WO2010070914A1 - Power supply system, and movable body and fixed body for same - Google Patents

Power supply system, and movable body and fixed body for same Download PDF

Info

Publication number
WO2010070914A1
WO2010070914A1 PCT/JP2009/006972 JP2009006972W WO2010070914A1 WO 2010070914 A1 WO2010070914 A1 WO 2010070914A1 JP 2009006972 W JP2009006972 W JP 2009006972W WO 2010070914 A1 WO2010070914 A1 WO 2010070914A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
electrode
movable body
power supply
Prior art date
Application number
PCT/JP2009/006972
Other languages
French (fr)
Japanese (ja)
Inventor
原川健一
忍裕司
Original Assignee
株式会社竹中工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店 filed Critical 株式会社竹中工務店
Publication of WO2010070914A1 publication Critical patent/WO2010070914A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • the present invention relates to a power supply system for supplying power to various loads, and a movable body and a fixed body therefor.
  • This application is based on Japanese Patent Application No. 2008-324520 filed in Japan on December 19, 2008 and incorporates the contents thereof.
  • a power supply system that supplies power to various loads arranged on the floor surface is a contact type that supplies power by bringing an electrode that is exposed on the floor surface into contact with an electrode provided on the bottom surface of the load.
  • the power supply system can be broadly divided into a non-contact type power supply system that supplies power without contacting an electrode provided in a non-exposed state inside the floor with a load electrode.
  • Patent Document 1 a conventional non-contact type power supply system is disclosed in Patent Document 1, for example.
  • This system supplies power to a load (a ground movable body) that moves along a traveling path.
  • An induction wire is disposed along the traveling path, and an iron core in which a coil is wound around the ground movable body. Is provided. Then, a high-frequency current is passed through the induction wire, and electromagnetic induction is performed with the induction wire as the primary side and the coil as the secondary side, thereby supplying power to the ground movable body.
  • FIG. 32 is a longitudinal sectional view of an essential part of such a conventional power supply system.
  • This power supply system is a power supply system for supplying power to a load 104 from a fixed body 101 arranged in a power supply area 100 via a movable body 103 arranged in a power supplied area 102. is there.
  • the fixed body 101 includes a first power transmission electrode 105 and a second power transmission electrode 106 arranged at positions near the boundary surface between the power supply region 100 and the power supplied region 102.
  • the movable body 103 is disposed in the vicinity of the boundary surface, and the first power receiving electrode 107 is disposed so as to face the first power transmitting electrode 105 or the second power transmitting electrode 106 in a non-contact manner.
  • the first power transmission electrode 105 and the second power transmission electrode 106 and the first power reception electrode 107 and the second power reception electrode 108 are combined to form a capacitor 109, and a series resonance circuit including the capacitor 109 and the coil 110.
  • a large number of such fixed bodies 101 are juxtaposed below the floor plate 111, and the power supply can be continued in a non-contact manner while the movable body 103 is running on the floor plate 111. It becomes.
  • an AC power supply 115 whose frequency can be controlled by switching is provided on the fixed body 10, and AC power of a desired frequency is supplied to the first power transmission electrode 105 and the second power transmission by the AC power supply 115.
  • the electrode 106 is supplied.
  • this power supply system is provided with a function that enables communication between the fixed body 101 and the movable body 103 in order to perform power supply control.
  • each fixed body 101 is provided with a communication unit 112
  • the movable body 103 is provided with a communication unit 113. Then, a power supply request signal is transmitted from the communication unit 113 of the movable body 103.
  • the power supply request signal is received by its own communication unit 112
  • each fixed body 101 performs power supply control assuming that the movable body 103 is positioned above itself.
  • the movable body 103 is disposed to face the first power transmission electrode 105.
  • the electrode is the first power receiving electrode 107 or the second power receiving electrode 108, or the electrode disposed opposite to the second power transmitting electrode 106 is the first power receiving electrode 107 or the second power receiving electrode 108.
  • rectification is performed using the connection portion 114 having a plurality of diodes, and power supply can be continued so as to match the polarity of the load 104 regardless of the opposing arrangement state of each electrode.
  • the diode when the diode is arranged in the movable body 103 in this way and the inductance 110 is provided between the diode and the load 104, the diode 110 is rectified by the diode and series resonance with the capacitor 108 is not established.
  • the inductance 110 is arranged on the fixed body 101 side.
  • Patent Document 2 has the following problems to be improved. First, since one AC power supply is provided for each set of the first power transmission electrode and the second power transmission electrode of the fixed body, a large number of these first power transmission electrodes and second power transmission electrodes are arranged in parallel. In such a case, a large number of AC power sources are required, and the structure of the fixed body becomes complicated, which can be simplified, and this contributes to an increase in the manufacturing cost of the fixed body.
  • each power transmission electrode and each power reception electrode are disposed so as to be applied only to a part of each power transmission electrode, Since the series resonance condition is not satisfied, there is a problem that the power transmission efficiency is reduced, or it is necessary to satisfy the series resonance condition by shifting the transmission frequency according to the arrangement state of the electrodes.
  • an object of the present invention is to provide a power supply system capable of performing highly efficient power supply with a simple configuration in a non-contact power supply system. Moreover, an object of this invention is to provide the movable body and fixed body for comprising such an electric power supply system.
  • the power supply system is configured such that the fixed body is disposed at a position near a boundary surface between the power supply region and the power supplied region.
  • the movable body is disposed so as to face the first power transmission electrode or the second power transmission electrode so as to be opposed to and non-contact across the boundary surface.
  • At least one set of power receiving electrodes constituting a capacitor between one power transmitting electrode or the second power transmitting electrode, and a coil is connected in series with the capacitor to the fixed body or the movable body, Coil series resonance And performing power supply to more the load.
  • the power supply system is the power supply system according to the first aspect, wherein the movable body includes an electrode disposed opposite to the plurality of power receiving electrodes and the first power transmitting electrode and the first power transmitting electrode. It is characterized in that it comprises discrimination switching means for discriminating which of the two power transmission electrodes, and switching the connection of the plurality of power reception electrodes to the load based on the discrimination result.
  • the power supply system according to claim 3 is the power supply system according to claim 1, wherein the movable body has the plurality of power receiving electrodes fixedly connected to the load.
  • the power supply system according to claim 4 is the power supply system according to any one of claims 1 to 3, wherein the coil is arranged on the movable body.
  • a power supply system is the power supply system according to any one of the first to fourth aspects, wherein one of the first power transmission electrode and the second power transmission electrode is made of a ferromagnetic material. And the other one of the first power transmission electrode and the second power transmission electrode is formed of a non-magnetic material, and the discrimination switching means includes a permanent magnet, and the permanent magnet and the first The discrimination is performed by using the magnetic force between the second power transmission electrode or the second power transmission electrode.
  • a power supply system is the power supply system according to any one of the first to fourth aspects, wherein one of the first power transmission electrode and the second power transmission electrode has magnetic characteristics.
  • the magnetic characteristics of the other one of the first power transmission electrode and the second power transmission electrode are different from each other, and the discrimination switching means includes magnetic characteristic detection means for detecting the difference in the magnetic characteristics. The discrimination is performed based on the detection result of the magnetic characteristic detection means.
  • a power supply system is the power supply system according to any one of the first to fourth aspects, wherein one of the first power transmission electrode and the second power transmission electrode has a predetermined value.
  • An energy output means for outputting the energy is provided, and the determination switching means includes an energy detection means for detecting the energy, and performs the determination based on a detection result of the energy detection means.
  • the movable body according to claim 8 is a movable body that is disposed in the power supply area and that supplies power supplied from the fixed body disposed in the power supply area to a predetermined load.
  • a plurality of first power transmission electrodes and a plurality of second power transmission electrodes that are arranged and supplied with AC power are sandwiched between mutual boundary surfaces of the power supply region and the power supplied region.
  • at least one pair of power receiving electrodes constituting a capacitor between the first power transmitting electrode and the second power transmitting electrode, and the capacitor and the capacitor in series. Power is supplied to the load by series resonance with a coil arranged on the fixed body or the movable body so as to be connected.
  • the movable body according to claim 9 is the movable body according to claim 8, wherein any of the first power transmission electrode and the second power transmission electrode is disposed so as to face the plurality of power reception electrodes. It is characterized by comprising a discrimination switching means for discriminating whether or not there is and switching the connection of the plurality of power receiving electrodes to the load based on the discrimination result.
  • the movable body according to claim 10 is characterized in that in the movable body according to claim 8, the plurality of power receiving electrodes are fixedly connected to the load.
  • the movable body according to claim 11 is the movable body according to any one of claims 8 to 10, wherein the coil is provided.
  • a fixed body is a fixed body that is disposed in a power supply area and supplies power to a predetermined load via a movable body that is disposed in a power supplied area.
  • a plurality of first power transmission electrodes and a plurality of second power transmission electrodes constituting a capacitor therebetween, and an AC power supply for supplying power to the plurality of first power transmission electrodes and the plurality of second power transmission electrodes
  • the power is supplied to the load by series resonance of the capacitor and a coil disposed on the fixed body or the movable body so as to be connected in series to the capacitor.
  • the movable body according to claim 8, or the fixed body according to claim 12 power can be supplied while the power transmission electrode and the power reception electrode are in a non-contact state. Because there is no need to expose the power transmission electrode to the power supply area, the risk of electric shock due to the power transmission electrode touching the human body can be eliminated, and psychological anxiety can be eliminated. As a result, it can be easily introduced in places where people are present. In particular, since power is not supplied when the series resonance condition is not satisfied, even if, for example, the power source of the stationary body is always turned on and a person or an object approaches the power transmission electrode, an electric shock or short circuit is caused. Since there is no fear, the safety of the power supply system can be ensured.
  • the first power transmission electrode and the second power transmission electrode can be discriminated, so the movable body is arranged at an arbitrary position with respect to the fixed body. Even in such a case, it is possible to automatically supply power, and the degree of freedom of arrangement of the movable body is improved.
  • the configuration of the movable body is further simplified.
  • the manufacturing cost of the movable body can be further reduced.
  • the series resonance condition can be adjusted by the movable body, and the fixed body can be adjusted. Since it becomes unnecessary, it becomes easier to supply electric power to various movable bodies using a common fixed body.
  • a 1st power transmission electrode and a 2nd power transmission electrode are used. Since it can be determined, it is possible to automatically supply power even if the movable body is arranged at an arbitrary position with respect to the fixed body, and the degree of freedom of arrangement of the movable body is improved. In particular, when a permanent magnet is used, the mechanical part can be reduced, so that the durability of the power supply system can be increased.
  • the first power transmission electrode and the second power transmission electrode can be distinguished based on the detection result of the magnetic property detection means, the first power transmission electrode and the second power transmission electrode Since the power transmission electrode can be discriminated, it is possible to automatically supply power even if the movable body is arranged at an arbitrary position with respect to the fixed body, and the degree of freedom of arrangement of the movable body is improved.
  • the first power transmission electrode and the second power transmission electrode can be distinguished based on the detection result of the energy detection means, the first power transmission electrode and the second power transmission Since the electrodes can be discriminated, it is possible to automatically supply power even if the movable body is arranged at an arbitrary position with respect to the fixed body, and the degree of freedom of arrangement of the movable body is improved. For example, when performing discrimination by light, it is not necessary to use a magnetic force, so that the power supply system can be easily introduced even in a region where the use of magnetic force is limited.
  • FIG. 1 is a perspective view of a living room to which a power supply system according to Embodiment 1 of the present invention is applied. It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body of FIG. It is the principal part enlarged view which showed the fixed body and movable body of FIG. 2 in detail. 2 is a longitudinal sectional view showing a movable body including a discrimination switching unit to which a permanent magnet utilization type discrimination mechanism is applied together with a fixed body 10.
  • FIG. 15 is a longitudinal cross-sectional view of the state which attached the magnetic probe to the receiving electrode, (b) is the 2nd power transmission in which the magnetic probe was formed with the nonmagnetic material.
  • FIG. 4C is a longitudinal sectional view showing a state in which the magnetic probe is arranged opposite to the electrode
  • FIG. 5C is a longitudinal sectional view showing a state in which the magnetic probe is arranged opposite to the first power transmission electrode formed of a ferromagnetic material.
  • It is a top view of a receiving electrode, (a) is a figure which shows a receiving electrode with an eddy current, (b) is a figure which shows a receiving electrode with a power transmission current, (c) is a figure which shows a receiving electrode with a magnetic probe.
  • FIG. 2 is a perspective view of the periphery of the floor portion in FIG. 1. It is a top view which shows the arrangement
  • the power supply system according to each embodiment is a power supply system for supplying power from a fixed body arranged in a power supply area to a movable body arranged in a power supply area.
  • the specific configuration of the power supply area and the power supply area is arbitrary, and includes, for example, an internal space of a building such as a general house or an office building, an internal space of a vehicle such as a train or an airplane, or an outdoor space.
  • a surface that partitions the power supply region and the power supplied region from each other is referred to as a boundary surface.
  • the power supply area is a room of a building and the power supply area is a floor of the room
  • the upper surface (floor surface) of the floor is a boundary surface.
  • the fixed body includes one having a power source inside the fixed body and one that supplies power supplied from a power source outside the fixed body to the movable body.
  • This fixed body is arranged in the power supply area, but is not limited to one that is permanently immovable and can be removed from the power supply area when not in use, Including those that can move to any position inside.
  • the entire fixed body is not limited to a fixed one at all times. For example, by adjusting the positions of some components of the fixed body as necessary, the relative relationship between the component and the movable body is increased. Including those that can change the positional relationship.
  • the movable body includes a thing (stationary body) that is used by being fixedly arranged in the power supply area and a thing that moves as needed inside the power supply area (moving body).
  • the function and specific configuration of the movable body are arbitrary except for special points.
  • the stationary body can include devices such as computers and household appliances, and the mobile body can be a robot or an electric vehicle. Can be mentioned.
  • a capacitor (coupling capacitor) is configured by disposing a power transmission electrode provided on a fixed body and a power reception electrode provided on a movable body so as to face each other in a non-contact manner with a boundary surface interposed therebetween. At least two such capacitors are provided and arranged in the power transmission path, and electric field type power transmission is performed through these two capacitors. According to this configuration, since it is not necessary to expose the power transmission electrode of the fixed body to the power supply region, it is possible to improve the safety and durability of the power supply system. In addition, by arranging a plurality of power transmission electrodes, even when the movable body moves, power can be continuously supplied to the movable body, and the degree of freedom of movement of the movable body can be ensured.
  • this power supply system supplies power using series resonance. That is, by connecting a coil in series to a capacitor composed of a power transmission electrode and a power reception electrode as described above, a series resonance is generated when a series resonance condition is satisfied, and a high-efficiency power is generated by this resonance effect. Supply can be performed.
  • part of the characteristics of the power supply system according to each embodiment is to determine the facing arrangement relationship between the power receiving electrode and the power transmitting electrode on the movable body, and based on the determination result, connect the power receiving electrode to the load.
  • a discrimination switching means for performing switching is provided. This configuration eliminates the need for rectification using a plurality of diodes as in the prior art, so that the coil can be provided on the movable side and the series resonance condition can be adjusted only on the movable body side. Can be obtained.
  • a switch for power supply on the fixed body side is omitted, while an electrode discrimination switching means is provided on the movable body side.
  • FIG. 1 is a perspective view of a living room to which the power supply system according to the present embodiment is applied.
  • a fixed body 10 disposed in a power supply area (here, a space below the floorboard) 1 to a movable body (here, a robot) 20 disposed in a power supply area (here, a living room) 2.
  • a movable body here, a robot
  • a power supply area here, a living room
  • the electric power supply system of this embodiment is configured by including the fixed body 10 and the movable body 20.
  • the floor board 3 laid above the power supply area 1 corresponds to a boundary surface between the power supply area 1 and the power supplied area 2, and a capacitor 5 (FIG. 1) to be described later via the floor board 3. (Not shown) is configured.
  • FIG. 2 is a longitudinal sectional view showing the fixed body 10 and the movable body 20 in a simplified manner in FIG. 1
  • FIG. 3 is an enlarged view of a main part showing in detail the fixed body 10 and the movable body 20 in FIG.
  • the fixed body 10 includes an AC power supply 11, a first power transmission electrode 12, a second power transmission electrode 13, a communication unit 14, and a control unit (controller) 16.
  • a control unit controller 16.
  • the AC power supply 11 is a supply source of AC power.
  • the AC power supply 11 may be provided in each fixed body 10, but power may be supplied to each of the plurality of fixed bodies 10 from one common AC power supply 11. 2 and 3, one AC power supply 11 is connected to the first power transmission electrode 12 via the line L1, and is connected to the second power transmission electrode 13 via the GND and the line L2.
  • the lines L1 and L2 are connected to the lines L3 and L4, respectively, and the electric power from the common AC power supply 11 is supplied to the fixed bodies 10 via the lines L3 and L4, so that the plurality of first power transmissions Electric power is supplied to the electrode 12 and the plurality of second power transmission electrodes 13. 2 and 3, the configuration for supplying power to the communication unit 14 and the control unit 16 is omitted.
  • the AC power source 11 and a power source (not shown) that is different from the AC power source 11 may be arbitrarily selected. It is possible to supply power to the communication unit 14 and the control unit 16 through the path.
  • the first power transmission electrode 12 and the second power transmission electrode 13 are each a flat conductor, and are arranged so as to be substantially parallel to the floor plate 3 at a position near the lower side of the floor plate 3.
  • the first power transmission electrode 12 and the second power transmission electrode 13 may be brought into contact with the floor board 3 or may be arranged at a minute distance from the floor board 3.
  • the surface of the first power transmission electrode 12 and the second power transmission electrode 13 on the power supply region 2 side here, the upper surface in FIGS. 2 and 3) is completely covered by the floor plate 3.
  • the first power transmission electrode 12 and the second power transmission electrode 13 are not exposed to the power supplied region 2.
  • power transmission electrodes 12 and 13
  • the communication unit 14 is a communication unit that communicates with a communication unit 25 (described later) provided in the movable body 20.
  • the specific configuration of the communication unit 14 is arbitrary, for example, the communication unit 14 is configured using RF / MAC that performs RF communication using the MAC protocol (the same applies to the communication unit 25 described later).
  • the communication unit 14 obtains a communication signal superimposed on the power transmission path from the movable body 20 and output via the lines L1 and L2 via the coupling capacitor 15.
  • the communication signal output via the lines L1 and L2 is blocked by the communication signal blocking coil 18 connected to the lines L1 and L2.
  • the communication unit 14 is communicably connected to the control unit 16 via a line L5.
  • the communication unit 14 is connected to a hub (HUB) 30 via a line L7, and the hub 30 is further connected to a server 31.
  • the control unit 16 is a control unit that controls the fixed body 10 and is connected to the server 31 via, for example, the hub 30 and performs a control operation in accordance with a control signal from the server 31.
  • the control unit 16 can perform independent control by incorporating an independent control program into the control unit 16, and the hub 30 and the server 31 can be omitted.
  • the communication connection destination of the control unit 16 can be other than the server 31. For example, by performing communication with the control unit 16 of another fixed body 10, a plurality of fixed connections arranged in the power supply region 1 can be performed. The body 10 can be controlled in conjunction with each other.
  • control unit 16 is connected to the AC power supply 11 via a line L8, and controls the power supply to the fixed body 10 by performing ONN / OFF and frequency control of the AC power supply 11.
  • the specific configuration of the control unit 16 is arbitrary, but includes, for example, a CPU (Central Processing Unit) and a program that is interpreted and executed on the CPU.
  • CPU Central Processing Unit
  • the movable body 20 includes a plurality of power receiving electrodes 21, a coil (inductor) 22, a determination switching unit 40, a load 24, and a communication unit 25.
  • Each of the plurality of power receiving electrodes 21 receives power supplied from the fixed body 10, and is configured as a flat conductor.
  • the plurality of power receiving electrodes 21 are juxtaposed so as to be exposed to the outside at the lowermost part of the movable body 20, and when the movable body 20 is placed on the fixed body 10, it is directly on the upper surface of the floor plate 3. Is arranged substantially parallel to the floor plate 3 at a position in contact with or at a position spaced apart by a minute interval.
  • the plurality of power receiving electrodes 21 are arranged to face either the first power transmitting electrode 12 or the second power transmitting electrode 13 with the floor plate 3 interposed therebetween, and the first power transmitting electrode 12 or the second power transmitting electrode 13 is disposed.
  • a capacitor (coupling capacitor) 5 is formed.
  • the power transmission electrodes 12 and 13 are not exposed in the power supplied region 2, the power transmission electrodes 12 and 13 and the power reception electrode 21 are arranged in a non-contact state.
  • the coil (inductor) 22 is arranged in series with the capacitor 5 and constitutes a series resonance circuit together with the capacitor 5 to enable power transmission by series resonance.
  • the capacitor 5 can have any configuration and arrangement as long as series resonance is possible.
  • the capacitor 5 may be arranged on the fixed body 10, but is arranged on the movable body 20 here.
  • the series resonance condition is set to each movable body 20 side.
  • the coil 22 is connected to both terminals of the load 24, but either one may be omitted.
  • the discrimination switching unit 40 discriminates which of the first power transmitting electrode 12 and the second power transmitting electrode 13 is an electrode disposed to face each of the plurality of power receiving electrodes 21, and based on the determination result.
  • the specific configuration of the determination switching unit is arbitrary, for example, the determination switching unit 40 is branched from a line L10 connected to one terminal (hereinafter referred to as a first terminal) 24a of the load 24 via the coil 22.
  • a plurality of change-over switches (specific configurations will be described later) for selectively connecting the line L14 to either the line L11 or the line L13 are provided.
  • the discrimination switching unit 40 discriminates a discrimination mechanism for discriminating which of the first power transmission electrode 12 and the second power transmission electrode 13 is an electrode disposed to face each of the plurality of power receiving electrodes 21. Is provided. A specific configuration of the determination switching unit 40 will be described later.
  • the load 24 is driven by AC power supplied via the discrimination switching unit 40 and exhibits a predetermined function.
  • the load 24 corresponds to a motor or a control unit built in the robot.
  • the specific configuration of the load 24 is arbitrary, for example, a communication device that performs transmission and reception of communication signals with a device external to the movable body 20 wirelessly or by wire, and information that performs information processing related to various types of information
  • a processing device a sensor that detects a predetermined detection target in the power supply region 2 and outputs a signal related to the detection result to the predetermined device, or a power source that transmits and receives power to a device outside the movable body 20 (for example, two Secondary battery).
  • the load 24 is not necessarily provided inside the movable body 20.
  • the load 24 is provided outside the movable body 20, and power is supplied to the load 24 via the movable body 20. Good. 2 and 3 show only one load 24, power may be supplied to a plurality of loads 24 connected in series or in parallel to each other.
  • the communication unit 25 is a communication unit that communicates with the communication unit 14 of the fixed body 10.
  • the communication unit 25 superimposes and outputs the communication signal to the lines L10 and L12 via the coupling capacitor 26.
  • a frequency of about 1 MHz is used for power supply, but it is assumed that a frequency band near several GHz is used for communication using the communication units 14 and 25. It is considered that the capacitances of the capacitors 5, 15, and 26 are sufficiently large for the communication frequency and do not cause a transmission loss.
  • the floor plate 3 is made of a dielectric material that can constitute the capacitor 5.
  • a dielectric material for example, Teflon (registered trademark) can be adopted.
  • Teflon registered trademark
  • the surface of the power transmission electrodes 12, 13 on the power receiving electrode 21 side or the surface of the power receiving electrode 21 on the power transmission electrodes 12, 13 side can be coated.
  • the material used for the floor plate 3 and the material used for coating the power transmission electrodes 12 and 13 and the power reception electrode 21 maintain the required insulation between the power transmission electrodes 12 and 13 and the power reception electrode 21. It is preferable to have an insulation performance for the purpose.
  • FIG. 4 is a longitudinal sectional view showing the movable body 20 including the discrimination switching unit 40 to which a permanent magnet utilization type discrimination mechanism is applied, together with the fixed body 10, and
  • FIG. 5 is an enlarged view of a main part of FIG.
  • one of the first power transmission electrode 12 or the second power transmission electrode 13 (the first power transmission electrode 12 in FIGS. 4 and 5) is made of a ferromagnetic conductor (eg, iron, cobalt, nickel, etc.).
  • the other (second power transmission electrode 13 in FIGS. 4 and 5) is formed of a non-magnetic conductor (for example, aluminum, austenitic stainless steel, etc.).
  • the discrimination switching unit 40 is provided with a plurality of changeover switches 41 that perform line switching by utilizing the difference in magnetic force between the ferromagnetic material and the nonmagnetic material.
  • the changeover switch 41 includes various permanent magnets, which will be described later, and uses the magnetic force between the permanent magnet and the first power transmission electrode 12 or the second power transmission electrode 13 to transmit the first power transmission. Discrimination between the electrode 12 and the second power transmission electrode 13 is performed.
  • FIG. 6A and 6B are enlarged cross-sectional views of the changeover switch 41, where FIG. 6A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a non-magnetic material, and FIG. 6B is formed of a ferromagnetic material.
  • positioned facing the made 1st power transmission electrode 12 is shown.
  • the changeover switch 41 includes a shaft 41a fixed to the movable body 20, an annular permanent magnet 41b supported so as to be movable along the shaft 41a, a movable contact 41c provided on the permanent magnet 41b, and the permanent switch 41c.
  • the stationary contact 41f is connected to the movable contact 41c when the 41b moves to a position close to the power transmission electrodes 12 and 13.
  • the changeover switch 41 when the changeover switch 41 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the permanent magnet 41b is moved by the bias of the spring 41d.
  • the movable contact point 41c is connected to the fixed contact point 41e.
  • the changeover switch 41 when the changeover switch 41 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet stone 41b is applied to the urging force of the spring 41d.
  • the movable contact 41c is connected to the fixed contact 41f in the vicinity of the first power transmission electrode 12. Accordingly, the line L11 is connected to one of the fixed contacts 41e and 41f (the fixed contact 41e in FIG.
  • the line L13 is connected to the other of the fixed contacts 41e and 41f (the fixed contact 41f in FIG. 6).
  • the spring 41d it is preferable to use a leaf spring because a coil spring has an unnecessary inductance component.
  • the changeover switch 41 is covered with a dust-proof cover 41g, and the dust-proof cover 41g is filled with an inert gas such as argon to prevent the movable contact 41c and the fixed contacts 41e and 41f from being deteriorated, or the movable contact 41c. It is more preferable to coat the fixed contacts 41e and 41f with a contact material such as rhodium or ruthenium (the same applies to other change-over switches described later).
  • FIG. 7A and 7B are enlarged cross-sectional views of the changeover switch 42, where FIG. 7A is a state in which it is opposed to the second power transmission electrode 13 formed of a nonmagnetic material, and FIG. 7B is formed of a ferromagnetic material.
  • FIG. 7A is a state in which it is opposed to the second power transmission electrode 13 formed of a nonmagnetic material
  • FIG. 7B is formed of a ferromagnetic material.
  • a state in which the first power transmission electrode 12 is disposed opposite to the first power transmission electrode 12 is shown (however, illustration of the power transmission electrodes 12 and 13 is omitted in FIG. 7 and FIGS. 8, 11, and 12 described later).
  • the changeover switch 42 includes a permanent magnet 42a, a cantilever 42b that urges the permanent magnet 42a away from the power transmission electrodes 12 and 13, a movable contact 42c provided at an end portion on the movable side of the cantilever 42b, and a movable contact A pair of fixed contacts 42d and 42e are provided above and below 42c.
  • the changeover switch 42 when the changeover switch 42 is disposed opposite to the second power transmission electrode 13 formed of a non-magnetic material, the permanent magnet 42a is activated by the urging force of the cantilever 42b.
  • the movable contact 42c is connected to the fixed contact 42d.
  • the changeover switch 42 when the changeover switch 42 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 42 a is connected to the first power transmission electrode 12.
  • the cantilever 42b moves, and the movable contact 42c is connected to the fixed contact 42e. Accordingly, the line L11 is connected to one of the fixed contacts 42d and 42e (the fixed contact 42d in FIG.
  • the changeover switch 42 can be made thinner than the structure of FIG.
  • FIG. 8A and 8B are enlarged cross-sectional views of the changeover switch 43, in which FIG. 8A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, and FIG. 8B is formed of a ferromagnetic material.
  • FIG. 8A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material
  • FIG. 8B is formed of a ferromagnetic material.
  • a state in which the first power transmission electrode 12 is disposed to face is shown.
  • the change-over switch 43 has basically the same configuration as the change-over switch 42 shown in FIG. 7 (the same reference numerals are used for the same configuration), but the cantilever 42b has a permanent magnet 42a connected to the power transmission electrodes 12 and 13. It differs in that it is biased in the approaching direction, the fixed end of the cantilever 42b is pivotally fixed to the base 43a, and a spring 43b that biases the cantilever
  • switching can be performed in the same manner as the changeover switch 42.
  • this structure since the distance between the permanent magnet 42a and the power transmission electrodes 12 and 13 can be shortened as compared with the structure of FIG. 7, a relatively small magnet can be used as the permanent magnet 42a. The leakage magnetic field from the magnet 42a can be reduced.
  • FIG. 9 is an enlarged cross-sectional view of the changeover switch 44.
  • (a) is a state of being opposed to the second power transmission electrode 13 made of a nonmagnetic material, and (b) is made of a ferromagnetic material.
  • the changeover switch 44 includes a pair of permanent magnets 44a disposed so as to be in contact with the power receiving electrode 21, a yoke (magnetic circuit) 44b connected to each of the permanent magnets 44a, and a magnetic sensor sandwiched between the yokes 44b.
  • the pair of permanent magnets 44 a are arranged so that the polarities of the surfaces in contact with the power receiving electrode 21 are opposite to each other.
  • the magnetic flux of the permanent magnet 44a is the second. Since it does not flow through the power transmission electrode 13, a magnetic path is not formed, and no magnetic flux flows through the magnetic sensor 44c. In this case, the magnetic sensor 44c drives the switch 44d in the direction shown in FIG.
  • FIG. 9B when the changeover switch 44 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the magnetic flux of the permanent magnet 44a is changed to the second power transmission electrode. 13, the magnetic path is formed, and the magnetic flux flows through the magnetic sensor 44c.
  • the magnetic sensor 44c drives the changeover switch in the direction shown in FIG.
  • an MR (Magneto Resistance magnetoresistive) type element, a Hall element, a reed switch, or the like can be used, and the yoke can be formed of a laminated silicon steel plate, ferrite, laminated fine mete, etc. Same for magnetic sensors).
  • the switch 44d there is no mechanically movable part except for the switch 44d.
  • the mechanically movable part can be completely eliminated, thereby improving the reliability. (The same applies to the example shown in FIG. 11).
  • FIG. 10A and 10B are enlarged cross-sectional views of the changeover switch 45.
  • FIG. 10A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a non-magnetic material
  • FIG. 10B is formed of a ferromagnetic material.
  • a state in which the first power transmission electrode 12 is disposed to face is shown.
  • the change-over switch 45 switches the permanent magnet 45a disposed so as to be in contact with the power receiving electrode 21 and the line L14 connected to the power receiving electrode 21 with respect to either the line L11 or the line L13.
  • the reed switch 45b is fixed in the vicinity, and the yoke 45c is disposed between the permanent magnet 45a and the reed switch 45b.
  • FIG. 11 is an enlarged cross-sectional view of the changeover switch 46, in which (a) is arranged opposite to the second power transmission electrode 13 formed of a nonmagnetic material, and (b) is formed of a ferromagnetic material. A state in which the first power transmission electrode 12 is disposed to face is shown.
  • the changeover switch 46 switches the line L14 connected to the permanent magnet 46a, the spring 46b that supports the permanent magnet 46a, the magnetic sensor 46c, and the power receiving electrode 21 to either the line L11 or the line L13.
  • the switch 46d is driven by a magnetic sensor 46c.
  • the permanent magnet 46a when the changeover switch 46 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the permanent magnet 46a is magnetically detected by a spring 46b. Since the magnetic flux of the permanent magnet 46a is detected by the magnetic sensor 46c, the magnetic sensor 46c drives the switch 46d in the direction shown in FIG.
  • FIG. 11B when the changeover switch 46 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 46a resists the urging force of the spring 46b. As a result, the magnetic flux of the permanent magnet 46a is no longer detected by the magnetic sensor 46c, and the magnetic sensor 46c drives the switch 46d in the direction shown in FIG. 11B.
  • the change of the magnetic flux density can be increased by moving the permanent magnet 46a, and the detection by the magnetic sensor 46c can be reliably performed.
  • FIG. 12 is an enlarged cross-sectional view of the changeover switch 47.
  • the change-over switch 47 is formed of a non-magnetic material such as aluminum, and is configured such that an inner casing 47b is movably accommodated in an outer casing 47a disposed so as to be in contact with the power receiving electrode 21.
  • a spring 47c is provided between the inner upper surface of the outer casing 47a and the outer bottom surface of the inner casing 47b, and the inner casing 47b is urged away from the power receiving electrode 21 by the spring 47c.
  • the inner casing 47b includes a permanent magnet 47d that is movably accommodated, a fixing portion 47e that is fixed to the outer casing 47a via an opening (not shown), and the outer casing 47a that is connected to the inner casing 47b via the fixing portion 47e.
  • the micro switch 47f fixed to the housing is accommodated.
  • the micro switch 47f has a contact 47g between the micro switch 47f and the inner casing 47b, and switches the switch 47h according to the ON / OFF state of the contact.
  • the changeover switch 47 when the changeover switch 47 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the permanent magnet 47d is not attracted to the second power transmission electrode 13, The casing 47b is urged away from the power receiving electrode 21 by the spring 47c, and the contact 47g of the micro switch 47f is turned off without being pressed against the inner casing 47b.
  • the changeover switch 47 when the changeover switch 47 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 47d is attracted to the first power transmission electrode 12, so that the inner casing 47b is Since it is attracted to the power receiving electrode 21 against the biasing force of the spring 47c, the contact 47g of the micro switch 47f is pressed against the inner casing 47b to be turned on.
  • the switch 47h By driving the switch 47h according to the on / off state of the micro switch 47f, the line L14 can be selectively connected to either the line L11 or the line L13.
  • FIG. 13 is a longitudinal sectional view showing the movable body 20 including the determination switching unit 40 to which the magnetic characteristic detection type determination mechanism is applied together with the fixed body 10.
  • the magnetic characteristics of either the first power transmission electrode 12 or the second power transmission electrode 13 and the magnetic characteristics of the other of the first power transmission electrode 12 or the second power transmission electrode 13 are mutually interchanged. Shall be different.
  • determination switch part 40 is provided with the various search probes mentioned later as a magnetic characteristic detection means which detects the difference in a magnetic characteristic, Based on the detection result of this search probe, it is the 1st power transmission electrode 12 and 2nd. Discrimination from the power transmission electrode 13 is performed.
  • FIG. 14 is an enlarged cross-sectional view of the vicinity of the first power transmission electrode 12 and the power reception electrode 21.
  • the floor plate 3 on the upper surface of the first power transmission electrode 12 is formed as a rubber magnet 3A.
  • the power receiving electrode 21 is formed of a nonmagnetic material, and the power receiving electrode 21 is provided with a search probe 50.
  • the search probe 50 includes magnetic sensors 50a and 50b.
  • the magnetic sensor 50a, 50b detects the magnetic flux from the rubber magnet 3A to search for the first power transmission electrode 12, and based on the search result, the line L14 is switched between the line L11 and the line L13 via the switch. One of them is selectively switched (the switches and the lines L11, L13, L14 can be configured in the same manner as in FIG. 9, for example, and are not shown).
  • the plurality of magnetic sensors 50a and 50b are provided because the magnetic flux generated by the rubber magnet 3A creates only one direction of magnetic field, and the plurality of magnetic sensors 50a and 50b have different sensor azimuths. It is arranged.
  • FIG. 15A and 15B are enlarged sectional views of the magnetic probe, wherein FIG. 15A is a magnetic probe 51 using an excitation coil 51a and a monitor coil 51b, FIG. 15B is a magnetic probe 52 using an excitation coil 52a and a magnetic sensor 52b, and FIG. ) Shows a magnetic probe 53 that resonates the exciting coil 53a in parallel with a capacitor 53b.
  • FIG. 15A a magnetic field is generated by the exciting coil 51a excited by the AC power supply, and the difference in the influence that this magnetic field receives from the first power transmitting electrode 12 and the second power transmitting electrode 13 is detected by the monitor coil 51b. Detect.
  • FIG. 15A is a magnetic probe 51 using an excitation coil 51a and a monitor coil 51b
  • FIG. 15B is a magnetic probe 52 using an excitation coil 52a and a magnetic sensor 52b
  • FIG. 15A Shows a magnetic probe 53 that resonates the exciting coil 53a in parallel with a capacitor 53b.
  • FIG. 15A a
  • a magnetic field is generated by the exciting coil 52a excited by an AC power source, and the difference in the influence that this magnetic field receives from the first power transmission electrode 12 and the second power transmission electrode 13 is determined by the magnetic sensor 52b. Detect.
  • the capacitance of the capacitor 53b connected in parallel to the excitation coil 53a is changed to change the first power transmission electrode 12 or the first power transmission electrode 12.
  • the first power transmission electrode 12 and the second power transmission electrode 13 are discriminated based on the resonance frequency when the parallel resonance condition is satisfied in accordance with the two power transmission electrodes 13.
  • FIG. 16 shows how to use the magnetic probes 51 to 53 shown in FIG.
  • (a) is a longitudinal sectional view of the magnetic probes 51 to 53 attached to the power receiving electrode 21, and (b) is the second power transmission electrode 13 in which the magnetic probes 51 to 53 are formed of a nonmagnetic material.
  • FIG. 5C is a longitudinal sectional view of the magnetic probes 51 to 53 arranged in opposition to the first power transmission electrode 12 formed of a ferromagnetic material.
  • FIG. 16A when the power receiving electrode 21 to which the magnetic probes 51 to 53 are attached is excited in the space, almost 100% of the magnetic flux generated by the magnetic probes 51 to 53 is different from the magnetic probes 51 to 53. On the other hand, the inductance becomes a large value.
  • a part of the magnetic flux due to the light passes through the first power transmission electrode 12, but most of the magnetic flux passes through the magnetic path flowing through the first power transmission electrode 12, so that a magnetic field in the opposite direction is not generated and the inductance has a large value. . Accordingly, the difference between the first power transmission electrode 12 and the second power transmission electrode 13 is detected by the capacitance change of the monitor coil 51b, the magnetic sensor 52b, or the capacitor 53b. It is possible to switch.
  • a magnetically permeable material is used for the floor plate 3.
  • FIG. 17 is a plan view of the power receiving electrode 21, (a) is a diagram showing the power receiving electrode 21 together with eddy currents, (b) is a diagram showing the power receiving electrode 21 together with power transmission current, and (c) is a diagram showing the magnetism of the power receiving electrode 21. It is a figure shown with the probes 51-53. As shown to Fig.17 (a), the receiving electrode 21 is formed in disk shape as a whole, and the some slit 21a is formed along the radial direction (radial direction) from the center.
  • FIG. 17A shows the eddy current for convenience of explanation.
  • this eddy current does not actually flow.
  • FIG. 17B the current transmitted from the power transmission electrodes 12 and 13 smoothly flows along the radial direction.
  • FIG. 17C for example, the magnetic probes 51 to 53 can be formed in an annular shape as a whole and arranged concentrically with the power receiving electrode 21.
  • FIG. 18 is a longitudinal sectional view showing the movable body 20 including the determination switching unit 40 to which the energy utilization type determination is applied, together with the fixed body 10.
  • energy such as radio waves, magnetic fields, sound waves, vibrations, and light is emitted at a position close to one of the first power transmission electrode 12 or the second power transmission electrode 13 (first power transmission electrode 12 in FIG. 18).
  • An actuator 60 as energy output means is provided, and the power receiving electrode 21 is provided with an energy sensor 61 as energy detection means for detecting this energy as part of the discrimination switching unit 40, and based on the detection result of the energy sensor 61.
  • the first power transmission electrode 12 and the second power transmission electrode 13 are discriminated.
  • FIG. 19 is a longitudinal sectional view showing the movable body 20 including the determination switching unit 40 to which the energy utilization type determination is applied together with the fixed body 10.
  • a coil 62 as an actuator 60 is wound around the first power transmission electrode 12, and a magnetic field parallel to the first power transmission electrode 12 is induced by the coil 62.
  • the line L14 is selectively switched to either the line L11 or the line L13 via a switch based on the detection result (the switch and the lines L11, L13).
  • L14 can be configured in the same manner as in FIG.
  • the first power transmission electrode 12 can be made to function as a magnetic core by forming the first power transmission electrode 12 from iron.
  • FIG. 20A and 20B are diagrams showing a magnetic sensor 63 provided with a magnetic amplification panel 64.
  • FIG. 20A is a side view showing the magnetic sensor 63 together with the first power transmission electrode 12 and the power reception electrode 21, and
  • FIG. 20B is a magnetic amplification panel.
  • 64 and (c) are longitudinal sectional views of the magnetic amplification panel 64 and the magnetic sensor 63.
  • a magnetic sensor 63 is arranged inside a magnetic amplification panel 64 formed of a ferromagnetic material, and the magnetic sensitivity amplified by the magnetic amplification panel 64 is detected by the magnetic sensor 63, thereby improving detection sensitivity. It becomes possible.
  • the pair of magnetic sensors 63A and 63B may be superposed so that the respective sensitivity directions are orthogonal to each other.
  • the pair of magnetic sensors 63A and 63B may be superposed so that the respective sensitivity directions are orthogonal to each other.
  • illustration is abbreviate
  • FIG. 21 is an enlarged cross-sectional view according to another example of the energy utilization type changeover switch.
  • a light emitting element 65 is provided in the vicinity of the first power transmission electrode 12 (on the side opposite to the power receiving electrode 21), and light emitted from the light emitting element 65 is received by the light receiving electrode 21. This is detected by the element 66.
  • the first power transmitting electrode 12 and the power receiving electrode 21 have openings (not shown) so that light can be transmitted (for example, the first power transmitting electrode 12 and the power receiving electrode 21 are meshed).
  • the floor board 3 is also made translucent.
  • FIG. 22 is a perspective view of the periphery of the floor portion of FIG. 1
  • FIG. 23 is a plan view showing the positional relationship between the power transmitting electrodes 12 and 13 and the power receiving electrode 21 (in FIG. 23, a plurality of movable members disposed in mutually different directions) Body 20A-20D).
  • FIGS. 22 and 23 the state in which the respective parts of the fixed body 10 are exposed by removing the floor board 3 is illustrated. Show.
  • Each power supply sheet 70 has a square shape in plan view, and includes at least power transmission electrodes 12 and 13 as shown in FIG. 23, and further, all or part of the components of the fixed body 10 (AC power supply) 11, the first power transmission electrode 12, the second power transmission electrode 13, the communication unit 14, or the control unit 16).
  • the power transmission electrodes 12 and 13 can be installed on a sheet basis, so that the installation of the power transmission electrodes 12 and 13 and the adjustment of the number of installations are facilitated.
  • the communication unit 14 of the fixed body 10 is provided one by one for the pair of the first power transmission electrode 12 and the second power transmission electrode 13,
  • One control unit 16 is provided for each power supply sheet 70.
  • only one AC power supply 11 is provided for each of the plurality of power supply sheets 70.
  • the respective parts of the power supply sheets 70 are connected to each other by known means. It is preferable that the laying range of the power supply sheet 70 corresponds to the power supplied area 2. For example, when the entire area of the living room is the power supplied area 2, the entire area of the living room 70 is almost entirely below the floor plate 3 of the living room. It is preferable to lay the power supply sheet 70, or when only a part of the living room is the power supply area 2, the power supply sheet 70 is laid only below the floor plate 3 of the living room corresponding to the part. May be.
  • each power supply sheet 70 a plurality of power transmission electrodes 12, 13 are arranged in parallel at a predetermined interval from each other in order to increase the laying efficiency of the power transmission electrodes 12, 13 per unit area.
  • the first power transmission electrode 12 and the second power transmission electrode 13 are arranged in the vertical direction and the horizontal direction so that the power transmission electrodes 12 and 13 adjacent in the vertical direction and the horizontal direction shown in the figure have different polarities. They are arranged alternately (in FIG. 23, the first power transmission electrode 12 is shown as a white square and the second power transmission electrode 13 is shown as a square with a diagonal line).
  • Each of the power transmission electrodes 12 and 13 has a rectangular planar shape so that the performance difference depending on the direction is minimized.
  • At least a pair of power receiving electrodes 22 may be provided for one movable body 20A to 20D, but here, as shown in FIG. 23, the power receiving electrodes 22 are provided for one movable body 20A to 20D.
  • the shape of the power receiving electrodes 21 arranged in parallel is arbitrary, and may be a circular shape in addition to the rectangular shape as shown in FIG.
  • the individual planar shape of each power receiving electrode 21 may be circular as shown in FIG.
  • each power receiving electrode 21 has a circular planar shape as described above, and the diameter of this circle is sufficiently smaller than the interval between the plurality of power transmitting electrodes 12 and 13 arranged side by side. Has been determined to be. Therefore, even when the movable bodies 20A to 20D are arranged in various directions as shown in FIG. 23, one power receiving electrode 21 does not straddle both the plurality of power transmitting electrodes 12 and 13 at the same time. It is prevented that a capacitor is simultaneously formed between one power receiving electrode 21 and the plurality of power transmitting electrodes 12 and 13, and such a capacitor prevents an adverse effect on power supply. According to this configuration, each power receiving electrode 21 can be arranged at an arbitrary position, and the degree of freedom of movement of the movable bodies 20A to 20D can be increased.
  • the interval between the plurality of power receiving electrodes 21 is preferably determined so that the capacitor capacity between the plurality of power receiving electrodes 21 does not adversely affect the power supply. Specifically, a current flows from either the first power transmission electrode 12 or the second power transmission electrode 13 to the other one of the first power transmission electrode 12 or the second power transmission electrode 13 via a capacitor. The mutual interval between the power receiving electrodes 21 is determined so as not to occur.
  • the value of the coil 22 is set so that the movable body 20 matches the series resonance condition, and the movable body 20 is arranged at an arbitrary position of the floor board 3 at an arbitrary timing.
  • the communication unit 25 always outputs a power supply request signal.
  • the fixed body 10 is in a standby mode in the initial state. Specifically, only a small amount of power is supplied to the communication unit 14 so that only the communication unit 14 is in an activated state, and power is not supplied to other portions without supplying power.
  • the communication unit 14 of the fixed body 10 constantly monitors the power supply request signal from the communication unit 25 of the movable body 20, and when the movable body 20 is disposed above the fixed body 10, the communication unit 25. Receives the power supply request signal from the communication unit 14.
  • the standby mode is switched to the operation mode, the control unit 16 is activated, and the control unit 16 starts power supply control. .
  • the power consumption of the stationary body 10 can be reduced as compared with the case where the operation mode is always set.
  • authentication of the movable body 20 by ID may be performed.
  • the ID of the movable body 20 is transmitted together with the power supply request signal from the communication unit 25 to the communication unit 14, and the communication unit 14 that receives this ID transmits the ID to the control unit 16.
  • the control unit 16 further transmits this ID to the server 31 via the hub 30, performs authentication based on the ID registered in advance in the server 31, and returns the authentication result to the control unit 16.
  • the control part 16 may determine the propriety of electric power supply based on this authentication result.
  • the movable body 20 when the movable body 20 is not disposed above the fixed body 10, the series resonance condition is not satisfied, and power is not supplied. Even when a person walks on the floor board 3 while always in the operation mode, it is possible to prevent a situation in which an electric current flows through the human body and maintain safety. For example, in the experiment by the inventor of the present application, when the movable body 20 is arranged above the fixed body 10 and the power transmission output is about 12.7 kW (the output voltage is about 800 V0p), the power transmission efficiency is about 99.99.
  • the junction capacitance is movable body 20.
  • the load resistance is about 0.002 m ohm
  • the power transmission output is about 0.3 mW
  • the transmission efficiency is almost 0%, confirming safety.
  • FIG. 24 is an enlarged view of main parts of the fixed body 10 and the movable body 20 according to a modification.
  • the communication unit 25 of the movable body 20 transmits communication data such as a power supply request signal and an ID to the fixed body 10 while being superimposed on a power supply line.
  • both ends of the communication unit 14 are connected to a power supply line via a coupling capacitor 15, and a coil 18 for blocking communication data is provided.
  • a coil 18 for blocking communication data is provided.
  • the capacitors 15 are provided at both ends of the communication unit 14 in this way, unnecessary impedance may be increased, so that the capacitor 15 is provided only at one end of the communication unit 14 as shown in FIG. Is more preferable.
  • FIG. 25 is an enlarged view of a main part of the fixed body 10 and the movable body 20 according to another modification.
  • the communication unit 25 of the movable body 20 is driven by receiving power supply via the line L15 and wirelessly transmits a power supply request signal.
  • an antenna 17 is connected to the communication unit 14 of the fixed body 10 via a line L6. The antenna 17 is provided between the power transmission electrodes 12 and 13, and the power supply request signal transmitted from the communication unit 25 is received via the antenna 17 and output to the communication unit 14.
  • each of the first power transmission electrode 12 and the second power transmission electrode 13 is provided. It is not necessary to provide the AC power source 11 in the configuration, so that the configuration of the fixed body 10 can be simplified and the manufacturing cost of the fixed body 10 can be reduced.
  • the 1st power transmission electrode 12 and the 2nd power transmission electrode 13 can be discriminate
  • the coil 22 is disposed on the movable body 20, the series resonance condition can be adjusted by the movable body 20, and adjustment of the fixed body 10 is not necessary. It becomes even easier to supply power to 20.
  • the discrimination switching unit 40 is a permanent magnet utilization type
  • the first power transmission electrode 12 and the second power transmission electrode 12 and the second power transmission electrode 13 are used by using the magnetic force between the first power transmission electrode 12 and the second power transmission electrode 13. Since the power transmission electrode 13 can be discriminated, it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of arrangement of the movable body 20 is improved. In particular, when a permanent magnet is used, the mechanical part can be reduced, so that the durability of the power supply system can be increased.
  • the discrimination switching unit 40 when the discrimination switching unit 40 is of the magnetic characteristic detection type, the first power transmission electrode 12 and the second power transmission electrode 13 can be determined based on the detection result of the magnetic characteristic detection means, so that the first power transmission Since the electrode 12 and the second power transmission electrode 13 can be discriminated, it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of the arrangement of the movable body 20 is increased. improves.
  • the determination switching unit 40 when the determination switching unit 40 is an energy utilization type, the first power transmission electrode 12 and the second power transmission electrode 13 can be determined on the basis of the detection result of the energy detection means. And the second power transmission electrode 13 can be discriminated, so that it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of arrangement of the movable body 20 is improved. .
  • the determination switching unit 40 is an energy utilization type
  • the first power transmission electrode 12 and the second power transmission electrode 13 can be determined on the basis of the detection result of the energy detection means.
  • the second power transmission electrode 13 can be discriminated, so that it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of arrangement of the movable body 20 is improved.
  • the power supply system when performing discrimination by light, it is not necessary to use a magnetic force, so that the power supply system can be easily introduced even in a
  • FIG. 26 is a longitudinal sectional view showing the fixed body 10 and the movable body 80 in a simplified manner
  • FIG. 27 is an enlarged view of a main part showing the fixed body 10 and the movable body 80 in FIG. 26 in detail.
  • the fixed body 10 supplies power to each of the plurality of fixed bodies 10 from one common AC power supply 11.
  • the AC power supply 11 includes a DC power supply 11A and a switching unit 11B that switches a plurality of transistors and diodes by a switching control unit, as in FIG. 32 related to the conventional system.
  • the DC current from the DC power source 11A is switched by the switching unit 11B to obtain an AC current having a predetermined frequency.
  • the movable body 80 includes a pair of power receiving electrodes 21.
  • the determination switching unit 40 of the first embodiment is omitted, and one power receiving electrode 21 is fixedly connected to the one terminal 24a of the load 24 through the line L11 so as not to be switched, The other power receiving electrode 21 is fixedly connected to the other terminal 24b of the load 24 through the line L13 so as not to be switched. That is, in the second embodiment, the movable body 80 is a small device, and the pair of power receiving electrodes 21 are arranged at positions corresponding to the first power transmitting electrode 12 and the second power transmitting electrode 13. It is assumed that the user moves the movable body 80 by hand while positioning the movable body 80 and installs it at a desired position.
  • the pair of power receiving electrodes 21 has a one-to-one correspondence with the first power transmitting electrode 12 and the second power transmitting electrode 13, and the determination switching unit 40 can be omitted.
  • a smoothing capacitor 81 is connected to the movable body 80. The smoothing capacitor 81 is connected in parallel to the load 24 and smoothes the DC power supplied via the coil 22.
  • the movable body 80 is provided with a control unit (controller) 82 that is communicably connected to the load 24 and the communication unit 25 via the lines L16 and L17.
  • the control unit 82 is connected to a switch 83, an OK indicator lamp 84, and an NG indicator lamp 85.
  • the control unit 82 is connected to a current detection detection unit (Hall element) 86 connected between the coil 22 and the load 24 via the line L18, whereby the current detected by the Hall element 86 is detected.
  • control unit 82 is connected between the load 24 and the hall element 86 via a line L19, and can monitor the voltage supplied to the load 24.
  • the control unit 82 controls the communication unit 25 to output a power supply request signal. Then, the control unit 82 determines the presence or absence of power supply from the fixed body 10 based on the monitored current and voltage, and when there is no power supply, turns on or blinks the NG indicator lamp 85 to supply power. If there is, the OK indicator 84 is turned on or blinked.
  • FIG. 28 is a longitudinal sectional view schematically showing the fixed body 10 and the movable body 80 according to the modification
  • FIG. 29 is an enlarged view of a main part showing the fixed body 10 and the movable body 80 in FIG. 28 in detail.
  • This movable body 80 is configured by omitting the coil 22 shown in FIGS. When the oscillation frequency is sufficiently high, the impedance of the capacitor 5 becomes small, so that power transmission is possible without using series resonance, and thus the coil 22 can be omitted.
  • the configuration of the movable body 80 can be further simplified.
  • FIGS. 30A to 30C and FIGS. 31A to 31B are enlarged longitudinal sectional views of the power transmitting electrodes 12 and 13 and the power receiving electrode 21.
  • FIG. 30A to 30C and FIGS. 31A to 31B are enlarged longitudinal sectional views of the power transmitting electrodes 12 and 13 and the power receiving electrode 21.
  • the power transmitting electrodes 12, 13 and the power receiving electrode 21 are different from each other on the assumption that they are formed of a nonmagnetic conductive material such as aluminum.
  • the permanent magnets 87 are provided so that the power transmitting electrodes 12 and 13 are N poles and the power receiving electrode 21 is S poles.
  • a strong repulsive force is generated, and when the relative positions of the power transmitting electrodes 12 and 13 and the power receiving electrode 21 are matched. Since a strong suction force is generated, the user can perform positioning more easily by moving the movable body 80 while feeling the repulsive force and the suction force.
  • a recess 88 having a planar shape and a depth corresponding to the shape of the power receiving electrode 21 is formed at a location corresponding to the power transmitting electrodes 12 and 13 on the floor board 3. According to this configuration, the user can perform positioning more easily by moving the movable body 80 so that the power receiving electrode 21 is accommodated in the recess 88.
  • the portions corresponding to the power transmission electrodes 12 and 13 in the floor board 3 are formed in a predetermined color different from the other portions (in FIG. 30 (c), A portion having a different color is indicated as 3B). According to this configuration, the user can perform the positioning more easily by moving the movable body 80 so that the power receiving electrode 21 is placed at a position of a predetermined color.
  • the floor board 3 is translucent or transparent, and the power transmission electrodes 12 and 13 are visible from the power supply region 2 (in FIG. 31A, translucent or The transparent floor board 3 is indicated by a dotted line).
  • the user moves the movable body 80 so that the power receiving electrode 21 is placed at a position corresponding to the power transmitting electrodes 12 and 13 while visually confirming the positions of the power transmitting electrodes 12 and 13. By doing so, positioning can be performed more easily.
  • the raising 89 is formed on the surface of the floor board 3 on the power supplied region 2 side, but the raising 89 is not formed on the surface corresponding to the power transmission electrodes 12 and 13. According to this configuration, the user can perform positioning more easily by moving the movable body 80 so that the power receiving electrode 21 is placed in a place where there is no raising 89.
  • the fixed body 10 is arranged on the floor portion, and the movable body 20 is arranged on the upper surface of the floor portion.
  • the present invention is not limited to these embodiments, and the fixed body 10 and the movable body 20 are arranged. Can be arranged in any direction.
  • the fixed body 10 may be disposed in the wall surface or the ceiling, and the movable body 20 may be disposed in contact with the wall surface or the ceiling or at a predetermined interval.
  • the power supply of the stationary body 10 may be normally turned on, and in this case, the communication function may be omitted. Even when a communication function is provided, the specific configuration can be modified.
  • One specific application example of the power supply system according to the above-described embodiment is power supply using an electric vehicle as a movable body 20.
  • the fixed body 10 is arranged on the floor surface of an electric vehicle stand, and power can be supplied to the electric vehicle as the movable body 20 stopped on the floor surface.
  • the power transmission electrodes 12 and 13 may be lifted up together with the floor surface and may be brought close to the power reception electrode 21 provided near the bottom surface of the electric vehicle. Or conversely, the power receiving electrode 21 of the electric vehicle may be lifted down.

Abstract

Provided is a power supply system which is capable of supplying electric power with high efficiency using a simple configuration. The power supply system supplies electric power to a prescribed load (24) from a fixed body (10) via a movable body (20). The fixed body (10) is equipped with multiple first power transmission electrodes (12) and multiple second power transmission electrodes (13) to which alternating-current power is supplied, and an alternating-current power source (11) that supplies the electric power to the multiple first power transmission electrodes (12) and the multiple second power transmission electrodes (13). The movable body (20) is equipped with multiple power reception electrodes (21) which are disposed facing the first power transmission electrodes (12) or the second power transmission electrodes (13) with no contact, whereby are formed capacitors (5).

Description

電力供給システム、及びそのための可動体と固定体Power supply system, and movable body and fixed body therefor
 この発明は、各種の負荷に対して電力供給を行うための電力供給システム、及びそのための可動体と固定体に関する。
 この出願は、2008年12月19日付けで日本国で出願された特願2008-324520を基礎とし、その内容を取り込むものである。
The present invention relates to a power supply system for supplying power to various loads, and a movable body and a fixed body therefor.
This application is based on Japanese Patent Application No. 2008-324520 filed in Japan on December 19, 2008 and incorporates the contents thereof.
 床面上に配置された各種の負荷に対して給電を行う電力供給システムは、一般に、床面に露出するように設けた電極を負荷の底面に設けた電極に接触させて給電する接触式の電力供給システムと、床の内部に非露出状に設けた電極を負荷の電極に接触させることなく給電する非接触式の電力供給システムとに大別できる。 In general, a power supply system that supplies power to various loads arranged on the floor surface is a contact type that supplies power by bringing an electrode that is exposed on the floor surface into contact with an electrode provided on the bottom surface of the load. The power supply system can be broadly divided into a non-contact type power supply system that supplies power without contacting an electrode provided in a non-exposed state inside the floor with a load electrode.
 このうち、従来の非接触式の電力供給システムは、例えば特許文献1に開示されている。このシステムは、走行路に沿って移動する負荷(地上可動体)に対して電力供給を行うもので、走行路に沿って誘導線を配置すると共に、地上可動体にはコイルが巻き付けられた鉄心を設けて構成されている。そして、誘導線に高周波電流を流し、この誘導線を一次側とすると共にコイルを二次側とする電磁誘導を行うことで、地上可動体に給電を行なう。 Among these, a conventional non-contact type power supply system is disclosed in Patent Document 1, for example. This system supplies power to a load (a ground movable body) that moves along a traveling path. An induction wire is disposed along the traveling path, and an iron core in which a coil is wound around the ground movable body. Is provided. Then, a high-frequency current is passed through the induction wire, and electromagnetic induction is performed with the induction wire as the primary side and the coil as the secondary side, thereby supplying power to the ground movable body.
 しかしながら、このような従来の非接触式の電力供給システムでは、電力伝送効率を高めるためには、誘導線とコイルを相互に近接させたり、誘導線への通電によって生じる磁束をコイルの中心軸に通過させるようにこれら誘導線とコイルの位置合せを行う必要がある等、位置上の制約が多かった。従って、走行路の如き固定的な経路でしか給電を行うことができず、床面上を自由に移動する必要があるロボットの如き可動体に対して給電を行うことができないという問題があった。また、磁路を形成するために鉄心の如き磁性体を用いる必要があり、重量が大きくなると共に、磁性体を交流励磁したときに磁歪が生じることで騒音を発生させるという問題があった。この他、非接触式の電力供給システムとしては、電磁波による給電を行うことも考えられるが、人体への悪影響や電子機器の誤作動を回避する観点から厳しい規制があり、オフィス空間のように人がいる場所への導入が困難であった。 However, in such a conventional non-contact power supply system, in order to increase the power transmission efficiency, the induction wire and the coil are brought close to each other, or the magnetic flux generated by energizing the induction wire is applied to the central axis of the coil. There were many restrictions on the position, such as the need to align the guide wire and the coil so that they could pass through. Accordingly, there is a problem that power can be supplied only through a fixed route such as a traveling path, and power cannot be supplied to a movable body such as a robot that needs to move freely on the floor surface. . In addition, it is necessary to use a magnetic material such as an iron core to form a magnetic path, which increases the weight and causes noise due to magnetostriction when the magnetic material is subjected to AC excitation. In addition, as a non-contact power supply system, it is conceivable to supply power using electromagnetic waves, but there are strict regulations from the viewpoint of avoiding adverse effects on the human body and malfunctions of electronic devices, and people like office spaces It was difficult to install in the place where there is.
 このような点に鑑みて、本願発明者等は、電磁誘導や電磁波ではなく、直列共振を利用して非接触給電を行うことができる電力供給システムを提案した(特許文献2参照。ただし、本願出願時において、当該特許文献2は非公開であり、当該電力供給システムは非公知である)。以下、この電力供給システムの概要を説明する。 In view of such a point, the inventors of the present application have proposed a power supply system that can perform non-contact power feeding using series resonance instead of electromagnetic induction or electromagnetic waves (see Patent Document 2, however, this application). At the time of filing, the patent document 2 is not disclosed and the power supply system is not known). Hereinafter, an outline of the power supply system will be described.
 図32は、このような従来の電力供給システムの要部縦断面図である。この電力供給システムは、電力供給領域100に配置された固定体101から、電力被供給領域102に配置された可動体103を介して、負荷104に対して電力を供給するための電力供給システムである。固定体101は、電力供給領域100と電力被供給領域102との相互の境界面に対する近傍位置に配置される第1の送電電極105及び第2の送電電極106を備える。可動体103は、境界面に対する近傍位置に配置されるものであって、第1の送電電極105又は第2の送電電極106に対して対向状かつ非接触に配置される第1の受電電極107と第2の受電電極108を備える。そして、これら第1の送電電極105及び第2の送電電極106と第1の受電電極107及び第2の受電電極108とを組み合わせてコンデンサ109を構成し、このコンデンサ109とコイル110による直列共振回路を形成して、固定体101から可動体103へ高効率で電力供給を行うことが可能となる。具体的には、このような固定体101を床板111の下方に多数並設しておき、この床板111上に可動体103を走行等させつつ、非接触にて電力供給を継続することが可能となる。 FIG. 32 is a longitudinal sectional view of an essential part of such a conventional power supply system. This power supply system is a power supply system for supplying power to a load 104 from a fixed body 101 arranged in a power supply area 100 via a movable body 103 arranged in a power supplied area 102. is there. The fixed body 101 includes a first power transmission electrode 105 and a second power transmission electrode 106 arranged at positions near the boundary surface between the power supply region 100 and the power supplied region 102. The movable body 103 is disposed in the vicinity of the boundary surface, and the first power receiving electrode 107 is disposed so as to face the first power transmitting electrode 105 or the second power transmitting electrode 106 in a non-contact manner. And a second power receiving electrode 108. The first power transmission electrode 105 and the second power transmission electrode 106 and the first power reception electrode 107 and the second power reception electrode 108 are combined to form a capacitor 109, and a series resonance circuit including the capacitor 109 and the coil 110. Thus, it is possible to supply power from the fixed body 101 to the movable body 103 with high efficiency. Specifically, a large number of such fixed bodies 101 are juxtaposed below the floor plate 111, and the power supply can be continued in a non-contact manner while the movable body 103 is running on the floor plate 111. It becomes.
 この電力供給システムでは、固定体10に、スイッチングによって周波数を制御可能な交流電源115を設けており、この交流電源115によって、所望の周波数の交流電力を第1の送電電極105と第2の送電電極106に供給している。 In this power supply system, an AC power supply 115 whose frequency can be controlled by switching is provided on the fixed body 10, and AC power of a desired frequency is supplied to the first power transmission electrode 105 and the second power transmission by the AC power supply 115. The electrode 106 is supplied.
 また、この電力供給システムでは、電力供給制御を行うため、固定体101と可動体103の相互間の通信を可能とする機能を設けている。具体的には、各固定体101には通信部112を設けると共に、可動体103には通信部113を設けている。そして、可動体103の通信部113から電力供給要求信号を送信する。各固定体101は、自己の通信部112によって電力供給要求信号が受信された場合に、自己の上方に可動体103が位置しているものとして、電力供給制御を行う。 In addition, this power supply system is provided with a function that enables communication between the fixed body 101 and the movable body 103 in order to perform power supply control. Specifically, each fixed body 101 is provided with a communication unit 112, and the movable body 103 is provided with a communication unit 113. Then, a power supply request signal is transmitted from the communication unit 113 of the movable body 103. When the power supply request signal is received by its own communication unit 112, each fixed body 101 performs power supply control assuming that the movable body 103 is positioned above itself.
 また、このように自己の上方に可動体103が位置していることを判別可能しても、可動体103がランダムな方向で移動する場合には、第1の送電電極105に対向配置された電極が第1の受電電極107と第2の受電電極108とのいずれであるのか、あるいは、第2の送電電極106に対向配置された電極が第1の受電電極107と第2の受電電極108とのいずれであるのかを特定できない。そこで、複数のダイオードを有する接続部114を用いて整流を行い、各電極の対向配置状態に関わらず、負荷104の極性に適合するように電力供給を継続可能としている。また、このようにダイオードを可動体103に配置しており、ダイオードと負荷104の相互間にインダクタンス110を設けた場合には、ダイオードにより整流されてしまい、コンデンサ108との直列共振が成り立たなくなるため、インダクタンス110を固定体101側に配置している。 Further, even when it can be determined that the movable body 103 is located above itself, when the movable body 103 moves in a random direction, the movable body 103 is disposed to face the first power transmission electrode 105. Whether the electrode is the first power receiving electrode 107 or the second power receiving electrode 108, or the electrode disposed opposite to the second power transmitting electrode 106 is the first power receiving electrode 107 or the second power receiving electrode 108. Cannot be specified. Therefore, rectification is performed using the connection portion 114 having a plurality of diodes, and power supply can be continued so as to match the polarity of the load 104 regardless of the opposing arrangement state of each electrode. Further, when the diode is arranged in the movable body 103 in this way and the inductance 110 is provided between the diode and the load 104, the diode 110 is rectified by the diode and series resonance with the capacitor 108 is not established. The inductance 110 is arranged on the fixed body 101 side.
 この電力供給システムによれば、第1の送電電極105及び第2の送電電極106を電力被供給領域102に露出させる必要がないため、人がいる場所への導入が容易になる。また、各電極を所望のキャパシタ容量が生じる程度の距離で対向配置させれば電力供給ができるため、電磁誘導方式のように厳密な位置合わせを行う必要がないので、ロボットの如き可動体103に対しても給電を行うことができる。 According to this power supply system, since it is not necessary to expose the first power transmission electrode 105 and the second power transmission electrode 106 to the power supply region 102, introduction into a place where a person is present is facilitated. In addition, since it is possible to supply power if the electrodes are arranged facing each other at a distance such that a desired capacitor capacity is generated, it is not necessary to perform precise alignment as in the electromagnetic induction method. In contrast, power can be supplied.
特開平9-93704号公報JP-A-9-93704 特願2007-256369号Japanese Patent Application No. 2007-256369
 しかしながら、上記特許文献2に記載の電力供給システムは、改善すべき以下のような問題を有していた。まず、固定体の第1の送電電極及び第2の送電電極の各組に対して1つの交流電源を設けていたので、これら第1の送電電極及び第2の送電電極を多数組並設するような場合には、多数の交流電源が必要になり、固定体の構成が複雑になると共に、簡易化することができると共に、固定体の製造コストが上昇する一因となっていた。 However, the power supply system described in Patent Document 2 has the following problems to be improved. First, since one AC power supply is provided for each set of the first power transmission electrode and the second power transmission electrode of the fixed body, a large number of these first power transmission electrodes and second power transmission electrodes are arranged in parallel. In such a case, a large number of AC power sources are required, and the structure of the fixed body becomes complicated, which can be simplified, and this contributes to an increase in the manufacturing cost of the fixed body.
 また、固定体と可動体の各々に通信部を設ける必要があったので、回路構成が複雑になることでシステムの設置コストが増大したり、消費電力が増大するという問題があった。また、インダクタンスを固定体に配置していたので、可動体の大きさ等が変わった場合には、当該インダクタンスを可変させて直列共振条件を維持する必要があり、回路構成が複雑になることでシステムの設置コストが増大するという問題があった。 Also, since it is necessary to provide a communication unit for each of the fixed body and the movable body, there is a problem that the installation cost of the system increases and the power consumption increases due to the complicated circuit configuration. In addition, since the inductance is arranged on the fixed body, when the size of the movable body changes, it is necessary to change the inductance to maintain the series resonance condition, and the circuit configuration becomes complicated. There was a problem that the installation cost of the system increased.
 さらに、各送電電極と各受電電極が鉛直方向に完全に対応する位置に可動体が配置されず、各送電電極の一部のみに掛かるように各受電電極が配置された場合には、所定の直列共振条件が満足されないために送電効率が低下したり、電極の配置状態に応じて発信周波数をずらして直列共振条件を満足させる必要が生じるといった問題があった。 Further, when the movable body is not disposed at a position where each power transmission electrode and each power reception electrode completely correspond to the vertical direction, and each power reception electrode is disposed so as to be applied only to a part of each power transmission electrode, Since the series resonance condition is not satisfied, there is a problem that the power transmission efficiency is reduced, or it is necessary to satisfy the series resonance condition by shifting the transmission frequency according to the arrangement state of the electrodes.
 そこで本発明は、非接触式の電力供給システムにおいて、簡易な構成で高効率な電力供給を行うことが可能となる、電力供給システムを提供することを目的とする。また、本発明は、このような電力供給システムを構成するための可動体と固定体を提供することを目的とする。 Therefore, an object of the present invention is to provide a power supply system capable of performing highly efficient power supply with a simple configuration in a non-contact power supply system. Moreover, an object of this invention is to provide the movable body and fixed body for comprising such an electric power supply system.
 上述した課題を解決し、目的を達成するため、請求項1に係る電力供給システムは、前記固定体は、前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、交流電力が供給される複数の第1の送電電極及び複数の第2の送電電極と、前記複数の第1の送電電極及び前記複数の第2の送電電極に対して電力を供給する交流電源とを備え、前記可動体は、前記第1の送電電極又は前記第2の送電電極に対して前記境界面を挟んで対向状かつ非接触に配置されることにより、これら第1の送電電極又は第2の送電電極との間にコンデンサを構成する少なくとも一組の受電電極とを備え、前記固定体又は前記可動体に、前記コンデンサと直列にコイルを接続し、これらコンデンサとコイルの直列共振により前記負荷に対する電力供給を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, the power supply system according to claim 1 is configured such that the fixed body is disposed at a position near a boundary surface between the power supply region and the power supplied region. A plurality of first power transmission electrodes and a plurality of second power transmission electrodes to which AC power is supplied, and power to the plurality of first power transmission electrodes and the plurality of second power transmission electrodes And the movable body is disposed so as to face the first power transmission electrode or the second power transmission electrode so as to be opposed to and non-contact across the boundary surface. At least one set of power receiving electrodes constituting a capacitor between one power transmitting electrode or the second power transmitting electrode, and a coil is connected in series with the capacitor to the fixed body or the movable body, Coil series resonance And performing power supply to more the load.
 また、請求項2に係る電力供給システムは、請求項1に係る電力供給システムにおいて、前記可動体は、前記複数の受電電極に対して対向配置される電極が前記第1の送電電極と前記第2の送電電極のいずれであるのかを判別し、この判別結果に基づいて、前記負荷に対する前記複数の受電電極の接続の切替えを行う判別切替手段を備えることを特徴とする。 The power supply system according to a second aspect is the power supply system according to the first aspect, wherein the movable body includes an electrode disposed opposite to the plurality of power receiving electrodes and the first power transmitting electrode and the first power transmitting electrode. It is characterized in that it comprises discrimination switching means for discriminating which of the two power transmission electrodes, and switching the connection of the plurality of power reception electrodes to the load based on the discrimination result.
 また、請求項3に係る電力供給システムは、請求項1に係る電力供給システムにおいて、前記可動体は、前記複数の受電電極を前記負荷に対して固定的に接続したことを特徴とする。 Further, the power supply system according to claim 3 is the power supply system according to claim 1, wherein the movable body has the plurality of power receiving electrodes fixedly connected to the load.
 また、請求項4に係る電力供給システムは、請求項1から3のいずれか一項に係る電力供給システムにおいて、前記コイルを、前記可動体に配置したことを特徴とする。 Further, the power supply system according to claim 4 is the power supply system according to any one of claims 1 to 3, wherein the coil is arranged on the movable body.
 また、請求項5に係る電力供給システムは、請求項1から4のいずれか一項に係る電力供給システムにおいて、前記第1の送電電極又は前記第2の送電電極のいずれか一方を強磁性体にて形成すると共に、前記第1の送電電極又は前記第2の送電電極のいずれか他方を非磁性体にて形成し、前記判別切替手段は、永久磁石を備え、当該永久磁石と前記第1の送電電極又は前記第2の送電電極との相互間の磁力を用いて前記判別を行うことを特徴とする。 A power supply system according to a fifth aspect is the power supply system according to any one of the first to fourth aspects, wherein one of the first power transmission electrode and the second power transmission electrode is made of a ferromagnetic material. And the other one of the first power transmission electrode and the second power transmission electrode is formed of a non-magnetic material, and the discrimination switching means includes a permanent magnet, and the permanent magnet and the first The discrimination is performed by using the magnetic force between the second power transmission electrode or the second power transmission electrode.
 また、請求項6に係る電力供給システムは、請求項1から4のいずれか一項に係る電力供給システムにおいて、前記第1の送電電極又は前記第2の送電電極のいずれか一方の磁気特性と、前記第1の送電電極又は前記第2の送電電極のいずれか他方の磁気特性とを、相互に異なるものとし、前記判別切替手段は、前記磁気特性の相違を検知する磁気特性検知手段を備え、当該磁気特性検知手段の検知結果に基づいて前記判別を行うことを特徴とする。 A power supply system according to a sixth aspect is the power supply system according to any one of the first to fourth aspects, wherein one of the first power transmission electrode and the second power transmission electrode has magnetic characteristics. The magnetic characteristics of the other one of the first power transmission electrode and the second power transmission electrode are different from each other, and the discrimination switching means includes magnetic characteristic detection means for detecting the difference in the magnetic characteristics. The discrimination is performed based on the detection result of the magnetic characteristic detection means.
 また、請求項7に係る電力供給システムは、請求項1から4のいずれか一項に係る電力供給システムにおいて、前記第1の送電電極又は前記第2の送電電極のいずれか一方には、所定のエネルギーを出力するエネルギー出力手段を設け、前記判別切替手段は、前記エネルギーを検知するエネルギー検知手段を備え、当該エネルギー検知手段の検知結果に基づいて前記判別を行うことを特徴とする。 A power supply system according to a seventh aspect is the power supply system according to any one of the first to fourth aspects, wherein one of the first power transmission electrode and the second power transmission electrode has a predetermined value. An energy output means for outputting the energy is provided, and the determination switching means includes an energy detection means for detecting the energy, and performs the determination based on a detection result of the energy detection means.
 また、請求項8に係る可動体は、電力被供給領域に配置され、電力供給領域に配置された固定体から供給された電力を所定の負荷に供給する可動体であって、前記固定体に配置されたものであって交流電力が供給される複数の第1の送電電極及び複数の第2の送電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置されることにより、これら第1の送電電極又は第2の送電電極との間にコンデンサを構成する少なくとも一組の受電電極を備え、前記コンデンサと、当該コンデンサに直列接続されるように前記固定体又は前記可動体に配置されたコイルとの直列共振により、前記負荷に対して電力供給を行うことを特徴とする。 The movable body according to claim 8 is a movable body that is disposed in the power supply area and that supplies power supplied from the fixed body disposed in the power supply area to a predetermined load. A plurality of first power transmission electrodes and a plurality of second power transmission electrodes that are arranged and supplied with AC power are sandwiched between mutual boundary surfaces of the power supply region and the power supplied region. And at least one pair of power receiving electrodes constituting a capacitor between the first power transmitting electrode and the second power transmitting electrode, and the capacitor and the capacitor in series. Power is supplied to the load by series resonance with a coil arranged on the fixed body or the movable body so as to be connected.
 また、請求項9に係る可動体は、請求項8に係る可動体において、前記複数の受電電極に対して対向配置される電極が前記第1の送電電極と前記第2の送電電極のいずれであるのかを判別し、この判別結果に基づいて、前記負荷に対する前記複数の受電電極の接続の切替えを行う判別切替手段を備えることを特徴とする。 In addition, the movable body according to claim 9 is the movable body according to claim 8, wherein any of the first power transmission electrode and the second power transmission electrode is disposed so as to face the plurality of power reception electrodes. It is characterized by comprising a discrimination switching means for discriminating whether or not there is and switching the connection of the plurality of power receiving electrodes to the load based on the discrimination result.
 また、請求項10に係る可動体は、請求項8に係る可動体において、前記複数の受電電極を前記負荷に対して固定的に接続したことを特徴とする。 Further, the movable body according to claim 10 is characterized in that in the movable body according to claim 8, the plurality of power receiving electrodes are fixedly connected to the load.
 また、請求項11に係る可動体は、請求項8から10のいずれか一項に係る可動体において、前記コイルを備えたことを特徴とする。 Further, the movable body according to claim 11 is the movable body according to any one of claims 8 to 10, wherein the coil is provided.
 また、請求項12に係る固定体は、電力供給領域に配置され、電力被供給領域に配置された可動体を介して所定の負荷に対して電力を供給する固定体であって、前記可動体に配置された少なくとも一組の受電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置されることにより、これら受電電極との間にコンデンサを構成する複数の第1の送電電極及び複数の第2の送電電極と、前記複数の第1の送電電極及び前記複数の第2の送電電極に対して電力を供給する交流電源とを備え、前記コンデンサと、当該コンデンサに直列接続されるように前記固定体又は前記可動体に配置されたコイルとの直列共振により、前記負荷に対して電力供給を行うことを特徴とする。 A fixed body according to a twelfth aspect of the present invention is a fixed body that is disposed in a power supply area and supplies power to a predetermined load via a movable body that is disposed in a power supplied area. With respect to at least one set of power receiving electrodes arranged in a non-contact manner with a boundary surface between the power supply region and the power supplied region interposed therebetween, A plurality of first power transmission electrodes and a plurality of second power transmission electrodes constituting a capacitor therebetween, and an AC power supply for supplying power to the plurality of first power transmission electrodes and the plurality of second power transmission electrodes The power is supplied to the load by series resonance of the capacitor and a coil disposed on the fixed body or the movable body so as to be connected in series to the capacitor.
 請求項1に係る電力供給システム、請求項8に係る可動体、あるいは請求項12に係る固定体によれば、送電電極と受電電極とを相互に非接触状態としたまま電力供給を行うことができ、送電電極を電力被供給領域に露出させる必要がないため、送電電極が人体に触れることによる感電の危険性をなくすことができ、心理的な不安も解消することができるので、オフィス空間のように人がいる場所への導入が容易になる。特に、直列共振条件が満たされない場合には電力供給が行われないので、例えば固定体の電源を常にオンにしておき、人や物が送電電極に近づいた場合であっても、感電や短絡のおそれがないため、電力供給システムの安全性を確保することができる。また特に、共通の交流電源から複数の第1の送電電極及び複数の第2の送電電極に対して電力を供給するので、第1の送電電極及び第2の送電電極の各々に交流電源を設けることが不要となり、固定体の構成を簡易化することができると共に、固定体の製造コストを低減することができる。 According to the power supply system according to claim 1, the movable body according to claim 8, or the fixed body according to claim 12, power can be supplied while the power transmission electrode and the power reception electrode are in a non-contact state. Because there is no need to expose the power transmission electrode to the power supply area, the risk of electric shock due to the power transmission electrode touching the human body can be eliminated, and psychological anxiety can be eliminated. As a result, it can be easily introduced in places where people are present. In particular, since power is not supplied when the series resonance condition is not satisfied, even if, for example, the power source of the stationary body is always turned on and a person or an object approaches the power transmission electrode, an electric shock or short circuit is caused. Since there is no fear, the safety of the power supply system can be ensured. In particular, since power is supplied from a common AC power source to the plurality of first power transmission electrodes and the plurality of second power transmission electrodes, an AC power source is provided for each of the first power transmission electrode and the second power transmission electrode. Therefore, the structure of the fixed body can be simplified, and the manufacturing cost of the fixed body can be reduced.
 また、請求項2に係る電力供給システム、あるいは請求項9に係る可動体によれば、第1の送電電極と第2の送電電極を判別できるので、固定体に対する任意の位置に可動体を配置しても自動的に電力供給を行うこと可能となり、可動体の配置の自由度が向上する。 Further, according to the power supply system according to claim 2 or the movable body according to claim 9, the first power transmission electrode and the second power transmission electrode can be discriminated, so the movable body is arranged at an arbitrary position with respect to the fixed body. Even in such a case, it is possible to automatically supply power, and the degree of freedom of arrangement of the movable body is improved.
 また、請求項3に係る電力供給システム、あるいは請求項10に係る可動体によれば、によれば、複数の受電電極を負荷に対して固定的に接続したので、可動体の構成を一層簡素化でき、可動体の製造コストを一層低減することができる。 According to the power supply system according to claim 3 or the movable body according to claim 10, since the plurality of power receiving electrodes are fixedly connected to the load, the configuration of the movable body is further simplified. The manufacturing cost of the movable body can be further reduced.
 また、請求項4に係る電力供給システム、あるいは請求項11に係る可動体によれば、コイルを可動体に配置したので、直列共振条件を可動体で調整することができ、固定体の調整が不要になるため、共通の固定体を用いて様々な可動体に対する電力供給を行うことが一層容易になる。 Further, according to the power supply system according to claim 4 or the movable body according to claim 11, since the coil is arranged on the movable body, the series resonance condition can be adjusted by the movable body, and the fixed body can be adjusted. Since it becomes unnecessary, it becomes easier to supply electric power to various movable bodies using a common fixed body.
 また、請求項5に係る電力供給システムによれば、永久磁石と第1の送電電極又は第2の送電電極との相互間の磁力を用いて、第1の送電電極と第2の送電電極を判別できるので、固定体に対する任意の位置に可動体を配置しても自動的に電力供給を行うことが可能となり、可動体の配置の自由度が向上する。特に、永久磁石を用いた場合には、機械的部分を低減できるため、電力供給システムの耐久性を高めることができる。 Moreover, according to the electric power supply system which concerns on Claim 5, using the magnetic force between a permanent magnet and a 1st power transmission electrode or a 2nd power transmission electrode, a 1st power transmission electrode and a 2nd power transmission electrode are used. Since it can be determined, it is possible to automatically supply power even if the movable body is arranged at an arbitrary position with respect to the fixed body, and the degree of freedom of arrangement of the movable body is improved. In particular, when a permanent magnet is used, the mechanical part can be reduced, so that the durability of the power supply system can be increased.
 また、請求項6に係る電力供給システムによれば、磁気特性検知手段の検知結果に基づいて、第1の送電電極と第2の送電電極を判別できるので、第1の送電電極と第2の送電電極を判別できるので、固定体に対する任意の位置に可動体を配置しても自動的に電力供給を行うこと可能となり、可動体の配置の自由度が向上する。 Further, according to the power supply system of the sixth aspect, since the first power transmission electrode and the second power transmission electrode can be distinguished based on the detection result of the magnetic property detection means, the first power transmission electrode and the second power transmission electrode Since the power transmission electrode can be discriminated, it is possible to automatically supply power even if the movable body is arranged at an arbitrary position with respect to the fixed body, and the degree of freedom of arrangement of the movable body is improved.
 また、請求項7に係る電力供給システムによれば、エネルギー検知手段の検知結果に基づいて、第1の送電電極と第2の送電電極を判別できるので、第1の送電電極と第2の送電電極を判別できるので、固定体に対する任意の位置に可動体を配置しても自動的に電力供給を行うこと可能となり、可動体の配置の自由度が向上する。例えば、光による判別を行う場合には、磁力を用いる必要がないため、磁力利用に制限がある領域においても電力供給システムを容易に導入することができる。 Further, according to the power supply system of the seventh aspect, since the first power transmission electrode and the second power transmission electrode can be distinguished based on the detection result of the energy detection means, the first power transmission electrode and the second power transmission Since the electrodes can be discriminated, it is possible to automatically supply power even if the movable body is arranged at an arbitrary position with respect to the fixed body, and the degree of freedom of arrangement of the movable body is improved. For example, when performing discrimination by light, it is not necessary to use a magnetic force, so that the power supply system can be easily introduced even in a region where the use of magnetic force is limited.
本発明の実施の形態1に係る電力供給システムを適用した居室の斜視図である。1 is a perspective view of a living room to which a power supply system according to Embodiment 1 of the present invention is applied. 図1の固定体及び可動体を簡略化して示す縦断面図である。It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body of FIG. 図2の固定体及び可動体を詳細に示した要部拡大図である。It is the principal part enlarged view which showed the fixed body and movable body of FIG. 2 in detail. 永久磁石利用型の判別機構を適用した判別切替部を備える可動体を固定体10と共に示す縦断面図である。2 is a longitudinal sectional view showing a movable body including a discrimination switching unit to which a permanent magnet utilization type discrimination mechanism is applied together with a fixed body 10. FIG. 図4の要部拡大図である。It is a principal part enlarged view of FIG. 切替スイッチの拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極に対向配置された状態を示す図である。It is an expanded sectional view of a change switch, (a) is the state arranged opposite to the 2nd power transmission electrode formed with a nonmagnetic material, (b) is the 1st power transmission electrode formed with a ferromagnetic material It is a figure which shows the state arrange | positioned facing. 切替えスイッチの拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極に対向配置された状態を示す図である。It is an expanded sectional view of a changeover switch, (a) is the state arranged opposite to the 2nd power transmission electrode formed with the nonmagnetic material, (b) is the 1st power transmission electrode formed with the ferromagnetic material It is a figure which shows the state arrange | positioned facing. 切替えスイッチの拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極に対向配置された状態を示す図である。It is an expanded sectional view of a changeover switch, (a) is the state arranged opposite to the 2nd power transmission electrode formed with the nonmagnetic material, (b) is the 1st power transmission electrode formed with the ferromagnetic material It is a figure which shows the state arrange | positioned facing. 切替えスイッチの拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極に対向配置された状態を示す図である。It is an expanded sectional view of a changeover switch, (a) is the state arranged opposite to the 2nd power transmission electrode formed with the nonmagnetic material, (b) is the 1st power transmission electrode formed with the ferromagnetic material It is a figure which shows the state arrange | positioned facing. 切替えスイッチの拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極に対向配置された状態を示す図である。It is an expanded sectional view of a changeover switch, (a) is the state arranged opposite to the 2nd power transmission electrode formed with the nonmagnetic material, (b) is the 1st power transmission electrode formed with the ferromagnetic material It is a figure which shows the state arrange | positioned facing. 切替えスイッチの拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極に対向配置された状態を示す図である。It is an expanded sectional view of a changeover switch, (a) is the state arranged opposite to the 2nd power transmission electrode formed with the nonmagnetic material, (b) is the 1st power transmission electrode formed with the ferromagnetic material It is a figure which shows the state arrange | positioned facing. 切替えスイッチの拡大断面図である。It is an expanded sectional view of a changeover switch. 磁気特性検知型の判別機構を適用した判別切替部を備える可動体を固定体と共に示す縦断面図である。It is a longitudinal cross-sectional view which shows a movable body provided with the discrimination | determination switching part to which the discrimination mechanism of a magnetic characteristic detection type is applied with a fixed body. 第1の送電電極と受電電極の近傍の拡大断面図である。It is an expanded sectional view near the 1st power transmission electrode and power receiving electrode. 磁気プローブの拡大断面図であり、(a)は励磁コイルとモニタコイルを用いた磁気プローブ、(b)は励磁コイルと磁気センサを用いた磁気プローブ、(c)は励磁コイルをコンデンサで並列共振させる磁気プローブを示す図である。It is an expanded sectional view of a magnetic probe, (a) is a magnetic probe using an excitation coil and a monitor coil, (b) is a magnetic probe using an excitation coil and a magnetic sensor, and (c) is a parallel resonance of the excitation coil with a capacitor. It is a figure which shows the magnetic probe made to do. 図15の磁気プローブの使い方を示す図であり、(a)は磁気プローブを受電電極に取り付けた状態の縦断面図、(b)は磁気プローブを非磁性体にて形成された第2の送電電極に対向配置した状態の縦断面図、(c)は磁気プローブを強磁性体にて形成された第1の送電電極に対向配置した状態の縦断面図である。It is a figure which shows the usage of the magnetic probe of FIG. 15, (a) is a longitudinal cross-sectional view of the state which attached the magnetic probe to the receiving electrode, (b) is the 2nd power transmission in which the magnetic probe was formed with the nonmagnetic material. FIG. 4C is a longitudinal sectional view showing a state in which the magnetic probe is arranged opposite to the electrode, and FIG. 5C is a longitudinal sectional view showing a state in which the magnetic probe is arranged opposite to the first power transmission electrode formed of a ferromagnetic material. 受電電極の平面図であり、(a)は受電電極を渦電流と共に示す図、(b)は受電電極を送電電流と共に示す図、(c)は受電電極を磁気プローブと共に示す図である。It is a top view of a receiving electrode, (a) is a figure which shows a receiving electrode with an eddy current, (b) is a figure which shows a receiving electrode with a power transmission current, (c) is a figure which shows a receiving electrode with a magnetic probe. エネルギー利用型の判別を適用した判別切替部を備える可動体を固定体と共に示す縦断面図である。It is a longitudinal cross-sectional view which shows a movable body provided with the discrimination | determination switching part to which discrimination | determination of an energy utilization type | mold is applied with a fixed body. エネルギー利用型の判別を適用した判別切替部を備える可動体を固定体と共に示す縦断面図である。It is a longitudinal cross-sectional view which shows a movable body provided with the discrimination | determination switching part to which discrimination | determination of an energy utilization type | mold is applied with a fixed body. 磁気増幅パネルを備えた磁気センサを示す図であり、(a)は磁気センサを第1の送電電極及び受電電極と共に示す側面図、(b)は磁気増幅パネル及び磁気センサの平面図、(c)は磁気増幅パネル及び磁気センサの縦断面図である。It is a figure which shows the magnetic sensor provided with the magnetic amplification panel, (a) is a side view which shows a magnetic sensor with a 1st power transmission electrode and a receiving electrode, (b) is a top view of a magnetic amplification panel and a magnetic sensor, (c) ) Is a longitudinal sectional view of a magnetic amplification panel and a magnetic sensor. エネルギー利用型の切替スイッチの他の例に係る拡大断面図である。It is an expanded sectional view concerning other examples of an energy utilization type changeover switch. 図1の床部周辺の斜視図である。FIG. 2 is a perspective view of the periphery of the floor portion in FIG. 1. 送電電極と受電電極との配置関係を示す平面図である。It is a top view which shows the arrangement | positioning relationship between a power transmission electrode and a power reception electrode. 変形例に係る固定体及び可動体の要部拡大図である。It is a principal part enlarged view of the fixed body and movable body which concern on a modification. 他の変形例に係る固定体及び可動体の要部拡大図である。It is a principal part enlarged view of the fixed body and movable body which concern on another modification. 本発明の実施の形態2に係る固定体及び可動体を簡略化して示す縦断面図である。It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body which concern on Embodiment 2 of this invention. 図26の固定体及び可動体を詳細に示した要部拡大図である。It is the principal part enlarged view which showed the fixed body and movable body of FIG. 26 in detail. 変形例に係る固定体及び可動体を簡略化して示す縦断面図である。It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body which concern on a modification. 図28の固定体及び可動体を詳細に示した要部拡大図である。It is the principal part enlarged view which showed the fixed body and movable body of FIG. 28 in detail. 可動体の位置決めのための構成を示す図であり、送電電極と受電電極の拡大縦断面図である。It is a figure which shows the structure for positioning of a movable body, and is an expanded longitudinal cross-sectional view of a power transmission electrode and a receiving electrode. 可動体の位置決めのための構成を示す図であり、送電電極と受電電極の拡大縦断面図である。It is a figure which shows the structure for positioning of a movable body, and is an expanded longitudinal cross-sectional view of a power transmission electrode and a receiving electrode. 従来の電力供給システムの要部縦断面図である。It is a principal part longitudinal cross-sectional view of the conventional electric power supply system.
 以下に添付図面を参照して、この発明の各実施の形態を詳細に説明する。まず、〔I〕各実施の形態に共通の基本的概念を説明した後、〔II〕各実施の形態の具体的内容について説明し、〔III〕最後に、各実施の形態に対する変形例について説明する。ただし、各実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, [I] the basic concept common to each embodiment was explained, then [II] the specific contents of each embodiment were explained, and [III] finally, a modification to each embodiment was explained. To do. However, the present invention is not limited to each embodiment.
〔I〕各実施の形態に共通の基本的概念
 まず、各実施の形態に共通の基本的概念について説明する。各実施の形態に係る電力供給システムは、電力供給領域に配置された固定体から、電力被供給領域に配置された可動体に対して、電力を供給するための電力供給システムである。電力供給領域や電力被供給領域の具体的構成は任意であり、例えば、一般住宅やオフィスビルの如き建屋の内部空間や、電車や飛行機の如き乗り物の内部空間、あるいは、屋外空間を含む。以下では、電力供給領域と電力被供給領域とを相互に区画する面を境界面と称する。例えば、電力被供給領域を建屋の居室とすると共に、電力供給領域を居室の床部とした場合、床部の上面(床面)が境界面になる。
[I] Basic concept common to the embodiments First, the basic concept common to the embodiments will be described. The power supply system according to each embodiment is a power supply system for supplying power from a fixed body arranged in a power supply area to a movable body arranged in a power supply area. The specific configuration of the power supply area and the power supply area is arbitrary, and includes, for example, an internal space of a building such as a general house or an office building, an internal space of a vehicle such as a train or an airplane, or an outdoor space. Hereinafter, a surface that partitions the power supply region and the power supplied region from each other is referred to as a boundary surface. For example, when the power supply area is a room of a building and the power supply area is a floor of the room, the upper surface (floor surface) of the floor is a boundary surface.
 固定体は、当該固定体の内部に電源を備えたものと、当該固定体の外部の電源から供給された電力を可動体に供給するものを含む。この固定体は、電力供給領域に配置されるものであるが、恒久的に移動不能に固定されるものに限定されず、不使用時には電力供給領域から取り外すことができたり、当該電力供給領域の内部の任意位置に移動可能なものを含む。特に、固定体の全体が常時固定的であるものに限定されず、例えば、固定体の一部の構成要素の位置を必要に応じて調整することで、当該構成要素と可動体との相対的な位置関係を変更可能なものを含む。 The fixed body includes one having a power source inside the fixed body and one that supplies power supplied from a power source outside the fixed body to the movable body. This fixed body is arranged in the power supply area, but is not limited to one that is permanently immovable and can be removed from the power supply area when not in use, Including those that can move to any position inside. In particular, the entire fixed body is not limited to a fixed one at all times. For example, by adjusting the positions of some components of the fixed body as necessary, the relative relationship between the component and the movable body is increased. Including those that can change the positional relationship.
 可動体は、電力被供給領域に固定的に配置して使用されるもの(静止体)と、電力被供給領域の内部において必要に応じて移動するもの(移動体)とを含む。この可動体の機能や具体的構成は特記する点を除いて任意であるが、例えば、静止体としては、コンピュータや家電の如き機器を挙げることができ、移動体としては、ロボットや電気自動車を挙げることができる。 The movable body includes a thing (stationary body) that is used by being fixedly arranged in the power supply area and a thing that moves as needed inside the power supply area (moving body). The function and specific configuration of the movable body are arbitrary except for special points. For example, the stationary body can include devices such as computers and household appliances, and the mobile body can be a robot or an electric vehicle. Can be mentioned.
 このように構成される電力供給システムでは、固定体から可動体に対して電力を非接触で供給する。この非接触電力供給は、概略的には、境界面を介して配置されたコンデンサを用いて行われる。すなわち、固定体に設けた送電電極と、可動体に設けた受電電極とを、境界面を挟んで相互に非接触状に対向配置することで、コンデンサ(結合キャパシタ)を構成する。このようなコンデンサを少なくとも2つ設けて送電路に配置し、この2つのコンデンサを介して電界型の送電を行う。この構成によれば、固定体の送電電極を電力被供給領域に露出させる必要がないため、電力供給システムの安全性や耐久性を高めることができる。また、送電電極を複数配置することで、可動体が移動した場合においても当該可動体に対して継続的に電力供給を行うことができ、可動体の移動の自由度を確保することができる。 In the power supply system configured in this way, power is supplied from the fixed body to the movable body in a non-contact manner. This non-contact power supply is generally performed using a capacitor disposed via a boundary surface. That is, a capacitor (coupling capacitor) is configured by disposing a power transmission electrode provided on a fixed body and a power reception electrode provided on a movable body so as to face each other in a non-contact manner with a boundary surface interposed therebetween. At least two such capacitors are provided and arranged in the power transmission path, and electric field type power transmission is performed through these two capacitors. According to this configuration, since it is not necessary to expose the power transmission electrode of the fixed body to the power supply region, it is possible to improve the safety and durability of the power supply system. In addition, by arranging a plurality of power transmission electrodes, even when the movable body moves, power can be continuously supplied to the movable body, and the degree of freedom of movement of the movable body can be ensured.
 また、この電力供給システムでは、直列共振を利用した電力供給を行う。すなわち、上述したように送電電極と受電電極によって構成されるコンデンサに対して、コイルを直列接続することで、直列共振条件が満たされる場合に直列共振を生じさせ、この共振効果によって高効率な電力供給を行うことが可能となる。 In addition, this power supply system supplies power using series resonance. That is, by connecting a coil in series to a capacitor composed of a power transmission electrode and a power reception electrode as described above, a series resonance is generated when a series resonance condition is satisfied, and a high-efficiency power is generated by this resonance effect. Supply can be performed.
 特に、各実施の形態に係る電力供給システムの特徴の一部は、可動体に、受電電極と送電電極との対向配置関係を判別し、これらの判別結果に基づいて、負荷に対する受電電極の接続の切替えを行う判別切替手段を設けた点にある。この構成により、従来のように複数のダイオードを用いて整流を行うことが不要となるため、コイルを可動側に設けることが可能となって直列共振条件を当該可動体側のみで調整できる等の利点を得ることができる。 In particular, part of the characteristics of the power supply system according to each embodiment is to determine the facing arrangement relationship between the power receiving electrode and the power transmitting electrode on the movable body, and based on the determination result, connect the power receiving electrode to the load. This is in that a discrimination switching means for performing switching is provided. This configuration eliminates the need for rectification using a plurality of diodes as in the prior art, so that the coil can be provided on the movable side and the series resonance condition can be adjusted only on the movable body side. Can be obtained.
〔II〕各実施の形態の具体的内容
 次に、各実施の形態の具体的内容について説明する。
[II] Specific Contents of Each Embodiment Next, specific contents of each embodiment will be described.
〔実施の形態1〕
 最初に、実施の形態1について説明する。この実施の形態1は、固定体側の電源供給用の切り替えスイッチを省略する一方、可動体側には電極の判別切替手段を設けた形態である。
[Embodiment 1]
First, the first embodiment will be described. In the first embodiment, a switch for power supply on the fixed body side is omitted, while an electrode discrimination switching means is provided on the movable body side.
(全体構成)
 図1は本実施の形態に係る電力供給システムを適用した居室の斜視図である。本実施の形態では、電力供給領域(ここでは床板の下方空間)1に配置された固定体10から、電力被供給領域(ここでは居室)2に配置された可動体(ここではロボット)20に対して電力を供給する例を示すもので、これら固定体10及び可動体20を備えて本形態の電力供給システムが構成されている。ここでは、電力供給領域1の上方に敷設された床板3が電力供給領域1と電力被供給領域2との相互間の境界面に相当し、この床板3を介して後述するコンデンサ5(図1には図示せず)が構成される。
(overall structure)
FIG. 1 is a perspective view of a living room to which the power supply system according to the present embodiment is applied. In the present embodiment, from a fixed body 10 disposed in a power supply area (here, a space below the floorboard) 1 to a movable body (here, a robot) 20 disposed in a power supply area (here, a living room) 2. An example in which electric power is supplied is shown, and the electric power supply system of this embodiment is configured by including the fixed body 10 and the movable body 20. Here, the floor board 3 laid above the power supply area 1 corresponds to a boundary surface between the power supply area 1 and the power supplied area 2, and a capacitor 5 (FIG. 1) to be described later via the floor board 3. (Not shown) is configured.
(全体構成-固定体)
 次に、固定体10の構成について説明する。図2は図1の固定体10及び可動体20を簡略化して示す縦断面図、図3は図2の固定体10及び可動体20を詳細に示した要部拡大図である。この固定体10は、交流電源11、第1の送電電極12、第2の送電電極13、通信部14、及び制御部(コントローラー)16を備えて構成されている。図3には固定体10を一つのみ示すが、実際には、図1に示すように、複数の固定体10が電力被供給領域2において床板3に沿って並設される。
(Overall structure-fixed body)
Next, the configuration of the fixed body 10 will be described. 2 is a longitudinal sectional view showing the fixed body 10 and the movable body 20 in a simplified manner in FIG. 1, and FIG. 3 is an enlarged view of a main part showing in detail the fixed body 10 and the movable body 20 in FIG. The fixed body 10 includes an AC power supply 11, a first power transmission electrode 12, a second power transmission electrode 13, a communication unit 14, and a control unit (controller) 16. Although only one fixed body 10 is shown in FIG. 3, actually, a plurality of fixed bodies 10 are juxtaposed along the floor plate 3 in the power supplied region 2 as shown in FIG. 1.
 図2、3において、交流電源11は、交流電力の供給源である。この交流電源11は各固定体10に設けてもよいが、1つの共通の交流電源11から複数の固定体10の各々に電力供給を行ってもよい。図2、3の例では、1つの交流電源11が、線路L1を介して第1の送電電極12に接続されていると共に、GND及び線路L2を介して第2の送電電極13に接続されており、これら線路L1、L2にはそれぞれ線路L3、L4が接続され、これら線路L3、L4を介して、共通の交流電源11からの電力が各固定体10に供給され、複数の第1の送電電極12と複数の第2の送電電極13に電力が供給される。なお、図2、3では、通信部14や制御部16に対して電力を供給するための構成を省略して示すが、交流電源11や、交流電源11とは別の図示しない電源から、任意の経路を経てこれら通信部14や制御部16に電源を供給することができる。 2 and 3, the AC power supply 11 is a supply source of AC power. The AC power supply 11 may be provided in each fixed body 10, but power may be supplied to each of the plurality of fixed bodies 10 from one common AC power supply 11. 2 and 3, one AC power supply 11 is connected to the first power transmission electrode 12 via the line L1, and is connected to the second power transmission electrode 13 via the GND and the line L2. The lines L1 and L2 are connected to the lines L3 and L4, respectively, and the electric power from the common AC power supply 11 is supplied to the fixed bodies 10 via the lines L3 and L4, so that the plurality of first power transmissions Electric power is supplied to the electrode 12 and the plurality of second power transmission electrodes 13. 2 and 3, the configuration for supplying power to the communication unit 14 and the control unit 16 is omitted. However, the AC power source 11 and a power source (not shown) that is different from the AC power source 11 may be arbitrarily selected. It is possible to supply power to the communication unit 14 and the control unit 16 through the path.
 第1の送電電極12及び第2の送電電極13は、それぞれ平板状の導電体であり、床板3の下方近傍位置において、当該床板3に対して略平行になるように配置されている。これら第1の送電電極12及び第2の送電電極13は、床板3に対して接触させてもよく、あるいは、床板3に対して微小距離を隔てて配置してもよい。いずれの場合においても、これら第1の送電電極12及び第2の送電電極13の電力被供給領域2側の面(ここでは図2、3における上側の面)は、床板3によって完全に覆われており、これら第1の送電電極12及び第2の送電電極13が電力被供給領域2に対して非露出状となっている。なお、以下では、これら第1の送電電極12と第2の送電電極13とを相互に区別する必要がない場合には、これらを単に「送電電極」12、13と総称する。 The first power transmission electrode 12 and the second power transmission electrode 13 are each a flat conductor, and are arranged so as to be substantially parallel to the floor plate 3 at a position near the lower side of the floor plate 3. The first power transmission electrode 12 and the second power transmission electrode 13 may be brought into contact with the floor board 3 or may be arranged at a minute distance from the floor board 3. In any case, the surface of the first power transmission electrode 12 and the second power transmission electrode 13 on the power supply region 2 side (here, the upper surface in FIGS. 2 and 3) is completely covered by the floor plate 3. The first power transmission electrode 12 and the second power transmission electrode 13 are not exposed to the power supplied region 2. Hereinafter, when it is not necessary to distinguish the first power transmission electrode 12 and the second power transmission electrode 13 from each other, these are simply collectively referred to as “power transmission electrodes” 12 and 13.
 図3において、通信部14は、可動体20に設けた後述する通信部25と通信を行う通信手段である。この通信部14の具体的構成は任意であるが、例えば、RF通信をMACプロトコルにて行うRF/MACを用いて構成される(後述する通信部25において同じ)。この通信部14は、可動体20から送電経路に重畳され、線路L1、L2を介して出力された通信信号を結合用のコンデンサ15を介して取得する。なお、線路L1、L2を介して出力された通信信号は、当該線路L1、L2に接続された通信信号遮断用のコイル18にて遮断される。この通信部14は、制御部16に対して線路L5を介して通信可能に接続されている。また、この通信部14は、線路L7を介してハブ(HUB)30に接続されており、このハブ30はさらにサーバ31に接続されている。 3, the communication unit 14 is a communication unit that communicates with a communication unit 25 (described later) provided in the movable body 20. Although the specific configuration of the communication unit 14 is arbitrary, for example, the communication unit 14 is configured using RF / MAC that performs RF communication using the MAC protocol (the same applies to the communication unit 25 described later). The communication unit 14 obtains a communication signal superimposed on the power transmission path from the movable body 20 and output via the lines L1 and L2 via the coupling capacitor 15. The communication signal output via the lines L1 and L2 is blocked by the communication signal blocking coil 18 connected to the lines L1 and L2. The communication unit 14 is communicably connected to the control unit 16 via a line L5. The communication unit 14 is connected to a hub (HUB) 30 via a line L7, and the hub 30 is further connected to a server 31.
 制御部16は、固定体10を制御する制御手段であり、例えばハブ30を介してサーバ31に接続されており、このサーバ31からの制御信号に応じて制御動作を行なう。ただし、制御部16に自立制御プログラムを組み込むことで自立制御を行うようにし、ハブ30やサーバ31を省略することもできる。また、制御部16の通信接続先はサーバ31以外とすることもでき、例えば他の固定体10の制御部16との間で通信を行うことで、電力供給領域1に配置された複数の固定体10を相互に連動制御することができる。さらに、この制御部16は、交流電源11に対して線路L8を介して接続されており、この交流電源11のONN/OFFや周波数制御を行うことによって、固定体10に対する電力供給を制御する。この制御部16の具体的構成は任意であるが、例えばCPU(Central Processing Unit)及びこのCPU上で解釈実行されるプログラムを含んで構成される。 The control unit 16 is a control unit that controls the fixed body 10 and is connected to the server 31 via, for example, the hub 30 and performs a control operation in accordance with a control signal from the server 31. However, it is possible to perform independent control by incorporating an independent control program into the control unit 16, and the hub 30 and the server 31 can be omitted. Further, the communication connection destination of the control unit 16 can be other than the server 31. For example, by performing communication with the control unit 16 of another fixed body 10, a plurality of fixed connections arranged in the power supply region 1 can be performed. The body 10 can be controlled in conjunction with each other. Further, the control unit 16 is connected to the AC power supply 11 via a line L8, and controls the power supply to the fixed body 10 by performing ONN / OFF and frequency control of the AC power supply 11. The specific configuration of the control unit 16 is arbitrary, but includes, for example, a CPU (Central Processing Unit) and a program that is interpreted and executed on the CPU.
(全体構成-可動体)
 次に、可動体20の構成について説明する。可動体20は、複数の受電電極21、コイル(インダクタ)22、判別切替部40、負荷24、及び通信部25を備えて構成されている。
(Overall structure-movable body)
Next, the configuration of the movable body 20 will be described. The movable body 20 includes a plurality of power receiving electrodes 21, a coil (inductor) 22, a determination switching unit 40, a load 24, and a communication unit 25.
 複数の受電電極21の各々は、固定体10から供給された電力を受電するものであり、それぞれ平板状の導電体として構成されている。これら複数の受電電極21は、可動体20の最下部において外部に露出するように並設されており、可動体20が固定体10に載置された状態においては、床板3の上面に直接的に接触する位置又は微小間隔を隔てた位置で、当該床板3に対して略平行に配置される。 Each of the plurality of power receiving electrodes 21 receives power supplied from the fixed body 10, and is configured as a flat conductor. The plurality of power receiving electrodes 21 are juxtaposed so as to be exposed to the outside at the lowermost part of the movable body 20, and when the movable body 20 is placed on the fixed body 10, it is directly on the upper surface of the floor plate 3. Is arranged substantially parallel to the floor plate 3 at a position in contact with or at a position spaced apart by a minute interval.
 この状態において複数の受電電極21は、床板3を挟んで第1の送電電極12又は第2の送電電極13のいずれかに対向配置され、これら第1の送電電極12又は第2の送電電極13と共にコンデンサ(結合コンデンサ)5を構成する。ここで、電力被供給領域2には送電電極12、13は露出していないため、これら送電電極12、13と受電電極21とは相互に非接触状態で配置されることになる。 In this state, the plurality of power receiving electrodes 21 are arranged to face either the first power transmitting electrode 12 or the second power transmitting electrode 13 with the floor plate 3 interposed therebetween, and the first power transmitting electrode 12 or the second power transmitting electrode 13 is disposed. In addition, a capacitor (coupling capacitor) 5 is formed. Here, since the power transmission electrodes 12 and 13 are not exposed in the power supplied region 2, the power transmission electrodes 12 and 13 and the power reception electrode 21 are arranged in a non-contact state.
 コイル(インダクタ)22は、コンデンサ5と直列に配置されるもので、このコンデンサ5と共に直列共振回路を構成して、直列共振による送電を可能とする。このコンデンサ5は、直列共振可能な限りにおいて任意の構成及び配置をとり得るものであり、例えば固定体10に配置してもよいが、ここでは可動体20に配置している。特に、このようにコイル22を可動体20に配置することで、共通の固定体10から様々な可動体20に対して電力供給を行う場合であっても、直列共振条件を各可動体20側で設定することが可能となり、各可動体20に対して直接共振条件を維持することが容易になる。なお、図3の例では、負荷24の両端子にコイル22を接続しているが、いずれか一方を省略してもよい。 The coil (inductor) 22 is arranged in series with the capacitor 5 and constitutes a series resonance circuit together with the capacitor 5 to enable power transmission by series resonance. The capacitor 5 can have any configuration and arrangement as long as series resonance is possible. For example, the capacitor 5 may be arranged on the fixed body 10, but is arranged on the movable body 20 here. In particular, by arranging the coil 22 on the movable body 20 in this way, even when power is supplied from the common fixed body 10 to various movable bodies 20, the series resonance condition is set to each movable body 20 side. Thus, it becomes easy to maintain the resonance condition directly for each movable body 20. In the example of FIG. 3, the coil 22 is connected to both terminals of the load 24, but either one may be omitted.
 判別切替部40は、複数の受電電極21の各々に対して対向配置される電極が第1の送電電極12と第2の送電電極13のいずれであるのかを判別し、この判別結果に基づいて、負荷24に対する複数の受電電極21の接続の切替えを行う判別切替手段である。この判別切替手段の具体的構成は任意であるが、例えば、判別切替部40は、負荷24の一方の端子(以下、第1端子)24aにコイル22を介して接続された線路L10から分岐された線路L11と、負荷24の他方の端子(以下、第2端子)24bにコイル22を介して接続された線路L12から分岐された線路L13と、各受電電極21に接続された線路L14と、この線路L14を線路L11又は線路L13のいずれか一方に選択的に接続する複数の切替スイッチ(具体的構成については後述する)を備えて構成されている。さらに、この判別切替部40は、複数の受電電極21の各々に対して対向配置される電極が第1の送電電極12と第2の送電電極13のいずれであるのかを判別するための判別機構を備える。この判別切替部40の具体的な構成については後述する。 The discrimination switching unit 40 discriminates which of the first power transmitting electrode 12 and the second power transmitting electrode 13 is an electrode disposed to face each of the plurality of power receiving electrodes 21, and based on the determination result. A discrimination switching means for switching the connection of the plurality of power receiving electrodes 21 to the load 24. Although the specific configuration of the determination switching unit is arbitrary, for example, the determination switching unit 40 is branched from a line L10 connected to one terminal (hereinafter referred to as a first terminal) 24a of the load 24 via the coil 22. Line L11, line L13 branched from line L12 connected to the other terminal (hereinafter referred to as second terminal) 24b of load 24 via coil 22, line L14 connected to each power receiving electrode 21, A plurality of change-over switches (specific configurations will be described later) for selectively connecting the line L14 to either the line L11 or the line L13 are provided. Further, the discrimination switching unit 40 discriminates a discrimination mechanism for discriminating which of the first power transmission electrode 12 and the second power transmission electrode 13 is an electrode disposed to face each of the plurality of power receiving electrodes 21. Is provided. A specific configuration of the determination switching unit 40 will be described later.
 負荷24は、判別切替部40を介して供給された交流電力にて駆動され、所定機能を発揮するものである。例えば、可動体20が図1に示す如きロボットとして構成された場合、負荷24としては、当該ロボットに内蔵されたモータや制御ユニットが該当する。この他、負荷24の具体的構成は任意であり、例えば、可動体20の外部の機器との相互間で通信信号の送受を無線又は有線にて行う通信機器、各種情報に関する情報処理を行なう情報処理機器、電力被供給領域2における所定の検知対象の検知を行なって当該検知結果に関する信号を所定機器に出力するセンサ、あるいは、可動体20の外部の機器に対する電力の送受を行う電源(例えば二次電池)として構成することができる。なお、負荷24は、必ずしも可動体20の内部に設ける必要はなく、可動体20の外部に負荷24を設けると共に、当該負荷24に対して可動体20を介して電力供給を行うようにしてもよい。また、図2、3においては負荷24を1つのみ示しているが、相互に直列又は並列に接続された複数の負荷24に対して電力供給を行ってもよい。 The load 24 is driven by AC power supplied via the discrimination switching unit 40 and exhibits a predetermined function. For example, when the movable body 20 is configured as a robot as shown in FIG. 1, the load 24 corresponds to a motor or a control unit built in the robot. In addition, the specific configuration of the load 24 is arbitrary, for example, a communication device that performs transmission and reception of communication signals with a device external to the movable body 20 wirelessly or by wire, and information that performs information processing related to various types of information A processing device, a sensor that detects a predetermined detection target in the power supply region 2 and outputs a signal related to the detection result to the predetermined device, or a power source that transmits and receives power to a device outside the movable body 20 (for example, two Secondary battery). The load 24 is not necessarily provided inside the movable body 20. The load 24 is provided outside the movable body 20, and power is supplied to the load 24 via the movable body 20. Good. 2 and 3 show only one load 24, power may be supplied to a plurality of loads 24 connected in series or in parallel to each other.
 通信部25は、固定体10の通信部14と通信を行う通信手段である。この通信部25は、通信信号を結合用のコンデンサ26を介して線路L10、L12に重畳出力する。なお、この電力供給システムにおいて、電力供給には1MHz前後の周波数を用いるが、通信部14、25を用いた通信には数GHz付近の周波数帯を使用することを想定している。コンデンサ5、15、26のキャパシタンスは、通信周波数に対しては、十分に大きく、伝送ロスにはならないと考えられる。 The communication unit 25 is a communication unit that communicates with the communication unit 14 of the fixed body 10. The communication unit 25 superimposes and outputs the communication signal to the lines L10 and L12 via the coupling capacitor 26. In this power supply system, a frequency of about 1 MHz is used for power supply, but it is assumed that a frequency band near several GHz is used for communication using the communication units 14 and 25. It is considered that the capacitances of the capacitors 5, 15, and 26 are sufficiently large for the communication frequency and do not cause a transmission loss.
(構成-床板)
 次に、図1、2に示す床板3について説明する。この床板3については、コンデンサ5を構成し得る誘電材料にて構成される。このような誘電材料としては、例えばテフロン(登録商標)を採用することができる。この誘電材料は、床板3に用いる場合以外にも、送電電極12、13における受電電極21側の面や、受電電極21における送電電極12、13側の面にコーティングすることもできる。また、このように床板3に使用する材料や、送電電極12、13や受電電極21のコーティングに使用する材料には、送電電極12、13と受電電極21の相互間の所要の絶縁性を保持するための絶縁性能を持たせることが好ましい。
(Configuration-floorboard)
Next, the floor board 3 shown in FIGS. The floor plate 3 is made of a dielectric material that can constitute the capacitor 5. As such a dielectric material, for example, Teflon (registered trademark) can be adopted. In addition to the case where the dielectric material is used for the floor plate 3, the surface of the power transmission electrodes 12, 13 on the power receiving electrode 21 side or the surface of the power receiving electrode 21 on the power transmission electrodes 12, 13 side can be coated. In addition, the material used for the floor plate 3 and the material used for coating the power transmission electrodes 12 and 13 and the power reception electrode 21 maintain the required insulation between the power transmission electrodes 12 and 13 and the power reception electrode 21. It is preferable to have an insulation performance for the purpose.
(構成-判別切替部の詳細)
 次に、判別切替部40の構成について詳細に説明する。この判別切替部40による第1の送電電極12と第2の送電電極13の判別機構としては種々のものが考えられるが、以下では、1)永久磁石利用型の判別機構を適用した判別切替部40、2)磁気特性検知型の判別機構を適用した判別切替部40、3)エネルギー利用型の判別機構を適用した判別切替部40について、順次説明する。
(Details of configuration-discrimination switching unit)
Next, the configuration of the discrimination switching unit 40 will be described in detail. Various types of discriminating mechanisms for the first power transmitting electrode 12 and the second power transmitting electrode 13 by the discriminating switching unit 40 can be considered. In the following, 1) a discriminating switching unit to which a permanent magnet utilizing type discriminating mechanism is applied. 40, 2) A discrimination switching unit 40 to which a magnetic characteristic detection type discrimination mechanism is applied, and 3) a discrimination switching unit 40 to which an energy utilization type discrimination mechanism is applied will be sequentially described.
 まず、永久磁石利用型の判別機構を適用した判別切替部40について説明する。図4は永久磁石利用型の判別機構を適用した判別切替部40を備える可動体20を固定体10と共に示す縦断面図、図5は図4の要部拡大図を示す。この構成では、第1の送電電極12又は第2の送電電極13の一方(図4、5では第1の送電電極12)を強磁性を有する導電体(例えば、鉄、コバルト、ニッケル等)にて形成し、他方(図4、5では第2の送電電極13)を非磁性を有する導電体(例えば、アルミニウム、オーステナイト系ステンレス等)にて形成する。そして、判別切替部40には、これら強磁性体と非磁性体の磁力の相違を利用して線路の切替えを行う複数の切替スイッチ41を設けている。この切替スイッチ41は、後述する各種の永久磁石を備えており、この永久磁石と、第1の送電電極12又は第2の送電電極13との相互間の磁力を用いて、これら第1の送電電極12と第2の送電電極13の判別を行う。 First, the discrimination switching unit 40 to which a permanent magnet using type discrimination mechanism is applied will be described. FIG. 4 is a longitudinal sectional view showing the movable body 20 including the discrimination switching unit 40 to which a permanent magnet utilization type discrimination mechanism is applied, together with the fixed body 10, and FIG. 5 is an enlarged view of a main part of FIG. In this configuration, one of the first power transmission electrode 12 or the second power transmission electrode 13 (the first power transmission electrode 12 in FIGS. 4 and 5) is made of a ferromagnetic conductor (eg, iron, cobalt, nickel, etc.). The other (second power transmission electrode 13 in FIGS. 4 and 5) is formed of a non-magnetic conductor (for example, aluminum, austenitic stainless steel, etc.). The discrimination switching unit 40 is provided with a plurality of changeover switches 41 that perform line switching by utilizing the difference in magnetic force between the ferromagnetic material and the nonmagnetic material. The changeover switch 41 includes various permanent magnets, which will be described later, and uses the magnetic force between the permanent magnet and the first power transmission electrode 12 or the second power transmission electrode 13 to transmit the first power transmission. Discrimination between the electrode 12 and the second power transmission electrode 13 is performed.
 図6は、この切替スイッチ41の拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極13に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極12に対向配置された状態を示す。この切替スイッチ41は、可動体20に固定された軸41aと、この軸41aに沿って移動自在支持された円環状の永久磁石41bと、この永久磁石41bに設けた可動接点41cと、この永久磁石41bを送電電極12、13から遠ざかる方向に付勢するバネ41dと、永久磁石41bが送電電極12、13に遠ざかる位置に移動した場合に可動接点41cに接続される固定接点41eと、永久磁石41bが送電電極12、13に近接する位置に移動した場合に可動接点41cに接続される固定接点41fとを備える。 6A and 6B are enlarged cross-sectional views of the changeover switch 41, where FIG. 6A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a non-magnetic material, and FIG. 6B is formed of a ferromagnetic material. The state arrange | positioned facing the made 1st power transmission electrode 12 is shown. The changeover switch 41 includes a shaft 41a fixed to the movable body 20, an annular permanent magnet 41b supported so as to be movable along the shaft 41a, a movable contact 41c provided on the permanent magnet 41b, and the permanent switch 41c. A spring 41d for urging the magnet 41b away from the power transmission electrodes 12, 13, a fixed contact 41e connected to the movable contact 41c when the permanent magnet 41b moves to a position away from the power transmission electrodes 12, 13, and a permanent magnet The stationary contact 41f is connected to the movable contact 41c when the 41b moves to a position close to the power transmission electrodes 12 and 13.
 そして、図6(a)に示すように、切替スイッチ41が非磁性体にて形成された第2の送電電極13に対向配置された場合には、永久磁石41bがバネ41dの付勢によって第2の送電電極13から遠ざかる位置に保持され、可動接点41cが固定接点41eに接続される。一方、図6(b)に示すように、切替スイッチ41が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石石41bがバネ41dの付勢力に抗して第1の送電電極12に近接し、可動接点41cが固定接点41fに接続される。従って、固定接点41e、41fのいずれか一方(図6では固定接点41e)に線路L11を接続しておき、固定接点41e、41fのいずれか他方(図6では固定接点41f)に線路L13を接続しておくことで、第1の送電電極12と第2の送電電極13の判別と、この判別結果に応じた切替えを行うことができる。なお、バネ41dとしては、コイルバネを用いると不要なインダクタンス成分を有するため、板バネを用いることが好ましい。また、切替スイッチ41を防塵カバー41gで覆うと共に、この防塵カバー41gの内部にアルゴン等の不活性ガスを充填することで可動接点41cや固定接点41e、41fの劣化を防止したり、可動接点41cや固定接点41e、41fをロジウムやルテニウム等の接点材料にてコーティングすることがより好ましい(後述する他の切替スイッチにおいても同様)。 As shown in FIG. 6A, when the changeover switch 41 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the permanent magnet 41b is moved by the bias of the spring 41d. The movable contact point 41c is connected to the fixed contact point 41e. On the other hand, as shown in FIG. 6B, when the changeover switch 41 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet stone 41b is applied to the urging force of the spring 41d. In contrast, the movable contact 41c is connected to the fixed contact 41f in the vicinity of the first power transmission electrode 12. Accordingly, the line L11 is connected to one of the fixed contacts 41e and 41f (the fixed contact 41e in FIG. 6), and the line L13 is connected to the other of the fixed contacts 41e and 41f (the fixed contact 41f in FIG. 6). By doing so, discrimination between the first power transmission electrode 12 and the second power transmission electrode 13 and switching according to the discrimination result can be performed. As the spring 41d, it is preferable to use a leaf spring because a coil spring has an unnecessary inductance component. The changeover switch 41 is covered with a dust-proof cover 41g, and the dust-proof cover 41g is filled with an inert gas such as argon to prevent the movable contact 41c and the fixed contacts 41e and 41f from being deteriorated, or the movable contact 41c. It is more preferable to coat the fixed contacts 41e and 41f with a contact material such as rhodium or ruthenium (the same applies to other change-over switches described later).
 次に、永久磁石利用型の切替スイッチの他の例について説明する。図7は切替えスイッチ42の拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極13に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極12に対向配置された状態を示す(ただし、図7及び後述する図8、図11、図12においては、送電電極12、13の図示を省略する)。この切替スイッチ42は、永久磁石42aと、永久磁石42aを送電電極12、13から遠ざかる方向に付勢するカンチレバー42bと、カンチレバー42bの可動側の端部に設けられた可動接点42cと、可動接点42cの上下に配置された一対の固定接点42d、42eを備える。 Next, another example of the changeover switch using a permanent magnet will be described. 7A and 7B are enlarged cross-sectional views of the changeover switch 42, where FIG. 7A is a state in which it is opposed to the second power transmission electrode 13 formed of a nonmagnetic material, and FIG. 7B is formed of a ferromagnetic material. A state in which the first power transmission electrode 12 is disposed opposite to the first power transmission electrode 12 is shown (however, illustration of the power transmission electrodes 12 and 13 is omitted in FIG. 7 and FIGS. 8, 11, and 12 described later). The changeover switch 42 includes a permanent magnet 42a, a cantilever 42b that urges the permanent magnet 42a away from the power transmission electrodes 12 and 13, a movable contact 42c provided at an end portion on the movable side of the cantilever 42b, and a movable contact A pair of fixed contacts 42d and 42e are provided above and below 42c.
 そして、図7(a)に示すように、切替スイッチ42が非磁性体にて形成された第2の送電電極13に対向配置された場合には、永久磁石42aがカンチレバー42bの付勢力によって第2の送電電極13から遠ざかる位置に保持され、可動接点42cが固定接点42dに接続される。一方、図7(b)に示すように、切替スイッチ42が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石42aが第1の送電電極12に近接することでカンチレバー42bが移動し、可動接点42cが固定接点42eに接続される。従って、固定接点42d、42eのいずれか一方(図7では固定接点42d)に線路L11を接続しておき、固定接点42d、42eのいずれか他方(図7では固定接点42e)に線路L13を接続しておくことで、第1の送電電極12と第2の送電電極13の判別と、この判別結果に応じた切替えを行うことができる。特に、この構造では、図6の構造に比べて、切替スイッチ42を一層薄厚に構成できる。 As shown in FIG. 7A, when the changeover switch 42 is disposed opposite to the second power transmission electrode 13 formed of a non-magnetic material, the permanent magnet 42a is activated by the urging force of the cantilever 42b. The movable contact 42c is connected to the fixed contact 42d. On the other hand, as shown in FIG. 7B, when the changeover switch 42 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 42 a is connected to the first power transmission electrode 12. By approaching, the cantilever 42b moves, and the movable contact 42c is connected to the fixed contact 42e. Accordingly, the line L11 is connected to one of the fixed contacts 42d and 42e (the fixed contact 42d in FIG. 7), and the line L13 is connected to the other of the fixed contacts 42d and 42e (the fixed contact 42e in FIG. 7). By doing so, discrimination between the first power transmission electrode 12 and the second power transmission electrode 13 and switching according to the discrimination result can be performed. In particular, in this structure, the changeover switch 42 can be made thinner than the structure of FIG.
 次に、永久磁石利用型の切替スイッチの他の例について説明する。図8は切替えスイッチ43の拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極13に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極12に対向配置された状態を示す。この切替スイッチ43は、図7に示した切替えスイッチ42と基本的に同様の構成を有するが(同様の構成については同一の符号を示す)、カンチレバー42bは永久磁石42aを送電電極12、13に近接する方向に付勢するものである点、このカンチレバー42bの固定端がベース43aに回動可能に固定されている点、及びカンチレバー42bを上方に付勢するバネ43bを設けている点において異なる。 Next, another example of the changeover switch using a permanent magnet will be described. 8A and 8B are enlarged cross-sectional views of the changeover switch 43, in which FIG. 8A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, and FIG. 8B is formed of a ferromagnetic material. A state in which the first power transmission electrode 12 is disposed to face is shown. The change-over switch 43 has basically the same configuration as the change-over switch 42 shown in FIG. 7 (the same reference numerals are used for the same configuration), but the cantilever 42b has a permanent magnet 42a connected to the power transmission electrodes 12 and 13. It differs in that it is biased in the approaching direction, the fixed end of the cantilever 42b is pivotally fixed to the base 43a, and a spring 43b that biases the cantilever 42b upward. .
 この構造では、図8(a)に示すように、切替スイッチ43が非磁性体にて形成された第2の送電電極13に対向配置された場合には、バネ43bの付勢力によってカンチレバー42bが第2の送電電極13から遠ざかる位置に保持され、可動接点42cが固定接点42dに接続される。一方、図8(b)に示すように、切替スイッチ43が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石42aが第1の送電電極12に近接することで、バネ43bの付勢力に抗してカンチレバー42bが移動し、可動接点42cが固定接点42eに接続される。従って、切替スイッチ42と同様に、切替えを行うことができる。特に、この構造では、図7の構造に比べて、永久磁石42aと送電電極12、13の相互間の距離を短くできるので、永久磁石42aとして比較的小さい磁石を利用できるようになると共に、永久磁石42aからの漏洩磁場を小さくすることができる。 In this structure, as shown in FIG. 8A, when the changeover switch 43 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the cantilever 42b is moved by the urging force of the spring 43b. The movable contact 42c is held at a position away from the second power transmission electrode 13, and the movable contact 42c is connected to the fixed contact 42d. On the other hand, as shown in FIG. 8B, when the changeover switch 43 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 42 a is connected to the first power transmission electrode 12. By approaching, the cantilever 42b moves against the urging force of the spring 43b, and the movable contact 42c is connected to the fixed contact 42e. Accordingly, switching can be performed in the same manner as the changeover switch 42. In particular, in this structure, since the distance between the permanent magnet 42a and the power transmission electrodes 12 and 13 can be shortened as compared with the structure of FIG. 7, a relatively small magnet can be used as the permanent magnet 42a. The leakage magnetic field from the magnet 42a can be reduced.
 次に、永久磁石利用型の切替スイッチの他の例について説明する。図9は切替えスイッチ44の拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極13に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極12に対向配置された状態を示す。この切替スイッチ44は、受電電極21に接するように配置された一対の永久磁石44aと、これら永久磁石44aの各々に接続されたヨーク(磁気回路)44bと、これらヨーク44bによって挟持された磁気センサ44cと、受電電極21に接続された線路L14を線路L11と線路L13のいずれかに対して切替えるもので、磁気センサ44cによって駆動されるスイッチ44dを備えて構成されている。ここで、一対の永久磁石44aは、受電電極21に接する面の極性が相互に逆になるように配置されている。 Next, another example of the changeover switch using a permanent magnet will be described. FIG. 9 is an enlarged cross-sectional view of the changeover switch 44. (a) is a state of being opposed to the second power transmission electrode 13 made of a nonmagnetic material, and (b) is made of a ferromagnetic material. A state in which the first power transmission electrode 12 is disposed to face is shown. The changeover switch 44 includes a pair of permanent magnets 44a disposed so as to be in contact with the power receiving electrode 21, a yoke (magnetic circuit) 44b connected to each of the permanent magnets 44a, and a magnetic sensor sandwiched between the yokes 44b. 44c and the line L14 connected to the power receiving electrode 21 are switched with respect to either the line L11 or the line L13, and includes a switch 44d driven by the magnetic sensor 44c. Here, the pair of permanent magnets 44 a are arranged so that the polarities of the surfaces in contact with the power receiving electrode 21 are opposite to each other.
 この構造では、図9(a)に示すように、切替スイッチ44が非磁性体にて形成された第2の送電電極13に対向配置された場合には、永久磁石44aの磁束が第2の送電電極13を流れないため、磁路が形成されず、磁気センサ44cには磁束が流れない。この場合、磁気センサ44cは、スイッチ44dを図9(a)に示す方向に駆動する。一方、図9(b)に示すように、切替スイッチ44が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石44aの磁束が第2の送電電極13を流れるため、磁路が形成され、磁気センサ44cに磁束が流れる。この場合、磁気センサ44cは、切替スイッチを図9(b)に示す方向に駆動する。なお、磁気センサ44cとしては、MR(Magneto Resistance 磁気抵抗)型素子、ホール素子、あるいはリードスイッチ等を使用でき、ヨークは、積層珪素鋼板、フェライト、積層ファインメット等によって形成できる(後述する他の磁気センサにおいて同じ)。この構造では、スイッチ44dを除いて機械的可動部分が存在せず、特に、スイッチ44dとしてMR型素子やホール素子を用いた場合には機械的可動部分を完全に排除でき、信頼性を高めることができる(図11に示す例においても同様)。 In this structure, as shown in FIG. 9A, when the changeover switch 44 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the magnetic flux of the permanent magnet 44a is the second. Since it does not flow through the power transmission electrode 13, a magnetic path is not formed, and no magnetic flux flows through the magnetic sensor 44c. In this case, the magnetic sensor 44c drives the switch 44d in the direction shown in FIG. On the other hand, as shown in FIG. 9B, when the changeover switch 44 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the magnetic flux of the permanent magnet 44a is changed to the second power transmission electrode. 13, the magnetic path is formed, and the magnetic flux flows through the magnetic sensor 44c. In this case, the magnetic sensor 44c drives the changeover switch in the direction shown in FIG. As the magnetic sensor 44c, an MR (Magneto Resistance magnetoresistive) type element, a Hall element, a reed switch, or the like can be used, and the yoke can be formed of a laminated silicon steel plate, ferrite, laminated fine mete, etc. Same for magnetic sensors). In this structure, there is no mechanically movable part except for the switch 44d. In particular, when an MR type element or a Hall element is used as the switch 44d, the mechanically movable part can be completely eliminated, thereby improving the reliability. (The same applies to the example shown in FIG. 11).
 次に、永久磁石利用型の切替スイッチの他の例について説明する。図10は切替えスイッチ45の拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極13に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極12に対向配置された状態を示す。この切替スイッチ45は、受電電極21に接するように配置された永久磁石45aと、受電電極21に接続された線路L14を線路L11と線路L13のいずれかに対して切替えるもので、永久磁石45aの近傍位置に固定されたリードスイッチ45bと、これら永久磁石45aとリードスイッチ45bの相互間に配置されたヨーク45cを備えて構成されている。 Next, another example of the changeover switch using a permanent magnet will be described. 10A and 10B are enlarged cross-sectional views of the changeover switch 45. FIG. 10A is a state in which it is disposed opposite to the second power transmission electrode 13 formed of a non-magnetic material, and FIG. 10B is formed of a ferromagnetic material. A state in which the first power transmission electrode 12 is disposed to face is shown. The change-over switch 45 switches the permanent magnet 45a disposed so as to be in contact with the power receiving electrode 21 and the line L14 connected to the power receiving electrode 21 with respect to either the line L11 or the line L13. The reed switch 45b is fixed in the vicinity, and the yoke 45c is disposed between the permanent magnet 45a and the reed switch 45b.
 この構造では、図10(a)に示すように、切替スイッチ45が非磁性体にて形成された第2の送電電極13に対向配置された場合には、永久磁石45aの磁束が第2の送電電極13を流れないため、永久磁石45aからの磁束がヨーク45cを介してリードスイッチ45bに集まり、リードスイッチ45bの可動接点が磁化されてヨーク45cに引き寄せられて、図10(a)に示す方向に駆動される。一方、図10(b)に示すように、切替スイッチ45が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石45aの磁気が第1の送電電極12を流れるため、永久磁石45aからリードスイッチ45bに至る磁束が減少し、リードスイッチ45bの可動接点の磁化が解消されて自己の弾性により図10(b)に示す方向に駆動される。この構造では、リードスイッチ45bを除いて機械的可動部分が存在しないため、信頼性を高めることができる。 In this structure, as shown in FIG. 10A, when the changeover switch 45 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the magnetic flux of the permanent magnet 45a is the second. Since the power transmission electrode 13 does not flow, the magnetic flux from the permanent magnet 45a gathers in the reed switch 45b via the yoke 45c, and the movable contact of the reed switch 45b is magnetized and attracted to the yoke 45c, as shown in FIG. Driven in the direction. On the other hand, as shown in FIG. 10B, when the changeover switch 45 is disposed to face the first power transmission electrode 12 formed of a ferromagnetic material, the magnetism of the permanent magnet 45a is the first power transmission electrode. 12, the magnetic flux from the permanent magnet 45a to the reed switch 45b is reduced, the magnetization of the movable contact of the reed switch 45b is eliminated, and it is driven in the direction shown in FIG. In this structure, since there is no mechanical movable part except for the reed switch 45b, reliability can be improved.
 次に、永久磁石利用型の切替スイッチの他の例について説明する。図11は切替えスイッチ46の拡大断面図であり、(a)は非磁性体にて形成された第2の送電電極13に対向配置された状態、(b)は強磁性体にて形成された第1の送電電極12に対向配置された状態を示す。この切替スイッチ46は、永久磁石46aと、永久磁石46aを支持するバネ46bと、磁気センサ46cと、受電電極21に接続された線路L14を線路L11と線路L13のいずれかに対して切替えるもので、磁気センサ46cによって駆動されるスイッチ46dを備えて構成されている。 Next, another example of the changeover switch using a permanent magnet will be described. FIG. 11 is an enlarged cross-sectional view of the changeover switch 46, in which (a) is arranged opposite to the second power transmission electrode 13 formed of a nonmagnetic material, and (b) is formed of a ferromagnetic material. A state in which the first power transmission electrode 12 is disposed to face is shown. The changeover switch 46 switches the line L14 connected to the permanent magnet 46a, the spring 46b that supports the permanent magnet 46a, the magnetic sensor 46c, and the power receiving electrode 21 to either the line L11 or the line L13. The switch 46d is driven by a magnetic sensor 46c.
 この構造では、図11(a)に示すように、切替スイッチ46が非磁性体にて形成された第2の送電電極13に対向配置された場合には、永久磁石46aがバネ46bによって磁気センサ46cに近接する位置に保持されるので、永久磁石46aの磁束が磁気センサ46cによって検知され、磁気センサ46cは、スイッチ46dを図11(a)に示す方向に駆動する。一方、図11(b)に示すように、切替スイッチ46が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石46aがバネ46bの付勢力に抗して第1の送電電極12に引き寄せられるので、永久磁石46aの磁束が磁気センサ46cによって検知されなくなり、磁気センサ46cは、スイッチ46dを図11(b)に示す方向に駆動する。この構造では、永久磁石46aを移動させることで磁束密度の変化を大きくすることができ、磁気センサ46cによる検知を確実に行うことができる。 In this structure, as shown in FIG. 11A, when the changeover switch 46 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the permanent magnet 46a is magnetically detected by a spring 46b. Since the magnetic flux of the permanent magnet 46a is detected by the magnetic sensor 46c, the magnetic sensor 46c drives the switch 46d in the direction shown in FIG. On the other hand, as shown in FIG. 11B, when the changeover switch 46 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 46a resists the urging force of the spring 46b. As a result, the magnetic flux of the permanent magnet 46a is no longer detected by the magnetic sensor 46c, and the magnetic sensor 46c drives the switch 46d in the direction shown in FIG. 11B. In this structure, the change of the magnetic flux density can be increased by moving the permanent magnet 46a, and the detection by the magnetic sensor 46c can be reliably performed.
 次に、永久磁石利用型の切替スイッチの他の例について説明する。図12は切替えスイッチ47の拡大断面図である。この切替スイッチ47は、アルミニウム等の非磁性体で形成されたものであって受電電極21に接するように配置された外筐体47aの内部に、内筐体47bを可動自在に収容して構成されている。外筐体47aの内部上面と内筐体47bの外部底面との間にはバネ47cが設けられており、このバネ47cによって内筐体47bが受電電極21から遠ざかる方向に付勢されている。内筐体47bには、可動自在に収容された永久磁石47dと、外筐体47aに対して図示しない開口を介して固定された固定部47eと、この固定部47eを介して外筐体47aに対して固定されたマイクロスイッチ47fが収容されている。このマイクロスイッチ47fは、内筐体47bとの間に接点47gを有し、この接点のオン/オフ状態に応じて、スイッチ47hを切替える。 Next, another example of the changeover switch using a permanent magnet will be described. FIG. 12 is an enlarged cross-sectional view of the changeover switch 47. The change-over switch 47 is formed of a non-magnetic material such as aluminum, and is configured such that an inner casing 47b is movably accommodated in an outer casing 47a disposed so as to be in contact with the power receiving electrode 21. Has been. A spring 47c is provided between the inner upper surface of the outer casing 47a and the outer bottom surface of the inner casing 47b, and the inner casing 47b is urged away from the power receiving electrode 21 by the spring 47c. The inner casing 47b includes a permanent magnet 47d that is movably accommodated, a fixing portion 47e that is fixed to the outer casing 47a via an opening (not shown), and the outer casing 47a that is connected to the inner casing 47b via the fixing portion 47e. The micro switch 47f fixed to the housing is accommodated. The micro switch 47f has a contact 47g between the micro switch 47f and the inner casing 47b, and switches the switch 47h according to the ON / OFF state of the contact.
 この構造では、切替スイッチ47が非磁性体にて形成された第2の送電電極13に対向配置された場合には、永久磁石47dが第2の送電電極13に引き寄せられることがないため、内筐体47bがバネ47cによって受電電極21から遠ざかる方向に付勢され、マイクロスイッチ47fの接点47gが内筐体47bに押し付けられることなくオフとなる。一方、切替スイッチ47が強磁性体にて形成された第1の送電電極12に対向配置された場合には、永久磁石47dが第1の送電電極12に引き寄せられることで、内筐体47bがバネ47cの付勢力に抗して受電電極21に引き寄せられるので、マイクロスイッチ47fの接点47gが内筐体47bに押し付けられてオンとなる。このようなマイクロスイッチ47fのオン/オフ状態に応じてスイッチ47hを駆動することで、線路L14を線路L11と線路L13のいずれか一方に選択的に接続することができる。 In this structure, when the changeover switch 47 is disposed opposite to the second power transmission electrode 13 formed of a nonmagnetic material, the permanent magnet 47d is not attracted to the second power transmission electrode 13, The casing 47b is urged away from the power receiving electrode 21 by the spring 47c, and the contact 47g of the micro switch 47f is turned off without being pressed against the inner casing 47b. On the other hand, when the changeover switch 47 is disposed opposite to the first power transmission electrode 12 formed of a ferromagnetic material, the permanent magnet 47d is attracted to the first power transmission electrode 12, so that the inner casing 47b is Since it is attracted to the power receiving electrode 21 against the biasing force of the spring 47c, the contact 47g of the micro switch 47f is pressed against the inner casing 47b to be turned on. By driving the switch 47h according to the on / off state of the micro switch 47f, the line L14 can be selectively connected to either the line L11 or the line L13.
 次に、磁気特性検知型の判別機構を適用した判別切替部40について説明する。図13は磁気特性検知型の判別機構を適用した判別切替部40を備える可動体20を固定体10と共に示す縦断面図である。この構成では、第1の送電電極12又は第2の送電電極13のいずれか一方の磁気特性と、第1の送電電極12又は第2の送電電極13のいずれか他方の磁気特性とを、相互に異なるものとする。そして、判別切替部40は、磁気特性の相違を検知する磁気特性検知手段としての後述する各種の探索プローブを備え、この探索プローブの検知結果に基づいて、第1の送電電極12と第2の送電電極13との判別を行う。 Next, the discrimination switching unit 40 to which the magnetic characteristic detection type discrimination mechanism is applied will be described. FIG. 13 is a longitudinal sectional view showing the movable body 20 including the determination switching unit 40 to which the magnetic characteristic detection type determination mechanism is applied together with the fixed body 10. In this configuration, the magnetic characteristics of either the first power transmission electrode 12 or the second power transmission electrode 13 and the magnetic characteristics of the other of the first power transmission electrode 12 or the second power transmission electrode 13 are mutually interchanged. Shall be different. And the discrimination | determination switch part 40 is provided with the various search probes mentioned later as a magnetic characteristic detection means which detects the difference in a magnetic characteristic, Based on the detection result of this search probe, it is the 1st power transmission electrode 12 and 2nd. Discrimination from the power transmission electrode 13 is performed.
 このような磁気特性検知型の判別機構を適用した判別切替部40の具体的構成例について説明する。図14は第1の送電電極12と受電電極21の近傍の拡大断面図である。この例では、第1の送電電極12の上面の床板3をゴム磁石3Aとして形成している。一方、受電電極21を非磁性体で形成し、この受電電極21には探索プローブ50を設けている。この探索プローブ50は、磁気センサ50a、50bを備えている。そして、ゴム磁石3Aからの磁束を磁気センサ50a、50bで検知することで、第1の送電電極12を探索し、この探索結果に基づいてスイッチを介して線路L14を線路L11と線路L13のいずれか一方に選択的に切替える(スイッチ及び各線路L11、L13、L14は例えば図9と同様に構成できるので図示を省略する)。なお、複数の磁気センサ50a、50bを設けているのは、ゴム磁石3Aによる磁束は一方向の磁場しか作らないためであり、複数の磁気センサ50a、50bをセンサ感度を有する方位が異なるように配置している。 A specific configuration example of the discrimination switching unit 40 to which such a magnetic characteristic detection type discrimination mechanism is applied will be described. FIG. 14 is an enlarged cross-sectional view of the vicinity of the first power transmission electrode 12 and the power reception electrode 21. In this example, the floor plate 3 on the upper surface of the first power transmission electrode 12 is formed as a rubber magnet 3A. On the other hand, the power receiving electrode 21 is formed of a nonmagnetic material, and the power receiving electrode 21 is provided with a search probe 50. The search probe 50 includes magnetic sensors 50a and 50b. Then, the magnetic sensor 50a, 50b detects the magnetic flux from the rubber magnet 3A to search for the first power transmission electrode 12, and based on the search result, the line L14 is switched between the line L11 and the line L13 via the switch. One of them is selectively switched (the switches and the lines L11, L13, L14 can be configured in the same manner as in FIG. 9, for example, and are not shown). The plurality of magnetic sensors 50a and 50b are provided because the magnetic flux generated by the rubber magnet 3A creates only one direction of magnetic field, and the plurality of magnetic sensors 50a and 50b have different sensor azimuths. It is arranged.
 磁気特性検知型の探索プローブの他の例について説明する。図15は磁気プローブの拡大断面図であり、(a)は励磁コイル51aとモニタコイル51bを用いた磁気プローブ51、(b)は励磁コイル52aと磁気センサ52bを用いた磁気プローブ52、(c)は励磁コイル53aをコンデンサ53bで並列共振させる磁気プローブ53を示す。図15(a)の例では、交流電源で励起した励磁コイル51aで磁界を発生させ、この磁界が第1の送電電極12と第2の送電電極13から受ける影響の差を、モニタコイル51bで検知する。図15(b)の例では、交流電源で励起した励磁コイル52aで磁界を発生させ、この磁界が第1の送電電極12と第2の送電電極13から受ける影響の差を、磁気センサ52bで検知する。図15(c)の例では、交流電源で励起した励磁コイル53aで磁界を発生させる際に、励磁コイル53aに並列接続されたコンデンサ53bの容量を変化させて、第1の送電電極12又は第2の送電電極13に応じた並列共振条件を満たすようにし、この並列共振条件を満たす場合の共振周波数に基づいて、第1の送電電極12と第2の送電電極13を判別する。 Another example of a magnetic property detection type search probe will be described. 15A and 15B are enlarged sectional views of the magnetic probe, wherein FIG. 15A is a magnetic probe 51 using an excitation coil 51a and a monitor coil 51b, FIG. 15B is a magnetic probe 52 using an excitation coil 52a and a magnetic sensor 52b, and FIG. ) Shows a magnetic probe 53 that resonates the exciting coil 53a in parallel with a capacitor 53b. In the example of FIG. 15A, a magnetic field is generated by the exciting coil 51a excited by the AC power supply, and the difference in the influence that this magnetic field receives from the first power transmitting electrode 12 and the second power transmitting electrode 13 is detected by the monitor coil 51b. Detect. In the example of FIG. 15B, a magnetic field is generated by the exciting coil 52a excited by an AC power source, and the difference in the influence that this magnetic field receives from the first power transmission electrode 12 and the second power transmission electrode 13 is determined by the magnetic sensor 52b. Detect. In the example of FIG. 15C, when the magnetic field is generated by the excitation coil 53a excited by the AC power supply, the capacitance of the capacitor 53b connected in parallel to the excitation coil 53a is changed to change the first power transmission electrode 12 or the first power transmission electrode 12. The first power transmission electrode 12 and the second power transmission electrode 13 are discriminated based on the resonance frequency when the parallel resonance condition is satisfied in accordance with the two power transmission electrodes 13.
 これら図15に示した磁気プローブ51~53の使い方を図16に示す。図16において、(a)は磁気プローブ51~53を受電電極21に取り付けた状態の縦断面図、(b)は磁気プローブ51~53を非磁性体にて形成された第2の送電電極13に対向配置した状態の縦断面図、(c)は磁気プローブ51~53を強磁性体にて形成された第1の送電電極12に対向配置した状態の縦断面図である。図16(a)に示すように、磁気プローブ51~53を取り付けた受電電極21を空間中で励磁させた場合、磁気プローブ51~53による磁束のほぼ100%が当該磁気プローブ51~53を差交し、インダクタンスは大きな値となる。図16(b)に示すように、磁気プローブ51~53を取り付けた受電電極21を、アルミニウム等の非磁性体にて形成した第2の送電電極13に対向配置した場合、磁気プローブ51~53による磁束が非磁性体を貫通することで、渦電流と反対方向の磁束が発生し、磁気プローブ51~53による磁束が磁気的に打ち消される.このため、インダクタンスは小さく見える。図16(c)に示すように、磁気プローブ51~53を取り付けた受電電極21を、鉄等の強磁性体にて形成した第1の送電電極12に対向配置した場合、磁気プローブ51~53による磁束の一部は第1の送電電極12を透過するが、その多くは第1の送電電極12を流れる磁路を通過するため、反対方向の磁界が発生せず、インダクタンスは大きな値となる。従って、これら第1の送電電極12と第2の送電電極13の違いを、モニタコイル51b、磁気センサ52b、あるいはコンデンサ53bの容量変化により検知することで、上述した他の例と同様にスイッチを切り替えることが可能となる。なお、このように第1の送電電極12に磁気プローブ51~53を配置する場合、床板3としては透磁材料を用いる。 FIG. 16 shows how to use the magnetic probes 51 to 53 shown in FIG. In FIG. 16, (a) is a longitudinal sectional view of the magnetic probes 51 to 53 attached to the power receiving electrode 21, and (b) is the second power transmission electrode 13 in which the magnetic probes 51 to 53 are formed of a nonmagnetic material. FIG. 5C is a longitudinal sectional view of the magnetic probes 51 to 53 arranged in opposition to the first power transmission electrode 12 formed of a ferromagnetic material. As shown in FIG. 16A, when the power receiving electrode 21 to which the magnetic probes 51 to 53 are attached is excited in the space, almost 100% of the magnetic flux generated by the magnetic probes 51 to 53 is different from the magnetic probes 51 to 53. On the other hand, the inductance becomes a large value. As shown in FIG. 16B, when the power receiving electrode 21 to which the magnetic probes 51 to 53 are attached is opposed to the second power transmitting electrode 13 formed of a nonmagnetic material such as aluminum, the magnetic probes 51 to 53 are arranged. As a result of the magnetic flux penetrating through the non-magnetic material, a magnetic flux in the direction opposite to the eddy current is generated, and the magnetic flux from the magnetic probes 51 to 53 is magnetically canceled. For this reason, the inductance looks small. As shown in FIG. 16C, when the power receiving electrode 21 to which the magnetic probes 51 to 53 are attached is disposed opposite to the first power transmitting electrode 12 formed of a ferromagnetic material such as iron, the magnetic probes 51 to 53 are arranged. A part of the magnetic flux due to the light passes through the first power transmission electrode 12, but most of the magnetic flux passes through the magnetic path flowing through the first power transmission electrode 12, so that a magnetic field in the opposite direction is not generated and the inductance has a large value. . Accordingly, the difference between the first power transmission electrode 12 and the second power transmission electrode 13 is detected by the capacitance change of the monitor coil 51b, the magnetic sensor 52b, or the capacitor 53b. It is possible to switch. When the magnetic probes 51 to 53 are arranged on the first power transmission electrode 12 as described above, a magnetically permeable material is used for the floor plate 3.
 次に、これら磁気プローブ51~53が配置された受電電極21の構造についてさらに詳細に説明する。図17は、受電電極21の平面図であり、(a)は受電電極21を渦電流と共に示す図、(b)は受電電極21を送電電流と共に示す図、(c)は受電電極21を磁気プローブ51~53と共に示す図である。図17(a)に示すように、受電電極21は全体として円板状に形成されており、その中心から放射方向(径方向)に沿って複数のスリット21aが形成されている。従って、受電電極21を磁気プローブ51~53に近接させた場合であっても、渦電流はスリット21aで阻害されて流れない(図17(a)には説明の便宜上として渦電流を示しているが、実際にはこの渦電流は流れない)。一方、図17(b)に示すように、送電電極12、13から送電された電流は、放射方向に沿って円滑に流れる。なお、図17(c)に示すように、例えば、磁気プローブ51~53を全体として円環状に形成し、受電電極21と同心状に配置することができる。 Next, the structure of the power receiving electrode 21 in which the magnetic probes 51 to 53 are arranged will be described in more detail. FIG. 17 is a plan view of the power receiving electrode 21, (a) is a diagram showing the power receiving electrode 21 together with eddy currents, (b) is a diagram showing the power receiving electrode 21 together with power transmission current, and (c) is a diagram showing the magnetism of the power receiving electrode 21. It is a figure shown with the probes 51-53. As shown to Fig.17 (a), the receiving electrode 21 is formed in disk shape as a whole, and the some slit 21a is formed along the radial direction (radial direction) from the center. Therefore, even when the power receiving electrode 21 is brought close to the magnetic probes 51 to 53, the eddy current is obstructed by the slit 21a and does not flow (FIG. 17A shows the eddy current for convenience of explanation). However, this eddy current does not actually flow). On the other hand, as shown in FIG. 17B, the current transmitted from the power transmission electrodes 12 and 13 smoothly flows along the radial direction. As shown in FIG. 17C, for example, the magnetic probes 51 to 53 can be formed in an annular shape as a whole and arranged concentrically with the power receiving electrode 21.
 次に、エネルギー利用型の判別機構を適用した判別切替部40の具体的構成例について説明する。図18は、エネルギー利用型の判別を適用した判別切替部40を備える可動体20を固定体10と共に示す縦断面図である。この構成では、第1の送電電極12又は第2の送電電極13の一方(図18では第1の送電電極12)に近接する位置に、電波、磁場、音波、振動、光等のエネルギーを発するエネルギー出力手段としてのアクチュエータ60を設け、受電電極21には、判別切替部40の一部として、このエネルギーを検知するエネルギー検知手段としてのエネルギーセンサ61を設け、このエネルギーセンサ61の検知結果に基づいて、第1の送電電極12と第2の送電電極13との判別を行う。 Next, a specific configuration example of the discrimination switching unit 40 to which the energy utilization type discrimination mechanism is applied will be described. FIG. 18 is a longitudinal sectional view showing the movable body 20 including the determination switching unit 40 to which the energy utilization type determination is applied, together with the fixed body 10. In this configuration, energy such as radio waves, magnetic fields, sound waves, vibrations, and light is emitted at a position close to one of the first power transmission electrode 12 or the second power transmission electrode 13 (first power transmission electrode 12 in FIG. 18). An actuator 60 as energy output means is provided, and the power receiving electrode 21 is provided with an energy sensor 61 as energy detection means for detecting this energy as part of the discrimination switching unit 40, and based on the detection result of the energy sensor 61. Thus, the first power transmission electrode 12 and the second power transmission electrode 13 are discriminated.
 このような構造の具体例について説明する。図19は、エネルギー利用型の判別を適用した判別切替部40を備える可動体20を固定体10と共に示す縦断面図である。この図19の例では、第1の送電電極12にアクチュエータ60としてのコイル62を巻き付けており、当該第1の送電電極12に平行な磁場をコイル62によって誘起し、この磁場を、受電電極21に設けたエネルギーセンサ61としての磁気センサ63にて検知し、この検知結果に基づいてスイッチを介して線路L14を線路L11と線路L13のいずれか一方に選択的に切替える(スイッチ及び線路L11、L13、L14は例えば図9と同様に構成できるので図示を省略する)。なお、この場合には、第1の送電電極12を鉄にて形成することで、この第1の送電電極12を磁心として機能させることができる。 A specific example of such a structure will be described. FIG. 19 is a longitudinal sectional view showing the movable body 20 including the determination switching unit 40 to which the energy utilization type determination is applied together with the fixed body 10. In the example of FIG. 19, a coil 62 as an actuator 60 is wound around the first power transmission electrode 12, and a magnetic field parallel to the first power transmission electrode 12 is induced by the coil 62. The line L14 is selectively switched to either the line L11 or the line L13 via a switch based on the detection result (the switch and the lines L11, L13). L14 can be configured in the same manner as in FIG. In this case, the first power transmission electrode 12 can be made to function as a magnetic core by forming the first power transmission electrode 12 from iron.
 また、図19の構造に加えて、磁気を増幅するための磁気増幅パネルを設けてもよい。図20は、磁気増幅パネル64を備えた磁気センサ63を示す図であり、(a)は磁気センサ63を第1の送電電極12及び受電電極21と共に示す側面図、(b)は磁気増幅パネル64及び磁気センサ63の平面図、(c)は磁気増幅パネル64及び磁気センサ63の縦断面図である。この例では、強磁性材料で形成した磁気増幅パネル64の内部に磁気センサ63を配置しており、磁気増幅パネル64にて増幅した磁気を磁気センサ63で検知することで、検知感度を向上させることが可能となる。なお、一般に、磁気センサ63は一方向しか感度を有しないため、図20(c)に示すように、一対の磁気センサ63A、63Bを各々の感度方向が相互に直交するように重合させることが好ましい。あるいは、図示は省略するが、第1の送電電極12に対して、一対のコイル62を各々の磁気方向が相互に直交するように設けることが好ましい。 In addition to the structure of FIG. 19, a magnetic amplification panel for amplifying magnetism may be provided. 20A and 20B are diagrams showing a magnetic sensor 63 provided with a magnetic amplification panel 64. FIG. 20A is a side view showing the magnetic sensor 63 together with the first power transmission electrode 12 and the power reception electrode 21, and FIG. 20B is a magnetic amplification panel. 64 and (c) are longitudinal sectional views of the magnetic amplification panel 64 and the magnetic sensor 63. FIG. In this example, a magnetic sensor 63 is arranged inside a magnetic amplification panel 64 formed of a ferromagnetic material, and the magnetic sensitivity amplified by the magnetic amplification panel 64 is detected by the magnetic sensor 63, thereby improving detection sensitivity. It becomes possible. In general, since the magnetic sensor 63 has sensitivity in only one direction, as shown in FIG. 20C, the pair of magnetic sensors 63A and 63B may be superposed so that the respective sensitivity directions are orthogonal to each other. preferable. Or although illustration is abbreviate | omitted, it is preferable to provide a pair of coils 62 with respect to the 1st power transmission electrode 12 so that each magnetic direction may mutually orthogonally cross.
 図21は、エネルギー利用型の切替スイッチの他の例に係る拡大断面図である。この図21の例では、第1の送電電極12の近傍(受電電極21とは反対側)に発光素子65を設け、この発光素子65にて発せられた光を、受電電極21に設けた受光素子66にて検知している。この場合、第1の送電電極12及び受電電極21には、光の透過が可能なように図示しない開口部が形成されていると共に(例えば、第1の送電電極12及び受電電極21がメッシュ状に形成されている)、床板3にも透光性を持たせている。 FIG. 21 is an enlarged cross-sectional view according to another example of the energy utilization type changeover switch. In the example of FIG. 21, a light emitting element 65 is provided in the vicinity of the first power transmission electrode 12 (on the side opposite to the power receiving electrode 21), and light emitted from the light emitting element 65 is received by the light receiving electrode 21. This is detected by the element 66. In this case, the first power transmitting electrode 12 and the power receiving electrode 21 have openings (not shown) so that light can be transmitted (for example, the first power transmitting electrode 12 and the power receiving electrode 21 are meshed). The floor board 3 is also made translucent.
(構成-送電電極及び受電電極の詳細)
 次に、送電電極12、13及び受電電極21の形状や配置位置についてより詳細に説明する。図22は図1の床部周辺の斜視図、図23は送電電極12、13と受電電極21との配置関係を示す平面図(この図23では、相互に異なる方向で配置された複数の可動体20A~20Dを示す)。なお、固定体10の各部は実際には床板3にて覆われて非露出状に配置されているが、図22、23では、床板3を取り外して固定体10の各部を露出させた状態を示す。
(Configuration-details of power transmission electrode and power reception electrode)
Next, the shapes and arrangement positions of the power transmitting electrodes 12 and 13 and the power receiving electrode 21 will be described in more detail. 22 is a perspective view of the periphery of the floor portion of FIG. 1, and FIG. 23 is a plan view showing the positional relationship between the power transmitting electrodes 12 and 13 and the power receiving electrode 21 (in FIG. 23, a plurality of movable members disposed in mutually different directions) Body 20A-20D). In addition, although each part of the fixed body 10 is actually covered with the floor board 3 and disposed in an unexposed state, in FIGS. 22 and 23, the state in which the respective parts of the fixed body 10 are exposed by removing the floor board 3 is illustrated. Show.
 図22に示すように、床板3の下方には複数の電力供給シート70が敷設されている。各電力供給シート70は、平面形状を方形状とされており、図23に示すように、少なくとも送電電極12、13を備え、さらには、固定体10の構成要素の全部又は一部(交流電源11、第1の送電電極12、第2の送電電極13、通信部14、又は制御部16)を備える。この構成では、シート単位で送電電極12、13の設置を行うことができるので、送電電極12、13の設置やその設置数の調整が容易になる。このようにシート単位で送電電極12、13を並設する場合、例えば、固定体10の通信部14は一対の第1の送電電極12及び第2の送電電極13に対して一つずつ設け、制御部16は各電力供給シート70に対して一つずつ設ける。ただし、交流電源11のみは、複数の各電力供給シート70に対して一つのみ設ける。この複数の電力供給シート70の敷設後、各電力供給シート70の各部を相互に公知の手段で接続する。この電力供給シート70の敷設範囲は電力被供給領域2に対応させることが好ましく、例えば、居室の全領域を電力被供給領域2とする場合には、当該居室の床板3の下方の略全面に電力供給シート70を敷設することが好ましく、あるいは、居室の一部分のみを電力被供給領域2とする場合には、当該一部分に対応する当該居室の床板3の下方にのみ電力供給シート70を敷設してもよい。 As shown in FIG. 22, a plurality of power supply sheets 70 are laid below the floor board 3. Each power supply sheet 70 has a square shape in plan view, and includes at least power transmission electrodes 12 and 13 as shown in FIG. 23, and further, all or part of the components of the fixed body 10 (AC power supply) 11, the first power transmission electrode 12, the second power transmission electrode 13, the communication unit 14, or the control unit 16). In this configuration, the power transmission electrodes 12 and 13 can be installed on a sheet basis, so that the installation of the power transmission electrodes 12 and 13 and the adjustment of the number of installations are facilitated. Thus, when arranging the power transmission electrodes 12 and 13 side by side, for example, the communication unit 14 of the fixed body 10 is provided one by one for the pair of the first power transmission electrode 12 and the second power transmission electrode 13, One control unit 16 is provided for each power supply sheet 70. However, only one AC power supply 11 is provided for each of the plurality of power supply sheets 70. After laying the plurality of power supply sheets 70, the respective parts of the power supply sheets 70 are connected to each other by known means. It is preferable that the laying range of the power supply sheet 70 corresponds to the power supplied area 2. For example, when the entire area of the living room is the power supplied area 2, the entire area of the living room 70 is almost entirely below the floor plate 3 of the living room. It is preferable to lay the power supply sheet 70, or when only a part of the living room is the power supply area 2, the power supply sheet 70 is laid only below the floor plate 3 of the living room corresponding to the part. May be.
 各電力供給シート70においては、送電電極12、13は、単位面積当たりの当該送電電極12、13の敷設効率を高めるために、相互に所定間隔を隔てて複数並設されている。特に、第1の送電電極12と第2の送電電極13とは、図示の上下方向及び左右方向において隣接する送電電極12、13が相互に異なる極性になるように、これら上下方向及び左右方向において交互に配置されている(図23では第1の送電電極12を白抜きの正四角形、第2の送電電極13を斜線付きの正四角形にて示す)。なお、各送電電極12、13は、方向による性能差が極力小さくなるように、それぞれ平面形状を方形状とされている。 In each power supply sheet 70, a plurality of power transmission electrodes 12, 13 are arranged in parallel at a predetermined interval from each other in order to increase the laying efficiency of the power transmission electrodes 12, 13 per unit area. In particular, the first power transmission electrode 12 and the second power transmission electrode 13 are arranged in the vertical direction and the horizontal direction so that the power transmission electrodes 12 and 13 adjacent in the vertical direction and the horizontal direction shown in the figure have different polarities. They are arranged alternately (in FIG. 23, the first power transmission electrode 12 is shown as a white square and the second power transmission electrode 13 is shown as a square with a diagonal line). Each of the power transmission electrodes 12 and 13 has a rectangular planar shape so that the performance difference depending on the direction is minimized.
 また、1つの可動体20A~20Dに対しては、受電電極22を少なくとも一対設ければよいが、ここでは、図23に示すように、1つの可動体20A~20Dに対して受電電極22を多数配置することで、全体として所要の受電面積を確保している。このように1つの可動体20A~20Dに受電電極21を多数配置する場合における当該受電電極21の並設形状は任意であり、図23のような方形状の他、円形状としてもよい。各受電電極21の個々の平面形状は、図23に示すように円形状としてもよい。 Further, at least a pair of power receiving electrodes 22 may be provided for one movable body 20A to 20D, but here, as shown in FIG. 23, the power receiving electrodes 22 are provided for one movable body 20A to 20D. By arranging a large number, the required power receiving area is secured as a whole. In this way, when a large number of power receiving electrodes 21 are arranged on one movable body 20A to 20D, the shape of the power receiving electrodes 21 arranged in parallel is arbitrary, and may be a circular shape in addition to the rectangular shape as shown in FIG. The individual planar shape of each power receiving electrode 21 may be circular as shown in FIG.
 また、図23において、各受電電極21は、上述のように平面形状を円形状とされており、この円形の直径は複数の送電電極12、13の相互の並設間隔よりも十分に小さくなるように決定されている。従って、図23に示すように可動体20A~20Dが様々な方向で配置された場合であっても、一つの受電電極21が複数の送電電極12、13の両方に同時に跨ることがないので、一つの受電電極21と複数の送電電極12、13との相互間で同時にコンデンサを構成することが防止され、このようなコンデンサによって電力供給に悪影響を与えることが防止される。この構成によれば、各受電電極21を任意の位置に配置でき、可動体20A~20Dの可動の自由度を高めることができる。 In FIG. 23, each power receiving electrode 21 has a circular planar shape as described above, and the diameter of this circle is sufficiently smaller than the interval between the plurality of power transmitting electrodes 12 and 13 arranged side by side. Has been determined to be. Therefore, even when the movable bodies 20A to 20D are arranged in various directions as shown in FIG. 23, one power receiving electrode 21 does not straddle both the plurality of power transmitting electrodes 12 and 13 at the same time. It is prevented that a capacitor is simultaneously formed between one power receiving electrode 21 and the plurality of power transmitting electrodes 12 and 13, and such a capacitor prevents an adverse effect on power supply. According to this configuration, each power receiving electrode 21 can be arranged at an arbitrary position, and the degree of freedom of movement of the movable bodies 20A to 20D can be increased.
 さらに、これら複数の受電電極21の相互の並設間隔は、当該複数の受電電極21の相互間におけるコンデンサ容量が電力供給に悪影響を生じないように決定されることが好ましい。具体的には、第1の送電電極12又は第2の送電電極13のいずれか一方から、コンデンサを介して、第1の送電電極12又は第2の送電電極13のいずれか他方に電流が流れることがないように、受電電極21の相互間隔が決定される。 Further, the interval between the plurality of power receiving electrodes 21 is preferably determined so that the capacitor capacity between the plurality of power receiving electrodes 21 does not adversely affect the power supply. Specifically, a current flows from either the first power transmission electrode 12 or the second power transmission electrode 13 to the other one of the first power transmission electrode 12 or the second power transmission electrode 13 via a capacitor. The mutual interval between the power receiving electrodes 21 is determined so as not to occur.
(電力供給制御処理)
 次に、上述のように構成された固定体10及び可動体20における電力供給制御処理について図3を参照しつつ説明する。この制御においては、固定体10の一部機能を待機状態とすることによって当該固定体10の消費電力を低減する待機モードと、固定体10の全機能を可動状態として電力供給を行う通常運転モードとの2つのモードを切替えて電力供給を行う。
(Power supply control processing)
Next, the power supply control process in the fixed body 10 and the movable body 20 configured as described above will be described with reference to FIG. In this control, a standby mode for reducing the power consumption of the fixed body 10 by setting a part of the functions of the fixed body 10 to a standby state, and a normal operation mode for supplying power with all functions of the fixed body 10 in a movable state. The power supply is performed by switching between the two modes.
 例えば、可動体20は、直列共振条件に合致するようにコイル22の値が設定されており、任意のタイミングで、床板3の任意の位置に配置される。また、通信部25は、電力供給要求信号を常時出力する。 For example, the value of the coil 22 is set so that the movable body 20 matches the series resonance condition, and the movable body 20 is arranged at an arbitrary position of the floor board 3 at an arbitrary timing. The communication unit 25 always outputs a power supply request signal.
 一方、固定体10は、初期状態では待機モードとされている。具体的には、通信部14のみに微小電力を供給して当該通信部14のみを起動状態としておき、他の部分については電力供給を行わずにスリープ状態として省電力化を図る。固定体10の通信部14は、当該可動体20の通信部25からの電力供給要求信号を常時監視しており、当該固定体10の上方に可動体20が配置された場合に、通信部25が通信部14からの電力供給要求信号を受信する。このように受信された電力供給要求信号が通信部14から制御部16に送信されると、待機モードが運転モードに切替えられ、制御部16が起動され、制御部16が電力供給制御を開始する。このような電力供給制御によれば、常に運転モードにしている場合に比べて、固定体10の消費電力を低減できる。 On the other hand, the fixed body 10 is in a standby mode in the initial state. Specifically, only a small amount of power is supplied to the communication unit 14 so that only the communication unit 14 is in an activated state, and power is not supplied to other portions without supplying power. The communication unit 14 of the fixed body 10 constantly monitors the power supply request signal from the communication unit 25 of the movable body 20, and when the movable body 20 is disposed above the fixed body 10, the communication unit 25. Receives the power supply request signal from the communication unit 14. When the power supply request signal received in this way is transmitted from the communication unit 14 to the control unit 16, the standby mode is switched to the operation mode, the control unit 16 is activated, and the control unit 16 starts power supply control. . According to such power supply control, the power consumption of the stationary body 10 can be reduced as compared with the case where the operation mode is always set.
 なお、このような処理に加えて、IDによる可動体20の認証を行うようにしてもよい。例えば、通信部25から通信部14に対して電力供給要求信号と共に可動体20のIDを送信し、このIDを受信した通信部14は、当該IDを制御部16に送信する。制御部16は、このIDをさらにハブ30を介してサーバ31に送信し、このサーバ31において予め登録されたIDに基づいて認証を行い、この認証結果を制御部16に返す。そして、制御部16は、この認証結果に基づいて電力供給の可否を決定してよい。 In addition to such processing, authentication of the movable body 20 by ID may be performed. For example, the ID of the movable body 20 is transmitted together with the power supply request signal from the communication unit 25 to the communication unit 14, and the communication unit 14 that receives this ID transmits the ID to the control unit 16. The control unit 16 further transmits this ID to the server 31 via the hub 30, performs authentication based on the ID registered in advance in the server 31, and returns the authentication result to the control unit 16. And the control part 16 may determine the propriety of electric power supply based on this authentication result.
 この実施の形態に係る電力供給システムでは、固定体10の上方に可動体20が配置されていない場合には、直列共振条件が成り立たず、電力供給が行われないため、例えば、固定体10を常に運転モードにしておき、床板3の上を人が歩いたようば場合であっても、人体に電流が流れるような事態を防止でき、安全性を維持できる。例えば、本願発明者による実験では、固定体10の上方に可動体20が配置した場合において、送電出力を約12.7kW(出力電圧を約800V0p)とした場合には、送電効率は約99.6%と極めて高い効率を示したが、可動体20を配置せずに、第1送電電極と第2送電電極を平面的に跨ぐように鉄板を配置した場合には、接合容量が可動体20を配置した場合の約1.7倍になると共に、負荷抵抗が約0.002mオームとなり、送電出力は約0.3mW、伝送効率はほぼ0%となり、安全性が確認された。 In the power supply system according to this embodiment, when the movable body 20 is not disposed above the fixed body 10, the series resonance condition is not satisfied, and power is not supplied. Even when a person walks on the floor board 3 while always in the operation mode, it is possible to prevent a situation in which an electric current flows through the human body and maintain safety. For example, in the experiment by the inventor of the present application, when the movable body 20 is arranged above the fixed body 10 and the power transmission output is about 12.7 kW (the output voltage is about 800 V0p), the power transmission efficiency is about 99.99. Although an extremely high efficiency of 6% was shown, when the iron plate is arranged so as to straddle the first power transmission electrode and the second power transmission electrode without arranging the movable body 20, the junction capacitance is movable body 20. The load resistance is about 0.002 m ohm, the power transmission output is about 0.3 mW, and the transmission efficiency is almost 0%, confirming safety.
(実施の形態1の変形例)
 次に、実施の形態1の変形例について説明する。図24は、変形例に係る固定体10及び可動体20の要部拡大図である。この図24に示す例では、可動体20の通信部25は、電力供給要求信号やIDの如き通信データを、電力供給用の線路に重畳して固定体10に送信する。固定体10においては、通信部14の両端が結合用のコンデンサ15を介して電力供給用の線路に接続されており、また通信データ遮断用のコイル18を設けていることから、コンデンサ15を介して通信データの周波数成分のみが電力から分離されて通信部14に受信される。ただし、このように通信部14の両端にコンデンサ15を設けた場合には不要なインピーダンスを増加させる可能性があるため、図3に示すように、通信部14の一端にのみコンデンサ15を設けることがより好ましい。
(Modification of Embodiment 1)
Next, a modification of the first embodiment will be described. FIG. 24 is an enlarged view of main parts of the fixed body 10 and the movable body 20 according to a modification. In the example illustrated in FIG. 24, the communication unit 25 of the movable body 20 transmits communication data such as a power supply request signal and an ID to the fixed body 10 while being superimposed on a power supply line. In the fixed body 10, both ends of the communication unit 14 are connected to a power supply line via a coupling capacitor 15, and a coil 18 for blocking communication data is provided. Thus, only the frequency component of the communication data is separated from the power and received by the communication unit 14. However, if the capacitors 15 are provided at both ends of the communication unit 14 in this way, unnecessary impedance may be increased, so that the capacitor 15 is provided only at one end of the communication unit 14 as shown in FIG. Is more preferable.
 図25は、他の変形例に係る固定体10及び可動体20の要部拡大図である。この図25に示す例では、可動体20の通信部25は、線路L15を介して電力供給を受けて駆動され、電力供給要求信号を無線送信する。一方、固定体10の通信部14には、線路L6を介してアンテナ17が接続されている。アンテナ17は、送電電極12、13の相互間に設けられており、通信部25から送信された電力供給要求信号がアンテナ17を介して受信され通信部14に出力される。 FIG. 25 is an enlarged view of a main part of the fixed body 10 and the movable body 20 according to another modification. In the example shown in FIG. 25, the communication unit 25 of the movable body 20 is driven by receiving power supply via the line L15 and wirelessly transmits a power supply request signal. On the other hand, an antenna 17 is connected to the communication unit 14 of the fixed body 10 via a line L6. The antenna 17 is provided between the power transmission electrodes 12 and 13, and the power supply request signal transmitted from the communication unit 25 is received via the antenna 17 and output to the communication unit 14.
(実施の形態1の効果)
 このような構成によれば、送電電極12、13を電力被供給領域2に露出させる必要がないため、送電電極12、13が人体に触れることによる感電の危険性をなくすことができ、心理的な不安も解消することができるので、オフィス空間のように人がいる場所への導入が容易になる。特に、直列共振条件が満たされない場合には電力供給が行われないので、例えば固定体10の電源を常にオンにしておき、人や物が送電電極12、13に近づいた場合であっても、感電や短絡のおそれがないため、電力供給システムの安全性を確保することができる。また特に、共通の交流電源11から複数の第1の送電電極12及び複数の第2の送電電極13に対して電力を供給するので、第1の送電電極12及び第2の送電電極13の各々に交流電源11を設けることが不要となり、固定体10の構成を簡易化することができると共に、固定体10の製造コストを低減することができる。
(Effect of Embodiment 1)
According to such a configuration, since there is no need to expose the power transmission electrodes 12 and 13 to the power supply region 2, the risk of electric shock due to the power transmission electrodes 12 and 13 touching the human body can be eliminated, and psychologically. This makes it easy to install in places where people are present, such as office spaces. In particular, since power supply is not performed when the series resonance condition is not satisfied, for example, the power source of the stationary body 10 is always turned on, and even when a person or an object approaches the power transmission electrodes 12 and 13, Since there is no fear of electric shock or short circuit, the safety of the power supply system can be ensured. In particular, since power is supplied from the common AC power supply 11 to the plurality of first power transmission electrodes 12 and the plurality of second power transmission electrodes 13, each of the first power transmission electrode 12 and the second power transmission electrode 13 is provided. It is not necessary to provide the AC power source 11 in the configuration, so that the configuration of the fixed body 10 can be simplified and the manufacturing cost of the fixed body 10 can be reduced.
 また、第1の送電電極12と第2の送電電極13を判別切替部40を用いて判別できるので、固定体10に対する任意の位置に可動体20を配置しても自動的に電力供給を行うこと可能となり、可動体20の配置の自由度が向上する。 Moreover, since the 1st power transmission electrode 12 and the 2nd power transmission electrode 13 can be discriminate | determined using the discrimination | determination switching part 40, even if the movable body 20 is arrange | positioned in the arbitrary positions with respect to the fixed body 10, an electric power supply is performed automatically. It becomes possible, and the freedom degree of arrangement | positioning of the movable body 20 improves.
 また、コイル22を可動体20に配置したので、直列共振条件を可動体20で調整することができ、固定体10の調整が不要になるため、共通の固定体10を用いて様々な可動体20に対する電力供給を行うことが一層容易になる。 Further, since the coil 22 is disposed on the movable body 20, the series resonance condition can be adjusted by the movable body 20, and adjustment of the fixed body 10 is not necessary. It becomes even easier to supply power to 20.
 また、判別切替部40を永久磁石利用型とした場合には、第1の送電電極12又は第2の送電電極13との相互間の磁力を用いて、第1の送電電極12と第2の送電電極13を判別できるので、固定体10に対する任意の位置に可動体20を配置しても自動的に電力供給を行うこと可能となり、可動体20の配置の自由度が向上する。特に、永久磁石を用いた場合には、機械的部分を低減できるため、電力供給システムの耐久性を高めることができる。 When the discrimination switching unit 40 is a permanent magnet utilization type, the first power transmission electrode 12 and the second power transmission electrode 12 and the second power transmission electrode 13 are used by using the magnetic force between the first power transmission electrode 12 and the second power transmission electrode 13. Since the power transmission electrode 13 can be discriminated, it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of arrangement of the movable body 20 is improved. In particular, when a permanent magnet is used, the mechanical part can be reduced, so that the durability of the power supply system can be increased.
 また、判別切替部40を磁気特性検知型とした場合には、磁気特性検知手段の検知結果に基づいて、第1の送電電極12と第2の送電電極13を判別できるので、第1の送電電極12と第2の送電電極13を判別できるので、固定体10に対する任意の位置に可動体20を配置しても自動的に電力供給を行うこと可能となり、可動体20の配置の自由度が向上する。 Further, when the discrimination switching unit 40 is of the magnetic characteristic detection type, the first power transmission electrode 12 and the second power transmission electrode 13 can be determined based on the detection result of the magnetic characteristic detection means, so that the first power transmission Since the electrode 12 and the second power transmission electrode 13 can be discriminated, it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of the arrangement of the movable body 20 is increased. improves.
 また、判別切替部40をエネルギー利用型とした場合には、エネルギー検知手段の検知結果に基づいて、第1の送電電極12と第2の送電電極13を判別できるので、第1の送電電極12と第2の送電電極13を判別できるので、固定体10に対する任意の位置に可動体20を配置しても自動的に電力供給を行うこと可能となり、可動体20の配置の自由度が向上する。例えば、光による判別を行う場合には、磁力を用いる必要がないため、磁力利用に制限がある領域においても電力供給システムを容易に導入することができる。 In addition, when the determination switching unit 40 is an energy utilization type, the first power transmission electrode 12 and the second power transmission electrode 13 can be determined on the basis of the detection result of the energy detection means. And the second power transmission electrode 13 can be discriminated, so that it is possible to automatically supply power even if the movable body 20 is arranged at an arbitrary position with respect to the fixed body 10, and the degree of freedom of arrangement of the movable body 20 is improved. . For example, when performing discrimination by light, it is not necessary to use a magnetic force, so that the power supply system can be easily introduced even in a region where the use of magnetic force is limited.
〔実施の形態2〕
 次に、実施の形態2について説明する。この実施の形態2は、固定体側の電源供給用の切り替えスイッチを省略すると共に、可動体側における判別切替手段も省略してスイッチレス化を図った形態である。ただし、実施の形態2の構成及び処理に関し、特に説明なき構成及び処理は実施の形態1と同じであり、必要に応じて実施の形態1と同じ符号を付して、その説明を省略する。
[Embodiment 2]
Next, a second embodiment will be described. In the second embodiment, the switch for power supply on the fixed body side is omitted, and the discrimination switching means on the movable body side is also omitted to achieve switchless. However, regarding the configuration and processing of the second embodiment, the configuration and processing that are not particularly described are the same as those of the first embodiment, and the same reference numerals as those of the first embodiment are attached as necessary, and the description thereof is omitted.
 図26は固定体10及び可動体80を簡略化して示す縦断面図、図27は図26の固定体10及び可動体80を詳細に示した要部拡大図である。この固定体10は、1つの共通の交流電源11から複数の固定体10の各々に電力供給を行っている。この交流電源11は、具体的には、従来のシステムに係る図32と同様に、直流電源11Aと、複数のトランジスタとダイオードをスイッチング制御部にてスイッチングするスイッチング部11Bとを備えて構成されており、直流電源11Aによる直流電流をスイッチング部11Bにてスイッチングすることで所定周波数の交流電流としている。 26 is a longitudinal sectional view showing the fixed body 10 and the movable body 80 in a simplified manner, and FIG. 27 is an enlarged view of a main part showing the fixed body 10 and the movable body 80 in FIG. 26 in detail. The fixed body 10 supplies power to each of the plurality of fixed bodies 10 from one common AC power supply 11. Specifically, the AC power supply 11 includes a DC power supply 11A and a switching unit 11B that switches a plurality of transistors and diodes by a switching control unit, as in FIG. 32 related to the conventional system. The DC current from the DC power source 11A is switched by the switching unit 11B to obtain an AC current having a predetermined frequency.
 可動体80は、一対の受電電極21を備えて構成されている。ここで、実施の形態1の判別切替部40は省略されており、一方の受電電極21は線路L11を介して負荷24の一方の端子24aに対して切り替え不能に固定的に接続されており、他方の受電電極21は線路L13を介して負荷24の他方の端子24bに対して切り替え不能に固定的に接続されている。すなわち、この実施の形態2においては、可動体80が小型の装置であって、第1の送電電極12と第2の送電電極13に対応する位置に一対の受電電極21が配置されるように、使用者が可動体80を位置決めしながら手等で移動させ、所望位置に設置することを想定している。このため、一対の受電電極21は、第1の送電電極12と第2の送電電極13に対して1対1で対応するものとなっており、判別切替部40を省略することが可能となっている。また、可動体80には、平滑用のコンデンサ81が接続されている。この平滑用のコンデンサ81は、負荷24に対して並列接続されており、コイル22を介して供給された直流電力を平滑化する。 The movable body 80 includes a pair of power receiving electrodes 21. Here, the determination switching unit 40 of the first embodiment is omitted, and one power receiving electrode 21 is fixedly connected to the one terminal 24a of the load 24 through the line L11 so as not to be switched, The other power receiving electrode 21 is fixedly connected to the other terminal 24b of the load 24 through the line L13 so as not to be switched. That is, in the second embodiment, the movable body 80 is a small device, and the pair of power receiving electrodes 21 are arranged at positions corresponding to the first power transmitting electrode 12 and the second power transmitting electrode 13. It is assumed that the user moves the movable body 80 by hand while positioning the movable body 80 and installs it at a desired position. For this reason, the pair of power receiving electrodes 21 has a one-to-one correspondence with the first power transmitting electrode 12 and the second power transmitting electrode 13, and the determination switching unit 40 can be omitted. ing. Further, a smoothing capacitor 81 is connected to the movable body 80. The smoothing capacitor 81 is connected in parallel to the load 24 and smoothes the DC power supplied via the coil 22.
 ここで、可動体80の移動中に、通信部25から常に電力供給要求信号を出力し続けた場合には、通信部25を駆動するための電源(例えば可動体20に内蔵した図示しない電池)の消耗が過大になる可能性がある。このため、可動体80には、負荷24及び通信部25と線路L16、L17を介して通信可能に接続された制御部(コントローラー)82を設けている。この制御部82には、スイッチ83、OK表示灯84、及びNG表示灯85が接続されている。また、制御部82は、コイル22と負荷24の間に接続された電流検知用の検出部(ホール素子)86に線路L18を介して接続されることにより、ホール素子86にて検知された電流をモニタ可能である。さらに、制御部82は、これら負荷24とホール素子86の間に線路L19を介して接続されており、負荷24に供給される電圧をモニタ可能である。このような構成において、使用者が可動体80を所望位置に設置した後、スイッチ83を押した場合に、制御部82は通信部25を制御して電力供給要求信号を出力させる。そして、制御部82は、モニタしている電流と電圧に基づいて、固定体10からの電力供給の有無を判定し、電力供給がない場合にはNG表示灯85を点灯又は点滅させ、電力供給がある場合にはOK表示灯84を点灯又は点滅させる。 Here, when the power supply request signal is continuously output from the communication unit 25 while the movable body 80 is moving, a power source for driving the communication unit 25 (for example, a battery (not shown) built in the movable body 20). May be excessive. For this reason, the movable body 80 is provided with a control unit (controller) 82 that is communicably connected to the load 24 and the communication unit 25 via the lines L16 and L17. The control unit 82 is connected to a switch 83, an OK indicator lamp 84, and an NG indicator lamp 85. In addition, the control unit 82 is connected to a current detection detection unit (Hall element) 86 connected between the coil 22 and the load 24 via the line L18, whereby the current detected by the Hall element 86 is detected. Can be monitored. Further, the control unit 82 is connected between the load 24 and the hall element 86 via a line L19, and can monitor the voltage supplied to the load 24. In such a configuration, when the user presses the switch 83 after installing the movable body 80 at a desired position, the control unit 82 controls the communication unit 25 to output a power supply request signal. Then, the control unit 82 determines the presence or absence of power supply from the fixed body 10 based on the monitored current and voltage, and when there is no power supply, turns on or blinks the NG indicator lamp 85 to supply power. If there is, the OK indicator 84 is turned on or blinked.
 図28は変形例に係る固定体10及び可動体80を簡略化して示す縦断面図、図29は図28の固定体10及び可動体80を詳細に示した要部拡大図である。この可動体80は、図26、27に示すコイル22を省略することによって構成されている。発振周波数が十分に高い場合には、コンデンサ5のインピーダンスが小さくなるので、直列共振を用いることなく電力伝送が可能になるため、このようにコイル22を省略することが可能となり、この場合には、可動体80の構成を一層簡素化することができる。 FIG. 28 is a longitudinal sectional view schematically showing the fixed body 10 and the movable body 80 according to the modification, and FIG. 29 is an enlarged view of a main part showing the fixed body 10 and the movable body 80 in FIG. 28 in detail. This movable body 80 is configured by omitting the coil 22 shown in FIGS. When the oscillation frequency is sufficiently high, the impedance of the capacitor 5 becomes small, so that power transmission is possible without using series resonance, and thus the coil 22 can be omitted. In addition, the configuration of the movable body 80 can be further simplified.
 ここで、図26から図29の例では、使用者が自ら可動体80の位置決めを行うことを想定しているため、当該位置決めを容易に行うことができる工夫を施すことが好ましい。以下では、このような工夫について説明する。図30(a)~(c)及び図31(a)~(b)は、送電電極12、13と受電電極21の拡大縦断面図である。 Here, in the example shown in FIGS. 26 to 29, it is assumed that the user positions the movable body 80 by himself / herself, and therefore it is preferable to devise a device that can easily perform the positioning. Below, such a device is demonstrated. FIGS. 30A to 30C and FIGS. 31A to 31B are enlarged longitudinal sectional views of the power transmitting electrodes 12 and 13 and the power receiving electrode 21. FIG.
 図30(a)の例では、送電電極12、13と受電電極21には、これらがアルミニウム等の非磁性の導電材で形成されていることを前提として、これらが相互に異極となるように(図示の例では、送電電極12、13がN極、受電電極21がS極となるように)、永久磁石87を設けている。この構成によれば、送電電極12、13と受電電極21の相対位置が大きくずれているときには、強い斥力が生じ、送電電極12、13と受電電極21の相対位置が合致している場合には、強い吸引力を生じるため、使用者がこれら斥力や吸引力を感じつつ可動体80を移動させることで、位置決めを一層容易に行うことが可能となる。 In the example of FIG. 30 (a), it is assumed that the power transmitting electrodes 12, 13 and the power receiving electrode 21 are different from each other on the assumption that they are formed of a nonmagnetic conductive material such as aluminum. (In the example shown in the figure, the permanent magnets 87 are provided so that the power transmitting electrodes 12 and 13 are N poles and the power receiving electrode 21 is S poles). According to this configuration, when the relative positions of the power transmitting electrodes 12 and 13 and the power receiving electrode 21 are greatly shifted, a strong repulsive force is generated, and when the relative positions of the power transmitting electrodes 12 and 13 and the power receiving electrode 21 are matched. Since a strong suction force is generated, the user can perform positioning more easily by moving the movable body 80 while feeling the repulsive force and the suction force.
 図30(b)の例では、床板3において送電電極12、13に対応する箇所に、受電電極21の形状に対応した平面形状及び深さの凹部88が形成されている。この構成によれば、使用者が、この凹部88に受電電極21が収まるように可動体80を移動させることで、位置決めを一層容易に行うことが可能となる。 In the example of FIG. 30 (b), a recess 88 having a planar shape and a depth corresponding to the shape of the power receiving electrode 21 is formed at a location corresponding to the power transmitting electrodes 12 and 13 on the floor board 3. According to this configuration, the user can perform positioning more easily by moving the movable body 80 so that the power receiving electrode 21 is accommodated in the recess 88.
 図30(c)の例では、床板3において送電電極12、13に対応する箇所が、それ以外の箇所とは異なる所定の色で形成されている(図30(c)では、他の箇所と色が異なる部分を符号3Bとして示す)。この構成によれば、使用者が、所定の色の箇所に受電電極21が載置されるように可動体80を移動させることで、位置決めを一層容易に行うことが可能となる。 In the example of FIG. 30 (c), the portions corresponding to the power transmission electrodes 12 and 13 in the floor board 3 are formed in a predetermined color different from the other portions (in FIG. 30 (c), A portion having a different color is indicated as 3B). According to this configuration, the user can perform the positioning more easily by moving the movable body 80 so that the power receiving electrode 21 is placed at a position of a predetermined color.
 図31(a)の例では、床板3が半透明または透明になっており、電力被供給領域2から送電電極12、13が目視可能となっている(図31(a)では、半透明または透明の床板3を点線で示す)。この構成によれば、使用者が、送電電極12、13の位置を目視で確認しながら、当該送電電極12、13に対応する位置に受電電極21が載置されるように可動体80を移動させることで、位置決めを一層容易に行うことが可能となる。 In the example of FIG. 31A, the floor board 3 is translucent or transparent, and the power transmission electrodes 12 and 13 are visible from the power supply region 2 (in FIG. 31A, translucent or The transparent floor board 3 is indicated by a dotted line). According to this configuration, the user moves the movable body 80 so that the power receiving electrode 21 is placed at a position corresponding to the power transmitting electrodes 12 and 13 while visually confirming the positions of the power transmitting electrodes 12 and 13. By doing so, positioning can be performed more easily.
 図31(b)の例では、床板3の電力被供給領域2側の面に起毛89が形成されているが、送電電極12、13に対応する面には起毛89が形成されていない。この構成によれば、使用者が、起毛89がない箇所に受電電極21が載置されるように可動体80を移動させることで、位置決めを一層容易に行うことが可能となる。 In the example of FIG. 31 (b), the raising 89 is formed on the surface of the floor board 3 on the power supplied region 2 side, but the raising 89 is not formed on the surface corresponding to the power transmission electrodes 12 and 13. According to this configuration, the user can perform positioning more easily by moving the movable body 80 so that the power receiving electrode 21 is placed in a place where there is no raising 89.
(実施の形態2の効果)
 この実施の形態2によれば、実施の形態1と共通の効果に加えて、複数の受電電極21を負荷24に対して固定的に接続したので、可動体80の構成を一層簡素化でき、可動体80の製造コストを一層低減することができる。
(Effect of Embodiment 2)
According to the second embodiment, in addition to the effects common to the first embodiment, since the plurality of power receiving electrodes 21 are fixedly connected to the load 24, the configuration of the movable body 80 can be further simplified, The manufacturing cost of the movable body 80 can be further reduced.
〔III〕各実施の形態に対する変形例
 以上、本発明の各実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
[III] Modifications to Each Embodiment While the embodiments of the present invention have been described above, the specific configuration and means of the present invention are within the scope of the technical idea of each invention described in the claims. It can be arbitrarily modified and improved within. Hereinafter, such a modification will be described.
(解決しようとする課題や発明の効果について)
 また、発明が解決しようとする課題や発明の効果は、前記した内容に限定されるものではなく、本発明によって、前記に記載されていない課題を解決したり、前記に記載されていない効果を奏することもでき、また、記載されている課題の一部のみを解決したり、記載されている効果の一部のみを奏することがある。
(About problems to be solved and effects of the invention)
In addition, the problems to be solved by the invention and the effects of the invention are not limited to the above-described contents, and the present invention solves the problems not described above or has the effects not described above. There are also cases where only some of the described problems are solved or only some of the described effects are achieved.
(固定体や可動体の配置箇所について)
 上記の実施の形態では、固定体10を床部に配置すると共に、可動体20を当該床部の上面に配置した例を示したが、これら形態に限定されず、固定体10及び可動体20は任意の方向にて配置することができる。例えば、固定体10を壁面内や天井内に配置すると共に、可動体20を壁面や天井に接触又は所定間隔を隔てて配置してもよい。
(Regarding the location of fixed and movable bodies)
In the above embodiment, the fixed body 10 is arranged on the floor portion, and the movable body 20 is arranged on the upper surface of the floor portion. However, the present invention is not limited to these embodiments, and the fixed body 10 and the movable body 20 are arranged. Can be arranged in any direction. For example, the fixed body 10 may be disposed in the wall surface or the ceiling, and the movable body 20 may be disposed in contact with the wall surface or the ceiling or at a predetermined interval.
(回路構成について)
 また、図示した回路構成の詳細については、特記した場合を除いて任意に変更することができ、例えば、平滑用コンデンサを付加したり、過電流保護用の回路素子を追加してもよく、あるいは、特記した構成に関しても同様の機能を公知の他の回路構成にて代替してもよい。
(About circuit configuration)
The details of the circuit configuration shown in the figure can be arbitrarily changed unless otherwise specified. For example, a smoothing capacitor may be added, or a circuit element for overcurrent protection may be added. The same function may be replaced with another known circuit configuration for the configuration described specially.
(通信機能について)
 上述したように、直列共振条件が満たされない場合には電力供給が行われないため、固定体10の電力供給を常のオンとしてもよく、この場合には通信機能を省略してもよい。また、通信機能を設ける場合であっても、その具体的構成は改変可能である。
(About communication function)
As described above, since the power supply is not performed when the series resonance condition is not satisfied, the power supply of the stationary body 10 may be normally turned on, and in this case, the communication function may be omitted. Even when a communication function is provided, the specific configuration can be modified.
(適用対象について)
 上記の実施の形態に係る電力供給システムの具体的な適用例の一つとして、電気自動車を可動体20とした電力供給を挙げることができる。例えば、固定体10を電気自動車用のスタンドの床面に配置し、当該床面の上に停車した可動体20としての電気自動車に対して、電力供給を行うことができる。この場合、必要に応じて、送電電極12、13を床面と共にリフトアップし、電気自動車の底面近傍に設けた受電電極21に近接させてもよい。あるいは、逆に、電気自動車の受電電極21をリフトダウンしてもよい。
(Applicable items)
One specific application example of the power supply system according to the above-described embodiment is power supply using an electric vehicle as a movable body 20. For example, the fixed body 10 is arranged on the floor surface of an electric vehicle stand, and power can be supplied to the electric vehicle as the movable body 20 stopped on the floor surface. In this case, if necessary, the power transmission electrodes 12 and 13 may be lifted up together with the floor surface and may be brought close to the power reception electrode 21 provided near the bottom surface of the electric vehicle. Or conversely, the power receiving electrode 21 of the electric vehicle may be lifted down.
 1、100 電力供給領域
 2、102 電力被供給領域
 3、3B、111 床板
 3A ゴム磁石
 5、15、26、53b、81、109 コンデンサ
 10、101 固定体
 11、115 交流電源
 11A 直流電源
 11B スイッチング部
 12、105 第1の送電電極
 13、106 第2の送電電極
 14、25、112、113 通信部
 16、82 制御部
 17 アンテナ
 18、22、62、110 コイル
 20、20A~20D、80、103 可動体
 21 受電電極
 21a スリット
 24、104 負荷
 24a、24b 端子
 30 ハブ
 31 サーバ
 40 判別切替部
 41、42、43、44、45、46、47 切替スイッチ
 41a 軸
 41b、42a、44a、45a、46a、47d、87 永久磁石
 41c、42c 可動接点
 41d、43b、46b、47c バネ
 41e、41f、42d、42e 固定接点
 41g 防塵カバー
 42b カンチレバー
 43a ベース
 44b、45c ヨーク(磁気回路)
 44c、46c、50a、50b、52b、63、63A、63B 磁気センサ
 44d、46d、47h、83 スイッチ
 45b リードスイッチ
 47a 外筐体
 47b 内筐体
 47e 固定部
 47f マイクロスイッチ
 47g 接点
 50 探索プローブ
 51~53 磁気プローブ
 51a、52a、53a 励磁コイル
 51b モニタコイル
 60 アクチュエータ
 61 エネルギーセンサ
 64 磁気増幅パネル
 65 発光素子
 66 受光素子
 70 電力供給シート
 84 OK表示灯
 85 NG表示灯
 86 検出部
 88 凹部
 89 起毛
 107 第1の受電電極
 108 第2の受電電極
 114 接続部
 L1~L19 線路
DESCRIPTION OF SYMBOLS 1,100 Electric power supply area | region 2,102 Electric power supply area | region 3,3B, 111 Floor board 3A Rubber magnet 5,15,26,53b, 81,109 Capacitor 10,101 Fixed body 11,115 AC power supply 11A DC power supply 11B Switching part 12, 105 First power transmission electrode 13, 106 Second power transmission electrode 14, 25, 112, 113 Communication unit 16, 82 Control unit 17 Antenna 18, 22, 62, 110 Coil 20, 20A to 20D, 80, 103 Movable Body 21 Receiving electrode 21a Slit 24, 104 Load 24a, 24b Terminal 30 Hub 31 Server 40 Discrimination switching unit 41, 42, 43, 44, 45, 46, 47 Changeover switch 41a Shaft 41b, 42a, 44a, 45a, 46a, 47d 87 Permanent magnets 41c, 42c Movable contacts 41d, 43b, 4 b, 47c spring 41e, 41f, 42d, 42e fixed contact 41g dust cover 42b cantilever 43a based 44b, 45 c yoke (magnetic circuit)
44c, 46c, 50a, 50b, 52b, 63, 63A, 63B Magnetic sensor 44d, 46d, 47h, 83 Switch 45b Reed switch 47a Outer housing 47b Inner housing 47e Fixed part 47f Micro switch 47g Contact 50 Search probe 51-53 Magnetic probe 51a, 52a, 53a Excitation coil 51b Monitor coil 60 Actuator 61 Energy sensor 64 Magnetic amplification panel 65 Light emitting element 66 Light receiving element 70 Power supply sheet 84 OK display lamp 85 NG display lamp 86 Detector 88 Recess 89 Raised 107 First Power receiving electrode 108 Second power receiving electrode 114 Connection portion L1 to L19 Line

Claims (12)

  1.  電力供給領域に配置された固定体から、電力被供給領域に配置された可動体を介して、所定の負荷に対して電力を供給するための電力供給システムであって、
     前記固定体は、
     前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、交流電力が供給される複数の第1の送電電極及び複数の第2の送電電極と、
     前記複数の第1の送電電極及び前記複数の第2の送電電極に対して電力を供給する交流電源とを備え、
     前記可動体は、
     前記第1の送電電極又は前記第2の送電電極に対して前記境界面を挟んで対向状かつ非接触に配置されることにより、これら第1の送電電極又は第2の送電電極との間にコンデンサを構成する少なくとも一組の受電電極とを備え、
     前記固定体又は前記可動体に、前記コンデンサと直列にコイルを接続し、これらコンデンサとコイルの直列共振により前記負荷に対する電力供給を行うこと、
     を特徴とする電力供給システム。
    A power supply system for supplying power to a predetermined load from a fixed body arranged in a power supply area via a movable body arranged in a power supply area,
    The fixed body is
    A plurality of first power transmission electrodes and a plurality of second power transmission electrodes which are arranged in the vicinity of the mutual boundary surface between the power supply region and the power supplied region; ,
    An AC power supply for supplying power to the plurality of first power transmission electrodes and the plurality of second power transmission electrodes,
    The movable body is
    Between the first power transmission electrode or the second power transmission electrode, the first power transmission electrode or the second power transmission electrode is disposed so as to face the first power transmission electrode or the second power transmission electrode so as to face the first power transmission electrode or the second power transmission electrode. Comprising at least one pair of power receiving electrodes constituting a capacitor,
    Connecting a coil in series with the capacitor to the fixed body or the movable body, and supplying power to the load by series resonance of the capacitor and the coil;
    Power supply system characterized by
  2.  前記可動体は、
     前記複数の受電電極に対して対向配置される電極が前記第1の送電電極と前記第2の送電電極のいずれであるのかを判別し、この判別結果に基づいて、前記負荷に対する前記複数の受電電極の接続の切替えを行う判別切替手段、
     を備えることを特徴とする請求項1に記載の電力供給システム。
    The movable body is
    It is determined whether the electrode disposed opposite to the plurality of power receiving electrodes is the first power transmitting electrode or the second power transmitting electrode, and based on the determination result, the plurality of power receiving to the load Discrimination switching means for switching the connection of the electrodes,
    The power supply system according to claim 1, further comprising:
  3.  前記可動体は、
     前記複数の受電電極を前記負荷に対して固定的に接続したこと、
     を特徴とする請求項1に記載の電力供給システム。
    The movable body is
    The plurality of power receiving electrodes are fixedly connected to the load;
    The power supply system according to claim 1.
  4.  前記コイルを、前記可動体に配置したこと、
     を特徴とする請求項1から3のいずれか一項に記載の電力供給システム。
    Arranging the coil on the movable body;
    The power supply system according to any one of claims 1 to 3.
  5.  前記第1の送電電極又は前記第2の送電電極のいずれか一方を強磁性体にて形成すると共に、前記第1の送電電極又は前記第2の送電電極のいずれか他方を非磁性体にて形成し、
     前記判別切替手段は、永久磁石を備え、当該永久磁石と前記第1の送電電極又は前記第2の送電電極との相互間の磁力を用いて前記判別を行うこと、
     を特徴とする請求項1から4のいずれか一項に記載の電力供給システム。
    Either the first power transmission electrode or the second power transmission electrode is formed of a ferromagnetic material, and the other of the first power transmission electrode or the second power transmission electrode is formed of a non-magnetic material. Forming,
    The determination switching means includes a permanent magnet, and performs the determination using a magnetic force between the permanent magnet and the first power transmission electrode or the second power transmission electrode.
    The power supply system according to any one of claims 1 to 4, wherein:
  6.  前記第1の送電電極又は前記第2の送電電極のいずれか一方の磁気特性と、前記第1の送電電極又は前記第2の送電電極のいずれか他方の磁気特性とを、相互に異なるものとし、
     前記判別切替手段は、前記磁気特性の相違を検知する磁気特性検知手段を備え、当該磁気特性検知手段の検知結果に基づいて前記判別を行うこと、
     を特徴とする請求項1から4のいずれか一項に記載の電力供給システム。
    The magnetic characteristic of either the first power transmission electrode or the second power transmission electrode is different from the magnetic characteristic of the other of the first power transmission electrode or the second power transmission electrode. ,
    The determination switching unit includes a magnetic characteristic detection unit that detects a difference in the magnetic characteristics, and performs the determination based on a detection result of the magnetic characteristic detection unit;
    The power supply system according to any one of claims 1 to 4, wherein:
  7.  前記第1の送電電極又は前記第2の送電電極のいずれか一方には、所定のエネルギーを出力するエネルギー出力手段を設け、
     前記判別切替手段は、前記エネルギーを検知するエネルギー検知手段を備え、当該エネルギー検知手段の検知結果に基づいて前記判別を行うこと、
     を特徴とする請求項1から4のいずれか一項に記載の電力供給システム。
    Either one of the first power transmission electrode or the second power transmission electrode is provided with energy output means for outputting predetermined energy,
    The determination switching means includes energy detection means for detecting the energy, and performs the determination based on a detection result of the energy detection means;
    The power supply system according to any one of claims 1 to 4, wherein:
  8.  電力被供給領域に配置され、電力供給領域に配置された固定体から供給された電力を所定の負荷に供給する可動体であって、
     前記固定体に配置されたものであって交流電力が供給される複数の第1の送電電極及び複数の第2の送電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置されることにより、これら第1の送電電極又は第2の送電電極との間にコンデンサを構成する少なくとも一組の受電電極を備え、
     前記コンデンサと、当該コンデンサに直列接続されるように前記固定体又は前記可動体に配置されたコイルとの直列共振により、前記負荷に対して電力供給を行うこと、
     を特徴とする可動体。
    A movable body that is disposed in the power supply area and that supplies power supplied from a fixed body disposed in the power supply area to a predetermined load,
    For the plurality of first power transmission electrodes and the plurality of second power transmission electrodes arranged on the fixed body and supplied with AC power, the power supply region and the power supplied region Provided with at least one pair of power receiving electrodes constituting a capacitor between the first power transmission electrode or the second power transmission electrode by being arranged in a non-contact manner across the boundary surface,
    Power is supplied to the load by series resonance between the capacitor and a coil disposed in the fixed body or the movable body so as to be connected in series to the capacitor;
    A movable body characterized by
  9.  前記複数の受電電極に対して対向配置される電極が前記第1の送電電極と前記第2の送電電極のいずれであるのかを判別し、この判別結果に基づいて、前記負荷に対する前記複数の受電電極の接続の切替えを行う判別切替手段、
     を備えることを特徴とする請求項8に記載の可動体。
    It is determined whether the electrode disposed opposite to the plurality of power receiving electrodes is the first power transmitting electrode or the second power transmitting electrode, and based on the determination result, the plurality of power receiving to the load Discrimination switching means for switching the connection of the electrodes,
    The movable body according to claim 8, comprising:
  10.  前記複数の受電電極を前記負荷に対して固定的に接続したこと、
     を特徴とする請求項8に記載の可動体。
    The plurality of power receiving electrodes are fixedly connected to the load;
    The movable body according to claim 8.
  11.  前記コイルを備えたこと、
     を特徴とする請求項8から10のいずれか一項に記載の可動体。
    Having the coil,
    The movable body according to any one of claims 8 to 10, wherein:
  12.  電力供給領域に配置され、電力被供給領域に配置された可動体を介して所定の負荷に対して電力を供給する固定体であって、
     前記可動体に配置された少なくとも一組の受電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置されることにより、これら受電電極との間にコンデンサを構成する複数の第1の送電電極及び複数の第2の送電電極と、
     前記複数の第1の送電電極及び前記複数の第2の送電電極に対して電力を供給する交流電源とを備え、
     前記コンデンサと、当該コンデンサに直列接続されるように前記固定体又は前記可動体に配置されたコイルとの直列共振により、前記負荷に対して電力供給を行うこと、
     を特徴とする固定体。
    A fixed body that is arranged in the power supply area and supplies power to a predetermined load via a movable body arranged in the power supply area,
    With respect to at least one set of power receiving electrodes arranged on the movable body, the power receiving area and the power supplied area are arranged in an opposing and non-contact manner across the boundary surface between the power supplying area and the power supplied area. A plurality of first power transmission electrodes and a plurality of second power transmission electrodes constituting a capacitor with the electrodes;
    An AC power supply for supplying power to the plurality of first power transmission electrodes and the plurality of second power transmission electrodes,
    Power is supplied to the load by series resonance between the capacitor and a coil disposed in the fixed body or the movable body so as to be connected in series to the capacitor;
    A fixed body characterized by
PCT/JP2009/006972 2008-12-19 2009-12-17 Power supply system, and movable body and fixed body for same WO2010070914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008324520A JP2010148287A (en) 2008-12-19 2008-12-19 Power supply system
JP2008-324520 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010070914A1 true WO2010070914A1 (en) 2010-06-24

Family

ID=42268593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006972 WO2010070914A1 (en) 2008-12-19 2009-12-17 Power supply system, and movable body and fixed body for same

Country Status (2)

Country Link
JP (1) JP2010148287A (en)
WO (1) WO2010070914A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049750A1 (en) * 2012-09-26 2014-04-03 富士機械製造株式会社 Electrostatic-coupling-type non-contact power supply apparatus
WO2017002842A1 (en) * 2015-06-29 2017-01-05 株式会社ExH Electrical power transmission system
US9941930B2 (en) 2011-08-16 2018-04-10 Philips Lighting Holding B.V. Conductive layer of a large surface for distribution of power using capacitive power transfer
US10468912B2 (en) 2011-08-16 2019-11-05 Signify Holding B.V. Capacitive contactless powering system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821370B2 (en) * 2010-08-25 2015-11-24 株式会社村田製作所 Power transmission device and power transmission system using the power transmission device
US9755435B2 (en) * 2011-08-16 2017-09-05 Philips Lighting Holding B.V. Wireless power converter utilized as a capacitive power transfer system
RU2606389C2 (en) * 2011-08-16 2017-01-10 Филипс Лайтинг Холдинг Б.В. Receiving electrodes of capacitive wireless power supply system
JP5962550B2 (en) * 2013-03-11 2016-08-03 株式会社デンソー Power receiving device
JP6472818B2 (en) * 2014-06-26 2019-02-20 エッグトロニック エンジニアリング エス.アール.エル. Method and apparatus for transmitting power
JP7187810B2 (en) * 2018-04-13 2022-12-13 スミダコーポレーション株式会社 Contactless power transmission system, power receiving device and power transmitting device
KR102565744B1 (en) * 2021-05-18 2023-08-10 조선대학교산학협력단 Apparatus for transmitting power wirelessly using capacitive coupling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312942A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Noncontact collection method and its device
JP2005079786A (en) * 2003-08-29 2005-03-24 Sony Corp Power transmission system, power supply apparatus, power receiving apparatus, signal transmission system, signal transmission apparatus, and signal receiving apparatus
JP2005168232A (en) * 2003-12-04 2005-06-23 Takenaka Komuten Co Ltd Cordless power supply method
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312942A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Noncontact collection method and its device
JP2005079786A (en) * 2003-08-29 2005-03-24 Sony Corp Power transmission system, power supply apparatus, power receiving apparatus, signal transmission system, signal transmission apparatus, and signal receiving apparatus
JP2005168232A (en) * 2003-12-04 2005-06-23 Takenaka Komuten Co Ltd Cordless power supply method
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941930B2 (en) 2011-08-16 2018-04-10 Philips Lighting Holding B.V. Conductive layer of a large surface for distribution of power using capacitive power transfer
US10468912B2 (en) 2011-08-16 2019-11-05 Signify Holding B.V. Capacitive contactless powering system
WO2014049750A1 (en) * 2012-09-26 2014-04-03 富士機械製造株式会社 Electrostatic-coupling-type non-contact power supply apparatus
JPWO2014049750A1 (en) * 2012-09-26 2016-08-22 富士機械製造株式会社 Electrostatic coupling type non-contact power feeding device
WO2017002842A1 (en) * 2015-06-29 2017-01-05 株式会社ExH Electrical power transmission system

Also Published As

Publication number Publication date
JP2010148287A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
WO2010070914A1 (en) Power supply system, and movable body and fixed body for same
JP5415780B2 (en) Power supply system, and movable body and fixed body therefor
JP2010193692A5 (en)
EP3355083B1 (en) Foreign-object detecting device, wireless electric-power transmitting device, and wireless electric-power transmission system
JP5689682B2 (en) Inductive power supply device
JP5543378B2 (en) Magnetic positioning for inductive coupling
JP6059202B2 (en) Reverse winding induction power supply
US20100328044A1 (en) Inductive power system and method of operation
JP5522271B2 (en) Wireless power feeding device, wireless power receiving device, wireless power transmission system
CN103636098A (en) System and method for detecting, characterizing, and tracking inductive power receiver
EP3080825B1 (en) Transmitter for inductive power transfer systems
EP3700058A1 (en) Inductive power transmitter
WO2010103787A1 (en) Power supply system, and movable body and fixed body for same
JP2013179820A (en) Wireless power transmission device
US9929606B2 (en) Integration of positioning antennas in wireless inductive charging power applications
US10784059B2 (en) Control circuits for self-powered switches and related methods of operation
CN103814508A (en) Compact positioning assembly comprising an actuator and a sensor built into the yoke of the actuator
JP2011035980A (en) Power supply system
WO2016017750A1 (en) Power supply system, and movable body for same
JP3206983U (en) Wireless power supply system
KR102209058B1 (en) Power Conversion Unit for Wireless Power Transmitter
JP2018143059A (en) Power transmission apparatus
JPH06327222A (en) Linear motor device
JP2023128928A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833221

Country of ref document: EP

Kind code of ref document: A1