WO2010071095A1 - Method for producing hydrogel particles - Google Patents

Method for producing hydrogel particles Download PDF

Info

Publication number
WO2010071095A1
WO2010071095A1 PCT/JP2009/070801 JP2009070801W WO2010071095A1 WO 2010071095 A1 WO2010071095 A1 WO 2010071095A1 JP 2009070801 W JP2009070801 W JP 2009070801W WO 2010071095 A1 WO2010071095 A1 WO 2010071095A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
hydrogel particles
dispersion
weight
stirring
Prior art date
Application number
PCT/JP2009/070801
Other languages
French (fr)
Japanese (ja)
Inventor
靖博 志田原
訓史 上野
浩二 峯
公一 福田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008321156A external-priority patent/JP5388561B2/en
Priority claimed from JP2009131989A external-priority patent/JP5548391B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN200980151351.XA priority Critical patent/CN102256694B/en
Publication of WO2010071095A1 publication Critical patent/WO2010071095A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/466Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfonic acid derivatives; Salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels

Definitions

  • the present invention relates to a method for producing hydrogel particles and hydrogel particles obtained by the method.
  • Hydrogel particles produced from a dispersion obtained by emulsifying and dispersing oily components or oily components and solid particles with a surfactant using a gelling agent that causes gelation due to thermoreversibility of the sol-gel include the following: The following are known.
  • a hydrophobized powder and an oil component are mixed and dispersed in an agar solution using a surfactant such as polyoxyethylene sorbitan monostearate, and poured into a mold and cooled and solidified.
  • a surfactant such as polyoxyethylene sorbitan monostearate
  • the gist of the present invention is as follows.
  • a surfactant is used in order to stably blend oily components and solid particles in an agar solution without causing creaming or sedimentation.
  • hydrogel particles are manufactured using a surfactant, if such a hydrogel particle is blended with an aqueous product, the oil component leaks out of the hydrogel particle during storage and distribution of the product. I understood that.
  • the hydrogel particles are intended to contain solid particles, the solid particles settle in the dispersion, and the product uniformity cannot be maintained. It has also been found that this causes a blockage.
  • the present invention relates to providing a method for producing hydrogel particles in which oily components do not leak out of the hydrogel particles even when the medium is blended with water-based products. Furthermore, the present invention relates to providing a method for producing hydrogel particles in which solid particles do not settle in the dispersion. Furthermore, the present invention relates to providing hydrogel particles obtained by such a production method, in which oily components do not leak out of the hydrogel particles and solid particles do not settle in the dispersion.
  • hydrogel particles of the present invention it is possible to produce excellent hydrogel particles in which oily components of the obtained hydrogel particles are not leaked to the outside and solid particles are not precipitated in the dispersion. The excellent effect of being able to be exhibited.
  • hydrogel particles refers to one or more particles in which an oily component or an oily component and solid particles are dispersed in a hydrogel. Note that the concept of hydrogel particles does not include capsules in which the inner layer and the outer layer are concentric, each consisting of an outer layer that is an outer layer and a core component that is an inner layer.
  • hydrogel refers to a gel obtained from a gelling agent using water as a solvent.
  • non-crosslinked hydrogel as used in this specification means that gelation does not occur by reaction with ions, for example, potassium ions or calcium ions, but the gelling agent is agar. This refers to gelation caused by thermoreversibility of sol-gel.
  • the melting temperature of agar in water is generally 75 ° C. or higher, and the main one is 75 to 90 ° C.
  • the gelation temperature when agar is dissolved in water and then cooled is 30 to 45 ° C. .
  • the component (A) is a gelling agent that causes gelation due to the thermoreversibility of the sol-gel.
  • agar, gelatin, gellan gum and the like can be mentioned. These can be used alone or in admixture of two or more. Of these, agar is preferred.
  • the jelly strength of the agar used is preferably 68.6 kPa (700 g / cm 2 ) or less from the viewpoint of feel during use, and 19.6 kPa (200 g / cm 2 ) to 63.7 kPa (650 g / cm 2 ). Is more preferable.
  • the jelly strength is determined by the Nissho Water method.
  • the jelly strength is determined by preparing a 1.5% by weight aqueous solution of a gelling agent and allowing the aqueous solution to stand for 15 hours at 20 ° C. to solidify the gel.
  • the content of the component (A) in the hydrogel particles is preferably from 0.1 to 8.0% by weight, from the viewpoint of preventing breakage when the hydrogel particles are mixed with a water-based product. 5.0% by weight is more preferred.
  • the component (B) is an oily component.
  • the component (B) is preferably a solid fat having a melting point of 35 ° C. or higher and / or a liquid oil having a melting point of less than 35 ° C., for example, fragrances, fats and oils, waxes, hydrocarbons, higher fatty acids, higher alcohols. , One or more components selected from the group consisting of esters, oily medicinal components and silicone oils.
  • Perfumes include monoterpenes such as menthol or limonene, 1,8-cineole and linalool, citrus fruits such as orange, lemon and grapefruit, fruits such as apple, teas such as tea and green tea, and beans such as coffee Varieties of flavors, spices such as black pepper and curry, mint such as peppermint and spearmint, blended fragrances such as daily, vanilla and cola nuts, essential oils such as orange oil and eucalyptus oil, and extracts. Monoterpenes having high volatility and stability are preferable from the viewpoint of maintaining scent sustainability by preventing leakage from the hydrogel particles.
  • the fragrance is the component (b-1).
  • Examples of the fats and oils include soybean oil, nutka oil, avocado oil, almond oil, olive oil, cacao butter, sesame oil, persic oil, castor oil, coconut oil, mink oil, beef tallow, pork fat, and other natural fats and oils.
  • Examples thereof include hardened oils obtained by hydrogenating natural fats and oils, and synthetic triglycerides such as myristic acid glyceride and 2-ethylhexanoic acid glyceride.
  • waxes examples include carnauba wax, whale wax, beeswax and lanolin.
  • hydrocarbons examples include liquid paraffin, solid paraffin, ceramide, petrolatum, paraffin, microcrystalline wax, ceresin, squalane and pristane. Hydrocarbons are used as component (b-2).
  • higher fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, lanolinic acid, and isostearic acid.
  • higher alcohols examples include lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, oleyl alcohol, lanolin alcohol, cholesterol, isostearyl alcohol and the like.
  • esters examples include cetyl octanoate, myristyl lactate, isopropyl myristate, octyldodecyl myristate, isopropyl palmitate, isopropyl adipate, butyl stearate, decyl oleate, and isostearyl isostearate.
  • oily medicinal ingredients include tocopherol, retinol, ascorbyl palmitate, l-menthol, and triclosan.
  • silicone oils examples include dimethylpolysiloxane, decamethylcyclopentasiloxane, methylphenylpolysiloxane, alkyl acrylate copolymer methylpolysiloxane ester, and the like.
  • oil components can be used alone or in admixture of two or more.
  • the produced hydrogel particles are blended and stored in an aqueous medium containing a surfactant, it is preferable to include the above hydrocarbons as part of the oil component from the viewpoint of suppressing leakage of the oil component, More preferably, the hydrogen is ceresin, paraffin, or microcrystalline wax.
  • the content of the component (B) in the hydrogel particles is preferably 1 to 60% by weight, and more preferably 5 to 40% by weight.
  • the content is preferably 1% by weight or more from the viewpoint of exhibiting the effect of the addition of the oil component, and the content is preferably 60% by weight or less from the viewpoint of suppressing the viscosity increase of the dispersion.
  • the fragrance of the component (b1) when used as the component (B), it is preferably used in combination with the hydrocarbon of the component (b2).
  • the content weight ratio of the component (b2) to the component (b1) is preferably 1/20 to 12/20, Is more preferably 7.5 / 20, more preferably 1.5 / 20 to 7/20, still more preferably 2/20 to 6.5 / 20, and 2/20 to 6 More preferably, it is / 20.
  • the fragrance can be held in a suitably sized hydrocarbon crystal, and the fragrance is prevented from flowing out (solubilizing) from the hydrogel particles. be able to.
  • the component (C) is a surfactant and is a component necessary for stably blending the component (B) in the dispersion.
  • the component (C) include non-ionic surfactants such as polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, tetraoleic acid polyoxyethylene sorbit and polyoxyethylene.
  • Hardened castor oil, and anionic surfactants include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl acetates, polyoxyethylene alkyl ether phosphates, fatty acid salts, N-acyl taurine salts
  • cationic surfactants include alkylamine acetate, alkyltrimethylammonium chloride, dialkyldimethylammonium chloride and alkylbenzyldimethylammonium.
  • a component can be used individually or in mixture of 2 or more types. From the viewpoint of emulsion stability of the oil component and suppression of agar gel strength reduction, the component (C) is preferably an anionic surfactant, more preferably an N-acyl taurine salt, and more preferably sodium N-stearoylmethyl taurate. .
  • the content of the component (C) in the hydrogel particles is preferably 0.1 to 5.0% by weight, more preferably 0.15 to 3.0% by weight. From the viewpoint of maintaining stability in the dispersion of the component (B) and the component (D), the content is preferably 0.1% by weight or more, and from the viewpoint of avoiding the gel strength reduction of the agar, the content is 5.0. % By weight or less is preferred.
  • the hydrogel particles in the present invention contain water.
  • the water content in the hydrogel particles is preferably 40 to 90% by weight, more preferably 50 to 80% by weight.
  • the hydrogel particles in the present invention may contain solid particles as the component (D). Such solid particles are more preferably water-insoluble, where water-insoluble refers to those having a solubility in water at 25 ° C. of 0.1% by weight or less.
  • the average particle size of the component (D) is preferably 50 ⁇ m or less, more preferably 0.01 to 50 ⁇ m, even more preferably 0.05 to 20 ⁇ m from the viewpoint of suppression of sedimentation. In the present specification, the average particle diameter of the component (D) is a value that can be measured by a laser diffraction / scattering formula unless otherwise specified.
  • the median diameter obtained by measurement using a particle size distribution analyzer LA-920 is defined as the average particle diameter.
  • the specific gravity of the component (D) with respect to water is preferably 1.1 to 8.0.
  • component (D) examples include pigments, cosmetic powders, and natural polymer powders. These are coloring agents for hydrogel particles, and those in which hydrogel particles are blended in cosmetics are used on the skin. When used, it can function as a feeling-improving agent such as improving the smooth feeling.
  • pigments include inorganic pigments such as carbon black, talc, kaolin, mica, mica titanium, iron oxide (bengal), yellow iron oxide, black iron oxide, bismuth oxychloride, magnesium silicate, titanium oxide, and calcium carbonate, red Organic pigments such as No. 202, Red No. 204, Red No. 205, Red No. 206, Red No. 219, Red No. 228, Red No. 404, Yellow No. 205, Yellow No.
  • the cosmetic powder examples include talc, kaolin, sericite, calcium carbonate, magnesium carbonate, magnesium silicate, calcium silicate, anhydrous silicic acid, titanium oxide, zinc oxide, titanium mica, silica, zeolite, barium sulfate, calcium phosphate. , Hydroxyapatite, metal soap, polyethylene powder, polystyrene powder and the like.
  • the natural polymer powder examples include cellulose powder, chitosan powder, starch powder, silk powder, and crystalline cellulose powder. (D) component can be used individually or in mixture of 2 or more types. Among these, calcium carbonate is more preferable from the viewpoint of foam suppression. Further, the specific gravity of each solid particle with respect to water is in the range of 1.1 to 8.0.
  • the (B) component and the (D) component interact with each other. It was considered that a stable dispersion liquid in which neither creaming nor sedimentation occurs can be obtained by balancing the force that the component (B) tries to cream with the force that the component (D) tries to settle. From this viewpoint, the weight ratio of the component (B) / the component (D) is preferably 3/1 to 20/1, more preferably 4/1 to 18/1, and particularly preferably 5/1 to 15/1.
  • the hydrogel particles in the present invention may contain other substances as necessary.
  • examples of such other substances include water-soluble organic compounds such as saccharides, polyhydric alcohols, and water-soluble polymer compounds, preservatives, water-soluble colorants, and antioxidants.
  • the manufacturing method of the hydrogel particle of this invention has the stirring process process which provides a specific stirring energy to the mixture containing (A) component, (B) component, (C) component, and water, and obtains a dispersion liquid.
  • the dispersion is subjected to a general method such as a dropping method, a spraying method, or a stirring method to form droplets, and then the droplets are cooled and solidified to produce hydrogel particles.
  • stirring energy 200 to 5000 [kW ⁇ min / m 3 ] to the mixture.
  • a preferable range of the stirring energy is 230 to 4500 [kW ⁇ min / m 3 ], and a more preferable range is 250 to 4200 [kW ⁇ min / m 3 ].
  • the stirring energy is 200 [kW ⁇ min / m 3 ] from the viewpoint of suppressing sedimentation of the solid particles in the dispersion and preventing leakage of the oil component when the hydrogel particles are blended into the aqueous medium.
  • the stirring energy is 5000 [kW ⁇ min / m 3 ] or less from the viewpoint of maintaining the stability of the dispersion, suppressing the increase in viscosity, and avoiding prolonging the production time. Preferably there is.
  • the viscosity of the dispersion is high, for example, when it exceeds 600 mPa ⁇ s, it tends to be difficult to form hydrogel particles.
  • the apparatus for applying stirring energy to the mixture is not particularly limited, and a known stirring apparatus can be used.
  • a device capable of exhibiting a high shearing force is required. Therefore, the device is preferably a homomixer, a line mixer, a disper, or the like, and more preferably a homomixer in terms of operation.
  • a preferable temperature range is 60 to 90 ° C.
  • a preferable pH of the dispersion liquid is pH 5.5 to 8.5 (80 ° C.).
  • the “stirring energy” defined in this specification is stirring power P / V [kW / m 3 ] ⁇ time [minutes], and a detailed calculation formula is described in Japanese Patent Application Laid-Open No. 2007-161683. ing. The formula for calculating the stirring energy when using a homomixer is shown in (I).
  • the stirring power P (kW) is calculated by the following experimental formula 1.
  • Stirring power P (kW) Np x n 3 x d 5 x ⁇ / 1000 (empirical formula 1)
  • Np is the power number.
  • the stirring tank capacity is less than 10L: 1.5, 10L or more: 1.3
  • n Stirring speed [-/ sec]
  • d Diameter of stirring blade [m]
  • Content density [kg / m 3 ]
  • the dropping method uses the property that a dispersion liquid is discharged from a hole and the discharged dispersion liquid becomes a droplet by its surface tension or interfacial tension, and the droplet is cooled in a gas phase such as air or in a liquid phase. It is a method of forming hydrogel particles by solidifying. In addition, from the viewpoint of forming hydrogel particles having a uniform particle size, it is preferable to vibrate the dispersion discharged from the holes.
  • the spraying method uses a spray nozzle and discharges (sprays) the dispersion liquid into the gas phase from the spray nozzle, forms droplets by the surface tension, and cools and solidifies the droplets in the gas phase to form hydrogel particles. It is a method of forming.
  • the dispersion is poured into a liquid that has a property that does not substantially mix with the dispersion and is adjusted to a temperature equal to or higher than the gelling temperature, and the dispersion is atomized by a shearing force by stirring.
  • This is a method of forming hydrogel particles by utilizing the property of forming droplets and cooling and solidifying the droplets in a liquid that does not substantially mix with the dispersion.
  • the temperature of the dispersion at the time of discharging, spraying, or charging is set to a temperature not lower than the gelling temperature and not higher than 100 ° C.
  • the temperature of the dispersion is preferably set to a gelling temperature + 10 ° C. or higher, and to a gelling temperature + 20 ° C. or higher. More preferred.
  • the upper limit of this temperature is 100 ° C., which is the boiling point of water.
  • the temperature of the dispersion is preferably in the range of 60 to 90 ° C, more preferably in the range of 70 to 80 ° C.
  • hydrogel particles formed as described above may be further made into fine hydrogel particles by pulverization or the like, if necessary.
  • the component (B) is dispersed and encapsulated in the continuous phase containing the component (A) and water.
  • the structure of such hydrogel particles can be confirmed, for example, by analyzing an SEM photograph of the hydrogel particles.
  • the shape of the hydrogel particles obtained by the production method of the present invention is not particularly limited, but preferably has a shape of a rotating body constituted by a curved surface.
  • the “rotary body constituted by a curved surface” means a closed figure constituted by a virtual axis and a continuous curve, rotated by the virtual axis, and has a shape such as a triangular pyramid or a cylinder. Is not included.
  • the shape of the hydrogel particles is more preferably spherical or elliptical from the viewpoint of aesthetics.
  • the average particle diameter of the hydrogel particles produced according to the present invention and the emulsified diameter of the oil component can be measured by a laser diffraction / scattering method.
  • the median diameter measured using a particle size distribution analyzer LA-920 is defined as the average particle diameter.
  • the average particle size of the hydrogel particles is preferably 5 to 10,000 ⁇ m, more preferably 30 to 3000 ⁇ m, and particularly preferably 50 to 1000 ⁇ m.
  • the emulsified diameter of the oil component is preferably 0.01 to 20 ⁇ m, more preferably 0.02 to 15 ⁇ m, and particularly preferably 0.03 to 10 ⁇ m.
  • the viscosity of the dispersion can be measured with a B-type viscometer.
  • the viscosity of the dispersion is not particularly limited, but it is usually 0.1 to 700 mPa ⁇ s, preferably 1 to 500 mPa ⁇ s at the temperature at the time of discharging, spraying or charging.
  • the viscosity of the dispersion was obtained by measuring the dispersion at 80 ° C. with a B-type viscometer.
  • the average particle diameter of the hydrogel particles was defined as the median diameter measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.).
  • TK Robotics manufactured by Primics
  • the wing diameter was 2.5 cm.
  • Examples 1 to 4 and Comparative Examples 1 to 5 Solution A and an oil component were prepared as follows. Specific components and blending ratios are shown in Tables 1 and 2.
  • Solution A was prepared by blending each component in ion-exchanged water at room temperature, heating and mixing at 90 ° C. for 30 minutes, and then cooling to 80 ° C.
  • the oil component was prepared by heating and mixing each component at 80 ° C.
  • the dispersion liquid was measured using a one-fluid nozzle having a pore diameter of 0.9 mm, a flow rate of 18 to 20 L / hr, and a spray pressure of 0.45 to 0.
  • the dispersion was sprayed into cooling air at .75 MPa to form hydrogel particles.
  • the dispersion of Comparative Example 5 had a very high viscosity of 720 mPas, and it was difficult to form particles by the spray method.
  • the state of the dispersion after 12 hours was evaluated as follows. Stability: Neither sedimentation of solid particles (pigments) nor separation of oily components was observed in the dispersion. Pigment sedimentation: In the dispersion liquid, separation of oily components was not observed, but sedimentation of solid particles (pigments) was observed. Oil separation: In the dispersion liquid, no precipitation of solid particles (pigments) was observed, but separation of oily components was observed.
  • the dispersion liquid containing predetermined components is treated with a stirring energy of 200 to 5000 [kW ⁇ min / m 3 ], and then the hydrogel particles are produced from the dispersion liquid.
  • a stirring energy 200 to 5000 [kW ⁇ min / m 3 ]
  • the hydrogel particles are produced from the dispersion liquid.
  • the stirring energy during the treatment is outside the range of the present invention, leakage of the oil component from the hydrogel particles cannot be prevented (Comparative Examples 1, 2 and 4), or the stability of the dispersion is poor (Comparative Example 3).
  • Table 3 shows the content of each component in the obtained hydrogel particles.
  • Examples 5-7 Example 5> (A) Component Agar (Ina Food Industries, trade name: AX-200), (C) Component N-stearoylmethyl taurine sodium (Nikko Chemicals, trade name: SMT), and (D) The component calcium carbonate (product name: Toyo White, manufactured by Toyo Denka Kogyo Co., Ltd.) is added to room temperature ion-exchanged water, heated and mixed at 90 ° C. for 30 minutes, and then cooled to 80 ° C. to prepare an aqueous solution A (aqueous) Ingredient) was prepared.
  • A Component Agar
  • C Component N-stearoylmethyl taurine sodium
  • SMT SMT
  • D The component calcium carbonate (product name: Toyo White, manufactured by Toyo Denka Kogyo Co., Ltd.) is added to room temperature ion-exchanged water, heated and mixed at 90 ° C. for 30 minutes, and then cooled to 80 ° C. to prepare an aqueous solution
  • ceresin (B2) component (manufactured by Nikko Rica Co., Ltd., trade name: ceresin 810K (melting point: 74.1 ° C.)) and l-menthol (b1) component (trade name menthol crystal, manufactured by Takasago Inc.) ) And essential oil (trade name: orange oil manufactured by Ogawa Fragrance Co., Ltd.) were heated and mixed at 80 ° C. to prepare an oil component.
  • the melting point of ceresin is the endothermic peak temperature when DSC (Differential Scanning Calorimeter: Rigaku Co., Ltd., ThermoCplus DSC8230) is used and the heating rate of the sample is 2 ° C./min (the following microscopic temperature). The same applies to crystallin wax and behenyl alcohol).
  • the amount of each component is 3.00% by weight of the agar component (A), 0.38% by weight of stearoylmethyltaurine Na (C) component, and 4.00% by weight of calcium carbonate (D) component.
  • An oily component was added to the aqueous solution A to obtain 800 g of a mixture.
  • Content density of (mixtures) ⁇ 950kg / m 3
  • the obtained dispersion is sprayed into cooling air at a flow rate of 30 L / hr and a spraying pressure of 1.1 to 1.3 MPa using a one-fluid nozzle having a pore diameter of 0.9 mm, whereby droplets of the dispersion are obtained.
  • Produced hydrogel particles which were cooled and solidified.
  • Example 6 A dispersion was prepared and hydrogel particles were prepared in the same manner as in Example 5 except that the blending amount of ceresin as the component (b2) was 5.00% by weight of the dispersion.
  • B2 Component weight / (b1) Component weight (content weight ratio) is 5/20.
  • Example 7 A dispersion was prepared and hydrogel particles were prepared in the same manner as in Example 5 except that the blending amount of ceresin as the component (b2) was 10.00% by weight of the dispersion.
  • B2 Component weight / (b1) Component weight (content weight ratio) is 10/20.
  • Example 8> instead of ceresin as the component (b2), the microcrystalline wax (product name: Multiwax W-835 (melting point: 77.8 ° C.) manufactured by Sonneborn, Inc.) as the component (b2) has a content of 5.00.
  • a dispersion was prepared and hydrogel particles were prepared in the same manner as in Example 5 except that it was blended so as to be in wt%.
  • B2) Component weight / (b1) Component weight (content weight ratio) is 5/20.
  • Example 9 ⁇ Example 9> (B2) In place of ceresin as component, behenyl alcohol (trade name: Calcoal 220-80 (melting point: 72.0 ° C.) manufactured by Kao Corporation) was blended so that the content in the dispersion was 5.00% by weight. Except for this, a dispersion was prepared in the same manner as in Example 5, and hydrogel particles were prepared.
  • behenyl alcohol trade name: Calcoal 220-80 (melting point: 72.0 ° C.) manufactured by Kao Corporation
  • ⁇ Average particle size of hydrogel particles> For the hydrogel particles produced in each of Examples 5 to 9, the median diameter was measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.), and the hydrogel particles were measured. The average particle size was taken.
  • Table 4 shows the test results. It can be understood that the hydrogel particles obtained from Examples 5 to 9 can suppress the perfume contained in the hydrogel particles from being solubilized outside the particles even when blended in a product containing a surfactant. .

Abstract

Disclosed is a method for producing hydrogel particles, which comprises a stirring step wherein a liquid dispersion is obtained by providing a mixture, which contains water and components (A)-(C), namely (A) a gelling agent wherein gelation is caused due to thermal reversibility of sol-gel transition, (B) an oily component and (C) a surfactant, with a stirring energy of 200-5,000 (kW × minutes/m3).  The hydrogel particles obtained by this production method are suitable for use in toothpastes and the like.

Description

ハイドロゲル粒子の製造方法Method for producing hydrogel particles
 本発明は、ハイドロゲル粒子の製造方法、及びその製造方法により得られるハイドロゲル粒子に関する。 The present invention relates to a method for producing hydrogel particles and hydrogel particles obtained by the method.
 ゾル-ゲルの熱可逆性によってゲル化が生じるゲル化剤を用いて、界面活性剤によって油性成分又は油性成分と固体粒子とを乳化・分散した分散液から製造されるハイドロゲル粒子としては、以下に挙げるものが知られている。 Hydrogel particles produced from a dispersion obtained by emulsifying and dispersing oily components or oily components and solid particles with a surfactant using a gelling agent that causes gelation due to thermoreversibility of the sol-gel include the following: The following are known.
 特許文献1では、寒天溶液中でポリオキシエチレンラウリルリン酸ナトリウムのような界面活性剤を用いて、油性成分のみ又は油性成分とタルクをホモミキサーの攪拌(分散液総量500g、ホモミキサー回転数8000r/m、処理時間1分:後述の攪拌エネルギー量=67[kW×分/m3])により分散液を作製し、液滴を形成させた後、該液滴を冷却固化してハイドロゲル粒子を製造している。特許文献2では、寒天溶液中でモノステアリン酸ポリオキシエチレンソルビタンのような界面活性剤を用いて、疎水化処理粉体及び油性成分を混合分散させ、型に流し込んで冷却固化している。 In Patent Document 1, a surfactant such as sodium polyoxyethylene lauryl phosphate is used in an agar solution, and only an oil component or an oil component and talc are stirred by a homomixer (total amount of dispersion: 500 g, homomixer rotation speed: 8000 r). / M, treatment time 1 minute: a dispersion liquid is prepared by the following stirring energy amount = 67 [kW × min / m 3 ]) to form droplets, which are then cooled and solidified to form hydrogel particles Is manufacturing. In Patent Document 2, a hydrophobized powder and an oil component are mixed and dispersed in an agar solution using a surfactant such as polyoxyethylene sorbitan monostearate, and poured into a mold and cooled and solidified.
特開2002-58990号公報JP 2002-58990 A 特開平8-208435号公報JP-A-8-208435
発明の要約Summary of invention
 即ち、本発明の要旨は、
〔1〕 次の(A)成分~(C)成分:
  (A)ゾル-ゲルの熱可逆性によってゲル化が生じるゲル化剤、
  (B)油性成分、及び
  (C)界面活性剤、
並びに水を含む混合物に、200~5000[kW×分/m3]の攪拌エネルギーを付与して分散液を得る攪拌処理工程を有する、ハイドロゲル粒子の製造方法;並びに
〔2〕 前記〔1〕に記載の製造方法により得られるハイドロゲル粒子;に関するものである。
That is, the gist of the present invention is as follows.
[1] The following components (A) to (C):
(A) a gelling agent in which gelation occurs due to thermoreversibility of the sol-gel;
(B) an oily component, and (C) a surfactant,
And a method for producing hydrogel particles, comprising a stirring treatment step of applying a stirring energy of 200 to 5000 [kW × min / m 3 ] to a mixture containing water to obtain a dispersion; and [2] [1] Hydrogel particles obtained by the production method described in 1. above.
発明の詳細な説明Detailed Description of the Invention
 上記の従来の技術では、油性成分や固体粒子を、寒天溶液中でクリーミングや沈降を生じさせずに安定に配合させるために、界面活性剤が使用されている。しかしながら、界面活性剤を用いてハイドロゲル粒子を製造した場合、媒体が水系の商品にこのようなハイドロゲル粒子を配合すると、商品の保存、流通中に油性成分がハイドロゲル粒子の外部に漏出することが分かった。さらに、ハイドロゲル粒子に固体粒子を含有させようとする場合、分散液中で固体粒子が沈降してしまい、製品の均一性を保てないばかりか、固体粒子の偏在により粒子化に用いる噴霧ノズル等の閉塞を引き起こしてしまうことも分かった。 In the above conventional technique, a surfactant is used in order to stably blend oily components and solid particles in an agar solution without causing creaming or sedimentation. However, when hydrogel particles are manufactured using a surfactant, if such a hydrogel particle is blended with an aqueous product, the oil component leaks out of the hydrogel particle during storage and distribution of the product. I understood that. Furthermore, when the hydrogel particles are intended to contain solid particles, the solid particles settle in the dispersion, and the product uniformity cannot be maintained. It has also been found that this causes a blockage.
 本発明は、媒体が水系の商品に配合した場合でも、油性成分がハイドロゲル粒子の外部に漏出することがないハイドロゲル粒子の製造方法を提供することに関する。さらに本発明は、分散液中で固体粒子が沈降しないハイドロゲル粒子の製造方法を提供することに関する。さらに本発明は、かかる製造方法によって得られる、油性成分がハイドロゲル粒子の外部に漏出することがなく、分散液中で固体粒子が沈降しないハイドロゲル粒子を提供することに関する。 The present invention relates to providing a method for producing hydrogel particles in which oily components do not leak out of the hydrogel particles even when the medium is blended with water-based products. Furthermore, the present invention relates to providing a method for producing hydrogel particles in which solid particles do not settle in the dispersion. Furthermore, the present invention relates to providing hydrogel particles obtained by such a production method, in which oily components do not leak out of the hydrogel particles and solid particles do not settle in the dispersion.
 上記事情を鑑み、本発明者らが鋭意検討を行った結果、分散液の調製時の攪拌エネルギーが不足すると、油性成分の外部への漏出や、分散液中の固体粒子の沈降が生じる傾向があることが分かった。さらに本発明者らが検討を進めた結果、分散液の調製時の攪拌エネルギーを特定の範囲とすることで、本発明を完成させるに至った。 In view of the above circumstances, as a result of intensive studies by the present inventors, if the stirring energy at the time of preparation of the dispersion is insufficient, leakage of oily components to the outside and solid particles in the dispersion tend to settle. I found out. Furthermore, as a result of further investigations by the present inventors, the present invention was completed by setting the stirring energy at the time of preparation of the dispersion to a specific range.
 本発明のハイドロゲル粒子の製造方法によれば、得られたハイドロゲル粒子の油性成分の外部への漏出や分散液中での固体粒子の沈降が生じない優れたハイドロゲル粒子を製造することができるという優れた効果が発揮される。本発明のこれらの及び他の利点は、下記の説明により明らかになるであろう。 According to the method for producing hydrogel particles of the present invention, it is possible to produce excellent hydrogel particles in which oily components of the obtained hydrogel particles are not leaked to the outside and solid particles are not precipitated in the dispersion. The excellent effect of being able to be exhibited. These and other advantages of the invention will be apparent from the description below.
 本明細書にいう「ハイドロゲル粒子」とは、ハイドロゲル中に油性成分又は油性成分と固体粒子とを分散させた1個または複数個の粒子をいう。なお、ハイドロゲル粒子の概念には、外層である外皮と内層である芯成分とからなる、内層と外層が同心状のカプセルは含まれない。 As used herein, “hydrogel particles” refers to one or more particles in which an oily component or an oily component and solid particles are dispersed in a hydrogel. Note that the concept of hydrogel particles does not include capsules in which the inner layer and the outer layer are concentric, each consisting of an outer layer that is an outer layer and a core component that is an inner layer.
 本明細書にいう「ハイドロゲル」とは、水を溶媒としてゲル化剤から得られたゲルをいう。また、本明細書にいう「非架橋型ハイドロゲル」とは、ゲル化がイオン、例えば、カリウムイオンやカルシウムイオン等との反応によって生じるのではなく、ゲル化剤が寒天である場合のようにゾル-ゲルの熱可逆性によってゲル化が生じるものをいう。寒天の水への溶解温度は、一般に75℃以上、その主なものについては75~90℃であり、寒天を水に溶解させた後、冷却したときのゲル化温度は30~45℃である。 As used herein, “hydrogel” refers to a gel obtained from a gelling agent using water as a solvent. In addition, “non-crosslinked hydrogel” as used in this specification means that gelation does not occur by reaction with ions, for example, potassium ions or calcium ions, but the gelling agent is agar. This refers to gelation caused by thermoreversibility of sol-gel. The melting temperature of agar in water is generally 75 ° C. or higher, and the main one is 75 to 90 ° C. The gelation temperature when agar is dissolved in water and then cooled is 30 to 45 ° C. .
<(A)成分>
 (A)成分は、ゾル-ゲルの熱可逆性によってゲル化が生じるゲル化剤である。例えば、寒天、ゼラチン、ジェランガム等が挙げられる。これらは、単独で又は2種類以上を混合して用いることができる。これらの中では、寒天が好ましい。なお、用いる寒天のゼリー強度としては、使用時の感触の観点から、68.6kPa(700g/cm2)以下が好ましく、19.6kPa(200g/cm2)~63.7kPa(650g/cm2)がより好ましい。
<(A) component>
The component (A) is a gelling agent that causes gelation due to the thermoreversibility of the sol-gel. For example, agar, gelatin, gellan gum and the like can be mentioned. These can be used alone or in admixture of two or more. Of these, agar is preferred. The jelly strength of the agar used is preferably 68.6 kPa (700 g / cm 2 ) or less from the viewpoint of feel during use, and 19.6 kPa (200 g / cm 2 ) to 63.7 kPa (650 g / cm 2 ). Is more preferable.
 ここで、ゼリー強度は、日寒水式法により求められる。日寒水式法によれば、ゼリー強度は、ゲル化剤の1.5重量%水溶液を調製し、その水溶液を20℃で15時間放置して凝固せしめたゲルに、日寒水式ゼリー強度測定器((株)木屋製作所製)により荷重をかけ、20℃においてゲルが20秒間その荷重に耐えるときの表面積1cm2あたりの最大重量[g]である。 Here, the jelly strength is determined by the Nissho Water method. According to the Nissui water method, the jelly strength is determined by preparing a 1.5% by weight aqueous solution of a gelling agent and allowing the aqueous solution to stand for 15 hours at 20 ° C. to solidify the gel. The maximum weight [g] per surface area of 1 cm 2 when a load is applied by (manufactured by Kiya Seisakusho Co., Ltd.) and the gel withstands the load for 20 seconds at 20 ° C.
 ハイドロゲル粒子における(A)成分の含有量は、ハイドロゲル粒子を媒体が水系の商品に配合する時の壊れを防止する観点から、0.1~8.0重量%が好ましく、0.5~5.0重量%がより好ましい。 The content of the component (A) in the hydrogel particles is preferably from 0.1 to 8.0% by weight, from the viewpoint of preventing breakage when the hydrogel particles are mixed with a water-based product. 5.0% by weight is more preferred.
<(B)成分>
 (B)成分は油性成分である。(B)成分は、融点35℃以上の固体脂及び/又は融点35℃未満の液体油であることが好ましく、例えば、香料、油脂類、ロウ類、炭化水素類、高級脂肪酸類、高級アルコール類、エステル類、油性薬効成分及びシリコーン油類からなる群より選択される1種以上の成分が挙げられる。
<(B) component>
The component (B) is an oily component. The component (B) is preferably a solid fat having a melting point of 35 ° C. or higher and / or a liquid oil having a melting point of less than 35 ° C., for example, fragrances, fats and oils, waxes, hydrocarbons, higher fatty acids, higher alcohols. , One or more components selected from the group consisting of esters, oily medicinal components and silicone oils.
 香料としては、メントール、又はリモネン、1,8-シネオール、リナロール等のモノテルペン類、オレンジ、レモン、グレープフルーツ等のシトラス系、アップル等のフルーツ系、紅茶、緑茶等の茶系、コーヒー等のビーンズ系、ブラックペッパー、カレー等のスパイス系、ペパーミント、スペアミント等のミント系、デイリー系、ワニラ系、コーラナッツ等の調合香料やオレンジ油、ユーカリ油等の精油、抽出物の各種が挙げられる。ハイドロゲル粒子からの漏出を防止することで香りの持続性を維持させる点から、揮発性、安定性が高いモノテルペン類が好適である。なお、香料を(b-1)成分とする。 Perfumes include monoterpenes such as menthol or limonene, 1,8-cineole and linalool, citrus fruits such as orange, lemon and grapefruit, fruits such as apple, teas such as tea and green tea, and beans such as coffee Varieties of flavors, spices such as black pepper and curry, mint such as peppermint and spearmint, blended fragrances such as daily, vanilla and cola nuts, essential oils such as orange oil and eucalyptus oil, and extracts. Monoterpenes having high volatility and stability are preferable from the viewpoint of maintaining scent sustainability by preventing leakage from the hydrogel particles. Note that the fragrance is the component (b-1).
 油脂類としては、例えば大豆油、ヌカ油、アボガド油、アーモンド油、オリーブ油、カカオ脂、ごま油、パーシック油、ヒマシ油、ヤシ油、ミンク油、牛脂、豚脂等の天然油脂、また、これらの天然油脂を水素添加して得られる硬化油、並びにミリスチン酸グリセリド、2-エチルヘキサン酸グリセリド等の合成トリグリセリドなどが挙げられる。 Examples of the fats and oils include soybean oil, nutka oil, avocado oil, almond oil, olive oil, cacao butter, sesame oil, persic oil, castor oil, coconut oil, mink oil, beef tallow, pork fat, and other natural fats and oils. Examples thereof include hardened oils obtained by hydrogenating natural fats and oils, and synthetic triglycerides such as myristic acid glyceride and 2-ethylhexanoic acid glyceride.
 ロウ類としては、例えばカルナウバロウ、鯨ロウ、ミツロウ、ラノリン等が挙げられる。 Examples of waxes include carnauba wax, whale wax, beeswax and lanolin.
 炭化水素類としては、例えば流動パラフィン、固形パラフィン、セラミド、ワセリン、パラフィン、マイクロクリスタリンワックス、セレシン、スクワラン、プリスタン等が挙げられる。なお、炭化水素類を(b-2)成分とする。 Examples of hydrocarbons include liquid paraffin, solid paraffin, ceramide, petrolatum, paraffin, microcrystalline wax, ceresin, squalane and pristane. Hydrocarbons are used as component (b-2).
 高級脂肪酸類としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、オレイン酸、リノール酸、リノレン酸、ラノリン酸、イソステアリン酸等が挙げられる。 Examples of higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, lanolinic acid, and isostearic acid.
 高級アルコール類としては、例えばラウリルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、オレイルアルコール、ラノリンアルコール、コレステロール、イソステアリルアルコール等が挙げられる。 Examples of higher alcohols include lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, oleyl alcohol, lanolin alcohol, cholesterol, isostearyl alcohol and the like.
 エステル類としては、例えばオクタン酸セチル、乳酸ミリスチル、ミリスチン酸イソプロピル、ミリスチン酸オクチルドデシル、パルミチン酸イソプロピル、アジピン酸イソプロピル、ステアリン酸ブチル、オレイン酸デシル、イソステアリン酸イソステアリル等が挙げられる。 Examples of the esters include cetyl octanoate, myristyl lactate, isopropyl myristate, octyldodecyl myristate, isopropyl palmitate, isopropyl adipate, butyl stearate, decyl oleate, and isostearyl isostearate.
 油性薬効成分としては、トコフェロール、レチノール、アスコルビン酸パルミテート、l-メントール、トリクロサン等が挙げられる。 Examples of oily medicinal ingredients include tocopherol, retinol, ascorbyl palmitate, l-menthol, and triclosan.
 シリコーン油類としては、例えばジメチルポリシロキサン、デカメチルシクロペンタシロキサン、メチルフェニルポリシロキサン、アクリル酸アルキル共重合体メチルポリシロキサンエステル等が挙げられる。 Examples of silicone oils include dimethylpolysiloxane, decamethylcyclopentasiloxane, methylphenylpolysiloxane, alkyl acrylate copolymer methylpolysiloxane ester, and the like.
 これらの油性成分は、単独で又は2種類以上を混合して用いることができる。 These oil components can be used alone or in admixture of two or more.
 製造したハイドロゲル粒子を、界面活性剤を含む水系の媒体に配合して保存する場合、油性成分の漏れ抑制の観点より、油性成分の一部として上記の炭化水素類を含むことが好ましく、炭化水素類がセレシン、パラフィン、マイクロクリスタリンワックスであることがより好ましい。 When the produced hydrogel particles are blended and stored in an aqueous medium containing a surfactant, it is preferable to include the above hydrocarbons as part of the oil component from the viewpoint of suppressing leakage of the oil component, More preferably, the hydrogen is ceresin, paraffin, or microcrystalline wax.
 ハイドロゲル粒子における(B)成分の含有量は、1~60重量%が好ましく、5~40重量%がより好ましい。油性成分の添加による効果を発揮させる観点から、当該含有量は1重量%以上が好ましく、分散液の増粘抑制の観点から、当該含有量は60重量%以下が好ましい。 The content of the component (B) in the hydrogel particles is preferably 1 to 60% by weight, and more preferably 5 to 40% by weight. The content is preferably 1% by weight or more from the viewpoint of exhibiting the effect of the addition of the oil component, and the content is preferably 60% by weight or less from the viewpoint of suppressing the viscosity increase of the dispersion.
 一つの実施形態において、(B)成分として、(b1)成分の香料を使用する場合、(b2)成分の炭化水素類と組み合わせて使用することが好ましい。この場合、(b2)成分の(b1)成分に対する含有重量比率((b2)成分の含有重量/(b1)成分の含有重量)が1/20~12/20であることが好ましく、1/20~7.5/20であることがより好ましく、1.5/20~7/20であることがさらに好ましく、2/20~6.5/20であることがより好ましく、2/20~6/20であることがさらに好ましい。当該含有重量比率を1/20以上とすることで、適度な大きさの炭化水素類の結晶に香料を保持することができ、ハイドロゲル粒子から香料が流出すること(可溶化すること)を抑えることができる。当該含有重量比率を12/20以下とすることで、上記と同様の理由から、ハイドロゲル粒子から香料が流出することを抑えることができる。 In one embodiment, when the fragrance of the component (b1) is used as the component (B), it is preferably used in combination with the hydrocarbon of the component (b2). In this case, the content weight ratio of the component (b2) to the component (b1) (the content weight of the component (b2) / the content weight of the component (b1)) is preferably 1/20 to 12/20, Is more preferably 7.5 / 20, more preferably 1.5 / 20 to 7/20, still more preferably 2/20 to 6.5 / 20, and 2/20 to 6 More preferably, it is / 20. By setting the content weight ratio to 1/20 or more, the fragrance can be held in a suitably sized hydrocarbon crystal, and the fragrance is prevented from flowing out (solubilizing) from the hydrogel particles. be able to. By making the said content weight ratio into 12/20 or less, it can suppress that a fragrance | flavor flows out from a hydrogel particle for the same reason as the above.
<(C)成分>
 (C)成分は界面活性剤であり、(B)成分を分散液中で安定に配合するのに必要な成分である。(C)成分の例としては、非イオン性界面活性剤ではポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、テトラオレイン酸ポリオキシエチレンソルビット及びポリオキシエチレン硬化ヒマシ油が挙げられ、陰イオン性界面活性剤ではアルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル酢酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、脂肪酸塩、N-アシルタウリン塩及びN-アシルアミノ酸塩が挙げられ、陽イオン性界面活性剤ではアルキルアミンアセテート、アルキルトリメチルアンモニウムクロライド、ジアルキルジメチルアンモニウムクロライド及びアルキルベンジルジメチルアンモニウムクロライドが挙げられ、両イオン性界面活性剤ではアルキルジメチルアミノ酢酸ベタイン、アルキルジメチルアミンオキサイド、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン、アルキルアミドプロピルベタイン及び酵素分解レシチンが挙げられる。
<(C) component>
The component (C) is a surfactant and is a component necessary for stably blending the component (B) in the dispersion. Examples of the component (C) include non-ionic surfactants such as polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, tetraoleic acid polyoxyethylene sorbit and polyoxyethylene. Hardened castor oil, and anionic surfactants include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl acetates, polyoxyethylene alkyl ether phosphates, fatty acid salts, N-acyl taurine salts And cationic surfactants include alkylamine acetate, alkyltrimethylammonium chloride, dialkyldimethylammonium chloride and alkylbenzyldimethylammonium. Chloride and the like, in the zwitterionic surfactant alkyl dimethyl amino acetic acid betaine, alkyl dimethylamine oxide, alkyl carboxymethyl hydroxyethyl imidazolinium betaine, alkyl amidopropyl betaine and enzymatically decomposed lecithin.
 (C)成分は、単独で又は2種類以上を混合して用いることができる。油性成分の乳化安定性及び寒天ゲル強度低下抑制の観点より、(C)成分としては陰イオン性界面活性剤が好ましく、N-アシルタウリン塩がより好ましく、中でもN-ステアロイルメチルタウリンナトリウムがさらに好ましい。 (C) A component can be used individually or in mixture of 2 or more types. From the viewpoint of emulsion stability of the oil component and suppression of agar gel strength reduction, the component (C) is preferably an anionic surfactant, more preferably an N-acyl taurine salt, and more preferably sodium N-stearoylmethyl taurate. .
 ハイドロゲル粒子における(C)成分の含有量は、0.1~5.0重量%が好ましく、0.15~3.0重量%がより好ましい。(B)成分及び(D)成分の分散液中における安定維持の観点から、当該含有量は0.1重量%以上が好ましく、寒天のゲル強度低下回避の観点から、当該含有量は5.0重量%以下が好ましい。 The content of the component (C) in the hydrogel particles is preferably 0.1 to 5.0% by weight, more preferably 0.15 to 3.0% by weight. From the viewpoint of maintaining stability in the dispersion of the component (B) and the component (D), the content is preferably 0.1% by weight or more, and from the viewpoint of avoiding the gel strength reduction of the agar, the content is 5.0. % By weight or less is preferred.
 本発明におけるハイドロゲル粒子は水を含む。ハイドロゲル粒子における水の含有量は、40~90重量%が好ましく、50~80重量%がより好ましい。 The hydrogel particles in the present invention contain water. The water content in the hydrogel particles is preferably 40 to 90% by weight, more preferably 50 to 80% by weight.
<(D)成分>
 本発明におけるハイドロゲル粒子は、(D)成分として固体粒子を含み得る。かかる固体粒子は水不溶性であることがさらに好ましく、ここで水不溶性とは、25℃における水への溶解が0.1重量%以下のものを指す。(D)成分の平均粒径は、沈降抑制の観点から50μm以下が好ましく、0.01~50μmがより好ましく、0.05~20μmがさらに好ましい。本明細書において、(D)成分の平均粒径は、別に規定のない限り、レーザー回折/散乱式により測定できる値である。レーザー回折/散乱式においては、粒度分布測定装置LA-920(堀場製作所(株)製)を用いて測定して得られるメジアン径を平均粒径とする。さらに、(D)成分の水に対する比重は1.1~8.0であることが好ましい。
<(D) component>
The hydrogel particles in the present invention may contain solid particles as the component (D). Such solid particles are more preferably water-insoluble, where water-insoluble refers to those having a solubility in water at 25 ° C. of 0.1% by weight or less. The average particle size of the component (D) is preferably 50 μm or less, more preferably 0.01 to 50 μm, even more preferably 0.05 to 20 μm from the viewpoint of suppression of sedimentation. In the present specification, the average particle diameter of the component (D) is a value that can be measured by a laser diffraction / scattering formula unless otherwise specified. In the laser diffraction / scattering type, the median diameter obtained by measurement using a particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.) is defined as the average particle diameter. Further, the specific gravity of the component (D) with respect to water is preferably 1.1 to 8.0.
 (D)成分の具体的な例としては、顔料、化粧料粉末、天然高分子系粉末が挙げられ、これらはハイドロゲル粒子の着色剤、ハイドロゲル粒子を化粧品に配合したものを肌等に使用した際にさらさら感を向上させる等の感触向上剤として機能しうる。顔料としては、例えば、カーボンブラック、タルク、カオリン、雲母、雲母チタン、酸化鉄(べんがら)、黄酸化鉄、黒酸化鉄、オキシ塩化ビスマス、珪酸マグネシウム、酸化チタン、炭酸カルシウム等の無機顔料、赤色202号、赤色204号、赤色205号、赤色206号、赤色219号、赤色228号、赤色404号、黄色205号、黄色401号、だいだい色401号、青色404号等の有機顔料が挙げられる。化粧料粉末としては、例えば、タルク、カオリン、セリサイト、炭酸カルシウム、炭酸マグネシウム、ケイ酸マグネシウム、ケイ酸カルシウム、無水ケイ酸、酸化チタン、酸化亜鉛、雲母チタン、シリカ、ゼオライト、硫酸バリウム、リン酸カルシウム、ヒドロキシアパタイト、金属石鹸、ポリエチレン粉末、ポリスチレン粉末等が挙げられる。天然高分子系粉末としては、例えば、セルロール粉末、キトサン粉末、澱粉粉末、シルク粉末、結晶セルロース粉末等が挙げられる。(D)成分は、単独で又は2種類以上を混合して用いることができる。これらの中で、抑泡の観点より炭酸カルシウムがより好ましい。また、上記の各固体粒子の水に対する比重は、いずれも1.1~8.0の範囲内である。 Specific examples of the component (D) include pigments, cosmetic powders, and natural polymer powders. These are coloring agents for hydrogel particles, and those in which hydrogel particles are blended in cosmetics are used on the skin. When used, it can function as a feeling-improving agent such as improving the smooth feeling. Examples of pigments include inorganic pigments such as carbon black, talc, kaolin, mica, mica titanium, iron oxide (bengal), yellow iron oxide, black iron oxide, bismuth oxychloride, magnesium silicate, titanium oxide, and calcium carbonate, red Organic pigments such as No. 202, Red No. 204, Red No. 205, Red No. 206, Red No. 219, Red No. 228, Red No. 404, Yellow No. 205, Yellow No. 401, Orange No. 401 and Blue No. 404 are listed. . Examples of the cosmetic powder include talc, kaolin, sericite, calcium carbonate, magnesium carbonate, magnesium silicate, calcium silicate, anhydrous silicic acid, titanium oxide, zinc oxide, titanium mica, silica, zeolite, barium sulfate, calcium phosphate. , Hydroxyapatite, metal soap, polyethylene powder, polystyrene powder and the like. Examples of the natural polymer powder include cellulose powder, chitosan powder, starch powder, silk powder, and crystalline cellulose powder. (D) component can be used individually or in mixture of 2 or more types. Among these, calcium carbonate is more preferable from the viewpoint of foam suppression. Further, the specific gravity of each solid particle with respect to water is in the range of 1.1 to 8.0.
 分散液中において、(B)成分と(D)成分とは相互作用を起こすと推定している。(B)成分がクリーミングしようとする力と(D)成分が沈降しようとする力を釣り合わせることで、クリーミングも沈降も生じない安定な分散液を得ることができると考えた。本観点より、(B)成分/(D)成分の重量比は3/1~20/1が好ましく、4/1~18/1がより好ましく、5/1~15/1が特に好ましい。 In the dispersion, it is presumed that the (B) component and the (D) component interact with each other. It was considered that a stable dispersion liquid in which neither creaming nor sedimentation occurs can be obtained by balancing the force that the component (B) tries to cream with the force that the component (D) tries to settle. From this viewpoint, the weight ratio of the component (B) / the component (D) is preferably 3/1 to 20/1, more preferably 4/1 to 18/1, and particularly preferably 5/1 to 15/1.
<その他の成分>
 本発明におけるハイドロゲル粒子中には、(A)成分、(B)成分、(C)成分、(D)成分、及び水以外にも、必要に応じて他の物質が含まれていても良い。かかる他の物質の例としては、糖類、多価アルコール、水溶性高分子化合物等の水溶性有機化合物や防腐剤、水溶性着色剤、酸化防止剤等が挙げられる。
<Other ingredients>
In addition to (A) component, (B) component, (C) component, (D) component, and water, the hydrogel particles in the present invention may contain other substances as necessary. . Examples of such other substances include water-soluble organic compounds such as saccharides, polyhydric alcohols, and water-soluble polymer compounds, preservatives, water-soluble colorants, and antioxidants.
<ハイドロゲル粒子の製造方法>
 本発明のハイドロゲル粒子の製造方法は、(A)成分、(B)成分、(C)成分及び水を含む混合物に、特定の攪拌エネルギーを付与して分散液を得る攪拌処理工程を有する。当該分散液を一般的な方法、例えば滴下法、噴霧法又は攪拌法に付して液滴を形成させた後、当該液滴を冷却固化してハイドロゲル粒子を製造する。
<Method for producing hydrogel particles>
The manufacturing method of the hydrogel particle of this invention has the stirring process process which provides a specific stirring energy to the mixture containing (A) component, (B) component, (C) component, and water, and obtains a dispersion liquid. The dispersion is subjected to a general method such as a dropping method, a spraying method, or a stirring method to form droplets, and then the droplets are cooled and solidified to produce hydrogel particles.
 混合物を攪拌処理する際、本発明においては、200~5000[kW×分/m3]の攪拌エネルギーを混合物に付与することを必須とする。当該攪拌エネルギーの好ましい範囲は230~4500[kW×分/m3]であり、より好ましい範囲は250~4200[kW×分/m3]である。分散液中での固体粒子の沈降を抑制し、かつ、ハイドロゲル粒子を水系の媒体に配合した際の油性成分の漏れを防止する観点から、当該攪拌エネルギーは200[kW×分/m3]以上であることが好ましく、分散液の安定性を維持し、粘度の上昇を抑制する、更には生産時間の長期化を避ける観点から、当該攪拌エネルギーは5000[kW×分/m3]以下であることが好ましい。分散液の粘度が高い場合、例えば600mPa・sを超える場合、ハイドロゲル粒子化するのが困難となる傾向がある。 When stirring the mixture, in the present invention, it is essential to apply stirring energy of 200 to 5000 [kW × min / m 3 ] to the mixture. A preferable range of the stirring energy is 230 to 4500 [kW × min / m 3 ], and a more preferable range is 250 to 4200 [kW × min / m 3 ]. The stirring energy is 200 [kW × min / m 3 ] from the viewpoint of suppressing sedimentation of the solid particles in the dispersion and preventing leakage of the oil component when the hydrogel particles are blended into the aqueous medium. Preferably, the stirring energy is 5000 [kW × min / m 3 ] or less from the viewpoint of maintaining the stability of the dispersion, suppressing the increase in viscosity, and avoiding prolonging the production time. Preferably there is. When the viscosity of the dispersion is high, for example, when it exceeds 600 mPa · s, it tends to be difficult to form hydrogel particles.
 また、混合物に攪拌エネルギーを付与する装置としては、特に制限されず、公知の攪拌装置を使用することができる。ただし、かかる攪拌エネルギーを付与するためには高い剪断力を発揮できる装置を要するため、装置としてはホモミキサー、ラインミキサー、ディスパーなどが好ましく、操作面からホモミキサーがより好ましい。 Further, the apparatus for applying stirring energy to the mixture is not particularly limited, and a known stirring apparatus can be used. However, in order to give such stirring energy, a device capable of exhibiting a high shearing force is required. Therefore, the device is preferably a homomixer, a line mixer, a disper, or the like, and more preferably a homomixer in terms of operation.
 攪拌処理工程において、好ましい温度範囲としては60~90℃であり、好ましい分散液のpHとしてはpH5.5~8.5(80℃)である。 In the stirring treatment step, a preferable temperature range is 60 to 90 ° C., and a preferable pH of the dispersion liquid is pH 5.5 to 8.5 (80 ° C.).
 なお、本明細書で規定する「攪拌エネルギー」とは、攪拌動力P/V[kW/m3]×時間[分]であり、詳細な計算式は、特開2007-161683号公報に記載されている。ホモミキサーを使用したときの攪拌エネルギーの算出式を(I)に示す。 The “stirring energy” defined in this specification is stirring power P / V [kW / m 3 ] × time [minutes], and a detailed calculation formula is described in Japanese Patent Application Laid-Open No. 2007-161683. ing. The formula for calculating the stirring energy when using a homomixer is shown in (I).
 攪拌エネルギー〔kW×分/m3〕=〔攪拌動力P(kW)〕/〔処理液体積V(m3)〕×攪拌時間(分)   (I) Stirring energy [kW × min / m 3 ] = [stirring power P (kW)] / [treatment liquid volume V (m 3 )] × stirring time (min) (I)
 上記式(I)中、攪拌動力P(kW)は、下記の実験式1で算出する。
  攪拌動力P(kW)=Np×n3×d5×ρ/1000   (実験式1)
 ここで、Npは動力数である。攪拌装置がホモミキサーの場合では、攪拌槽容量が10L未満:1.5、10L以上:1.3
  n:攪拌回転数[-/sec]
  d:攪拌翼の直径[m]
  ρ:内容物の密度[kg/m3]
In the above formula (I), the stirring power P (kW) is calculated by the following experimental formula 1.
Stirring power P (kW) = Np x n 3 x d 5 x ρ / 1000 (empirical formula 1)
Here, Np is the power number. When the stirring device is a homomixer, the stirring tank capacity is less than 10L: 1.5, 10L or more: 1.3
n: Stirring speed [-/ sec]
d: Diameter of stirring blade [m]
ρ: Content density [kg / m 3 ]
 滴下法は、孔から分散液を吐出させ、吐出された分散液がその表面張力又は界面張力によって液滴になる性質を利用し、その液滴を空気等の気相中又は液相中で冷却固化させてハイドロゲル粒子を形成する方法である。なお、粒径の均一なハイドロゲル粒子を形成する観点から、孔から吐出される分散液に振動を与えることが好ましい。 The dropping method uses the property that a dispersion liquid is discharged from a hole and the discharged dispersion liquid becomes a droplet by its surface tension or interfacial tension, and the droplet is cooled in a gas phase such as air or in a liquid phase. It is a method of forming hydrogel particles by solidifying. In addition, from the viewpoint of forming hydrogel particles having a uniform particle size, it is preferable to vibrate the dispersion discharged from the holes.
 噴霧法は、噴霧ノズルを用い、噴霧ノズルから分散液を気相に吐出(噴霧)させると共に、その表面張力によって液滴を形成させ、その液滴を気相で冷却固化させてハイドロゲル粒子を形成する方法である。 The spraying method uses a spray nozzle and discharges (sprays) the dispersion liquid into the gas phase from the spray nozzle, forms droplets by the surface tension, and cools and solidifies the droplets in the gas phase to form hydrogel particles. It is a method of forming.
 攪拌法は、分散液と実質的に混じり合わない性状を有し且つゲル化温度以上の温度に調製した液に分散液を投入し、攪拌による剪断力により分散液を微粒化し、界面張力によって液滴になる性質を利用し、その液滴を分散液と実質的に混じり合わない液中で冷却固化させてハイドロゲル粒子を形成する方法である。 In the stirring method, the dispersion is poured into a liquid that has a property that does not substantially mix with the dispersion and is adjusted to a temperature equal to or higher than the gelling temperature, and the dispersion is atomized by a shearing force by stirring. This is a method of forming hydrogel particles by utilizing the property of forming droplets and cooling and solidifying the droplets in a liquid that does not substantially mix with the dispersion.
 滴下法、噴霧法及び攪拌法のいずれの場合も、吐出時、噴霧時、或いは、投入時の分散液の温度を、ゲル化温度以上で且つ100℃以下の温度とすることが好ましい。また、美観に優れた球状の粒子を容易に製造することができるという観点からは、分散液の温度を、ゲル化温度+10℃以上とすることが好ましく、ゲル化温度+20℃以上とすることがより好ましい。なお、この温度の上限は、水の沸点である100℃である。具体的には、分散液の温度としては、60~90℃の範囲が好ましく、70~80℃の範囲がより好ましい。 In any of the dropping method, the spraying method, and the stirring method, it is preferable that the temperature of the dispersion at the time of discharging, spraying, or charging is set to a temperature not lower than the gelling temperature and not higher than 100 ° C. Further, from the viewpoint that spherical particles having excellent aesthetics can be easily produced, the temperature of the dispersion is preferably set to a gelling temperature + 10 ° C. or higher, and to a gelling temperature + 20 ° C. or higher. More preferred. The upper limit of this temperature is 100 ° C., which is the boiling point of water. Specifically, the temperature of the dispersion is preferably in the range of 60 to 90 ° C, more preferably in the range of 70 to 80 ° C.
 以上のようにして形成されたハイドロゲル粒子を必要に応じてさらに粉砕等により、微細なハイドロゲル粒子にしてもよい。 The hydrogel particles formed as described above may be further made into fine hydrogel particles by pulverization or the like, if necessary.
 本発明の製造方法においては、分散液を構成するほぼ全ての成分がそのままハイドロゲル粒子を構成することになるので、分散液中の各成分の含有量をハイドロゲル粒子中の各成分の含有量とみなすことができる。 In the production method of the present invention, almost all the components constituting the dispersion form the hydrogel particles as they are, so the content of each component in the dispersion is the content of each component in the hydrogel particles. Can be considered.
<ハイドロゲル粒子>
 本発明の製造方法によって得られるハイドロゲル粒子中において、(B)成分は、(A)成分及び水を含む連続相中に分散して内包されている。かかるハイドロゲル粒子の構造は、例えばハイドロゲル粒子のSEM写真を分析することにより確認することができる。
<Hydrogel particles>
In the hydrogel particles obtained by the production method of the present invention, the component (B) is dispersed and encapsulated in the continuous phase containing the component (A) and water. The structure of such hydrogel particles can be confirmed, for example, by analyzing an SEM photograph of the hydrogel particles.
 本発明の製造方法によって得られるハイドロゲル粒子の形状は特に限定されないが、曲面で構成された回転体の形状を有することが好ましい。ここで、「曲面で構成された回転体」とは、仮想軸及び連続的な曲線で構成された閉じた図を仮想軸で回転させたものをいい、三角錐や円柱等の平面を有する形状は含まない。ハイドロゲル粒子の形状は、美観の観点から、球状又は楕円状であることがより好ましい。 The shape of the hydrogel particles obtained by the production method of the present invention is not particularly limited, but preferably has a shape of a rotating body constituted by a curved surface. Here, the “rotary body constituted by a curved surface” means a closed figure constituted by a virtual axis and a continuous curve, rotated by the virtual axis, and has a shape such as a triangular pyramid or a cylinder. Is not included. The shape of the hydrogel particles is more preferably spherical or elliptical from the viewpoint of aesthetics.
 本発明により製造されるハイドロゲル粒子の平均粒径及び油性成分の乳化径は、レーザー回折/散乱式により測定できる。レーザー回折/散乱式は粒度分布測定装置LA-920(堀場製作所(株)製)を用いて測定したメジアン径を平均粒径とする。ハイドロゲル粒子の平均粒径は、5~10000μmが好ましく、30~3000μmがより好ましく、50~1000μmが特に好ましい。また、油性成分の乳化径は、0.01~20μmが好ましく、0.02~15μmがより好ましく、0.03~10μmが特に好ましい。 The average particle diameter of the hydrogel particles produced according to the present invention and the emulsified diameter of the oil component can be measured by a laser diffraction / scattering method. In the laser diffraction / scattering method, the median diameter measured using a particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.) is defined as the average particle diameter. The average particle size of the hydrogel particles is preferably 5 to 10,000 μm, more preferably 30 to 3000 μm, and particularly preferably 50 to 1000 μm. The emulsified diameter of the oil component is preferably 0.01 to 20 μm, more preferably 0.02 to 15 μm, and particularly preferably 0.03 to 10 μm.
 分散液の粘度は、B型粘度計で測定することができる。分散液の粘度は、特に限定されないが、その吐出時又は噴霧時又は投入時の温度において、通常0.1~700mPa・s、好ましくは1~500mPa・sであることが望ましい。 The viscosity of the dispersion can be measured with a B-type viscometer. The viscosity of the dispersion is not particularly limited, but it is usually 0.1 to 700 mPa · s, preferably 1 to 500 mPa · s at the temperature at the time of discharging, spraying or charging.
 以下、本発明の態様を実施例によりさらに記載し、開示する。この実施例は単なる本発明の例示であり、何ら限定を意味するものではない。なお、以下の例中で用いられる%は、特記しない限り重量%である。 Hereinafter, aspects of the present invention will be further described and disclosed by way of examples. This example is merely illustrative of the invention and is not meant to be limiting in any way. The% used in the following examples is% by weight unless otherwise specified.
 分散液の粘度は80℃の分散液をB型粘度計で測定して得た。ハイドロゲル粒子の平均粒径は、レーザー回折/散乱式粒度分布測定装置LA-920(堀場製作所(株)製)を用いて測定したメジアン径を平均粒径とした。 The viscosity of the dispersion was obtained by measuring the dispersion at 80 ° C. with a B-type viscometer. The average particle diameter of the hydrogel particles was defined as the median diameter measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.).
 混合攪拌するための装置としてはホモミキサー(T.K.ロボミクス:プライミクス製)を用いた。羽径は2.5cmであった。 As a device for mixing and stirring, a homomixer (TK Robotics: manufactured by Primics) was used. The wing diameter was 2.5 cm.
 実施例1~4及び比較例1~5
 次のようにして溶液A及び油性成分を調製した。具体的な成分及び配合割合を表1及び表2に示す。溶液Aは、常温でイオン交換水に各成分を配合し、90℃で30分間加熱混合し、次いで80℃に冷却して調製した。油性成分は、各成分を80℃で加熱混合して調製した。
Examples 1 to 4 and Comparative Examples 1 to 5
Solution A and an oil component were prepared as follows. Specific components and blending ratios are shown in Tables 1 and 2. Solution A was prepared by blending each component in ion-exchanged water at room temperature, heating and mixing at 90 ° C. for 30 minutes, and then cooling to 80 ° C. The oil component was prepared by heating and mixing each component at 80 ° C.
 その後、溶液Aに油性成分を加えて混合物を得た。この混合物を800gに調整し、次いでホモミキサーに投入した。表2に示す条件で攪拌処理を行うことによって、各混合物に攪拌エネルギーを付与して、各分散液を調製した。 Thereafter, an oily component was added to Solution A to obtain a mixture. This mixture was adjusted to 800 g and then charged into a homomixer. By carrying out stirring treatment under the conditions shown in Table 2, stirring energy was applied to each mixture to prepare each dispersion.
 得られた各分散液の一部を透明な容器に移して80℃で静置保存し、12時間後の分散液の状態を観察した。観察結果を表2に示す。 A portion of each dispersion obtained was transferred to a transparent container and stored at 80 ° C., and the state of the dispersion after 12 hours was observed. The observation results are shown in Table 2.
 一方、得られた各分散液の残りを、分散液の温度を80℃に維持しながら、孔径0.9mmの1流体ノズルを用いて、流量18~20L/hr、噴霧圧0.45~0.75MPaにて冷却空気中に噴霧して、分散液のハイドロゲル粒子化を行った。ここで、比較例5の分散液は粘度が720mPasと非常に高く、噴霧法による粒子化が困難であった。 On the other hand, while maintaining the temperature of the dispersion liquid at 80 ° C., the remaining amount of each dispersion liquid was measured using a one-fluid nozzle having a pore diameter of 0.9 mm, a flow rate of 18 to 20 L / hr, and a spray pressure of 0.45 to 0. The dispersion was sprayed into cooling air at .75 MPa to form hydrogel particles. Here, the dispersion of Comparative Example 5 had a very high viscosity of 720 mPas, and it was difficult to form particles by the spray method.
 得られたハイドロゲル粒子の3gを1重量%の濃度のアルキル硫酸ナトリウム水溶液の30gに分散させた後、透明な容器に移して50℃で24時間静置保存し、ハイドロゲル粒子からの油性成分の漏出の有無を観察した。観察結果を表2に示す。 3 g of the obtained hydrogel particles were dispersed in 30 g of an aqueous sodium alkyl sulfate solution having a concentration of 1% by weight, and then transferred to a transparent container and left to stand at 50 ° C. for 24 hours to obtain oily components from the hydrogel particles. The presence or absence of leakage was observed. The observation results are shown in Table 2.
 12時間後の分散液の状態を、次のように評価した。
  安定:分散液において、固体粒子(顔料)の沈降及び油性成分の分離のいずれもが見られなかった。
  顔料沈降:分散液において、油性成分の分離は見られなかったが、固体粒子(顔料)の沈降が見られた。
  油分分離:分散液において、固体粒子(顔料)の沈降は見られなかったが、油性成分の分離が見られた。
The state of the dispersion after 12 hours was evaluated as follows.
Stability: Neither sedimentation of solid particles (pigments) nor separation of oily components was observed in the dispersion.
Pigment sedimentation: In the dispersion liquid, separation of oily components was not observed, but sedimentation of solid particles (pigments) was observed.
Oil separation: In the dispersion liquid, no precipitation of solid particles (pigments) was observed, but separation of oily components was observed.
 ハイドロゲル粒子からの油性成分の漏出の有無を、次のように評価した。
  あり:ハイドロゲル粒子を含む水溶液において、水面に油性成分の浮遊が多く見られた。
  なし:ハイドロゲル粒子を含む水溶液において、水面に油性成分の浮遊が殆ど見られなかった。
The presence or absence of leakage of the oil component from the hydrogel particles was evaluated as follows.
Yes: In the aqueous solution containing hydrogel particles, many oily components were observed floating on the water surface.
None: In the aqueous solution containing hydrogel particles, there was almost no floating oily component on the water surface.
 以上のように、所定の各成分を含む分散液を200~5000[kW×分/m3]の攪拌エネルギーで処理を施した後、当該分散液からハイドロゲル粒子を製造することによって、得られたハイドロゲル粒子を水溶液中に保存しても油性成分の漏れを防ぐことが可能となり、しかも分散液の安定性も優れていた(実施例1~4)。一方、処理時の攪拌エネルギーが本発明の範囲外の例では、ハイドロゲル粒子からの油性成分の漏れを防ぐことができなかったり(比較例1、2及び4)、分散液の安定性に劣っていたりした(比較例3)。さらに比較例5では、付与される攪拌エネルギーが多過ぎるため、消費エネルギーが増大するだけでなく、攪拌処理中に混合物(分散液)の粘度が急激に上昇し、攪拌処理を続けることが極めて困難となった。かかる粘度の上昇のために、比較例5においてはハイドロゲル粒子を形成させることができなかった。 As described above, the dispersion liquid containing predetermined components is treated with a stirring energy of 200 to 5000 [kW × min / m 3 ], and then the hydrogel particles are produced from the dispersion liquid. Even when the hydrogel particles were stored in an aqueous solution, it was possible to prevent leakage of oily components, and the stability of the dispersion was excellent (Examples 1 to 4). On the other hand, in the case where the stirring energy during the treatment is outside the range of the present invention, leakage of the oil component from the hydrogel particles cannot be prevented (Comparative Examples 1, 2 and 4), or the stability of the dispersion is poor (Comparative Example 3). Furthermore, in Comparative Example 5, since the amount of stirring energy applied is too much, not only the energy consumption increases, but also the viscosity of the mixture (dispersion) rapidly increases during the stirring process, and it is extremely difficult to continue the stirring process. It became. Due to such an increase in viscosity, hydrogel particles could not be formed in Comparative Example 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに表3に、得られたハイドロゲル粒子中の各成分の含有量を示す。 Further, Table 3 shows the content of each component in the obtained hydrogel particles.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例等で用いた各成分の物性値等は次のとおりであった:
ベンガラ七宝の平均粒径と比重(対水):1.6μm、5.2
イエローLLXLOの平均粒径と比重(対水):1.8μm、5.2
トヨホワイトの平均粒径と比重(対水):7.0μm、2.7。
The physical property values and the like of each component used in Examples etc. were as follows:
Bengala Cloisonne average particle size and specific gravity (against water): 1.6 μm, 5.2
Yellow LLXLO average particle size and specific gravity (against water): 1.8 μm, 5.2
Average particle diameter and specific gravity (to water) of Toyo White: 7.0 μm, 2.7.
実施例5~7
<実施例5>
 (A)成分である寒天(伊那食品工業社製、商品名:AX-200)、(C)成分であるN-ステアロイルメチルタウリンナトリウム(日光ケミカルズ社製、商品名:SMT)、及び(D)成分である炭酸カルシウム(東洋電化工業社製、商品名:トヨホワイト)を、常温のイオン交換水に加え、それを90℃で30分間加熱混合した後、80℃に冷却して水溶液A(水性成分)を調製した。
Examples 5-7
<Example 5>
(A) Component Agar (Ina Food Industries, trade name: AX-200), (C) Component N-stearoylmethyl taurine sodium (Nikko Chemicals, trade name: SMT), and (D) The component calcium carbonate (product name: Toyo White, manufactured by Toyo Denka Kogyo Co., Ltd.) is added to room temperature ion-exchanged water, heated and mixed at 90 ° C. for 30 minutes, and then cooled to 80 ° C. to prepare an aqueous solution A (aqueous) Ingredient) was prepared.
 また、(b2)成分であるセレシン(日興リカ社製、商品名:セレシン810K(融点:74.1℃))、並びに(b1)成分であるl-メントール(高砂香料社製、商品名メントールクリスタル)及び精油(小川香料社製、商品名:オレンジ油)を80℃に加熱混合して油性成分を調製した。なお、上記セレシンの融点は、DSC(示差走査熱量計:株式会社リガク製、Thermo plus DSC8230)を用い、試料の昇温速度を2℃/minとしたときの吸熱ピーク温度である(以下のマイクロクリスタリンワックス及びベヘニルアルコールの場合も同様)。 In addition, ceresin (B2) component (manufactured by Nikko Rica Co., Ltd., trade name: ceresin 810K (melting point: 74.1 ° C.)) and l-menthol (b1) component (trade name menthol crystal, manufactured by Takasago Inc.) ) And essential oil (trade name: orange oil manufactured by Ogawa Fragrance Co., Ltd.) were heated and mixed at 80 ° C. to prepare an oil component. The melting point of ceresin is the endothermic peak temperature when DSC (Differential Scanning Calorimeter: Rigaku Co., Ltd., ThermoCplus DSC8230) is used and the heating rate of the sample is 2 ° C./min (the following microscopic temperature). The same applies to crystallin wax and behenyl alcohol).
 各成分の配合量は、分散液における含有量が(A)成分の寒天3.00重量%、(C)成分のステアロイルメチルタウリンNa0.38重量%、(D)成分の炭酸カルシウム4.00重量%、(b2)成分のセレシン2.50重量%、(b1)成分のl-メントール10.00重量%及び精油10.00重量%、そして、イオン交換水が残部となるように設定した。従って、(b2)成分の含有重量/(b1)成分の含有重量(含有重量比率)は2.5/20である。 The amount of each component is 3.00% by weight of the agar component (A), 0.38% by weight of stearoylmethyltaurine Na (C) component, and 4.00% by weight of calcium carbonate (D) component. %, (B2) component ceresin 2.50% by weight, component (b1) l-menthol 10.00% by weight and essential oil 10.00% by weight, and ion-exchanged water was set as the balance. Therefore, the content weight of the component (b2) / the content weight of the component (b1) (content weight ratio) is 2.5 / 20.
 水溶液Aに油性成分を加えて800gの混合物を得て、その混合物をホモミキサー(プライミクス社製、商品名:T.K.ロボミクス、動力数Np=1.5、攪拌翼の直径d=0.025m)に投入し、攪拌翼を攪拌回転数n=250回/secで攪拌時間t=1.5分間だけ回転させることにより攪拌処理して分散液を調製した。内容物(混合物)の密度ρ=950kg/m3、及び処理液体積V=0.00084m3であった。従って、攪拌動力P=0.217kWであり、攪拌エネルギーは387kW×分/m3である。 An oily component was added to the aqueous solution A to obtain 800 g of a mixture. The mixture was homomixer (manufactured by Primics, trade name: TK Robotics, power number Np = 1.5, stirring blade diameter d = 0. And a stirring blade was rotated at a stirring speed n = 250 times / sec for a stirring time t = 1.5 minutes to prepare a dispersion. Content density of (mixtures) ρ = 950kg / m 3, and the treatment liquid has a volume V = 0.00084m 3. Therefore, the stirring power P = 0.217 kW, and the stirring energy is 387 kW × min / m 3 .
 そして、得られた分散液を、孔径0.9mmの1流体ノズルを用いて、流量30L/hr及び噴霧圧1.1~1.3MPaで冷却空気中に噴霧し、それによって分散液の液滴が冷却固化されたハイドロゲル粒子を作製した。 Then, the obtained dispersion is sprayed into cooling air at a flow rate of 30 L / hr and a spraying pressure of 1.1 to 1.3 MPa using a one-fluid nozzle having a pore diameter of 0.9 mm, whereby droplets of the dispersion are obtained. Produced hydrogel particles which were cooled and solidified.
<実施例6>
 (b2)成分のセレシンの配合量を分散液の5.00重量%としたことを除いて、実施例5と同様に分散液を調製すると共にハイドロゲル粒子を作製した。(b2)成分の含有重量/(b1)成分の含有重量(含有重量比率)は5/20である。
<Example 6>
A dispersion was prepared and hydrogel particles were prepared in the same manner as in Example 5 except that the blending amount of ceresin as the component (b2) was 5.00% by weight of the dispersion. (B2) Component weight / (b1) Component weight (content weight ratio) is 5/20.
<実施例7>
 (b2)成分のセレシンの配合量を分散液の10.00重量%としたことを除いて、実施例5と同様に分散液を調製すると共にハイドロゲル粒子を作製した。(b2)成分の含有重量/(b1)成分の含有重量(含有重量比率)は10/20である。
<Example 7>
A dispersion was prepared and hydrogel particles were prepared in the same manner as in Example 5 except that the blending amount of ceresin as the component (b2) was 10.00% by weight of the dispersion. (B2) Component weight / (b1) Component weight (content weight ratio) is 10/20.
<実施例8>
 (b2)成分のセレシンの代わりに(b2)成分のマイクロクリスタリンワックス(Sonneborn社製、商品名:マルチワックスW-835(融点:77.8℃))を、分散液における含有量が5.00重量%となるように配合したことを除いて、実施例5と同様に分散液を調製すると共にハイドロゲル粒子を作製した。(b2)成分の含有重量/(b1)成分の含有重量(含有重量比率)は5/20である。
<Example 8>
Instead of ceresin as the component (b2), the microcrystalline wax (product name: Multiwax W-835 (melting point: 77.8 ° C.) manufactured by Sonneborn, Inc.) as the component (b2) has a content of 5.00. A dispersion was prepared and hydrogel particles were prepared in the same manner as in Example 5 except that it was blended so as to be in wt%. (B2) Component weight / (b1) Component weight (content weight ratio) is 5/20.
<実施例9>
 (b2)成分のセレシンの代わりにベヘニルアルコール(花王社製、商品名:カルコール220-80(融点:72.0℃))を、分散液における含有量が5.00重量%となるように配合したことを除いて、実施例5と同様に分散液を調製すると共にハイドロゲル粒子を作製した。
<Example 9>
(B2) In place of ceresin as component, behenyl alcohol (trade name: Calcoal 220-80 (melting point: 72.0 ° C.) manufactured by Kao Corporation) was blended so that the content in the dispersion was 5.00% by weight. Except for this, a dispersion was prepared in the same manner as in Example 5, and hydrogel particles were prepared.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(試験評価方法)
<分散液中の油性成分の平均粒径>
 実施例5~9のそれぞれで調製した分散液について、レーザー回折/散乱式粒度分布測定装置LA-920(堀場製作所(株)製)を用いてメジアン径を測定し、それを分散液中の油性成分の平均粒径とした。この油性成分の平均粒径はハイドロゲル粒子中の油性成分の平均粒径にほぼ一致する。
(Test evaluation method)
<Average particle size of oil component in dispersion>
For the dispersions prepared in each of Examples 5 to 9, the median diameter was measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.), and the oiliness in the dispersion was measured. It was set as the average particle diameter of the component. The average particle size of the oil component is approximately equal to the average particle size of the oil component in the hydrogel particles.
<ハイドロゲル粒子の平均粒径>
 実施例5~9のそれぞれで作製したハイドロゲル粒子について、レーザー回折/散乱式粒度分布測定装置LA-920(堀場製作所(株)製)を用いてメジアン径を測定し、それをハイドロゲル粒子の平均粒径とした。
<Average particle size of hydrogel particles>
For the hydrogel particles produced in each of Examples 5 to 9, the median diameter was measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.), and the hydrogel particles were measured. The average particle size was taken.
<香料の抽出率>
 実施例5~9のそれぞれで作製したハイドロゲル粒子について、3gを採取し、それを濃度1重量%のアルキル硫酸ナトリウム水溶液27gに分散させた後、スクリュー管に移して50℃で24時間静置保存した。その後、シリンジフィルターにてハイドロゲル粒子とアルキル硫酸ナトリウム水溶液を分離した後、分離された水溶液を10g秤量し、塩化カルシウム0.5gを加えて10分間スターラーで攪拌した後、ジエチルエーテル10mL及び内部標準物質としての1%エタノール液1mLを加えて10分間スターラーで攪拌し、エーテル層をガスクロマトグラフィーにて分析し、オレンジ油の主成分であるリモネンが水溶液側に可溶化した量を測定した。
<Perfume extraction rate>
3 g of the hydrogel particles produced in each of Examples 5 to 9 were collected, dispersed in 27 g of a sodium alkylsulfate aqueous solution having a concentration of 1% by weight, transferred to a screw tube and allowed to stand at 50 ° C. for 24 hours. saved. Then, after separating hydrogel particles and sodium alkyl sulfate aqueous solution with a syringe filter, 10 g of the separated aqueous solution was weighed, 0.5 g of calcium chloride was added and stirred with a stirrer for 10 minutes, and then 10 mL of diethyl ether and an internal standard were added. 1 mL of 1% ethanol solution as a substance was added and stirred with a stirrer for 10 minutes, the ether layer was analyzed by gas chromatography, and the amount of limonene, which is the main component of orange oil, was solubilized on the aqueous solution side was measured.
(試験評価結果)
 表4に試験結果を示す。実施例5~9から得られたハイドロゲル粒子は、界面活性剤を含む商品に配合する場合でも、ハイドロゲル粒子に内包された香料が粒子外部に可溶化するのを抑制しうることが理解できる。
(Test evaluation results)
Table 4 shows the test results. It can be understood that the hydrogel particles obtained from Examples 5 to 9 can suppress the perfume contained in the hydrogel particles from being solubilized outside the particles even when blended in a product containing a surfactant. .
 以上に述べた本発明は、明らかに同一性の範囲のものが多数存在する。そのような多様性は発明の意図及び範囲から離脱したものとはみなされず、当業者に自明であるそのような全ての変更は、以下の請求の範囲の技術範囲内に含まれる。 The present invention described above clearly has many things in the range of identity. Such diversity is not to be considered as departing from the spirit and scope of the invention, and all such modifications that are obvious to those skilled in the art are included within the scope of the following claims.

Claims (12)

  1.  次の(A)成分~(C)成分:
      (A)ゾル-ゲルの熱可逆性によってゲル化が生じるゲル化剤、
      (B)油性成分、及び
      (C)界面活性剤、
    並びに水を含む混合物に、200~5000[kW×分/m3]の攪拌エネルギーを付与して分散液を得る攪拌処理工程を有する、ハイドロゲル粒子の製造方法。
    The following components (A) to (C):
    (A) a gelling agent in which gelation occurs due to thermoreversibility of the sol-gel;
    (B) an oily component, and (C) a surfactant,
    And a method of producing hydrogel particles, comprising a stirring treatment step of applying a stirring energy of 200 to 5000 [kW × min / m 3 ] to a mixture containing water to obtain a dispersion.
  2.  さらに前記混合物が、
      (D)固体粒子、
    を含む、請求項1記載の製造方法。
    Further, the mixture is
    (D) solid particles,
    The manufacturing method of Claim 1 containing this.
  3.  (A)成分が、寒天、ゼラチン及びジェランガムからなる群より選択される1種以上の成分であり、ハイドロゲル粒子における(A)成分の含有量が0.1~8.0重量%である、請求項1又は2記載の製造方法。 The component (A) is one or more components selected from the group consisting of agar, gelatin and gellan gum, and the content of the component (A) in the hydrogel particles is 0.1 to 8.0% by weight. The manufacturing method of Claim 1 or 2.
  4.  ハイドロゲル粒子における(B)成分の含有量が1~60重量%である、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the content of the component (B) in the hydrogel particles is 1 to 60% by weight.
  5.  (C)成分が陰イオン性界面活性剤を含み、ハイドロゲル粒子における(C)成分の含有量が0.1~5.0重量%である、請求項1~4のいずれか1項に記載の製造方法。 The component (C) contains an anionic surfactant, and the content of the component (C) in the hydrogel particles is 0.1 to 5.0% by weight. Manufacturing method.
  6.  前記陰イオン性界面活性剤がN-アシルタウリン塩である、請求項5記載の製造方法。 The production method according to claim 5, wherein the anionic surfactant is an N-acyl taurine salt.
  7.  (D)成分の水に対する比重が1.1~8.0である、請求項2~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 6, wherein the specific gravity of the component (D) with respect to water is 1.1 to 8.0.
  8.  (D)成分が、顔料、化粧料粉末及び天然高分子系粉末からなる群より選択される1種以上の成分である、請求項2~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 7, wherein the component (D) is at least one component selected from the group consisting of pigments, cosmetic powders and natural polymer powders.
  9.  (D)成分の顔料が炭酸カルシウムである、請求項8記載の製造方法。 The manufacturing method of Claim 8 whose pigment of (D) component is calcium carbonate.
  10.  ハイドロゲル粒子における(B)成分/(D)成分の重量比が3/1~20/1である、請求項2~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 8, wherein the weight ratio of the (B) component / (D) component in the hydrogel particles is 3/1 to 20/1.
  11.  前記攪拌処理工程により得られた分散液を、噴霧ノズルから吐出して液滴を形成させた後、該液滴を冷却固化する工程、
    をさらに含む、請求項1~10のいずれか1項に記載の製造方法。
    A step of discharging the dispersion obtained by the stirring treatment step from the spray nozzle to form droplets, and then cooling and solidifying the droplets;
    The production method according to any one of claims 1 to 10, further comprising:
  12.  請求項1~11のいずれか1項に記載の製造方法により得られるハイドロゲル粒子。 Hydrogel particles obtained by the production method according to any one of claims 1 to 11.
PCT/JP2009/070801 2008-12-17 2009-12-14 Method for producing hydrogel particles WO2010071095A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980151351.XA CN102256694B (en) 2008-12-17 2009-12-14 Method for producing hydrogel particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008321156A JP5388561B2 (en) 2008-12-17 2008-12-17 Method for producing hydrogel particles
JP2008-321156 2008-12-17
JP2009-131989 2009-06-01
JP2009131989A JP5548391B2 (en) 2009-06-01 2009-06-01 Hydrogel particles

Publications (1)

Publication Number Publication Date
WO2010071095A1 true WO2010071095A1 (en) 2010-06-24

Family

ID=42268765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070801 WO2010071095A1 (en) 2008-12-17 2009-12-14 Method for producing hydrogel particles

Country Status (2)

Country Link
CN (1) CN102256694B (en)
WO (1) WO2010071095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092891A1 (en) * 2016-11-18 2018-05-24 花王株式会社 Method for manufacturing hydrogel particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430123B (en) * 2011-12-14 2013-04-17 浙江理工大学 PH-sensitive organic and inorganic composite medicament delivery system and preparation method thereof
CN110483832B (en) * 2019-09-06 2022-03-04 云南师范大学 Multi-characteristic natural rubber and agar composite mesoporous membrane and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149332A (en) * 1985-12-25 1987-07-03 Toray Ind Inc Preparation of grain slurry
JPH0739746A (en) * 1992-09-22 1995-02-10 Dainichiseika Color & Chem Mfg Co Ltd Emulsified liquid
JPH07138018A (en) * 1993-11-12 1995-05-30 Maruo Calcium Co Ltd Production of calcium carbonate dispersion and food composition
JP2002058990A (en) * 2000-08-14 2002-02-26 Kao Corp Method of preparing hydrogel particle
JP2005194267A (en) * 2003-12-10 2005-07-21 Kao Corp Method for production of oil-in-water type emulsified composition
JP2008504200A (en) * 2004-06-22 2008-02-14 エボニック デグサ ゲーエムベーハー Metal oxide sol, layer produced using the sol, and shaped article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149332A (en) * 1985-12-25 1987-07-03 Toray Ind Inc Preparation of grain slurry
JPH0739746A (en) * 1992-09-22 1995-02-10 Dainichiseika Color & Chem Mfg Co Ltd Emulsified liquid
JPH07138018A (en) * 1993-11-12 1995-05-30 Maruo Calcium Co Ltd Production of calcium carbonate dispersion and food composition
JP2002058990A (en) * 2000-08-14 2002-02-26 Kao Corp Method of preparing hydrogel particle
JP2005194267A (en) * 2003-12-10 2005-07-21 Kao Corp Method for production of oil-in-water type emulsified composition
JP2008504200A (en) * 2004-06-22 2008-02-14 エボニック デグサ ゲーエムベーハー Metal oxide sol, layer produced using the sol, and shaped article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092891A1 (en) * 2016-11-18 2018-05-24 花王株式会社 Method for manufacturing hydrogel particles
JPWO2018092891A1 (en) * 2016-11-18 2019-10-17 花王株式会社 Method for producing hydrogel particles
JP2021062372A (en) * 2016-11-18 2021-04-22 花王株式会社 Method for producing hydrogel particles

Also Published As

Publication number Publication date
CN102256694A (en) 2011-11-23
CN102256694B (en) 2014-02-26

Similar Documents

Publication Publication Date Title
TWI240640B (en) Microcapsule and its manufacturing method
JP4963958B2 (en) Stable concentrated and diluted oil-in-water emulsions, processes for their preparation, and formulation processes using these emulsions
JP4637991B2 (en) Microcapsule and manufacturing method thereof
WO2015021689A1 (en) Water-in-oil foundation cream composition and preparation method therefor
JP5809956B2 (en) Method for producing hydrogel particles
JP2010131479A (en) Hydrogel particle
WO2010071095A1 (en) Method for producing hydrogel particles
JP2021113155A (en) Cosmetics
JP6681918B2 (en) Capsule manufacturing method
JP4637992B2 (en) Microcapsule and manufacturing method thereof
JP5388561B2 (en) Method for producing hydrogel particles
JP4637993B2 (en) Microcapsule and manufacturing method thereof
JP5548391B2 (en) Hydrogel particles
JP5175436B2 (en) Emulsion and production method thereof
JP2012171892A (en) External preparation for skin
WO2018043661A1 (en) Agar film capsule
JPH08245363A (en) Solid o/w-type emulsion cosmetic
JP7032917B2 (en) Hydrogel particles
JP5824323B2 (en) Water-in-oil emulsion composition
JP2004107306A (en) Skin cosmetic
KR101932687B1 (en) Composition for Lipgloss, Method of Preparation there of
WO2007089337A2 (en) Cosmetic beads and method of making same
WO2022168285A1 (en) Hydrogel structure
KR102241402B1 (en) Production method for gel type cosmetic composition and cosmetic composition thereof
JPS59122412A (en) Creamy or milky skin cosmetic

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151351.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833398

Country of ref document: EP

Kind code of ref document: A1