JPH08153597A - Semiconductor processing device and method of processing - Google Patents

Semiconductor processing device and method of processing

Info

Publication number
JPH08153597A
JPH08153597A JP6296301A JP29630194A JPH08153597A JP H08153597 A JPH08153597 A JP H08153597A JP 6296301 A JP6296301 A JP 6296301A JP 29630194 A JP29630194 A JP 29630194A JP H08153597 A JPH08153597 A JP H08153597A
Authority
JP
Japan
Prior art keywords
microwave
chamber
processing
process gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6296301A
Other languages
Japanese (ja)
Other versions
JP3567508B2 (en
Inventor
Hiroshi Mizutani
裕志 水谷
Keisuke Shinagawa
啓介 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29630194A priority Critical patent/JP3567508B2/en
Publication of JPH08153597A publication Critical patent/JPH08153597A/en
Application granted granted Critical
Publication of JP3567508B2 publication Critical patent/JP3567508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: To provide a semiconductor processing device which enhances the rate of processing, suppresses variation of the processing rate and abnormal discharging of microwave, and ensures stable operation. CONSTITUTION: A comprises a plasma light emission chamber 3 for production of plasma by introducing microwaves from a microwave transmissive window and also introducing a process gas from a gas inlet 5, a processing chamber 6 located under the chamber 3 for performing the processing of an object to be processed 7, and a microwave shutoff flange 4D having a blocking plate 4B furnished apart from the flange 4D located under a transport hole for the down-flow of a reaction active seed from the chamber 3 in the central part between the chambers 3 and 6. The microwave shutoff flange 4D consists of a cavity provided in the form of a ring surrounding it, and processing of a semiconductor board is made by the use of this semiconductor processing device having a plurality of process gas introducing holes 5B leading to the plasma light emission chamber 3 from a process gas introduction part 5A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロ波励起のプラズ
マダウンフローの半導体処理装置及び処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor processing apparatus and processing method for microwave-excited plasma downflow.

【0002】プラズマ処理は, 半導体製造プロセスにお
いて酸化膜の等方性エッチングや有機レジスト膜のアッ
シングに利用されている。近年, 半導体の処理装置は,
より高速で安定性の高いプラズマ処理技術が求められて
いる。そのためにエッチングやアッシング工程におい
て, 装置の高速性と長期間の安定稼働が望まれている。
Plasma processing is used for isotropic etching of oxide films and ashing of organic resist films in semiconductor manufacturing processes. In recent years, semiconductor processing equipment has
There is a demand for faster and more stable plasma processing technology. Therefore, in the etching and ashing process, high speed and long-term stable operation of the equipment are desired.

【0003】[0003]

【従来の技術】次に,2種類のマイクロ波励起のダウン
フローのプラズマ処理装置の従来例について説明する。
2. Description of the Related Art Next, a conventional example of a down-flow plasma processing apparatus of two types of microwave excitation will be described.

【0004】図2は従来例(1) の説明図である。図にお
いて, 1はマイクロ波導波管, 2はマイクロ波透過窓,
3はプラズマ発光室 (プラズマ発生室), 4はシャワー
ヘッド (μ波遮蔽板), 5はプロセスガス導入口, 6は処
理室, 7は被処理体である。
FIG. 2 is an explanatory view of the conventional example (1). In the figure, 1 is the microwave waveguide, 2 is the microwave transmission window,
3 is a plasma emission chamber (plasma generation chamber), 4 is a shower head (μ wave shielding plate), 5 is a process gas inlet, 6 is a processing chamber, and 7 is an object to be processed.

【0005】この装置は,プラズマ発光室と処理室とを
分離するために多数の孔の開いたシャワーヘッドと呼ば
れる導体を用いている。このようなシャワーヘッドで
は, その下にダウンフローした反応活性種の濃度を処理
室内で細かく制御することができなかったため,装置の
安定稼働に問題があった。さらに, 反応活性種によりシ
ャワーヘッドの表面状態が変化し, 定期的なクリーニン
グを必要とし,装置の稼働率を低下させていた。
This apparatus uses a conductor called a shower head having a large number of holes to separate the plasma emission chamber and the processing chamber. With such a showerhead, the concentration of reactive species downflowing under the showerhead could not be finely controlled in the processing chamber, and there was a problem in stable operation of the equipment. Furthermore, the surface state of the shower head changes due to reactive species, which requires regular cleaning, which reduces the operating rate of the equipment.

【0006】図3は以上の欠点を改善した従来例(2) の
説明図である。この装置では,プラズマ発光室 3内にガ
ス導入口 5に接続するリング状のガス導入部5Aを有し,
マイクロ波遮蔽フランジ4A上でマイクロ波励起により反
応活性種を得ていた。生成された反応活性種は中央の孔
を経て, 遮蔽板4Bに突き当たり, その周囲よりダウンフ
ローする。
FIG. 3 is an explanatory view of a conventional example (2) in which the above drawbacks are improved. This device has a ring-shaped gas inlet 5A connected to the gas inlet 5 in the plasma emission chamber 3.
The reactive species were obtained by microwave excitation on the microwave shielding flange 4A. The generated reactive species pass through the central hole, hit the shield plate 4B, and flow down from the surrounding area.

【0007】この構造では,リング状のガス導入部5Aの
全周からプラズマ発光室 3内にガスが吹き出す構造にな
っており,反応活性種の多く発生する箇所と, そうでな
い箇所ができ, 反応活性種の分布にむらが生じていた。
In this structure, the gas is blown out into the plasma emission chamber 3 from the entire circumference of the ring-shaped gas introduction part 5A, and there are places where a large amount of reactive species are generated and places where it is not. The distribution of active species was uneven.

【0008】さらに, リング状のガス導入部内までマイ
クロ波が伝搬し, マイクロ波の異常放電を起こす原因と
なっていた。また,マイクロ波遮蔽フランジ4Aの表面が
反応ガスのプラズマによって汚染されるため,処理レー
トの低下を招き, 装置の定期的なクリーニングを要して
いた。
Further, the microwave propagates into the ring-shaped gas introduction portion, which causes abnormal discharge of the microwave. In addition, the surface of the microwave shielding flange 4A is contaminated by the plasma of the reaction gas, which causes a reduction in the processing rate and requires regular cleaning of the equipment.

【0009】[0009]

【発明が解決しようとする課題】上記のように,改善さ
れた従来例(2) においても,処理レートの変動, 安定稼
働の問題, マイクロ波の異常放電の問題が生じていた。
As described above, even in the improved conventional example (2), there are problems of fluctuations in processing rate, stable operation, and abnormal microwave discharge.

【0010】本発明はマイクロ波遮蔽フランジの構造を
改善して,処理レートを向上し, 処理レートの変動及び
マイクロ波の異常放電を抑制し,装置の安定稼働を目的
とする。
An object of the present invention is to improve the structure of the microwave shielding flange to improve the processing rate, suppress fluctuations in the processing rate and abnormal microwave discharge, and to ensure stable operation of the apparatus.

【0011】[0011]

【課題を解決するための手段】上記課題の解決は, 1)マイクロ波透過窓よりマイクロ波を導入し且つガス
導入口よりプロセスガスを導入してガスプラズマを発生
させるプラズマ発光室と,その下に被処理体の処理を行
う処理室と,該プラズマ発光室と該処理室との間に,中
央部に該プラズマ発光室より反応活性種をダウンフロー
させる輸送孔と,該輸送孔の下側に該マイクロ波遮断フ
ランジと間隔を開けて設けられた遮蔽板とを有するマイ
クロ波遮断フランジを備え,該マイクロ波遮断フランジ
が,その周囲にリング状に設けられた空洞部からなるプ
ロセスガス導入部と, 該プロセスガス導入部から該プラ
ズマ発光室に通ずる複数のプロセスガス導入孔とを有す
る半導体処理装置,あるいは 2)前記マイクロ波遮断フランジが前記プラズマ発光室
にネジ止めされている前記1記載の半導体処理装置,あ
るいは 3)前記1記載の装置を用いて,半導体基板の処理を行
う半導体処理方法により達成される。
Means for Solving the Problems To solve the above-mentioned problems, 1) a plasma emission chamber for generating a gas plasma by introducing a microwave through a microwave transmission window and a process gas through a gas inlet, and below Between the plasma emission chamber and the processing chamber for processing the object to be processed, a transport hole for downflowing reactive species from the plasma emission chamber in the center, and a lower side of the transport hole. A microwave blocking flange having the microwave blocking flange and a shielding plate provided at a distance from the microwave blocking flange, and the microwave blocking flange is a process gas introducing section including a cavity provided in a ring shape around the microwave blocking flange. And a semiconductor processing device having a plurality of process gas introduction holes communicating from the process gas introduction part to the plasma emission chamber, or 2) the microwave blocking flange is the plasma This is achieved by a semiconductor processing method described in 1 above, which is screwed to a light emitting chamber, or 3) a semiconductor processing method in which a semiconductor substrate is processed using the apparatus described in 1 above.

【0012】[0012]

【作用】従来例(2) 及び本発明では, プラズマ発光室内
より被処理体に荷電粒子が漏れ難い構造にするため,プ
ラズマ発光室の中心部分にマイクロ波遮蔽フランジを設
置する。このマイクロ波遮蔽フランジによりマイクロ波
の整合をとっている。
In the conventional example (2) and the present invention, the microwave shielding flange is installed at the center of the plasma emission chamber in order to make the charged particles less likely to leak from the plasma emission chamber to the object to be processed. The microwave shielding flange matches the microwave.

【0013】2.45 GHzのマイクロ波で試したところ, マ
イクロ波透過窓との距離が10 mm 程度までは整合をとる
ことができたが,それ以上の距離では反射波を生じた。
従ってこの距離をある程度短くすることが必要である。
このために, プラズマ発光室の中心部分にマイクロ波遮
蔽フランジを設けた構造が用いられるが,従来例(2)で
は前記のような問題点が発生したので, 本発明はプラズ
マ発光室へのガスの導入を複数の孔から導入することに
より, 発光室内に均一にガスを導入し, 且つ実験結果に
よると,その孔の径をλ/20 (λはマイクロ波の波長,
2.45 GHzで12.2cm)以下にすると, マイクロ波がプロセ
スガス導入部に入り込むことなく, ここでの異常放電は
起こらない。
When tested with a microwave of 2.45 GHz, matching was achieved up to a distance of about 10 mm from the microwave transmission window, but a reflected wave was generated at a distance longer than that.
Therefore, it is necessary to shorten this distance to some extent.
For this reason, a structure in which a microwave shielding flange is provided in the central portion of the plasma emission chamber is used. However, in the conventional example (2), the problem as described above occurred, so the present invention uses the gas for the plasma emission chamber. The gas is introduced uniformly into the light-emitting chamber by introducing the gas through multiple holes, and the experimental results show that the diameter of the hole is λ / 20 (where λ is the wavelength of the microwave,
If it is less than 12.2 cm at 2.45 GHz, microwaves do not enter the process gas inlet and abnormal discharge does not occur here.

【0014】本発明が発光室内に均一にガスを導入でき
る理由は, 外部より導入されたガスはリング状のガス導
入部で一旦蓄えられ,リングの全周にわたってほぼ均一
な圧力になっ状態から, リングの周囲に設けられた複数
の孔から吹き出すため,各孔から均一にプラズマ発光室
に導入されることにによる。
The reason why the present invention can uniformly introduce the gas into the light emitting chamber is that the gas introduced from the outside is temporarily stored in the ring-shaped gas introduction part and has a substantially uniform pressure over the entire circumference of the ring. This is because the gas is blown out from a plurality of holes provided around the ring, so that the holes are uniformly introduced into the plasma emission chamber.

【0015】[0015]

【実施例】図1は本発明の実施例の説明図である。図に
おいて, 1はマイクロ波導波管, 2はマイクロ波透過
窓, 3はプラズマ発光室 (プラズマ発生室), 4Dはマイ
クロ波遮蔽フランジ, 4Bはマイクロ波遮蔽板, 4Cは固定
ネジ, 5はプロセスガス導入口, 5Aはプロセスガス導入
部, 5Bはプロセスガス導入孔, 6は処理室 (反応室), 7
は被処理体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an illustration of an embodiment of the present invention. In the figure, 1 is a microwave waveguide, 2 is a microwave transmission window, 3 is a plasma emission chamber (plasma generation chamber), 4D is a microwave shielding flange, 4B is a microwave shielding plate, 4C is a fixing screw, and 5 is a process. Gas inlet, 5A is process gas inlet, 5B is process gas inlet, 6 is processing chamber (reaction chamber), 7
Is an object to be processed.

【0016】従来例(2) との相違点は, マイクロ波遮蔽
フランジ4Dにおいて,リング状のプロセスガス導入部5A
とプラズマ発光室 3との境界は仕切られ, ガスはこの仕
切り部の円周上に設けられたプロセスガス導入孔5Bより
プラズマ発光室 3に吹き出される構造である。
The difference from the conventional example (2) is that in the microwave shielding flange 4D, the ring-shaped process gas inlet 5A
The boundary between the plasma emission chamber 3 and the plasma emission chamber 3 is partitioned, and the gas is blown into the plasma emission chamber 3 through the process gas introduction hole 5B provided on the circumference of the partition.

【0017】また,マイクロ波遮蔽フランジ4D, マイク
ロ波遮蔽板4Bはクリーニングの際に取り外しができるよ
うに固定ネジ4Cにより取りつけられる。なお,実施例で
はプロセスガス導入孔5Bは円周上に4個設けられている
が,円周上等間隔にもっと多数設けてもよい。
The microwave shielding flange 4D and the microwave shielding plate 4B are attached by fixing screws 4C so that they can be removed during cleaning. In the embodiment, four process gas introduction holes 5B are provided on the circumference, but more process gas introduction holes 5B may be provided at equal intervals on the circumference.

【0018】次に,この装置を利用したプロセスの説明
をする。 実施例1: O2+CF4 ガスによるアッシング 図1のような反応活性種が拡散して輸送される構造に
し,アッシングレートを測定した。また,実施例のマイ
クロ波遮蔽フランジの効果を確認するため,マイクロ波
遮蔽フランジのない従来例(1) 及びマイクロ波遮蔽フラ
ンジのある従来例(2) との比較を行った。
Next, a process using this device will be described. Example 1: Ashing with O 2 + CF 4 gas The ashing rate was measured with a structure as shown in FIG. 1 in which reactive reactive species are diffused and transported. Further, in order to confirm the effect of the microwave shielding flange of the embodiment, comparison was made with the conventional example (1) having no microwave shielding flange and the conventional example (2) having the microwave shielding flange.

【0019】アッシング条件は以下の通りである。 O2 900 SCCM CF4 100 SCCM ガス圧力 1 Torr μ波パワー 1.5 KW 基板温度 25 ℃ アッシングの結果, そのレートは以下のようになった。The ashing conditions are as follows. O 2 900 SCCM CF 4 100 SCCM Gas pressure 1 Torr μ Wave power 1.5 KW Substrate temperature 25 ℃ As a result of ashing, the rate was as follows.

【0020】実施例 : 2.8 μm/分 従来例(1) : 0.7 μm/分 従来例(2) : 2.0 μm/分 すなわち,マイクロ波遮蔽フランジがあり,かつガス量
の制御できる実施例が最もアッシングが高速化できると
いうことが確認された。
Example: 2.8 μm / min Conventional example (1): 0.7 μm / min Conventional example (2): 2.0 μm / min In other words, the example in which there is a microwave shielding flange and the amount of gas can be controlled is the most ashing. It was confirmed that can be speeded up.

【0021】実施例2: O2+CF4 ガスによるアッシン
グの稼働安定性 アッシングと同様の条件でエッチング処理を 400回行っ
た後, 実施例1と同じ条件でアッシングレートを測定し
た。
Example 2: Operational stability of ashing with O 2 + CF 4 gas After etching was performed 400 times under the same conditions as for ashing, the ashing rate was measured under the same conditions as in Example 1.

【0022】その結果, アッシングレートは以下のよう
になった。 実施例 : 2.4 μm/分 従来例(1) : 0.3 μm/分 従来例(2) : 2.0 μm/分 また, アッシング処理を 400回行った後, 実施例1と同
じ条件でアッシングレートを測定した。
As a result, the ashing rate was as follows. Example: 2.4 μm / min Conventional example (1): 0.3 μm / min Conventional example (2): 2.0 μm / min After the ashing treatment was performed 400 times, the ashing rate was measured under the same conditions as in Example 1. .

【0023】その結果, アッシングレートは以下のよう
になった。 実施例 : 2.3 μm/分 従来例(1) : 0.2 μm/分 従来例(2) : 1.3 μm/分 いずれの結果も, 実施例の方が最もアッシングレートの
変動が少ない安定したアッシングレートが得られた。
As a result, the ashing rate was as follows. Example: 2.3 μm / min Conventional example (1): 0.2 μm / min Conventional example (2): 1.3 μm / min In all cases, the example obtains a stable ashing rate with the smallest variation in ashing rate. Was given.

【0024】実施例3: O2+CF4 ガスによる酸化膜エ
ッチング エッチング条件は以下の通りである。 O2 900 SCCM CF4 100 SCCM ガス圧力 1 Torr μ波パワー 1.5 KW 基板温度 135 ℃ その結果, エッチングレートは以下のようになった。
Example 3 Oxide Film Etching with O 2 + CF 4 Gas Etching conditions are as follows. O 2 900 SCCM CF 4 100 SCCM Gas pressure 1 Torr μ Wave power 1.5 KW Substrate temperature 135 ℃ As a result, the etching rate is as follows.

【0025】実施例 : 1400 Å/分 従来例(2) : 900 Å/分 実施例の方が, エッチングレートが大きい。Example: 1400 Å / min Conventional Example (2): 900 Å / min The Example has a higher etching rate.

【0026】実施例1〜3の結果より,本発明は処理の
高速化,安定化に有効であることがわかる。また,従来
例(2) の装置では,プラズマによって変質したプラズマ
発光室を定期的にクリーニングする必要があったが,実
施例の装置ではプラズマ発光室内にネジ止めされたマイ
クロ波遮蔽フランジを交換するだけで,クリーニングと
同等の効果が得られ,装置の補修性が向上した。
The results of Examples 1 to 3 show that the present invention is effective for speeding up and stabilizing the processing. Further, in the device of the conventional example (2), it was necessary to periodically clean the plasma emission chamber that was degenerated by plasma, but in the device of the example, the microwave shielding flange screwed in the plasma emission chamber is replaced. Only by doing so, the same effect as cleaning was obtained and the repairability of the device was improved.

【0027】[0027]

【発明の効果】本発明によれば,プラズマ発光室内に導
入するガスを制御できるように,外周上に配置された複
数のガス導入口を有するマイクロ波遮蔽フランジを設け
ることにより,処理レートの向上と安定化が達成でき,
またプラズマの異常放電も抑制でき,且つ装置の補修性
を向上できる。
According to the present invention, the processing rate is improved by providing a microwave shielding flange having a plurality of gas introduction ports arranged on the outer circumference so that the gas introduced into the plasma emission chamber can be controlled. And stabilization can be achieved,
Further, abnormal discharge of plasma can be suppressed and the repairability of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の説明図FIG. 1 is an explanatory diagram of an embodiment.

【図2】 従来例(1) の説明図FIG. 2 is an explanatory diagram of a conventional example (1).

【図3】 従来例(2) の説明図FIG. 3 is an explanatory diagram of a conventional example (2).

【符号の説明】[Explanation of symbols]

1 マイクロ波導波管 2 マイクロ波透過窓 3 プラズマ発光室 4D マイクロ波遮蔽フランジ 4B マイクロ波遮蔽板 4C 固定ネジ 5 プロセスガス導入口 5A プロセスガス導入部 5B プロセスガス導入孔 6 処理室 7 被処理体 1 microwave waveguide 2 microwave transmission window 3 plasma emission chamber 4D microwave shielding flange 4B microwave shielding plate 4C fixing screw 5 process gas inlet 5A process gas inlet 5B process gas inlet 6 treatment chamber 7 object to be treated

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/302 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/302 H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波透過窓よりマイクロ波を導入
し且つガス導入口よりプロセスガスを導入してガスプラ
ズマを発生させるプラズマ発光室と,その下に被処理体
の処理を行う処理室と,該プラズマ発光室と該処理室と
の間に,中央部に該プラズマ発光室より反応活性種をダ
ウンフローさせる輸送孔と,該輸送孔の下側に該マイク
ロ波遮断フランジと間隔を開けて設けられた遮蔽板とを
有するマイクロ波遮断フランジを備え,該マイクロ波遮
断フランジが,その周囲にリング状に設けられた空洞部
からなるプロセスガス導入部と, 該プロセスガス導入部
から該プラズマ発光室に通ずる複数のプロセスガス導入
孔とを有することを特徴とする半導体処理装置。
1. A plasma light emitting chamber for introducing a microwave through a microwave transmitting window and a process gas through a gas inlet to generate a gas plasma, and a processing chamber thereunder for processing an object to be processed, Between the plasma emission chamber and the processing chamber, a transport hole for downflowing reactive species from the plasma emission chamber is provided in the center, and a microwave blocking flange is provided below the transport hole with a gap. A microwave shielding flange having a shield plate provided therein, the microwave shielding flange comprising a process gas introducing portion formed of a cavity provided in a ring shape around the microwave shielding flange, and the plasma emission chamber from the process gas introducing portion. And a plurality of process gas introduction holes communicating with the semiconductor processing device.
【請求項2】 前記マイクロ波遮断フランジが前記プラ
ズマ発光室にネジ止めされていることを特徴とする請求
項1記載の半導体処理装置。
2. The semiconductor processing apparatus according to claim 1, wherein the microwave blocking flange is screwed to the plasma emission chamber.
【請求項3】 請求項1記載の装置を用いて,半導体基
板の処理を行うことを特徴とする半導体処理方法。
3. A semiconductor processing method, wherein a semiconductor substrate is processed by using the apparatus according to claim 1.
JP29630194A 1994-11-30 1994-11-30 Semiconductor processing apparatus and processing method Expired - Lifetime JP3567508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29630194A JP3567508B2 (en) 1994-11-30 1994-11-30 Semiconductor processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29630194A JP3567508B2 (en) 1994-11-30 1994-11-30 Semiconductor processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JPH08153597A true JPH08153597A (en) 1996-06-11
JP3567508B2 JP3567508B2 (en) 2004-09-22

Family

ID=17831784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29630194A Expired - Lifetime JP3567508B2 (en) 1994-11-30 1994-11-30 Semiconductor processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP3567508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073578A1 (en) * 2008-12-24 2010-07-01 芝浦メカトロニクス株式会社 Plasma generating apparatus and plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073578A1 (en) * 2008-12-24 2010-07-01 芝浦メカトロニクス株式会社 Plasma generating apparatus and plasma processing apparatus
JPWO2010073578A1 (en) * 2008-12-24 2012-06-07 芝浦メカトロニクス株式会社 Plasma generator and plasma processing apparatus

Also Published As

Publication number Publication date
JP3567508B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
KR900003613B1 (en) Microwave plasma treating equipment
US6692649B2 (en) Inductively coupled plasma downstream strip module
EP1016134B1 (en) Plasma reactor for passivating a substrate
US4512868A (en) Microwave plasma processing apparatus
US5024748A (en) Microwave plasma processing apparatus
US4617079A (en) Plasma etching system
JP4956080B2 (en) Plasma etching equipment
KR19980079855A (en) Apparatus and Method for Improving Substrate Processing Systems with Remote Plasma Sources
JPH0729885A (en) Semiconductor manufacturing equipment and manufacture of semiconductor by use of same
US4340461A (en) Modified RIE chamber for uniform silicon etching
US20050103441A1 (en) Etching method and plasma etching apparatus
KR20080036157A (en) Plasma processing device and ashing method
JPH1140398A (en) Plasma producing device
JPH0684837A (en) Plasma treatment apparatus
JP3774965B2 (en) Plasma processing equipment
JPH08153597A (en) Semiconductor processing device and method of processing
JP3966932B2 (en) Ashing equipment
US20060016395A1 (en) Plasma processing apparatus
JP2802083B2 (en) Microwave plasma processing equipment
KR100234813B1 (en) Microwave plasma apparatus
JP3357737B2 (en) Discharge plasma processing equipment
JP3373466B2 (en) Plasma processing apparatus and plasma processing method
JPH06349776A (en) Semiconductor manufacturing apparatus
JP2791298B2 (en) Microwave-excited plasma processing equipment
JPH0864390A (en) Plasma processing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

EXPY Cancellation because of completion of term