer turns ratio of the current IQ7 of the auxiliary switch element Q7, ie, IQ7 / n, flows through the diode D8.

【0021】又、交流入力のインダクタンスL1〜L3に
は、定電流が流れ続け、ダイオード (7) D7によりVrは出力電流V0にクランプされているた
め、各相の主スイッチ素子Q1〜Q6と並列のいずれかの
コンデンサC1〜C6はV0に充電されている。
Further, since a constant current continues to flow in the inductances L1 to L3 of the AC input and Vr is clamped to the output current V0 by the diode (7) D7, it is connected in parallel with the main switch elements Q1 to Q6 of each phase. Of the capacitors C1 to C6 are charged to V0.

【0022】[0022]

【t2〜t3期間】時刻t2で補助スイッチ素子Q7の電流
IQ7が電流IDに達すると、出力電圧V0に充電されて
いる主スイッチ素子Q1〜Q6と並列に接続されたコンデ
ンサC1〜C6の電圧が放電を開始する。
[T2 to t3 period] When the current IQ7 of the auxiliary switch element Q7 reaches the current ID at time t2, the voltage of the capacitors C1 to C6 connected in parallel with the main switch elements Q1 to Q6 charged to the output voltage V0 is increased. Start discharging.

【0023】時刻t3でそのコンデンサ電圧がゼロにな
る。すなわち、ダイオードD7のアノードと出力平滑用
のコンデンサC0のマイナス間の電圧Vrがゼロになる。
At time t3, the capacitor voltage becomes zero. That is, the voltage Vr between the anode of the diode D7 and the output smoothing capacitor C0 becomes zero.

【0024】そして、Vrがゼロボルトになるまでの時
間は次の式で表すことができる。 △t2=t3−t2=1/W・arc cos〔1/(1−n) (2) W=(L4・C)-1/2 C:出力電圧V0に充電されている各相のコンデンサの
値の和
The time until Vr reaches zero volts can be expressed by the following equation. Δt2 = t3−t2 = 1 / W · arc cos [1 / (1-n) (2) W = (L4 · C) −1/2 C: The capacitor of each phase charged to the output voltage V0 Sum of values

【0025】又、電圧Vrがゼロボルトになるための条
件は、n≧2でなければならない。更にダイオードD7
の電圧は、ダイオードD7に流れていた電流ID7が、時
刻t2で、ゼロになってからゆるやかに印加されるた
め、リカバリー発生が少ないものとなり、それによりサ
ージ電圧やノイズの発生は極めて少なくなる。
The condition for the voltage Vr to become zero volts must be n ≧ 2. Furthermore, diode D7
Since the current ID7, which has been flowing through the diode D7, is gradually applied after it becomes zero at time t2, the occurrence of recovery is reduced, and the generation of surge voltage and noise is extremely reduced.

【0026】[0026]

【t3〜t4期間】時刻t3で電圧Vrがゼロボルトになる
と、補助スイッチ素子Q7の電流IQ7は、共振チョーク
L4にエネルギーが残っているため、ダイオードD1〜D
6や、オンしている主スイッチ素子を通して流れ続け
る。この期間△t3は次の式より求めることができる。
[T3 to t4 period] When the voltage Vr becomes zero volt at the time t3, the current IQ7 of the auxiliary switching element Q7 has the energy remaining in the resonance choke L4, and therefore the diodes D1 to D4.
6 and continue to flow through the main switch element that is on. This period Δt3 can be obtained from the following equation.

【0027】 (8) △t3=(t4−t3)=L4〔IQ7(t3)−ID〕/(V0/n) (3) 但しIQ7(t3)は、時刻t3時での補助スイッチ素子
Q7に流れている電流値
(8) Δt 3 = (t 4 −t 3) = L 4 [IQ 7 (t 3) −ID] / (V 0 / n) (3) However, IQ 7 (t 3) is the auxiliary switching element Q 7 at time t 3. Current value flowing

【0028】又、この期間で主スイッチ素子がターンオ
ンすることにより、ゼロ電圧スイッチング(ZVS)動
作が可能となる。
Further, the main switch element is turned on during this period, thereby enabling a zero voltage switching (ZVS) operation.

【0029】[0029]

【t4〜t5期間】時刻t4で補助スイッチ素子Q7に流れ
ていた電流IQ7が主スイッチ素子Q1、Q3、Q5のドレ
インより流れ出る電流の和IDに達するため、主スイッ
チ素子へ分流し始める。そして時刻t5でゼロに達す
る。
[Period t4 to t5] At time t4, the current IQ7 flowing through the auxiliary switching element Q7 reaches the sum ID of the currents flowing out from the drains of the main switching elements Q1, Q3 and Q5, so that the current IQ7 starts to shunt to the main switching element. Then, it reaches zero at time t5.

【0030】この期間t4は、次式により求めることが
できる。 △t4=t5−t4=L4・ID(V0/n) (4)
This period t4 can be obtained by the following equation. Δt4 = t5−t4 = L4 · ID (V0 / n) (4)

【0031】したがって、補助スイッチ素子Q7のター
ンオフは、ゼロ電流スイッチング(ZCS)動作させる
ため、t5以降に設定する必要がある。つまり、補助ス
イッチ素子Q7のターンオフ時間△tは△t1+△t2+
△t3+△4以上にする必要がある。
Therefore, the turn-off of the auxiliary switch element Q7 needs to be set after t5 in order to perform the zero current switching (ZCS) operation. That is, the turn-off time Δt of the auxiliary switching element Q7 is Δt1 + Δt2 +
It is necessary to make Δt3 + Δ4 or more.

【0032】図5は、本発明の第2の実施例で、三相整
流器のワンサイドスイッチを制御する制御素子、すなわ
ちQ2、Q4、Q6の3個のスイッチ素子で構成したもの
である。又、図6は、本発明の第3の実施例で、三相整
流器は無制御素子として、出力に1個の制御素子Q8を
用いたものである。いずれの方式の場合も、本発明に係
わる部分の回路構成は変わらない。
FIG. 5 shows a second embodiment of the present invention in which a control element for controlling a one-side switch of a three-phase rectifier, that is, three switch elements Q2, Q4 and Q6 is used. FIG. 6 shows a third embodiment of the present invention, in which the three-phase rectifier uses one control element Q8 at the output as a non-control element. In either case, the circuit configuration of the part related to the present invention does not change.

【0033】[0033]

【発明の効果】 (9) 本発明により、三相整流器の力率改善回路において、ス
イッチング時の共振作用により主スイッチ素子のスイッ
チング損失を低減すると共に、サージ電圧やノイズの低
減に効果があり、補助スイッチ素子自体もスイッチング
損失が極めて少なく、コンバータの高効率化、低ノイズ
化及び小型化が実現出来、産業上の効果大である。
(9) According to the present invention, in the power factor improving circuit of the three-phase rectifier, the switching action of the main switching element is reduced by the resonance action at the time of switching, and the surge voltage and noise are reduced. The auxiliary switch element itself has very little switching loss, and can achieve high efficiency, low noise, and downsizing of the converter, which is industrially significant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の三相整流器力率改善回路。FIG. 1 is a conventional three-phase rectifier power factor correction circuit.

【図2】従来の三相整流器力率改善回路の各部動作波
形。
FIG. 2 is an operation waveform of each part of the conventional three-phase rectifier power factor correction circuit.

【図3】本発明の三相整流器力率改善回路の第一の実施
例。
FIG. 3 is a first embodiment of a three-phase rectifier power factor correction circuit of the present invention.

【図4】本発明の第一実施例の各部動作波形。FIG. 4 is an operation waveform of each part according to the first embodiment of the present invention.

【図5】本発明の三相整流器力率改善回路の第二の実施
例。
FIG. 5 is a second embodiment of the three-phase rectifier power factor correction circuit of the present invention.

【図6】本発明の三相整流器力率改善回路の第三の実施
例。
FIG. 6 is a third embodiment of the three-phase rectifier power factor correction circuit of the present invention.

【符号の説明】[Explanation of symbols]

L1〜L3 インダクタンス L4 共振チョーク Q1〜Q6,Q11 主スイッチ素子 Q7 補助スイッチ素子 D1〜D8,D01〜D06,D11 ダイオード C1〜C6,C11 コンデンサ T1 トランス C0 平滑コンデンサ R0 負荷 L1 to L3 Inductance L4 Resonance choke Q1 to Q6, Q11 Main switch element Q7 Auxiliary switch element D1 to D8, D01 to D06, D11 Diode C1 to C6, C11 Capacitor T1 Transformer C0 Smoothing capacitor R0 Load

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 三相交流入力の各相にインダクタンスを
接続し、制御整流電圧を出力する三相整流器の力率改善
回路に於いて、 前記三相整流器の出力端子間に、負荷側の電位の影響を
受けない様に、ブロッキング素子を介して、共振チョー
ク、トランスの1次巻線及び補助スイッチ素子の直列回
路を接続し、かつ前記トランスの2次巻線より、前記補
助スイッチ素子がオン時のエネルギー及び前記トランス
の励磁エネルギーを、負荷に供給するように接続した事
を特徴とする三相整流器の力率改善回路。
In a power factor improving circuit for a three-phase rectifier, wherein an inductance is connected to each phase of a three-phase AC input to output a control rectified voltage, a potential on a load side is connected between output terminals of the three-phase rectifier. The resonance choke, the primary circuit of the transformer, and the series circuit of the auxiliary switch element are connected via a blocking element so that the auxiliary switch element is turned on by the secondary winding of the transformer so as not to be affected by A power factor improving circuit for a three-phase rectifier, wherein energy at the time and exciting energy of the transformer are connected to be supplied to a load.
【請求項2】 請求項1記載の三相整流器の力率改善回
路に於いて、 前記共振チョークは、トランスのリーケージインダクタ
ンスである事を特徴とする三相整流器の力率改善回路。
2. The power factor improving circuit for a three-phase rectifier according to claim 1, wherein the resonance choke is a leakage inductance of a transformer.
【請求項3】 請求項1記載の三相整流器の力率改善回
路に於いて、 前記ブロッキング素子は、負荷に順方向のダイオードで
ある事を特徴とする三相整流器の力率改善回路。
3. The power factor improving circuit for a three-phase rectifier according to claim 1, wherein the blocking element is a diode in a forward direction to a load.
【請求項4】 請求項1記載の三相整流器の力率改善回
路に於いて、 前記補助スイッチ素子のオン時のタイミングは、前記三
相整流器の出力電圧制御用の主スイッチ素子がオンする
前であり、かつ前記主スイッチ素子オフ時の並列容量の
電荷がオン時にはゼロになっている時間間隔を有し、
又、前記補助スイッチ素子のオフ時のタイミングは、前
記共振チョークのエネルギーがゼロになった後である事
を特徴とする三相整流器の力率改善回路。
4. The power factor improving circuit for a three-phase rectifier according to claim 1, wherein the timing when the auxiliary switch element is turned on is before the main switch element for controlling the output voltage of the three-phase rectifier is turned on. And has a time interval in which the charge of the parallel capacitance when the main switch element is off is zero when on.
Further, the timing of turning off the auxiliary switching element is after the energy of the resonance choke becomes zero, wherein the power factor improving circuit for a three-phase rectifier is provided.
【請求項5】 請求項4記載の三相整流器の力率改善回
路に於いて、 前記主スイッチ素子は、三相全波電圧を制御する制御素
子である事を特徴とする三相整流器の力率改善回路。
5. The three-phase rectifier power factor improvement circuit according to claim 4, wherein said main switch element is a control element for controlling a three-phase full-wave voltage. Rate improvement circuit.
【請求項6】 請求項4記載の三相整流器の力率改善回
路に於いて、 前記主スイッチ素子は、三相ワンサイドスイッチを制御
する制御素子である事を特徴とする三相整流器の力率改
善回路。 (2)
6. The power supply for a three-phase rectifier according to claim 4, wherein the main switch element is a control element for controlling a three-phase one-side switch. Rate improvement circuit. (2)
【請求項7】 請求項4記載の三相整流器の力率改善回
路に於いて、 前記主スイッチ素子は、三相全波出力の無制御電圧を制
御する制御素子である事を特徴とする三相整流器の力率
改善回路。
7. The power factor improving circuit for a three-phase rectifier according to claim 4, wherein the main switch element is a control element for controlling a non-control voltage of a three-phase full-wave output. Power factor correction circuit for phase rectifier.
【請求項8】 請求項5〜7のいずれか1項記載の三相
整流器の力率改善回路に於いて、 前記制御素子は、FET,IGBT、サイリスタ又はト
ランジスタのいずれかである事を特徴とする三相整流器
の力率改善回路。
8. The power factor improving circuit for a three-phase rectifier according to claim 5, wherein the control element is one of an FET, an IGBT, a thyristor, and a transistor. Power-factor improvement circuit for three-phase rectifiers.
JP35345296A 1996-12-17 1996-12-17 Power factor improvement circuit of three-phase rectifier Expired - Fee Related JP3493273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35345296A JP3493273B2 (en) 1996-12-17 1996-12-17 Power factor improvement circuit of three-phase rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35345296A JP3493273B2 (en) 1996-12-17 1996-12-17 Power factor improvement circuit of three-phase rectifier

Publications (2)

Publication Number Publication Date
JPH10178781A true JPH10178781A (en) 1998-06-30
JP3493273B2 JP3493273B2 (en) 2004-02-03

Family

ID=18430952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35345296A Expired - Fee Related JP3493273B2 (en) 1996-12-17 1996-12-17 Power factor improvement circuit of three-phase rectifier

Country Status (1)

Country Link
JP (1) JP3493273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073602A1 (en) * 2008-12-23 2010-07-01 株式会社日立製作所 Ac-dc converter
CN101895218A (en) * 2009-05-19 2010-11-24 施耐德东芝换流器欧洲公司 Employing has the power inverter of the rectifier of normally on transistors
WO2014089314A1 (en) * 2012-12-05 2014-06-12 Remy Technologies, Llc System, method, and circuitry to rectify an alternating current signal with mosfet half-bridge circuitry
US11438993B2 (en) 2019-04-10 2022-09-06 Canon Medical Systems Corporation X-ray high voltage apparatus and power factor corrector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073602A1 (en) * 2008-12-23 2010-07-01 株式会社日立製作所 Ac-dc converter
JP2010154582A (en) * 2008-12-23 2010-07-08 Hitachi Ltd Ac-dc converter
CN102265499A (en) * 2008-12-23 2011-11-30 株式会社日立制作所 Ac-dc converter
CN101895218A (en) * 2009-05-19 2010-11-24 施耐德东芝换流器欧洲公司 Employing has the power inverter of the rectifier of normally on transistors
FR2945900A1 (en) * 2009-05-19 2010-11-26 Schneider Toshiba Inverter POWER CONVERTER USING A NORMALLY CLOSED TRANSISTOR RECTIFIER.
EP2267880A1 (en) * 2009-05-19 2010-12-29 Schneider Toshiba Inverter Europe SAS Power converter using a rectifier with normally closed transistors
US8295067B2 (en) 2009-05-19 2012-10-23 Schneider Toshiba Inverter Europe Sas Power converter using a rectifier with normally on transistors
WO2014089314A1 (en) * 2012-12-05 2014-06-12 Remy Technologies, Llc System, method, and circuitry to rectify an alternating current signal with mosfet half-bridge circuitry
US11438993B2 (en) 2019-04-10 2022-09-06 Canon Medical Systems Corporation X-ray high voltage apparatus and power factor corrector

Also Published As

Publication number Publication date
JP3493273B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US7663898B2 (en) Switching power supply with direct conversion off AC power source
USRE37889E1 (en) Low loss synchronous rectifier for application to clamped-mode power converters
US6038148A (en) Self-driven synchronous rectification scheme
US5471376A (en) Low-loss active voltage-clamp circuit for single-ended forward PWM converter
US6038142A (en) Full-bridge isolated Current Fed converter with active clamp
US8035995B2 (en) ACDC converter
US6185111B1 (en) Switching power supply apparatus
US6256209B1 (en) AC to DC conversion arrangement
Yeh et al. Light-load efficiency improvement for LLC converter with synchronous rectification in solid-state transformer application
JPH04368464A (en) Dc power source
US6999325B2 (en) Current/voltage converter arrangement
JP4323049B2 (en) Power converter
US7400519B2 (en) Switching power supply
US6914788B2 (en) Power supply apparatus
JP2001333576A (en) Method of controlling dc-dc converter
JP3493273B2 (en) Power factor improvement circuit of three-phase rectifier
JP3370522B2 (en) Boost type bridge inverter circuit and control method thereof
US20070247880A1 (en) Full-bridge active clamp dc-dc converter
Theron et al. Welding power supplies using the partial series resonant converter
Theron et al. The partial series resonant converter: A new zero voltage switching converter with good light load efficiency
JPH07107743A (en) Converter device
JP2004147475A (en) Rectifier
JPH114578A (en) Voltage converter device
JP3169873B2 (en) Power supply
JPH037073A (en) Power converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees