WO2010073578A1 - Plasma generating apparatus and plasma processing apparatus - Google Patents

Plasma generating apparatus and plasma processing apparatus Download PDF

Info

Publication number
WO2010073578A1
WO2010073578A1 PCT/JP2009/007046 JP2009007046W WO2010073578A1 WO 2010073578 A1 WO2010073578 A1 WO 2010073578A1 JP 2009007046 W JP2009007046 W JP 2009007046W WO 2010073578 A1 WO2010073578 A1 WO 2010073578A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
microwave
microwave blocking
plate
sample stage
Prior art date
Application number
PCT/JP2009/007046
Other languages
French (fr)
Japanese (ja)
Inventor
細野卓
湊壮史
嘉瀬慶久
Original Assignee
芝浦メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦メカトロニクス株式会社 filed Critical 芝浦メカトロニクス株式会社
Priority to JP2010508660A priority Critical patent/JPWO2010073578A1/en
Publication of WO2010073578A1 publication Critical patent/WO2010073578A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges

Definitions

  • the present invention relates to a plasma generator and a plasma processing apparatus that generate plasma in a processing tank using microwaves, and in particular, at the start of discharge in microwave discharge, discharge is surely performed in a space where plasma is to be generated.
  • the present invention relates to a plasma generation apparatus and a plasma processing apparatus in which the above occurs.
  • Patent Document 1 a plasma generator using microwave discharge is highly demanded because it has little damage to the wafer, and is used in conventional techniques such as Patent Document 1 and Patent Document 2.
  • the technique described in Patent Document 1 irradiates a process gas containing at least oxygen atoms and hydrogen atoms with microwaves from a slot antenna, generates plasma directly on a wafer that is a substrate to be processed, and then the substrate to be processed. This is a method of removing the resist on the surface.
  • the microwave is shielded by the shielding action of the shower head, so that only radicals out of the plasma generated in the plasma generating part are caused to flow into the etching part, and isotropic is caused by the radicals. Etching is performed.
  • oxygen plasma is generated in an oxygen plasma generator, and the reaction product in the etching chamber is irradiated with the oxygen plasma to remove the reaction product.
  • FIG. 5 is a schematic view of a plasma generator employed in a general ashing apparatus.
  • an ashing chamber 5 that is a processing tank is provided, and a waveguide 2 is attached to the upper portion thereof.
  • a magnetron 1 that oscillates microwaves is disposed at the end of the waveguide 2.
  • a slot antenna 3 is formed on the lower surface of the waveguide 2, and a quartz microwave transmission window 4 is provided below the slot antenna 3. Further, gas inlets 8 for introducing the process gas 11 into the ashing chamber 5 are provided at the left and right ends of the microwave transmission window 4.
  • a sample stage 7 is provided inside the ashing chamber 5, and a wafer 6 having a photoresist on the surface is placed on the sample stage 7.
  • a circular heater table 10 is attached to the lower surface of the sample table 7.
  • a sample stand may be called including a heater table.
  • an exhaust port 9 is formed near the bottom of the ashing chamber 5.
  • the waveguide 2 guides the microwave and radiates the microwave from the slot antenna 3 toward the microwave transmission window 4.
  • the microwave radiated from the slot antenna 3 excites the process gas 11.
  • plasma 12 (indicated by a dotted line) is generated.
  • the wafer 6 is heated and held using the heater table 10, the photoresist on the surface of the wafer 6 can be efficiently removed.
  • the conventional plasma generator as described above has the following problems. That is, in a plasma generation apparatus using microwaves, when discharge is started at a low pressure, it is difficult for the microwaves to remain above the substrate to be discharged, and in the space above the substrate to be processed. There is a phenomenon that discharge is difficult to start.
  • Start of discharge means that electrons accelerated by an electric field are ionized and propagated by collision with neutral particles, gas is turned into plasma, and discharge is continued.
  • a microwave electric field since there is usually no electrode, the wall of the treatment tank or the like becomes a secondary electron emission source and discharge starts.
  • the area of the wall surface portion where the lower space of the sample stage 7 on which the wafer 6 is placed and the wall surface portion of the ashing chamber 5 can be a secondary electron emission source is large.
  • the amount of secondary electron emission increases. Therefore, the probability that discharge is started in these spaces is increased.
  • the start of discharge spreads not in the upper space of the wafer 6 where discharge is to occur but in another space, and the abnormal discharge 13 is generated in the space where the plasma 12 should be unnecessary.
  • the power consumption for generating the plasma 12 necessary for the plasma processing of the wafer 6 increases unnecessarily.
  • the abnormal discharge 13 generated in the space from the lower surface of the heater table 10 to its leg portion does not contribute to the generation of the plasma 12 above the wafer 6 and simply damages the lower surface of the heater table 10 or its leg portion. It was an urgent need to suppress it.
  • a technique of providing a trigger discharge section such as a glow lamp as a secondary auxiliary device in order to prevent the occurrence of abnormal discharge 13.
  • a member to be used only at the start of discharge must be provided. For this reason, the number of maintenance target members also increases, and simplification of the configuration has been desired.
  • the present invention has been proposed to solve the above-described problems, and its purpose is to suppress the occurrence of abnormal discharge with a very simple configuration while avoiding a prolonged processing time and a complicated configuration.
  • An object of the present invention is to provide a highly reliable plasma generating apparatus and plasma processing apparatus capable of reliably generating plasma in an appropriate space.
  • a plasma generator of the present invention is a plasma generator for generating plasma by introducing a process gas and a microwave into a processing tank that accommodates a substrate to be processed.
  • a microwave blocking material is disposed below the substrate to be processed.
  • the plasma processing apparatus of the present invention is characterized by using the above-described plasma generator.
  • the plasma generator and the plasma processing apparatus of the present invention it is possible to prevent the occurrence of abnormal discharge in the lower space of the substrate to be processed by a very simple configuration in which the microwave blocking material is provided below the substrate to be processed. Even when the discharge is started in the microwave discharge under the low pressure environment, the discharge is likely to occur above the substrate to be processed, and the reliability is greatly improved.
  • FIGS. 1 and 3 are schematic views of the present embodiment
  • FIG. 2 is a plan view of the main part of the present embodiment.
  • the present embodiment is applied to the ashing device as in the conventional example shown in FIG. 5, and the same members as those in the conventional example shown in FIG. .
  • the present embodiment is characterized in that a microwave blocking plate 14 is disposed below the wafer 6 placed on the sample stage 7.
  • the microwave blocking plate 14 includes an upper surface plate 14a and a side surface plate 14b attached perpendicularly to the upper surface plate 14a.
  • the microwave blocking plate 14 constitutes the microwave blocking material of the present invention.
  • the shape of the upper surface plate 14 a of the microwave blocking plate 14 is a ring shape, and the inner diameter thereof is substantially equal to or slightly larger than the outer diameter of the heater table 10, and the outer diameter is that of the side wall portion of the ashing chamber 5.
  • the inner diameter (dimension in the left-right direction in FIG. 1) is substantially equal to or slightly smaller.
  • the upper surface plate 14 a of the microwave blocking plate 14 can move up and down in the space between the periphery of the sample table 7 and the side wall of the ashing chamber 5, and microwaves pass between the sample table 7 and the side wall of the ashing chamber 5.
  • the dimension is such that there is no gap (for example, smaller than 1/4 of the microwave wavelength).
  • a plurality of holes 15 having a diameter smaller than 1 ⁇ 4 of the microwave wavelength are formed on the upper surface plate 14a of the microwave blocking plate 14 over the entire circumference (see FIG. 2).
  • the total area of the holes 15 is set to a size sufficient to smoothly exhaust the process gas 11 in the ashing chamber 5.
  • the material of the microwave blocking plate 14 is preferably a metal material that reflects the microwave.
  • the side plates 14b of the microwave blocking plate 14 are vertically moved with respect to a plurality of (for example, four) support arms 16 extending in the horizontal direction from the sample table 7 (from the heater table 10 integrated with the sample table 7 in this embodiment). It is provided freely.
  • the microwave blocking plate 14 is normally in the raised position (state shown in FIG. 1), and is moved to the lowered position when performing maintenance or the like below the sample stage 7 (state shown in FIG. 3).
  • the upper surface level thereof that is, the upper surface level of the upper surface plate 14a in this embodiment is set to a height that substantially coincides with the upper surface level of the sample stage 7. That is, at the rising end of the microwave shielding plate 14, the upper surface plate 14 a is disposed below the wafer 6 placed on the sample stage 7. Note that the microwave blocking plate 14 is moved in the vertical direction with respect to the support arm 16 by a drive mechanism such as a motor or an air cylinder (not shown).
  • the effect of this embodiment having the above configuration is as follows. That is, since the microwave blocking plate 14 is installed so as to fill the space between the periphery of the sample stage 7 and the side wall of the ashing chamber 5 and disposed below the wafer 6, the magnetron 1, the waveguide 2, the slot antenna 3, Microwaves supplied from the microwave supply means constituted by the microwave transmission window 4 do not reach the lower space of the wafer 6. More specifically, the diameter of the hole 15 provided in the upper surface plate 14a of the microwave blocking plate 14 is smaller than 1 ⁇ 4 of the microwave wavelength, and the microwave does not pass therethrough.
  • the total area of the holes 15 of the upper surface plate 14a is large enough to exhaust the process gas 11 in the ashing chamber 5 from the exhaust port 9, and is formed over the entire circumference of the upper surface plate 14a. . Therefore, even if the microwave blocking plate 14 is installed in the ashing chamber 5, the flow of the process gas 11 is not blocked by this, and the process gas 11 can be exhausted uniformly.
  • the microwave blocking plate 14 is arranged, so that the microwave can be prevented from reaching the lower space of the wafer 6 and the occurrence of the abnormal discharge 13 can be reliably suppressed. it can. For this reason, discharge starts easily in the space above the wafer 6.
  • plasma generation can be realized in an appropriate space without increasing power consumption, which can contribute to improvement of reliability.
  • microwave blocking plate 14 is movable up and down, maintenance and the like below the sample stage 7 can be easily performed by moving it to the lowered position.
  • microwave blocking plate 14 since the microwave blocking plate 14 is disposed below the wafer 6, plasma discharge can be caused relatively near the wafer 6. Thereby, the effect that the discharge heat contributes to the increase in the temperature of the wafer 6 required for the process can be expected.
  • the microwave blocking plates 14 are arranged above and below the sample stage 7 via the support arm 16. However, you may arrange
  • the microwave block 14 does not need to move up and down.
  • the upper surface level of the upper surface plate 14 a of the microwave blocking plate 14 may be fixed to the bottom or side wall of the ashing chamber 5 at a height that substantially matches the upper surface level of the sample stage 7.
  • the side plate 14b is not required.
  • the number of rows of holes is not limited to one but may be a plurality of rows as long as microwaves are blocked.
  • this invention is not limited to said embodiment, The shape of each member, a dimension, a material, etc. can be changed suitably.
  • the microwave blocking plate 14 may be detachably provided to the heater table 10.
  • the side plate 14b is shaped like a rod, and the end of the support arm 16 has a female screw, the end of the side plate 14b has a male screw corresponding to the female screw of the support arm 16, and the other side of the side plate 14b.
  • a female screw is processed at the end, and a hole is opened in a portion that contacts the side plate 14b at the periphery of the top plate 14a.
  • the support board 16 and the side board 14b are joined by screwing the side board 14b in the support arm 16, and the top board 14a is covered and screwed. When removing, reverse the operation.
  • the installation location of the side plate 14b of the microwave blocking plate 14 is not the side wall portion side of the ashing chamber 5 as shown in FIG. 1, but the sample stage 7 side (heater table 10 side). good. By doing so, the support arm 16 can be shortened, and miniaturization of parts can be achieved.
  • the side plate 14b of the microwave blocking plate 14 can be moved up and down via a drive mechanism such as a motor or an air cylinder with respect to the support arm 16 extending horizontally from the sample stage 7. Even if it is arranged directly so that it can move up and down at the bottom of the ashing chamber 5 without providing the support arm 16 in particular, the upper surface level of the upper surface plate 14a is set to a height that substantially matches the upper surface level of the sample stage 7.
  • the ashing chamber 5 may be fixedly disposed on the bottom or side wall.
  • the preferred height of the upper surface level of the microwave blocking plate 14 at the rising end of the microwave blocking plate 14 or the fixed arrangement is set to a height that substantially matches the upper surface level of the sample stage 7. .
  • the upper surface level of the microwave blocking plate 14 may be lower than the upper surface level of the sample stage 7.
  • the limit position varies depending on the internal pressure of the ashing chamber 5, the intensity of the microwave, the type of etching gas, and the like.
  • the shape of the side plate 14b that constitutes the microwave blocking plate 14 that constitutes the microwave blocking material may be a bar shape instead of a plate. If comprised in this way, size reduction of components can be achieved.
  • the ashing process has been described as an example.
  • the present invention can be applied to any processing apparatus using a plasma generator such as an etching apparatus, a thin film deposition apparatus, a surface processing apparatus, or a plasma doping apparatus.
  • the wafer was illustrated as a to-be-processed substrate, it is applicable not only to this but the board

Abstract

A highly reliable plasma generating apparatus and a highly reliable plasma processing apparatus, by which generation of abnormal electric discharge can be suppressed using an extremely simple configuration without making the processing time long and configuration complicated, and by which plasma can be securely generated in an appropriate space.  A microwave blocking plate (14) is arranged below a wafer (6).  The microwave blocking plate (14) is composed of an upper plate (14a) and a side plate (14b) attached perpendicular to the upper plate (14a).  On the upper plate (14a) of the microwave blocking plate (14), a plurality of hole sections (15) having a diameter smaller than 1/4 of the wavelength of microwaves are formed on the entire circumference.

Description

プラズマ発生装置及びプラズマ処理装置Plasma generator and plasma processing apparatus
 本発明は、マイクロ波を利用して処理槽内にプラズマを発生させるプラズマ発生装置及びプラズマ処理装置に係り、特に、マイクロ波放電での放電開始時に、プラズマを発生させたい空間にて確実に放電が起きるようにしたプラズマ発生装置及びプラズマ処理装置に関するものである。 The present invention relates to a plasma generator and a plasma processing apparatus that generate plasma in a processing tank using microwaves, and in particular, at the start of discharge in microwave discharge, discharge is surely performed in a space where plasma is to be generated. The present invention relates to a plasma generation apparatus and a plasma processing apparatus in which the above occurs.
 近年、プラズマを用いた材料プロセス技術は著しく進展しており、半導体や液晶ディスプレイなどの製造工程ではアッシングやドライエッチング、薄膜堆積、表面改質といった各種のプラズマ処理が実施されている。そのため、プラズマ発生装置に関しては常に高性能化が要求されている。 In recent years, material processing technology using plasma has been remarkably advanced, and various plasma treatments such as ashing, dry etching, thin film deposition, and surface modification are performed in manufacturing processes of semiconductors and liquid crystal displays. Therefore, high performance is always required for plasma generators.
 中でも、マイクロ波放電によるプラズマ発生装置は、ウェーハに対するダメージが少ないため、需要が高く、特許文献1や特許文献2などの従来技術に採用されている。特許文献1に記載された技術は、酸素原子と水素原子とを少なくとも含むプロセスガスにスロットアンテナからマイクロ波を照射しており、被処理基板であるウェーハの直上にプラズマを生成して被処理基板表面のレジストを除去する方法である。 Among them, a plasma generator using microwave discharge is highly demanded because it has little damage to the wafer, and is used in conventional techniques such as Patent Document 1 and Patent Document 2. The technique described in Patent Document 1 irradiates a process gas containing at least oxygen atoms and hydrogen atoms with microwaves from a slot antenna, generates plasma directly on a wafer that is a substrate to be processed, and then the substrate to be processed. This is a method of removing the resist on the surface.
 特許文献2に記載のダウンフローエッチング装置では、シャワーヘッドのシールド作用によりマイクロ波を遮蔽することで、プラズマ発生部で発生したプラズマのうちラジカルのみをエッチング部に流し、このラジカルによって等方性のエッチングを行うようになっている。また、特許文献2の技術は、酸素プラズマ発生部にて酸素プラズマを発生させており、酸素プラズマをエッチング室内の反応生成物に照射して、この反応生成物を除去するものである。 In the downflow etching apparatus described in Patent Document 2, the microwave is shielded by the shielding action of the shower head, so that only radicals out of the plasma generated in the plasma generating part are caused to flow into the etching part, and isotropic is caused by the radicals. Etching is performed. In the technique of Patent Document 2, oxygen plasma is generated in an oxygen plasma generator, and the reaction product in the etching chamber is irradiated with the oxygen plasma to remove the reaction product.
 このような技術に適用されるプラズマ発生装置について、図5を参照して具体的に説明する。図5は一般的なアッシング装置に採用されるプラズマ発生装置の模式図である。図5に示すように、処理槽であるアッシングチャンバー5が設けられており、その上部には導波管2が取り付けられている。導波管2の端部にはマイクロ波を発振するマグネトロン1が配置されている。 A plasma generator applied to such a technique will be specifically described with reference to FIG. FIG. 5 is a schematic view of a plasma generator employed in a general ashing apparatus. As shown in FIG. 5, an ashing chamber 5 that is a processing tank is provided, and a waveguide 2 is attached to the upper portion thereof. A magnetron 1 that oscillates microwaves is disposed at the end of the waveguide 2.
 また、導波管2の下面部にはスロットアンテナ3が形成されており、その下方に石英製のマイクロ波透過窓4が設けられている。さらに、マイクロ波透過窓4の左右端部にはアッシングチャンバー5内部にプロセスガス11を導入するためのガス導入口8が設置されている。 Further, a slot antenna 3 is formed on the lower surface of the waveguide 2, and a quartz microwave transmission window 4 is provided below the slot antenna 3. Further, gas inlets 8 for introducing the process gas 11 into the ashing chamber 5 are provided at the left and right ends of the microwave transmission window 4.
 アッシングチャンバー5の内部には試料台7が設けられており、この試料台7上に表面にフォトレジストを有したウェーハ6が載置されている。また、試料台7の下面部には円形のヒーターテーブル10が取り付けられている。なお、試料台とは、ヒーターテーブルを含めて呼ぶ場合もある。さらに、アッシングチャンバー5の底部付近には排気口9が形成されている。 A sample stage 7 is provided inside the ashing chamber 5, and a wafer 6 having a photoresist on the surface is placed on the sample stage 7. A circular heater table 10 is attached to the lower surface of the sample table 7. In addition, a sample stand may be called including a heater table. Further, an exhaust port 9 is formed near the bottom of the ashing chamber 5.
 以上の構成を有するプラズマ発生装置では、マグネトロン1がマイクロ波を発振すると、導波管2がマイクロ波を導き、スロットアンテナ3からマイクロ波透過窓4に向けてマイクロ波を放射する。 In the plasma generator having the above configuration, when the magnetron 1 oscillates the microwave, the waveguide 2 guides the microwave and radiates the microwave from the slot antenna 3 toward the microwave transmission window 4.
 このとき、排気口9からはアッシングチャンバー5内が排気されると共に、ガス導入口8を介してプロセスガス11を導入しているため、スロットアンテナ3から放射されたマイクロ波がプロセスガス11を励起してプラズマ12(点線にて示す)を生成する。また、ヒーターテーブル10を用いてウェーハ6を加熱保持するので、ウェーハ6表面のフォトレジストを効率よく除去することができる。 At this time, since the inside of the ashing chamber 5 is exhausted from the exhaust port 9 and the process gas 11 is introduced through the gas introduction port 8, the microwave radiated from the slot antenna 3 excites the process gas 11. As a result, plasma 12 (indicated by a dotted line) is generated. Moreover, since the wafer 6 is heated and held using the heater table 10, the photoresist on the surface of the wafer 6 can be efficiently removed.
特開2002-158210号公報JP 2002-158210 A 特開平7-130713号公報JP-A-7-130713
 しかしながら、上記のような従来のプラズマ発生装置には次のような課題が存在した。すなわち、マイクロ波を用いたプラズマ発生装置においては、低圧で放電が開始される際、放電を起こしたい被処理基板上方にはマイクロ波が留まることが困難であって、被処理基板上方の空間では放電が開始され難いといった現象が起きている。 However, the conventional plasma generator as described above has the following problems. That is, in a plasma generation apparatus using microwaves, when discharge is started at a low pressure, it is difficult for the microwaves to remain above the substrate to be discharged, and in the space above the substrate to be processed. There is a phenomenon that discharge is difficult to start.
 放電の開始とは、電界によって加速された電子が中性粒子との衝突により電離増殖して気体がプラズマ化し、放電が継続状態となることを指す。マイクロ波電界を用いる場合は通常無電極なので、処理槽の壁面などが2次電子の放出源となって放電開始が起きる。 “Start of discharge” means that electrons accelerated by an electric field are ionized and propagated by collision with neutral particles, gas is turned into plasma, and discharge is continued. When a microwave electric field is used, since there is usually no electrode, the wall of the treatment tank or the like becomes a secondary electron emission source and discharge starts.
 図5に示したプラズマ発生装置を例に取ると、ウェーハ6を載置した試料台7の下方空間やアッシングチャンバー5の壁面部近傍が、2次電子放出源となり得る壁面部の面積が大きく、2次電子放出量が多くなる。したがって、これらの空間にて放電が開始される確率が高くなる。 Taking the plasma generator shown in FIG. 5 as an example, the area of the wall surface portion where the lower space of the sample stage 7 on which the wafer 6 is placed and the wall surface portion of the ashing chamber 5 can be a secondary electron emission source is large. The amount of secondary electron emission increases. Therefore, the probability that discharge is started in these spaces is increased.
 つまり、放電開始は、放電を起こしたいウェーハ6の上方空間ではなく、他の空間に拡がってしまい、本来、プラズマ12が不要であるはずの空間に異常放電13が発生することになる。このような異常放電13が発生した場合、ウェーハ6のプラズマ処理に必要なプラズマ12を発生させるための消費電力がいたずらに増大した。 That is, the start of discharge spreads not in the upper space of the wafer 6 where discharge is to occur but in another space, and the abnormal discharge 13 is generated in the space where the plasma 12 should be unnecessary. When such an abnormal discharge 13 occurs, the power consumption for generating the plasma 12 necessary for the plasma processing of the wafer 6 increases unnecessarily.
 特に、ヒーターテーブル10の下面からその脚部分にかけての空間に発生する異常放電13は、ウェーハ6上方のプラズマ12発生には何ら寄与することがなく、単にヒーターテーブル10下面やその脚部分にダメージを与えるだけであり、その抑制が急務となっていた。 In particular, the abnormal discharge 13 generated in the space from the lower surface of the heater table 10 to its leg portion does not contribute to the generation of the plasma 12 above the wafer 6 and simply damages the lower surface of the heater table 10 or its leg portion. It was an urgent need to suppress it.
 上記の問題を解決する手法としては、プロセスガスの圧力を高めることが考えられるが、放電が安定後にプロセスガスを再度低圧力に戻す工程が必要となる。したがって、プロセスガスの圧力調整作業が増え、その分だけ処理時間が長期化した。 As a method for solving the above problem, it is conceivable to increase the pressure of the process gas. However, a process for returning the process gas to a low pressure again after the discharge is stabilized is necessary. Therefore, the process gas pressure adjustment work has increased, and the processing time has been extended accordingly.
 また、異常放電13の発生を防ぐべく、二次的な補助機器としてグローランプなどのトリガー放電部を設ける技術も知られている。しかし、放電開始時にだけ使用する部材をわざわざ設けなくてはならない。このため、メンテナンス対象部材も増えることになり、構成の簡略化が望まれていた。 Also known is a technique of providing a trigger discharge section such as a glow lamp as a secondary auxiliary device in order to prevent the occurrence of abnormal discharge 13. However, a member to be used only at the start of discharge must be provided. For this reason, the number of maintenance target members also increases, and simplification of the configuration has been desired.
 以上述べたように、マイクロ波を用いたプラズマ発生装置、あるいはその発生装置を用いたプラズマ処理装置においては、低圧での放電開始時に、所望の空間に放電を発生させることが難しかった。そこで、プロセスガスの圧力を高めたり、トリガー放電部を設けることが考えられるが、これらの技術では処理時間の長期化や構成の複雑化といった新たな問題が生じた。 As described above, in a plasma generator using microwaves or a plasma processing apparatus using the generator, it is difficult to generate a discharge in a desired space at the start of discharge at a low pressure. Therefore, it is conceivable to increase the pressure of the process gas or to provide a trigger discharge part. However, these techniques have caused new problems such as a longer processing time and a complicated configuration.
 本発明は、上記の課題を解消するために提案されたものであり、その目的は、処理時間の長期化や構成の複雑化を回避しつつ、極めて簡単な構成によって異常放電の発生を抑えることができ、適切な空間にプラズマを確実に発生させることが可能な、信頼性に優れたプラズマ発生装置及びプラズマ処理装置を提供することにある。 The present invention has been proposed to solve the above-described problems, and its purpose is to suppress the occurrence of abnormal discharge with a very simple configuration while avoiding a prolonged processing time and a complicated configuration. An object of the present invention is to provide a highly reliable plasma generating apparatus and plasma processing apparatus capable of reliably generating plasma in an appropriate space.
 上記の目的を達成するために、本発明のプラズマ発生装置は、被処理基板を収納する処理槽内にプロセスガス及びマイクロ波を導入してプラズマを発生させるプラズマ発生装置において、前記処理槽には前記被処理基板よりも下方にマイクロ波遮断材が配置されたことを特徴とするものである。また、上記の目的を達成するために、本発明のプラズマ処理装置は、上述のプラズマ発生装置を用いたことを特徴とするものである。 In order to achieve the above object, a plasma generator of the present invention is a plasma generator for generating plasma by introducing a process gas and a microwave into a processing tank that accommodates a substrate to be processed. A microwave blocking material is disposed below the substrate to be processed. In order to achieve the above object, the plasma processing apparatus of the present invention is characterized by using the above-described plasma generator.
 本発明のプラズマ発生装置及びプラズマ処理装置によれば、マイクロ波遮断材を被処理基板よりも下方に設けるといった極めて簡単な構成により、被処理基板の下方空間に異常放電の発生を防止することができ、低圧環境下のマイクロ波放電での放電開始時であっても、被処理基板上方に放電が起き易く、信頼性が大幅に向上する。 According to the plasma generator and the plasma processing apparatus of the present invention, it is possible to prevent the occurrence of abnormal discharge in the lower space of the substrate to be processed by a very simple configuration in which the microwave blocking material is provided below the substrate to be processed. Even when the discharge is started in the microwave discharge under the low pressure environment, the discharge is likely to occur above the substrate to be processed, and the reliability is greatly improved.
本発明に係る代表的な実施形態の模式図。The schematic diagram of typical embodiment which concerns on this invention. 本実施形態の要部平面図。The principal part top view of this embodiment. 本発明に係る代表的な実施形態の模式図。The schematic diagram of typical embodiment which concerns on this invention. 本発明に係る他の実施形態の模式図。The schematic diagram of other embodiment which concerns on this invention. 一般的なアッシング装置の模式図。The schematic diagram of a general ashing device.
 以下、本発明に係るプラズマ発生装置の代表的な実施形態について、図1~図3を参照して具体的に説明する。図1及び図3は本実施形態の模式図、図2は本実施形態の要部平面図である。なお、本実施形態は、図5に示した従来例と同様、アッシング装置に適用したものであって、図5に示した従来例と同一の部材に関しては同一符号を付して説明は省略する。 Hereinafter, typical embodiments of the plasma generating apparatus according to the present invention will be described in detail with reference to FIGS. 1 and 3 are schematic views of the present embodiment, and FIG. 2 is a plan view of the main part of the present embodiment. The present embodiment is applied to the ashing device as in the conventional example shown in FIG. 5, and the same members as those in the conventional example shown in FIG. .
(1)代表的な実施形態
[構成]
 図1及び図3に示すように、本実施形態は試料台7に載置されたウェーハ6よりも下方にマイクロ波遮断板14が配置された点に特徴がある。マイクロ波遮断板14は上面板14aと、該上面板14aに対し垂直に取り付けられた側面板14bとから構成されている。
(1) Representative embodiment [configuration]
As shown in FIGS. 1 and 3, the present embodiment is characterized in that a microwave blocking plate 14 is disposed below the wafer 6 placed on the sample stage 7. The microwave blocking plate 14 includes an upper surface plate 14a and a side surface plate 14b attached perpendicularly to the upper surface plate 14a.
 ここで、マイクロ波遮断板14は、本発明のマイクロ波遮断材を構成する。そしてマイクロ波遮断板14の上面板14aの形状はリング状をなし、その内径はヒーターテーブル10の外径とほぼ等しく、あるいは若干大きめに形成されていて、外径はアッシングチャンバー5の側壁部の内径(図1の左右方向の寸法)とほぼ等しく、あるいは若干小さめに形成されている。 Here, the microwave blocking plate 14 constitutes the microwave blocking material of the present invention. The shape of the upper surface plate 14 a of the microwave blocking plate 14 is a ring shape, and the inner diameter thereof is substantially equal to or slightly larger than the outer diameter of the heater table 10, and the outer diameter is that of the side wall portion of the ashing chamber 5. The inner diameter (dimension in the left-right direction in FIG. 1) is substantially equal to or slightly smaller.
 つまり、マイクロ波遮断板14の上面板14aは試料台7の周囲とアッシングチャンバー5側壁との空間にて上下動でき、試料台7、アッシングチャンバー5の側壁との間にマイクロ波が通過することのない(例えばマイクロ波波長の1/4よりも小さい)隙間を有する寸法とされる。 That is, the upper surface plate 14 a of the microwave blocking plate 14 can move up and down in the space between the periphery of the sample table 7 and the side wall of the ashing chamber 5, and microwaves pass between the sample table 7 and the side wall of the ashing chamber 5. The dimension is such that there is no gap (for example, smaller than 1/4 of the microwave wavelength).
 マイクロ波遮断板14の上面板14aにはマイクロ波波長の1/4よりも小径の穴部15が、全周にわたって複数形成されている(図2参照)。また、穴部15の総面積は、アッシングチャンバー5内においてプロセスガス11をスムーズに排気させるのに十分な大きさに設定されている。 A plurality of holes 15 having a diameter smaller than ¼ of the microwave wavelength are formed on the upper surface plate 14a of the microwave blocking plate 14 over the entire circumference (see FIG. 2). The total area of the holes 15 is set to a size sufficient to smoothly exhaust the process gas 11 in the ashing chamber 5.
 なお、マイクロ波は絶縁体を透過する性質を持つため、マイクロ波遮断板14の材質はマイクロ波を反射する金属系の材質であることが好ましい。マイクロ波遮断板14の側面板14bは、試料台7より(本実施形態では試料台7と一体のヒーターテーブル10より)水平方向に延びる複数本(例えば4本)の支持アーム16に対して上下動自在に設けられている。マイクロ波遮断板14は通常は上昇した位置にあり(図1の状態)、試料台7の下方のメンテナンスなどを実施する際に下降位置に移動するようになっている(図3の状態)。 In addition, since the microwave has a property of transmitting through an insulator, the material of the microwave blocking plate 14 is preferably a metal material that reflects the microwave. The side plates 14b of the microwave blocking plate 14 are vertically moved with respect to a plurality of (for example, four) support arms 16 extending in the horizontal direction from the sample table 7 (from the heater table 10 integrated with the sample table 7 in this embodiment). It is provided freely. The microwave blocking plate 14 is normally in the raised position (state shown in FIG. 1), and is moved to the lowered position when performing maintenance or the like below the sample stage 7 (state shown in FIG. 3).
 ここでマイクロ波遮断板14の上昇時に、その上面レベル、つまり本実施形態では上面板14aの上面レベルは試料台7の上面レベルとほぼ一致する高さとされる。つまり、マイクロ波遮断板14は、その上昇端において、上面板14aは試料台7上に載置されたウェーハ6より下方に配置される。なお、支持アーム16に対するマイクロ波遮断板14の上下方向への移動は、不図示のモーターやエアシリンダ等の駆動機構による。 Here, when the microwave blocking plate 14 is raised, the upper surface level thereof, that is, the upper surface level of the upper surface plate 14a in this embodiment is set to a height that substantially coincides with the upper surface level of the sample stage 7. That is, at the rising end of the microwave shielding plate 14, the upper surface plate 14 a is disposed below the wafer 6 placed on the sample stage 7. Note that the microwave blocking plate 14 is moved in the vertical direction with respect to the support arm 16 by a drive mechanism such as a motor or an air cylinder (not shown).
[作用効果]
 以上の構成を有する本実施形態の作用効果は次の通りである。すなわち、マイクロ波遮断板14を試料台7の周囲とアッシングチャンバー5側壁との空間を埋めるように設置し、ウェーハ6よりも下方に配置したので、マグネトロン1、導波管2、スロットアンテナ3、マイクロ波透過窓4から構成されるマイクロ波供給手段から供給されたマイクロ波は、ウェーハ6の下方空間に到達することがない。より詳しくは、マイクロ波遮断板14の上面板14aに設けた穴部15の径寸法は、マイクロ波波長の1/4よりも小さく、マイクロ波がここを通過することはない。
[Function and effect]
The effect of this embodiment having the above configuration is as follows. That is, since the microwave blocking plate 14 is installed so as to fill the space between the periphery of the sample stage 7 and the side wall of the ashing chamber 5 and disposed below the wafer 6, the magnetron 1, the waveguide 2, the slot antenna 3, Microwaves supplied from the microwave supply means constituted by the microwave transmission window 4 do not reach the lower space of the wafer 6. More specifically, the diameter of the hole 15 provided in the upper surface plate 14a of the microwave blocking plate 14 is smaller than ¼ of the microwave wavelength, and the microwave does not pass therethrough.
 また、上面板14aの穴部15の総面積は、アッシングチャンバー5内のプロセスガス11を排気口9から排気させるのに十分な大きさであり、しかも上面板14aの全周にわたって形成している。そのため、マイクロ波遮断板14をアッシングチャンバー5内に設置したにせよ、これによってプロセスガス11の流れが阻まれることがなく、プロセスガス11を均一に排気することが可能である。 Further, the total area of the holes 15 of the upper surface plate 14a is large enough to exhaust the process gas 11 in the ashing chamber 5 from the exhaust port 9, and is formed over the entire circumference of the upper surface plate 14a. . Therefore, even if the microwave blocking plate 14 is installed in the ashing chamber 5, the flow of the process gas 11 is not blocked by this, and the process gas 11 can be exhausted uniformly.
 以上述べたように、本実施形態によれば、マイクロ波遮断板14を配置したことにより、ウェーハ6の下方空間にマイクロ波の到達を防止でき、異常放電13の発生を確実に抑止することができる。そのため、ウェーハ6上方の空間で放電開始が起き易くなる。 As described above, according to the present embodiment, the microwave blocking plate 14 is arranged, so that the microwave can be prevented from reaching the lower space of the wafer 6 and the occurrence of the abnormal discharge 13 can be reliably suppressed. it can. For this reason, discharge starts easily in the space above the wafer 6.
 したがって、消費電力を増大させることなく、適切な空間にプラズマ発生が実現して、信頼性の向上に寄与することができる。このとき、プロセスガス11の圧力を高める必要が無く、プロセスガス11の圧力調整作業を省くことができるため、処理時間が長期化するといった不具合が生じることがない。 Therefore, plasma generation can be realized in an appropriate space without increasing power consumption, which can contribute to improvement of reliability. At this time, there is no need to increase the pressure of the process gas 11, and the pressure adjustment work of the process gas 11 can be omitted, so that a problem such as a prolonged processing time does not occur.
 さらには、グローランプなどのトリガー放電部も不要なので、構成の簡略化が可能となるといったメリットがある。しかも、マイクロ波遮断板14は上下動自在であるため、下降位置まで移動させることにより試料台7下方のメンテナンスなどを容易に実施することができる。 Furthermore, since there is no need for a trigger discharge section such as a glow lamp, there is an advantage that the configuration can be simplified. In addition, since the microwave blocking plate 14 is movable up and down, maintenance and the like below the sample stage 7 can be easily performed by moving it to the lowered position.
 また、ウェーハ6よりも下方にマイクロ波遮断板14を配置したことで、プラズマ放電を比較的にウェーハ6近傍で起こすことができる。それにより、放電熱が処理に必要なウェーハ6の温度への上昇に寄与する効果が期待できる。 Further, since the microwave blocking plate 14 is disposed below the wafer 6, plasma discharge can be caused relatively near the wafer 6. Thereby, the effect that the discharge heat contributes to the increase in the temperature of the wafer 6 required for the process can be expected.
(2)他の実施形態
 上述した実施形態においては、マイクロ波遮断板14を、支持アーム16を介して試料台7に対し上下に配置した。しかしながら、マイクロ波遮断板14をアッシングチャンバー5の底部に直接上下動できるように配置してもよい。この場合は、支持アーム16は不要となる。
(2) Other Embodiments In the above-described embodiments, the microwave blocking plates 14 are arranged above and below the sample stage 7 via the support arm 16. However, you may arrange | position so that the microwave interruption | blocking board 14 can be directly moved up and down to the bottom part of the ashing chamber 5. FIG. In this case, the support arm 16 becomes unnecessary.
 異常放電防止を達成するという点では、マイクロ波遮断板14の上下動は特に必要としない。この場合、マイクロ波遮断板14の上面板14aの上面レベルが試料台7の上面レベルとほぼ一致する高さにアッシングチャンバー5の底部または側壁部に固定配置としても良い。マイクロ波遮断板14をアッシングチャンバー5の側壁部に固定配置する場合に、側面板14bを必要としない。 ¡In order to achieve the prevention of abnormal discharge, the microwave block 14 does not need to move up and down. In this case, the upper surface level of the upper surface plate 14 a of the microwave blocking plate 14 may be fixed to the bottom or side wall of the ashing chamber 5 at a height that substantially matches the upper surface level of the sample stage 7. When the microwave blocking plate 14 is fixedly disposed on the side wall portion of the ashing chamber 5, the side plate 14b is not required.
 マイクロ波遮断板14の上面板14aに形成した穴部15においても、マイクロ波が遮断されるならば、穴の列数も一列に限らず複数列配置としてもよい。なお、本発明は上記の実施形態に限定されるものではなく、各部材の形状や寸法、材質などは適宜変更可能である。 Also in the hole portion 15 formed in the upper surface plate 14a of the microwave blocking plate 14, the number of rows of holes is not limited to one but may be a plurality of rows as long as microwaves are blocked. In addition, this invention is not limited to said embodiment, The shape of each member, a dimension, a material, etc. can be changed suitably.
 具体的には、マイクロ波遮断板14をヒーターテーブル10に対して着脱自在に設けてもよい。その場合は、例えば、側面板14bを棒状の形態とし、支持アーム16の端部に雌ねじ、側面板14bの一方の端部に支持アーム16の雌ねじに対応する雄ねじ、側面板14bのもう一方の端部に雌ねじを加工し、上面板14aの周縁の側面板14bに接触する部分に穴を開口する。そして、マイクロ波遮断板14をヒーターテーブル10に取り付ける場合は、側面板14bを支持アーム16にねじ込むことで、支持アーム16と側面板14bを接合し、上面板14aを被せてねじ止めする。取り外す場合には、逆の操作を行う。 Specifically, the microwave blocking plate 14 may be detachably provided to the heater table 10. In this case, for example, the side plate 14b is shaped like a rod, and the end of the support arm 16 has a female screw, the end of the side plate 14b has a male screw corresponding to the female screw of the support arm 16, and the other side of the side plate 14b. A female screw is processed at the end, and a hole is opened in a portion that contacts the side plate 14b at the periphery of the top plate 14a. And when attaching the microwave interruption | blocking board 14 to the heater table 10, the support board 16 and the side board 14b are joined by screwing the side board 14b in the support arm 16, and the top board 14a is covered and screwed. When removing, reverse the operation.
 図4に示すように、マイクロ波遮断板14の側面板14bの設置箇所を、図1で示したようなアッシングチャンバー5の側壁部側ではなく、試料台7側(ヒーターテーブル10側)としても良い。そうすれば、支持アーム16を短くでき、部品の小型化が達成できる。 As shown in FIG. 4, the installation location of the side plate 14b of the microwave blocking plate 14 is not the side wall portion side of the ashing chamber 5 as shown in FIG. 1, but the sample stage 7 side (heater table 10 side). good. By doing so, the support arm 16 can be shortened, and miniaturization of parts can be achieved.
 この場合、前述した実施形態と同様に、マイクロ波遮断板14の側面板14bを、試料台7より水平方向に延びる支持アーム16に対してモーターやエアシリンダ等の駆動機構を介して上下動自在としたり、支持アーム16を特に設けずにアッシングチャンバー5の底部に上下動できるように直接配置しても、さらには上面板14aの上面レベルが試料台7の上面レベルとほぼ一致する高さにアッシングチャンバー5の底部または側壁部に固定配置としても良い。 In this case, as in the above-described embodiment, the side plate 14b of the microwave blocking plate 14 can be moved up and down via a drive mechanism such as a motor or an air cylinder with respect to the support arm 16 extending horizontally from the sample stage 7. Even if it is arranged directly so that it can move up and down at the bottom of the ashing chamber 5 without providing the support arm 16 in particular, the upper surface level of the upper surface plate 14a is set to a height that substantially matches the upper surface level of the sample stage 7. The ashing chamber 5 may be fixedly disposed on the bottom or side wall.
 上述したいずれの実施形態では、マイクロ波遮断板14の上昇端での、あるいは固定配置されたマイクロ波遮断板14の上面レベルの好ましい高さとして試料台7の上面レベルとほぼ一致する高さとした。ところが、マイクロ波遮断板14の当該上面レベルは、試料台7の上面レベルよりも下でも構わない。ただし、課題のところで述べたような例えば試料台7の下方空間に異常放電が生じてしまうような限界よりは高い位置に設定する必要がある。その限界位置は、アッシングチャンバー5の内圧、マイクロ波の強度、エッチングガスの種類などにより変化することとなる。 In any of the above-described embodiments, the preferred height of the upper surface level of the microwave blocking plate 14 at the rising end of the microwave blocking plate 14 or the fixed arrangement is set to a height that substantially matches the upper surface level of the sample stage 7. . However, the upper surface level of the microwave blocking plate 14 may be lower than the upper surface level of the sample stage 7. However, it is necessary to set a position higher than the limit at which abnormal discharge occurs in the space below the sample stage 7 as described in the problem. The limit position varies depending on the internal pressure of the ashing chamber 5, the intensity of the microwave, the type of etching gas, and the like.
 上述したいずれの実施形態でも、マイクロ波遮断材を構成するマイクロ波遮断板14を構成する側面板14bの形状は板ではなく、棒状にしても良い。このように構成すると、部品の小型化が達成できる。さらに、上述した実施形態では、アッシング処理を例にとって説明したが、本発明は、エッチング装置、薄膜堆積装置、表面処理装置、プラズマドーピング装置など、プラズマ発生装置を用いる処理装置であれば適用できる。また、被処理基板としてウェーハを例示したが、これに限らずプラズマで処理される基板であれば適用可能である。 In any of the above-described embodiments, the shape of the side plate 14b that constitutes the microwave blocking plate 14 that constitutes the microwave blocking material may be a bar shape instead of a plate. If comprised in this way, size reduction of components can be achieved. Further, in the above-described embodiment, the ashing process has been described as an example. However, the present invention can be applied to any processing apparatus using a plasma generator such as an etching apparatus, a thin film deposition apparatus, a surface processing apparatus, or a plasma doping apparatus. Moreover, although the wafer was illustrated as a to-be-processed substrate, it is applicable not only to this but the board | substrate processed by plasma.
1…マグネトロン
2…導波管
3…スロットアンテナ
4…マイクロ波透過窓
5…アッシングチャンバー
6…ウェーハ
7…試料台
8…ガス導入口
9…排気口
10…ヒーターテーブル
11…プロセスガス
12…プラズマ
13…異常放電
14…マイクロ波遮断板
14a…上面板
14b…側面板
15…穴部
16…支持アーム
DESCRIPTION OF SYMBOLS 1 ... Magnetron 2 ... Waveguide 3 ... Slot antenna 4 ... Microwave transmission window 5 ... Ashing chamber 6 ... Wafer 7 ... Sample stand 8 ... Gas introduction port 9 ... Exhaust port 10 ... Heater table 11 ... Process gas 12 ... Plasma 13 ... Abnormal discharge 14 ... Microwave blocking plate 14a ... Top plate 14b ... Side plate 15 ... Hole 16 ... Support arm

Claims (8)

  1.  被処理基板を収納する処理槽内にプロセスガス及びマイクロ波を導入してプラズマを発生させるプラズマ発生装置において、
     前記処理槽には前記被処理基板よりも下方にマイクロ波遮断材が配置されたことを特徴とするプラズマ発生装置。
    In a plasma generator for generating plasma by introducing a process gas and a microwave into a processing tank for storing a substrate to be processed,
    A plasma generating apparatus, wherein a microwave blocking material is disposed in the processing tank below the substrate to be processed.
  2.  前記処理槽に前記被処理基板を載置する試料台が設置され、
     前記マイクロ波遮断材は前記試料台に取り付けられたことを特徴とする請求項1に記載のプラズマ発生装置。
    A sample stage on which the substrate to be processed is placed in the processing tank is installed,
    The plasma generator according to claim 1, wherein the microwave blocking material is attached to the sample stage.
  3.  前記マイクロ波遮断材は前記試料台に対して上下方向に移動自在に設けられたことを特徴とする請求項2に記載のプラズマ発生装置。 3. The plasma generating apparatus according to claim 2, wherein the microwave blocking material is provided so as to be movable in the vertical direction with respect to the sample stage.
  4.  前記マイクロ波遮断材はリング状の上面板を有し、その内径は試料台の外径とほぼ等しい、あるいは若干大きめに形成され、外径は、処理槽の側壁部の内径とほぼ等しい、あるいは若干小さめに形成されることを特徴とする請求項2又は請求項3に記載のプラズマ発生装置。 The microwave blocking material has a ring-shaped top plate, and the inner diameter thereof is substantially equal to or slightly larger than the outer diameter of the sample table, and the outer diameter is substantially equal to the inner diameter of the side wall of the processing tank, or The plasma generator according to claim 2 or 3, wherein the plasma generator is formed slightly smaller.
  5.  前記マイクロ波遮断材は前記試料台に対して着脱自在に設けられたことを特徴とする請求項2又は3に記載のプラズマ発生装置。 4. The plasma generating apparatus according to claim 2, wherein the microwave blocking material is detachably provided on the sample stage.
  6.  前記マイクロ波遮断材にはマイクロ波波長の1/4よりも小径の穴部が形成されたことを特徴とする請求項1~3のいずれか1項に記載のプラズマ発生装置。 The plasma generator according to any one of claims 1 to 3, wherein a hole having a diameter smaller than ¼ of a microwave wavelength is formed in the microwave blocking material.
  7.  前記マイクロ波遮断材は前記処理槽の底部または側壁部に取り付けられたことを特徴とする請求項1に記載のプラズマ発生装置。 The plasma generating apparatus according to claim 1, wherein the microwave blocking material is attached to a bottom portion or a side wall portion of the processing tank.
  8.  プラズマ発生装置として請求項1~3のいずれか1項に記載のプラズマ発生装置を用いたことを特徴とするプラズマ処理装置。 A plasma processing apparatus using the plasma generation apparatus according to any one of claims 1 to 3 as a plasma generation apparatus.
PCT/JP2009/007046 2008-12-24 2009-12-21 Plasma generating apparatus and plasma processing apparatus WO2010073578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508660A JPWO2010073578A1 (en) 2008-12-24 2009-12-21 Plasma generator and plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-328582 2008-12-24
JP2008328582 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010073578A1 true WO2010073578A1 (en) 2010-07-01

Family

ID=42287228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007046 WO2010073578A1 (en) 2008-12-24 2009-12-21 Plasma generating apparatus and plasma processing apparatus

Country Status (3)

Country Link
JP (1) JPWO2010073578A1 (en)
TW (1) TW201119518A (en)
WO (1) WO2010073578A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9167625B2 (en) * 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130713A (en) * 1993-11-04 1995-05-19 Fujitsu Ltd Down flow etching apparatus
JPH08153597A (en) * 1994-11-30 1996-06-11 Fujitsu Ltd Semiconductor processing device and method of processing
JP2004079829A (en) * 2002-08-20 2004-03-11 Tokyo Electron Ltd Plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130713A (en) * 1993-11-04 1995-05-19 Fujitsu Ltd Down flow etching apparatus
JPH08153597A (en) * 1994-11-30 1996-06-11 Fujitsu Ltd Semiconductor processing device and method of processing
JP2004079829A (en) * 2002-08-20 2004-03-11 Tokyo Electron Ltd Plasma processing apparatus

Also Published As

Publication number Publication date
TW201119518A (en) 2011-06-01
JPWO2010073578A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
TW559988B (en) Method and apparatus for micro-jet enabled, low-energy ion generation and transport in plasma processing
US8057603B2 (en) Method of cleaning substrate processing chamber, storage medium, and substrate processing chamber
KR101335120B1 (en) Apparatus for the optimization of atmospheric plasma in a plasma processing system
US8569178B2 (en) Plasma processing method and plasma processing apparatus
US20130065399A1 (en) Plasma processing method
US8263499B2 (en) Plasma processing method and computer readable storage medium
US20070051471A1 (en) Methods and apparatus for stripping
KR20190015174A (en) Etching method
KR100733844B1 (en) Plasma generating apparatus using neutral beam and plasma generating method
US20100151694A1 (en) Method and apparatus for growing thin oxide films on silicon while minimizing impact on existing structures
JP2007520880A (en) Gas distribution plate assembly for plasma reactor
KR102494293B1 (en) Etching method
WO2015137364A1 (en) Plasma processing device
JP5280440B2 (en) Conformal doping using high neutral density plasma implantation
US7491908B2 (en) Plasma processing device and ashing method
WO2010073578A1 (en) Plasma generating apparatus and plasma processing apparatus
KR100476903B1 (en) Neutral particle beam processing apparatus with enhanced conversion performance from plasma ions to neutral particles
JP4861208B2 (en) Substrate mounting table and substrate processing apparatus
US9711371B2 (en) Method of etching organic film
KR101630233B1 (en) Arc chamber for ion implanter
KR20210105490A (en) Apparatus for treating substrate
KR100427524B1 (en) Batch type ashing apparatus using remote plasma
JP2002134482A (en) Apparatus and method for plasma processing
KR102132229B1 (en) Atomic layer etching device
JP6681228B2 (en) Etching apparatus and etching method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010508660

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834390

Country of ref document: EP

Kind code of ref document: A1