WO2010067532A1 - Optical scanner and image display device using the optical scanner - Google Patents

Optical scanner and image display device using the optical scanner Download PDF

Info

Publication number
WO2010067532A1
WO2010067532A1 PCT/JP2009/006484 JP2009006484W WO2010067532A1 WO 2010067532 A1 WO2010067532 A1 WO 2010067532A1 JP 2009006484 W JP2009006484 W JP 2009006484W WO 2010067532 A1 WO2010067532 A1 WO 2010067532A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
voltage
optical scanner
elastic beam
power supply
Prior art date
Application number
PCT/JP2009/006484
Other languages
French (fr)
Japanese (ja)
Inventor
山内慎也
田中聡
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010067532A1 publication Critical patent/WO2010067532A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present disclosure relates to an optical scanner used in a laser printer or an image display device, and more particularly to an optical scanner using a MEMS mirror and an image display device using the optical scanner.
  • the amount of variation in the phase difference changes depending on the elapsed time from the end of the driving of the optical scanner to the next driving.
  • the amount of variation in the phase difference is an amount representing how much the time difference between the drive signal and the detection signal varies when the optical scanner is driven in a resonance state.
  • the detection signal is delayed in phase by 90 ° with respect to the drive signal as shown in FIG.
  • the optical scanner 100 used in the embodiment described later is configured so that the resonance frequency is about 30 kHz. Therefore, a phase difference of 90 ° corresponds to a delay of about 8 ⁇ s in time.
  • the detection signal should always be detected with a delay of about 8 ⁇ s with respect to the drive signal.
  • the time difference between the drive signal and the detection signal varies even though the optical scanner 100 is driven to resonate.
  • the vertical axis indicates how much the time difference differs from the amount of variation in phase difference, that is, the time difference between the drive signal and the detection signal at the time of the initial drive when the elapsed time is 0 hour.
  • the horizontal axis represents the elapsed time from the end of driving of the optical scanner to the next driving.
  • FIG. 10 clearly shows that the amount of variation in the phase difference increases as the elapsed time becomes longer.
  • the amount of variation in the phase difference after about 120 hours is about 10 nsec.
  • the maximum value of the variation amount of the phase difference is about 16 nsec after about 480 hours.
  • a reflection mirror that is oscillated around an oscillation axis and scans incident light in a predetermined direction is coupled to the reflection mirror.
  • the first elastic beam is provided on at least one of the first elastic beam and the second elastic beam for swinging, and generates a bending displacement in at least one of the first elastic beam and the second elastic beam.
  • the present inventor has discovered that the amount of variation in phase difference can be suppressed by adjusting the polarization state of the detecting piezoelectric element. Therefore, according to the present invention, at least when a drive signal is not input to the drive piezoelectric element, it is possible to suppress the amount of variation in phase difference by adjusting the polarization state of the detection piezoelectric element by applying a DC voltage.
  • the polarization state means the degree of alignment of the electric dipole moment in the piezoelectric element.
  • the polarization state is represented by a physical quantity such as a residual polarization value or a saturation polarization value in a hysteresis curve of polarization-electric field characteristics.
  • the residual polarization value is a polarization value remaining in the piezoelectric element when no external electric field exists.
  • the saturation polarization value is a polarization value at which a change in polarization value is saturated with respect to an external electric field.
  • the DC power supply unit applies a DC voltage to the second piezoelectric element so that an electric field higher than a coercive electric field is generated in the second piezoelectric element.
  • An optical scanner characterized by this can be obtained.
  • the DC power supply unit applies a DC voltage to the second piezoelectric element so that an electric field higher than the coercive electric field is generated in the second piezoelectric element unit.
  • the polarization state in particular, the residual polarization value changes depending on the applied DC voltage value.
  • the applied DC voltage value generates an electric field higher than the coercive electric field
  • the remanent polarization value hardly depends on the DC voltage value. Accordingly, since it is not necessary to finely control the direct current voltage value applied to the second piezoelectric element, it is easy to adjust the polarization state of the second piezoelectric element.
  • the DC power supply unit may be configured such that the second time before the application of an AC voltage to the first piezoelectric element is started by the AC power supply unit before the second time. It is possible to obtain an optical scanner characterized in that application of a DC voltage to the piezoelectric element is started.
  • the application of the DC voltage to the second piezoelectric element is started a predetermined time before the application of the AC voltage to the first piezoelectric element is started. Since no DC voltage is always applied when no AC voltage is applied to the first piezoelectric element, that is, when the optical scanner is not driven, the power consumed can be reduced.
  • the DC power supply unit has at least a DC voltage application time than the AC power supply unit starts to apply an AC voltage to the first piezoelectric element.
  • the polarization state of the piezoelectric element changes with the application time of the DC voltage.
  • the application time exceeds a predetermined time, the polarization state does not change even if the DC voltage application time increases. In other words, the polarization state is saturated with respect to the DC voltage application time. Therefore, in such an optical scanner, the AC power supply unit starts applying the AC voltage to the first piezoelectric element at least before the time when the polarization state is saturated with respect to the DC voltage application time.
  • Application of a DC voltage to the piezoelectric element 2 is started. Accordingly, since the DC voltage is applied for the minimum time necessary for adjusting the polarization state, the power consumption can be further reduced.
  • the DC power supply unit is further configured to adjust the polarization state of the first piezoelectric element by at least the first piezoelectric element by the AC power supply unit.
  • a DC voltage is applied to the first piezoelectric element, whereby an optical scanner can be obtained.
  • a DC voltage is applied to the first piezoelectric element when at least an AC voltage is not applied to the first piezoelectric element.
  • the AC power supply unit is configured to drive the reflection mirror, the first elastic beam, and the second elastic beam to resonate around an oscillation axis.
  • An optical scanner comprising a frequency adjusting unit that adjusts the frequency of the AC voltage applied to the first piezoelectric element in accordance with a detection signal can be obtained.
  • the optical scanner is resonantly driven by adjusting the frequency of the AC voltage for driving the optical scanner in accordance with the detection signal.
  • the frequency adjusting unit feeds back a detection signal related to the phase of the reflecting mirror to adjust the frequency of the AC voltage. Therefore, a technique that can reduce the phase shift amount of the reflection mirror by feedback of the detection signal is effective for driving control of the optical scanner driven by resonance.
  • the DC power supply unit further includes the first piezoelectric element when an AC voltage is applied to the first piezoelectric element by the AC power supply unit.
  • An optical scanner characterized by applying a DC voltage to at least one of the element and the second piezoelectric element can be obtained.
  • an optical scanner obtained by the above-described aspect of the present disclosure for scanning light to form an image, and light to the optical scanner.
  • An image display apparatus comprising: a light source for supply; and an eyepiece optical system that guides light scanned by the optical scanner to a user's eyes can be obtained.
  • the optical scanner obtained according to the above-described aspect of the present disclosure is used for the image display apparatus.
  • FIG. 3 is a perspective view showing a mechanical configuration of the optical scanner 100.
  • 2 is a block diagram showing a functional configuration of the optical scanner 100.
  • FIG. 7 is a flowchart for explaining a flow in which the signal processing circuit 170 controls the application of voltage to the first piezoelectric element 130 and the second piezoelectric element 140.
  • the figure explaining the relationship between a frequency, an amplitude gain, and a phase difference.
  • FIG. 1 is a diagram illustrating an overall configuration of an image display device 1.
  • FIG. FIG. 6 is a block diagram showing another example of a functional configuration for driving the optical scanner 100. The figure which showed the relationship between the elapsed time from the drive end of an optical scanner to the next drive in the case of not applying a DC voltage, and the amount of deviation
  • the optical scanner 100 includes a base 110 and a pedestal 120. Although shown in a separated state in FIG. 1, the base 110 and the pedestal 120 are bonded together. Hereinafter, the structure of the base 110 and the pedestal 120 will be described.
  • the base 110 includes a reflection mirror 111, a first elastic beam 112, a second elastic beam 113, and an outer frame portion 114. Further, the substrate 110 includes a first piezoelectric element 130 and a second piezoelectric element 140, lower electrodes 131 and 141 for applying a voltage to the first piezoelectric element 130 and the second piezoelectric element 140, and upper electrodes 132 and 142. Is provided.
  • the reflection mirror 111 formed in a substantially circular shape in plan view is provided at the center of the base 110.
  • a first elastic beam 112 is connected to one end of the reflection mirror 111.
  • a second elastic beam 113 is connected to the other end of the reflection mirror 111.
  • the first elastic beam 112 includes a reflection mirror support portion 112a, a coupling portion 112b, and a pair of beam portions 112c.
  • One end of the reflection mirror support 112 a is connected to the reflection mirror 111.
  • the other end of the reflection mirror support part 112a is connected to the coupling part 112b.
  • the coupling portion 112b is coupled so as to be orthogonal to the reflection mirror support portion 112a.
  • a pair of beam portions 112c are coupled to both ends of the coupling portion 112b.
  • One end of the pair of beam portions 112c is coupled to both ends of the coupling portion 112b so as to be orthogonal to the coupling portion 112b.
  • the other ends of the pair of beam portions 112c are connected so as to be orthogonal to the outer frame portion 114.
  • the second elastic beam 113 includes a reflection mirror support portion 113a, a coupling portion 113b, and a pair of beam portions 113c. Since the shape of the second elastic beam 113 is symmetrical to the first elastic beam 112 with respect to the reflection mirror 111, the description thereof is omitted.
  • the outer frame portion 114 is arranged in a square ring around the reflection mirror 111, the first elastic beam 112, and the second elastic beam 113.
  • the outer frame portion 114 serves as a fixed end when the reflecting mirror 111, the first elastic beam 112, and the second elastic beam 113 are swung. That is, the outer frame portion 114 may have any shape as long as it has a function of acting as a fixed end.
  • the first piezoelectric element 130 is provided on the base 110 to drive the reflection mirror 111, the first elastic beam 112, and the second elastic beam 113 to swing. Specifically, the first piezoelectric element 130 is formed on the lower electrode 131.
  • the lower electrode 131 is formed from the upper surface of the pair of beam portions 112c to the outer frame portion 114. That is, the first piezoelectric element 130 is fixed to the pair of beam portions 112 c and the outer frame portion 114 via the lower electrode 131.
  • An upper electrode 132 is provided on the upper surface of the first piezoelectric element 130. When a voltage is applied between the lower electrode 131 and the upper electrode 132, the first piezoelectric element 130 is polarized.
  • the first piezoelectric element 130 expands and contracts in the longitudinal direction of the pair of beam portions 112c. Since the first piezoelectric element 130 is fixed to the pair of beam portions 112c and the outer frame portion 114 via the lower electrode 131, the expansion and contraction of the first piezoelectric element 130 causes the pair of beam portions 112c to extend in the thickness direction of the base 110. It is converted into a bending displacement. That is, the first piezoelectric element 130 functions as a unimorph. The bending displacement of the pair of beam portions 112c is converted into a rotational torque for swinging the first elastic beam 112, the second elastic beam 113, and the reflection mirror 111 via the coupling portion 112b.
  • the two piezoelectric elements constituting the first piezoelectric element 130 are driven in reverse phase by applying AC voltages having opposite phases, that is, AC voltages having a phase shift of ⁇ .
  • the lower electrode 131, the first piezoelectric element 130, and the upper electrode 132 are formed by the following method, for example.
  • platinum (Pt), gold (Au), or the like is deposited from the upper surface of the pair of beam portions 112c to the outer frame portion 114 with a thickness of 0.2 ⁇ m to 0.6 ⁇ m, whereby the lower electrode 131 is formed.
  • the for this deposition for example, a film forming method such as sputtering or vapor deposition is used.
  • a first piezoelectric element 130 is formed by depositing a piezoelectric element such as PZT on the lower electrode 131 with a thickness of 1 ⁇ m to 3 ⁇ m.
  • a film forming method such as an aerosol deposition method (see, for example, JP-A-2007-31737) is used.
  • the upper electrode 132 is formed on the first piezoelectric element 130.
  • the upper electrode 132 is formed by the same method as the lower electrode 131.
  • a wiring cable (not shown) is connected to the lower electrode 131 and the upper electrode 132.
  • the second piezoelectric element 140 is formed on the lower electrode 141 in order to detect the swinging state of the reflection mirror 111.
  • the lower electrode 141 is formed from the upper surface of the pair of beam portions 113 c to the outer frame portion 114. That is, the second piezoelectric element 140 is fixed to the pair of beam portions 113 c and the outer frame portion 114 via the lower electrode 141.
  • An upper electrode 142 is provided on the upper surface of the second piezoelectric element 140.
  • the method of forming the lower electrode 141, the second piezoelectric element 140, and the upper electrode 142 is the same as the method of forming the lower electrode 131, the first piezoelectric element 130, and the upper electrode 132.
  • the expansion / contraction of the first piezoelectric element 130 is converted into a bending displacement of the pair of beam portions 112c, and as a result, the first elastic beam 112, the second elastic beam 113, and the reflection mirror 111 are swung.
  • the second piezoelectric element 140 is bent and displaced. Since the second piezoelectric element 140 is bent and displaced, the second piezoelectric element 140 is polarized in the thickness direction of the base 110 due to the piezoelectric effect.
  • a potential difference corresponding to the bending displacement amount of the second piezoelectric element 140 is generated between the lower electrode 141 and the upper electrode 142.
  • the pedestal 120 includes a base fixing part 121.
  • the base fixing part 121 is fixed to the outer frame part 114 of the base 110. Therefore, the base fixing part 121 is formed in a quadrangular annular shape having the same size as the outer frame part 114.
  • the optical scanner 110 is formed by fixing the pedestal 120 and the base 110 by bonding, anodic bonding, or the like.
  • the reflection mirror 111, the first elastic beam 112, the second elastic beam 113, the first piezoelectric element 130 and the second piezoelectric element 140 described above are the reflection mirror, the first elastic beam, the second elastic beam, the first elastic beam of the present invention. It is an example of 1 piezoelectric element and 2nd piezoelectric element.
  • the optical scanner 100 includes a first piezoelectric element 130, a second piezoelectric element 140, an AC voltage application unit 150, a DC voltage application unit 160, a signal processing circuit 170, and a signal superposition circuit 190.
  • a first piezoelectric element 130 As shown in FIG. 2, the optical scanner 100 includes a first piezoelectric element 130, a second piezoelectric element 140, an AC voltage application unit 150, a DC voltage application unit 160, a signal processing circuit 170, and a signal superposition circuit 190.
  • individual functions of the optical scanner 100 will be described.
  • the AC voltage application unit 150 includes a phase comparator 151, a low pass filter 152, a voltage controlled oscillator 153, a phase shifter 154, and a comparator 155.
  • the phase comparator 151 compares the drive signal for driving the first piezoelectric element 130 with the detection signal generated from the second piezoelectric element 140. Based on this comparison, the phase comparator 151 outputs a phase difference voltage corresponding to the phase difference between the drive signal and the detection signal to the low-pass filter 152.
  • the low-pass filter 152 integrates and smoothes the phase difference voltage from the phase comparator 151.
  • the low pass filter 152 outputs the smoothed phase difference voltage to the voltage controlled oscillator 153 as a VCO control voltage.
  • the voltage controlled oscillator 153 generates an alternating voltage for driving the first piezoelectric element 130.
  • the voltage controlled oscillator 153 outputs a sine wave having a frequency corresponding to the VCO control voltage from the low-pass filter 152 to a signal superimposing circuit 190 and a phase shifter 154 described later as a drive signal.
  • a phase shifter 154 described later as a drive signal.
  • the phase shifter 154 adjusts the phase of the input drive signal so that the phase of the input drive signal and the detection signal matches when the optical scanner 100 is in the resonance state.
  • the phase shifter 154 outputs the drive signal whose phase has been adjusted to the comparator 155.
  • the comparator 155 compares the potential 0V with the drive signal, and outputs a positive predetermined potential if the potential of the drive signal is 0V or more, and outputs a negative predetermined potential if the potential of the drive signal is less than 0V. That is, the comparator 155 shapes the input drive signal into a rectangular wave.
  • the comparator 155 outputs the drive signal shaped into a rectangular wave to the phase comparator 151.
  • the phase comparator 151, the low-pass filter 152, the voltage controlled oscillator 153, the phase shifter 154, and the comparator 155 form a phase synchronization circuit.
  • the AC voltage application unit 150 serves to keep the oscillation of the optical scanner 100 at a predetermined oscillation frequency.
  • the AC voltage application unit 150 supplies a control signal to the voltage-controlled oscillator 153 and the function of adjusting the amplitude of the drive signal by boosting or stepping down the output drive signal. And has a function of adjusting the frequency of the drive signal.
  • the AC voltage application unit 150 described above is an example of the AC power supply unit of the present invention, and the phase synchronization circuit formed by the phase comparator 151, the low-pass filter 152, the voltage control oscillator 153, the phase shifter 154, and the comparator 155 is the present invention. It is an example of the frequency adjustment part.
  • the DC voltage application unit 160 applies a DC voltage to the signal superimposing circuit 190 and the second piezoelectric element 140.
  • the DC voltage from the DC voltage application unit 160 is directly applied between the upper electrode 142 and the lower electrode 141.
  • a DC voltage from the DC voltage application unit 160 is applied between the upper electrode 132 and the lower electrode 131 via the signal superimposing circuit 190.
  • the signal superimposing circuit 190 superimposes the driving signal output from the voltage controlled oscillator 153 and the DC voltage from the DC voltage applying unit 160.
  • the signal superimposing circuit 190 applies a driving signal on which a DC voltage is superimposed between the first piezoelectric element 130, that is, between the upper electrode 132 and the lower electrode 131.
  • the DC voltage applied to the first piezoelectric element 130 means a DC voltage from the DC voltage application unit 160 applied via the signal superimposing circuit 190.
  • the first piezoelectric element 130 expands and contracts the first piezoelectric element 130 in the longitudinal direction of the beam portion 112c in accordance with the drive signal on which the DC voltage output from the signal superimposing circuit 190 is superimposed. As the first piezoelectric element 130 expands and contracts, the first elastic beam 112, the second elastic beam 113, and the reflection mirror 111 swing.
  • the second piezoelectric element 140 outputs a detection signal generated by the swing of the second elastic beam 113 to the phase comparator 151.
  • the phase comparator 151 compares this detection signal with the drive signal shaped into a rectangular wave.
  • the signal processing circuit 170 outputs a control signal to control the DC voltage application circuit 160 and the AC voltage application unit 150 according to the flowchart shown in FIG.
  • the signal processing circuit 170 is configured to receive various signals such as a detection signal and a phase difference voltage from the AC voltage application unit 150 for the control operation.
  • the DC voltage application unit 160 can apply a DC voltage to the first piezoelectric element 130 and the second piezoelectric element 140 while a drive signal is input to the first piezoelectric element 130 as described above. It is also possible to apply a DC voltage to the first piezoelectric element 130 and the second piezoelectric element 140 when no drive signal is input to the first piezoelectric element 130.
  • the DC voltage application unit 160 described above is an example of the DC power supply unit of the present invention.
  • step S ⁇ b> 100 the signal processing circuit 170 transmits a control signal to the DC voltage application unit 160 to cause the DC voltage application unit 160 to apply a DC voltage to the first piezoelectric element 130 and the second piezoelectric element 140. At this time, the drive signal has not yet been input to the first piezoelectric element 130. Thereafter, the signal processing circuit 170 shifts the processing to step S101.
  • step S101 the signal processing circuit 170 passes a predetermined time required for the polarization state to saturate with respect to the DC voltage application time after the DC voltage is applied to the first piezoelectric element 130 and the second piezoelectric element 140. Determine whether or not. If the predetermined time has not elapsed, the DC voltage is continuously applied to the first piezoelectric element 130 and the second piezoelectric element 140 until the predetermined time has elapsed (N in step S101). On the other hand, when the predetermined time has elapsed (Y in step S101), the signal processing circuit 170 shifts the processing to step S102.
  • step S102 the signal processing circuit 170 transmits a control signal to the AC voltage application unit 150 to cause the voltage control oscillator 153 to oscillate a drive signal having an amplitude of 5V.
  • the oscillated drive signal is input from the AC voltage application unit 150 to the signal superimposing circuit 190.
  • the signal superimposing circuit 190 superimposes the DC voltage from the DC voltage application unit 160 on this drive signal.
  • the signal superimposing circuit 190 outputs a drive signal on which the DC voltage is superimposed to the first piezoelectric element 130. Thereafter, the signal processing circuit 170 shifts the processing to step S103.
  • step S103 the signal processing circuit 170 determines whether or not the detection signal has exceeded a predetermined threshold voltage preset in the signal processing circuit 170.
  • the signal processing circuit 170 changes the frequency of the drive signal by transmitting a control signal to the AC voltage application unit 150 (step S104). Specifically, the signal processing circuit 170 changes the frequency from 27 kHz to 33 kHz, and searches for a frequency at which the voltage of the detection signal exceeds a predetermined threshold voltage.
  • the voltage value of the detection signal changes according to the frequency of the drive signal. It is possible to roughly determine whether or not the optical scanner 100 is in a resonance state based on a change in the voltage value of the detection signal.
  • the upper diagram of FIG. 4 is a diagram showing the relationship between the frequency of the drive signal and the amplitude gain.
  • the amplitude gain is a value representing the magnitude of the deflection angle of the reflection mirror 111.
  • the optical scanner 100 of this embodiment is manufactured so that the resonance frequency is 30 kHz. Therefore, when the frequency of the drive signal is 30 kHz, the optical scanner 100 is resonantly driven and the amplitude gain is maximized.
  • the amplitude gain decreases as the frequency of the drive signal increases from 30 kHz.
  • the magnitude of the deflection angle of the reflection mirror 111 is reflected as the magnitude of the voltage value of the detection signal. Therefore, it is possible to roughly determine whether or not the optical scanner 100 is in a resonance state by checking the voltage value of the detection signal.
  • the signal processing circuit 170 transmits a control signal to the AC voltage application unit 150, thereby causing the voltage control oscillator 153 to have a drive signal having an amplitude of 40V. Is oscillated (step S105).
  • the oscillated drive signal is input from the AC voltage application unit 150 to the signal superimposing circuit 190.
  • the signal superimposing circuit 190 superimposes the DC voltage from the DC voltage application unit 160 on this drive signal.
  • the signal superimposing circuit 190 outputs a drive signal on which the DC voltage is superimposed to the first piezoelectric element 130. Thereafter, the signal processing circuit 170 shifts the processing to step S106.
  • step S106 the signal processing circuit 170 determines whether or not the phase difference between the detection signal and the drive signal is 90 °. When the phase difference is not 90 ° (N in step S106), the signal processing circuit 170 changes the frequency of the drive signal by transmitting a control signal to the AC voltage application unit 150 (step S107), and the phase difference is 90. Find the frequency that will be °.
  • the lower diagram of FIG. 4 shows the relationship between the phase difference between the detection signal and the drive signal and the frequency of the drive signal.
  • the phase difference between the detection signal and the drive signal is 90 °.
  • the phase difference between the detection signal and the drive signal becomes smaller than 90 ° as the frequency of the drive signal becomes lower than the resonance frequency, and becomes larger than 90 ° as the frequency becomes higher than the resonance frequency. Therefore, it is possible to determine whether or not the optical scanner 100 is in a resonance state by examining the phase difference between the detection signal and the drive signal.
  • step S106 When the phase difference between the detection signal and the drive signal is 90 ° (Y in step S106), the optical scanner 100 is driven to resonate. This resonance driving is continued until it is determined in step S108 that the signal processing circuit 170 finishes driving the optical scanner 100. This determination is achieved, for example, by determining whether or not an external signal for ending the operation of the optical scanner 100 is input from the outside of the optical scanner 100 to the signal processing circuit 170.
  • Step S108 is Y
  • the signal processing circuit 170 transmits a control signal to the AC voltage application unit 150 and stops outputting the drive signal (Step S109). Thereafter, the signal processing circuit 170 transmits a control signal to the DC voltage application unit 160 to stop the output of the DC voltage (step S110).
  • FIG. 4 shows how much variation in phase difference can be suppressed by applying a DC voltage to the first piezoelectric element and the second piezoelectric element before a drive signal is transmitted to the first piezoelectric element. This will be described with reference to FIGS.
  • the polarization state ratio ( ⁇ P%) is examined for a sample of a piezoelectric element to which a DC voltage of 5 V is applied.
  • the sample of this piezoelectric element has the same composition as the first piezoelectric element 130 and the second piezoelectric element 140 used in this embodiment.
  • the time for applying the DC voltage of 5V is 0 minutes, 5 minutes, 10 minutes, 15 minutes, and 20 minutes.
  • the horizontal axis represents the elapsed time from the start of application of a DC voltage of 5V.
  • the vertical axis represents the ratio between the polarization state of the sample before application of the DC voltage and the polarization state of the sample after application of the DC voltage.
  • the saturation polarization value Pm indicated by a black circle and a straight line in FIG. 5 showed a substantially uniform value even when the DC voltage application time was changed.
  • the remanent polarization value Pr indicated by a black square and a dotted line in FIG. 5 rapidly increases until the DC voltage application time is 5 minutes and gradually increases from 5 minutes to 10 minutes.
  • the remanent polarization value Pr hardly changes after the DC voltage application time exceeds 10 minutes. In other words, when the DC voltage application time is 10 minutes or longer, the remanent polarization value Pr is saturated. Accordingly, it is considered that the DC voltage application time is appropriately 10 minutes or more.
  • the polarization state ratio ( ⁇ P%) is examined for the sample to which a DC voltage has been applied for 10 minutes.
  • the value of the applied DC voltage is 0V, 5V, 10V, 15V, and 20V.
  • the horizontal axis represents the amount of DC voltage applied to the sample for 10 minutes.
  • the vertical axis represents the ratio between the polarization state of the piezoelectric element sample before application of the DC voltage and the polarization state of the piezoelectric element material after application of the DC voltage.
  • the saturation polarization value Pm and the remanent polarization value Pr are shown in FIG. 6 in the same notation as FIG.
  • the saturation polarization value Pm showed a substantially uniform value even when the applied DC voltage amount was changed.
  • the remanent polarization value Pr increases rapidly until the applied DC voltage amount is 5V, and shows a slight decrease from 5V to 10V.
  • the remanent polarization value Pr hardly changes in the region where the applied DC voltage amount is 10 V or more. In other words, when the DC voltage is 10 V or more, the remanent polarization value Pr is saturated. Therefore, it is considered that an appropriate DC voltage value of 10 V or more is appropriate.
  • the piezoelectric element used in the optical scanner 100 in the present embodiment is formed such that an electric field equal to the coercive electric field is generated when the potential difference between the upper electrode and the lower electrode is about 8V. Therefore, it can be considered from FIG. 6 that it is appropriate to apply a voltage equal to or higher than the voltage value at which the coercive electric field is generated to the piezoelectric element.
  • the vertical axis represents the amount of phase difference variation
  • the horizontal axis represents the elapsed time from the end of driving of the optical scanner to the next driving.
  • a DC voltage of 10V was applied to the first piezoelectric element 130 for 48 hours.
  • the amount of variation in phase difference was about 4 nsec
  • the amount of variation in phase difference was about 2 nsec.
  • FIG. 10 which shows the dependence when no DC voltage is applied, the difference in the amount of variation in phase difference between the first drive and after 120 hours is about 10 nsec.
  • FIG. 10 which shows the dependence when no DC voltage is applied
  • the difference in the amount of variation in phase difference between the initial drive and after 120 hours has elapsed is about 2 nsec, which is clearly smaller than that in FIG. That is, the amount of variation in the detected phase difference is suppressed by applying a DC voltage to the piezoelectric element.
  • the image display device 1 is a device for causing a viewer to visually recognize a virtual image by causing a light beam to enter the pupil 52 of the viewer and displaying an image on the retina 54.
  • This device is also called a retinal scanning display.
  • the image display apparatus 1 includes a light beam generation unit 2, an optical fiber 19, a collimating optical system 20, an optical scanner 100, a horizontal scanning driver 61, a first relay optical system 22, a vertical scanning unit 23, a vertical scanning driver 62, a second A relay optical system 24 is provided.
  • the light beam generation means 2 includes a video signal processing circuit 3, a light source unit 30, and an optical multiplexing unit 40.
  • the video signal processing circuit 3 generates a B signal, a G signal, an R signal, a horizontal synchronization signal, and a vertical synchronization signal, which are elements for combining images, based on a video signal supplied from the outside.
  • the light source unit 30 includes a B laser driver 31, a G laser driver 32, an R laser driver 33, a B laser 34, a G laser 35, and an R laser 36.
  • the B laser driver 31 drives the B laser 34 so as to generate a blue light beam having an intensity corresponding to the B signal from the video signal processing circuit 3.
  • the G laser driver 32 drives the G laser 35 so as to generate a green light beam having an intensity corresponding to the G signal from the video signal processing circuit 3.
  • the R laser driver 33 drives the R laser 36 so as to generate a red light beam having an intensity corresponding to the R signal from the video signal processing circuit 3.
  • the B laser 34, the G laser 35, and the R laser 36 can be configured as, for example, a semiconductor laser or a solid-state laser with a harmonic generation mechanism.
  • the light source unit 30 described above is an example of the light source of the present invention.
  • the optical multiplexing unit 40 includes collimating optical systems 41, 42, 43, dichroic mirrors 44, 45, 46, and a condensing optical system 47.
  • the blue laser light emitted from the B laser 34 is collimated by the collimating optical system 41 and then enters the dichroic mirror 44.
  • the green laser light emitted from the G laser 35 enters the dichroic mirror 45 through the collimating optical system 42.
  • the red laser light emitted from the R laser 36 enters the dichroic mirror 46 through the collimating optical system 43.
  • the three primary color laser beams respectively incident on the dichroic mirrors 44, 45, and 46 are reflected or transmitted in a wavelength-selective manner and are combined as one light beam, and reach the condensing optical system 47.
  • the combined laser light is condensed by the condensing optical system 47 and enters the optical fiber 19.
  • the horizontal scanning driver 61 drives the optical scanner 100 according to the horizontal synchronizing signal from the video signal processing circuit 3.
  • the vertical scanning driver 62 drives the vertical scanning scanner 23 according to the vertical synchronization signal from the video signal processing circuit 3.
  • the laser light is converted into a light beam scanned in the horizontal direction and the vertical direction by the scanning of the optical scanner 100 and the vertical scanning scanner 23, and can be displayed as an image.
  • laser light emitted from the optical fiber 19 is converted into parallel light by the collimating optical system 20 and then guided to the optical scanner 100.
  • the laser beam scanned in the horizontal direction by the optical scanner 100 passes through the first relay optical system 22 and then enters the vertical scanning scanner 23 as parallel rays.
  • an optical pupil is formed at the position of the vertical scanning scanner 23 by the first relay optical system 22.
  • the laser beam scanned in the vertical direction by the vertical scanning scanner 23 passes through the second relay optical system 24 and then enters the observer's pupil 52 as parallel rays.
  • the observer's pupil 52 and the optical pupil at the position of the vertical scanning scanner 23 are conjugated by the second relay optical system 24.
  • the above-described second relay optical system 24 is an example of an eyepiece optical system according to the present invention.
  • the DC voltage application unit 160 applies a DC voltage to both the first piezoelectric element 130 and the second piezoelectric element 140.
  • a configuration in which a DC voltage is applied only to the second piezoelectric element 140 may be adopted.
  • the drive frequency of the optical scanner 100 is set to be the same as the resonance frequency. That is, the optical scanner 100 is driven to resonate. However, the optical scanner 100 may be driven at a frequency different from the resonance frequency. Since it is necessary to know the phase difference between the detection signal and the drive signal in the resonance drive, it is particularly useful in the resonance drive to suppress the variation amount of the phase difference according to the present invention. However, even when the optical scanner 100 is driven at a frequency at which the phase difference is 0 ° in FIG. 4, it may be necessary to check the phase for the purpose of knowing the scanning position of the light. Therefore, the present invention is useful even when the optical scanner is not used for resonance driving.
  • the drive signal is input to the first piezoelectric element 130 and the detection signal is output from the second piezoelectric element 140.
  • a drive signal may be input to the second piezoelectric element 140 and a detection signal may be output from the first piezoelectric element 130.
  • the structure which can switch the input destination of a drive signal, and the output source of a detection signal like the optical scanner 200 shown by FIG. 9 may be sufficient.
  • the optical scanner 200 is different from the optical scanner 100 in the above-described embodiment in that a switching circuit 180 is provided and two signal superimposing circuits 190a and 190b are provided.
  • a switching circuit 180 selectively outputs the input drive signal to one of the first piezoelectric element 130 and the second piezoelectric element 140 in accordance with the control signal from the signal processing circuit 170, so that the optical scanner 200 has a function of switching a piezoelectric element for driving 200.
  • the switching circuit 180 also has a function of inputting, to the phase comparator 151, a detection signal output from the other piezoelectric element that is not used for driving the optical scanner 200 in accordance with a control signal from the signal processing circuit 170. That is, the switching circuit 180 switches the function of the first piezoelectric element 130 and the second piezoelectric element 140 to either a piezoelectric element used for driving the optical scanner 200 or a piezoelectric element that detects the phase of the optical scanner 200. Enable.
  • the switching circuit 180 can be configured by a single-pole two-contact switch (SPDT (Single-Pole Dual Throw) switch) using, for example, CMOS.
  • SPDT Single-Pole Dual Throw
  • the switching circuit 180 When the driving signal is output from the switching circuit 180 to the first piezoelectric element 130, the switching circuit 180 outputs the driving signal to the signal superimposing circuit 190a.
  • the signal superimposing circuit 190 a superimposes this drive signal and the DC voltage from the DC voltage application unit 160.
  • the signal superimposing circuit 190 a outputs a drive signal superimposed with the DC voltage to the first piezoelectric element 130.
  • the drive signal since the drive signal is not input to the signal superimposing circuit 190b, only the DC voltage from the DC voltage applying unit 160 is input to the second piezoelectric element 140 via the signal superimposing circuit 190b.
  • the switching circuit 180 when the drive signal is output from the switching circuit 180 to the second piezoelectric element 140, the switching circuit 180 outputs the drive signal to the signal superimposing circuit 190b.
  • the signal superimposing circuit 190b superimposes the drive signal and the DC voltage from the DC voltage applying unit 160.
  • the signal superimposing circuit 190b outputs a drive signal superimposed with the DC voltage to the second piezoelectric element 140.
  • the drive signal since the drive signal is not input to the signal superimposing circuit 190a, only the DC voltage from the DC voltage applying unit 160 is input to the first piezoelectric element 130 via the signal superimposing circuit 190a.
  • the effect of using the switching circuit 180 is that the life of the optical scanner 200 can be extended like the signal path switching means described in Patent Document 1.
  • the stress received by the piezoelectric element used for driving is larger than the stress received by the element used for phase detection. Therefore, the lifetime of the piezoelectric element used for driving may be shorter than the lifetime of the piezoelectric element used for phase detection.
  • the switching circuit 180 and switching the piezoelectric element between driving and detection as appropriate, the lifetime of the first piezoelectric element 130 and the second piezoelectric element 140 can be adjusted to be the same. Therefore, the life of the optical scanner 200 can be extended.
  • a DC voltage is applied to the first piezoelectric element 130 and the second piezoelectric element 140 even when the drive signal is transmitted to the first piezoelectric element 130. Is done.
  • the first piezoelectric element 130 and the second piezoelectric element 140 only have to be adjusted in polarization state when the optical scanner 100 is driven. Therefore, the DC voltage is applied only before the drive signal is transmitted to the first piezoelectric element 130, and the DC voltage may not be applied after the drive signal is transmitted.
  • the applied DC voltage is applied as in the technique described in Japanese Patent Application Laid-Open No. 2007-25608.
  • the tension generated in the piezoelectric element it is also possible to change the tension generated in the piezoelectric element and adjust the resonance frequency of the optical scanner.
  • the elastic beam of the optical scanner of the above-described embodiment has a so-called bifurcated beam shape that is coupled to the pair of beam portions from the reflection mirror support portion via the coupling portion.
  • the optical scanner may be an optical scanner having a shape in which the elastic beam is not divided into two branches, such as the optical scanner shown in FIG. 1 of US Pat. No. 6,657,764 and FIG. If a piezoelectric element is used for driving, the present invention is applicable.
  • the reflection mirror 111 is supported at both ends by the first elastic beam 112 connected to one end and the second elastic beam 113 connected to the other end.
  • the optical scanner swings.
  • the present invention can be applied if a piezoelectric element is used for detection and driving.
  • any optical scanner having a configuration in which the reflection mirror supported by the elastic beam is driven and the swing state is detected by a piezoelectric element may be used.
  • the two piezoelectric elements constituting the first piezoelectric element 130 are driven in reverse phase by applying AC voltages having opposite phases, that is, AC voltages having phases shifted by ⁇ , respectively.
  • the reverse-phase driving is performed, for example, on the right piezoelectric element of the two piezoelectric elements constituting the first piezoelectric element 130 in FIG. 1 and the left piezoelectric element of the two piezoelectric elements constituting the second piezoelectric element 140.
  • this may be achieved by applying a reverse-phase AC voltage.
  • an AC voltage having the same phase is applied to the right piezoelectric element of the two piezoelectric elements constituting the first piezoelectric element 130 and the right piezoelectric element of the two piezoelectric elements 140 constituting the second piezoelectric element 140 in FIG. May be applied to achieve in-phase driving.

Abstract

Provided is an optical scanner which can suppress irregularities of the phase difference detected by a piezoelectric element and detect a phase of a reflection mirror with a high accuracy.  Provided is also an image display device using the optical scanner. In the optical scanner (100), a DC power application unit (160) applies DC voltage to a second piezoelectric element (140) at least when no AC voltage is applied to a first piezoelectric element (130) by an AC power application unit (150).  That is, the polarization state of the second piezoelectric element (140) is adjusted by applying DC voltage to the second piezoelectric element (140) when the optical scanner (100) is not driven.  This suppresses irregularities of the phase difference.

Description

光スキャナ及びこの光スキャナを備えた画像表示装置Optical scanner and image display apparatus provided with the optical scanner
 本開示は、レーザープリンタや画像表示装置に用いられる光スキャナ、特にMEMSミラーを用いた光スキャナ及びこの光スキャナを用いた画像表示装置に関する。 The present disclosure relates to an optical scanner used in a laser printer or an image display device, and more particularly to an optical scanner using a MEMS mirror and an image display device using the optical scanner.
 従来、MEMS(Micro-Electro-Mechanical Systems)ミラーを用いて光の走査を行う光スキャナが利用されてきた。特許文献1には、MEMSミラーを用いた光スキャナの一例として、駆動用圧電素子を用いて反射ミラーに連なる弾性梁を揺動駆動させることにより、反射ミラーを揺動させる技術が記載されている。反射ミラーの揺動によって光が走査される場合、例えば走査タイミングを制御する等の目的で、反射ミラーの揺動状態が検出されるのが望ましい。特許文献1においては、弾性梁に設けられた検出用圧電素子を用いて、弾性梁の曲げ運動に伴う変形量が検出される。反射ミラーの揺動状態は、この変形状態に基づいて決定される。 Conventionally, an optical scanner that scans light using a MEMS (Micro-Electro-Mechanical Systems) mirror has been used. Japanese Patent Application Laid-Open No. 2004-133867 describes a technique for swinging a reflection mirror by driving an elastic beam connected to the reflection mirror using a driving piezoelectric element as an example of an optical scanner using a MEMS mirror. . When the light is scanned by swinging the reflecting mirror, it is desirable to detect the swinging state of the reflecting mirror for the purpose of controlling the scanning timing, for example. In Patent Document 1, the amount of deformation accompanying the bending motion of an elastic beam is detected using a detecting piezoelectric element provided on the elastic beam. The swinging state of the reflecting mirror is determined based on this deformed state.
特開平9-101474号公報Japanese Patent Laid-Open No. 9-101474
 画像表示に光スキャナが使用される場合、画像を表示するために高精度の動作制御技術が不可欠である。例えば、特許文献1に記載の技術を応用して、検出用圧電素子からの検出信号と駆動用圧電素子を駆動する駆動信号とを比較する。その比較の結果を用いて、検出信号と駆動信号との位相差が所定の状態になるように駆動信号を制御すれば、高精度の動作制御が可能となる。この制御のためには、駆動信号と検出信号との位相差のばらつき量は、画像の解像度やフレームレート等の諸条件の要求により決定される所定値よりも小さい必要がある。例えば、後述する実施形態で開示する光スキャナ100の場合、位相差のばらつき量を数nsec程度に抑えることが求められる。 When an optical scanner is used for image display, highly accurate operation control technology is indispensable for displaying an image. For example, by applying the technique described in Patent Document 1, a detection signal from the detection piezoelectric element is compared with a drive signal for driving the drive piezoelectric element. By using the result of the comparison to control the drive signal so that the phase difference between the detection signal and the drive signal is in a predetermined state, it is possible to perform highly accurate operation control. For this control, the amount of variation in the phase difference between the drive signal and the detection signal needs to be smaller than a predetermined value determined by requirements of various conditions such as image resolution and frame rate. For example, in the case of the optical scanner 100 disclosed in an embodiment described later, it is required to suppress the amount of variation in phase difference to about several nsec.
 本発明者らは、位相差のばらつき量が、光スキャナの駆動を終了してから次に駆動するまでの経過時間に依存して変化することを発見した。ここで、位相差のばらつき量とは、光スキャナが共振状態で駆動される場合に、駆動信号と検出信号との時間の差がどの程度ばらつくかを表す量である。光スキャナが共振状態で駆動される場合、後記する図4に示される様に、検出信号は駆動信号に対して90°位相が遅れる。後記する実施形態で用いられる光スキャナ100は、共振周波数が約30kHzになるように構成される。従って、90°の位相差は、時間にして約8μsの遅れに相当する。理想的には、光スキャナ100が共振駆動される限り、検出信号は駆動信号に対して常に同じように約8μs遅れて検出されるはずである。しかし現実には、光スキャナ100が共振駆動されているにもかかわらず、駆動信号と検出信号との時間の差はばらつく。 The present inventors have found that the amount of variation in the phase difference changes depending on the elapsed time from the end of the driving of the optical scanner to the next driving. Here, the amount of variation in the phase difference is an amount representing how much the time difference between the drive signal and the detection signal varies when the optical scanner is driven in a resonance state. When the optical scanner is driven in a resonance state, the detection signal is delayed in phase by 90 ° with respect to the drive signal as shown in FIG. The optical scanner 100 used in the embodiment described later is configured so that the resonance frequency is about 30 kHz. Therefore, a phase difference of 90 ° corresponds to a delay of about 8 μs in time. Ideally, as long as the optical scanner 100 is resonantly driven, the detection signal should always be detected with a delay of about 8 μs with respect to the drive signal. However, in reality, the time difference between the drive signal and the detection signal varies even though the optical scanner 100 is driven to resonate.
 図10において、縦軸は位相差のばらつき量、即ち経過時間が0時間である初回駆動時における駆動信号と検出信号との時間差から、どの程度時間差が異なるかを示す。横軸は、光スキャナの駆動終了から次回駆動までの経過時間を表す。図10から明らかに、経過時間が長くなるに従って位相差のばらつき量が増加しているのが分かる。約120時間経過後における位相差のばらつき量は、約10nsecである。また、位相差のばらつき量の最大値は、約480時間経過後における約16nsecである。 In FIG. 10, the vertical axis indicates how much the time difference differs from the amount of variation in phase difference, that is, the time difference between the drive signal and the detection signal at the time of the initial drive when the elapsed time is 0 hour. The horizontal axis represents the elapsed time from the end of driving of the optical scanner to the next driving. FIG. 10 clearly shows that the amount of variation in the phase difference increases as the elapsed time becomes longer. The amount of variation in the phase difference after about 120 hours is about 10 nsec. In addition, the maximum value of the variation amount of the phase difference is about 16 nsec after about 480 hours.
 前記したように、画像表示に光スキャナが使用される場合、位相差のばらつき量を抑えて高精度に反射ミラーの位相を検出することが求められる。しかし、現実には、光スキャナの駆動終了からの経過時間によって位相差のばらつき量が増加する。 As described above, when an optical scanner is used for image display, it is required to detect the phase of the reflecting mirror with high accuracy while suppressing the amount of variation in phase difference. However, in reality, the amount of phase difference variation increases with the elapsed time from the end of driving of the optical scanner.
 本開示は、検出用圧電素子によって検出される位相差のばらつき量を抑え、高精度に反射ミラーの位相を検出することが可能な光スキャナ及びこの光スキャナを用いた画像表示装置を提供することを目的とする。 The present disclosure provides an optical scanner capable of suppressing the amount of variation in the phase difference detected by the detecting piezoelectric element and detecting the phase of the reflecting mirror with high accuracy, and an image display apparatus using the optical scanner. With the goal.
(1) この目的を達成するために、本開示の一側面によれば、揺動軸線の周りに揺動され、入射した光を所定方向に走査する反射ミラーと、前記反射ミラーに連結された第1の弾性梁と、前記反射ミラーに前記第1の弾性梁とは異なる位置で連結された第2の弾性梁と、前記反射ミラー、前記第1の弾性梁及び前記第2の弾性梁を揺動させるために、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方に設けられ、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方に曲げ変位を生じさせる第1の圧電素子と、前記第1の圧電素子に曲げ変位を生じさせるために、前記第1の圧電素子に交流電圧を印加する交流電源部と、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方の曲げ変位の状態を検知するために、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方に設けられ、自身の曲げ変位に応じた検出信号を生じる第2の圧電素子と、前記第2の圧電素子の分極状態を調整するために、少なくとも前記交流電源部によって前記第1の圧電素子部に交流電圧が印加されないとき、前記第2の圧電素子に直流電圧を印加する直流電源部とを備えることを特徴とする光スキャナを得ることができる。 (1) In order to achieve this object, according to one aspect of the present disclosure, a reflection mirror that is oscillated around an oscillation axis and scans incident light in a predetermined direction is coupled to the reflection mirror. A first elastic beam; a second elastic beam connected to the reflection mirror at a position different from the first elastic beam; the reflection mirror; the first elastic beam; and the second elastic beam. The first elastic beam is provided on at least one of the first elastic beam and the second elastic beam for swinging, and generates a bending displacement in at least one of the first elastic beam and the second elastic beam. A piezoelectric element, an AC power supply for applying an AC voltage to the first piezoelectric element to cause bending displacement in the first piezoelectric element, and the first elastic beam or the second elastic beam In order to detect the bending displacement state of at least one of the first, A second piezoelectric element that is provided on at least one of the elastic beam and the second elastic beam and generates a detection signal corresponding to its bending displacement; and at least a polarization state of the second piezoelectric element is adjusted. An optical scanner comprising: a DC power supply unit that applies a DC voltage to the second piezoelectric element when no AC voltage is applied to the first piezoelectric element unit by the AC power supply unit. .
 位相差のばらつきが発生する原因及び位相差のばらつき量が時間依存する原因は、まだ明らかになっていない。しかし、本発明者は、検出用圧電素子の分極状態を調整することによって、位相差のばらつき量を抑えることが可能であることを発見した。従って、本発明では、少なくとも駆動用圧電素子に駆動信号が入力されないときに、直流電圧を印加して検出用圧電素子の分極状態を調整することで、位相差のばらつき量を抑えることを可能にする。ここで、分極状態とは、圧電素子中の電気双極子モーメントの整列度合を意味する。具体的には、分極状態は、分極―電界特性のヒステリシスカーブにおける残留分極値や、飽和分極値といった物理量で表わされる。残留分極値は、外部電界が存在しないときに圧電素子に残留する分極値である。飽和分極値は、外部電界に対して分極値の変化が飽和する分極値である。 The cause of the variation in the phase difference and the cause of the time-dependent variation in the phase difference have not yet been clarified. However, the present inventor has discovered that the amount of variation in phase difference can be suppressed by adjusting the polarization state of the detecting piezoelectric element. Therefore, according to the present invention, at least when a drive signal is not input to the drive piezoelectric element, it is possible to suppress the amount of variation in phase difference by adjusting the polarization state of the detection piezoelectric element by applying a DC voltage. To do. Here, the polarization state means the degree of alignment of the electric dipole moment in the piezoelectric element. Specifically, the polarization state is represented by a physical quantity such as a residual polarization value or a saturation polarization value in a hysteresis curve of polarization-electric field characteristics. The residual polarization value is a polarization value remaining in the piezoelectric element when no external electric field exists. The saturation polarization value is a polarization value at which a change in polarization value is saturated with respect to an external electric field.
 このような光スキャナによれば、直流電源部が、少なくとも交流電源部によって第1の圧電素子部に交流電圧が印加されないとき、第2の圧電素子に直流電圧を印加する。即ち、少なくとも反射ミラー,第1の弾性梁及び第2の弾性梁が揺動されないときに、第2の圧電素子に直流電圧が印加されることによって、第2の圧電素子の分極状態が調整される。従って、位相差のばらつき量を抑えることが可能になる。 According to such an optical scanner, the DC power supply unit applies the DC voltage to the second piezoelectric element when the AC voltage is not applied to the first piezoelectric element unit by at least the AC power supply unit. That is, the polarization state of the second piezoelectric element is adjusted by applying a DC voltage to the second piezoelectric element when at least the reflecting mirror, the first elastic beam, and the second elastic beam are not swung. The Therefore, it is possible to suppress the amount of variation in phase difference.
(2) 本開示の他の側面によれば、前記直流電源部は、前記第2の圧電素子に抗電界以上の電界が発生するように、直流電圧を前記第2の圧電素子に印加する、ことを特徴とする光スキャナを得ることができる。 (2) According to another aspect of the present disclosure, the DC power supply unit applies a DC voltage to the second piezoelectric element so that an electric field higher than a coercive electric field is generated in the second piezoelectric element. An optical scanner characterized by this can be obtained.
 このような光スキャナでは、直流電源部は、第2の圧電素子部に抗電界以上の電界が発生するように、直流電圧を第2の圧電素子に印加する。後記する図6に示される様に、印加される直流電圧が抗電界以下の電界を発生させる場合は、分極状態、特に残留分極値が印加される直流電圧値に依存して変化する。しかし、印加される直流電圧値が抗電界以上の電界を発生させる場合は、残留分極値は直流電圧値に殆ど依存しない。従って、第2の圧電素子に印加される直流電圧値が細かく制御される必要がなくなるため、第2の圧電素子の分極状態を調整することが容易になる。 In such an optical scanner, the DC power supply unit applies a DC voltage to the second piezoelectric element so that an electric field higher than the coercive electric field is generated in the second piezoelectric element unit. As shown in FIG. 6 which will be described later, when the applied DC voltage generates an electric field lower than the coercive electric field, the polarization state, in particular, the residual polarization value changes depending on the applied DC voltage value. However, when the applied DC voltage value generates an electric field higher than the coercive electric field, the remanent polarization value hardly depends on the DC voltage value. Accordingly, since it is not necessary to finely control the direct current voltage value applied to the second piezoelectric element, it is easy to adjust the polarization state of the second piezoelectric element.
(3) 本開示のさらに他の側面によれば、前記直流電源部は、前記交流電源部によって前記第1の圧電素子に交流電圧の印加が開始されるよりも所定時間前に、前記第2の圧電素子に直流電圧の印加を開始する、ことを特徴とする光スキャナを得ることができる。 (3) According to still another aspect of the present disclosure, the DC power supply unit may be configured such that the second time before the application of an AC voltage to the first piezoelectric element is started by the AC power supply unit before the second time. It is possible to obtain an optical scanner characterized in that application of a DC voltage to the piezoelectric element is started.
 このような光スキャナでは、第2の圧電素子への直流電圧の印加が、第1の圧電素子に交流電圧の印加が開始されるよりも所定時間前に開始される。第1の圧電素子に交流電圧が印加されない状態、即ち光スキャナの非駆動状態において、常に直流電圧が印加されることが無くなるので、消費される電力を小さくできる。 In such an optical scanner, the application of the DC voltage to the second piezoelectric element is started a predetermined time before the application of the AC voltage to the first piezoelectric element is started. Since no DC voltage is always applied when no AC voltage is applied to the first piezoelectric element, that is, when the optical scanner is not driven, the power consumed can be reduced.
(4) 本開示のさらに他の側面によれば、前記直流電源部は、前記交流電源部によって前記第1の圧電素子に交流電圧の印加が開始されるよりも、少なくとも直流電圧の印加時間に対して分極状態が飽和する時間だけ前に、前記第2の圧電素子に直流電圧の印加を開始する、ことを特徴とする光スキャナを得ることができる。 (4) According to still another aspect of the present disclosure, the DC power supply unit has at least a DC voltage application time than the AC power supply unit starts to apply an AC voltage to the first piezoelectric element. On the other hand, it is possible to obtain an optical scanner characterized in that application of a DC voltage to the second piezoelectric element is started only before the polarization state is saturated.
 後記する図5に示される様に、圧電素子の分極状態は、直流電圧の印加時間に伴って変化する。しかし、印加時間が所定時間を超えると、直流電圧の印加時間が増加しても分極状態が変化しなくなる。換言すれば、直流電圧の印加時間に対して分極状態が飽和する。そこで、このような光スキャナでは、交流電源部によって第1の圧電素子に交流電圧の印加が開始されるよりも、少なくとも直流電圧の印加時間に対して分極状態が飽和する時間だけ前に、第2の圧電素子に直流電圧の印加が開始される。従って、分極状態の調整に必要な最小限の時間だけ直流電圧が印加されるので、消費電力をさらに小さくできる。 As shown in FIG. 5 to be described later, the polarization state of the piezoelectric element changes with the application time of the DC voltage. However, if the application time exceeds a predetermined time, the polarization state does not change even if the DC voltage application time increases. In other words, the polarization state is saturated with respect to the DC voltage application time. Therefore, in such an optical scanner, the AC power supply unit starts applying the AC voltage to the first piezoelectric element at least before the time when the polarization state is saturated with respect to the DC voltage application time. Application of a DC voltage to the piezoelectric element 2 is started. Accordingly, since the DC voltage is applied for the minimum time necessary for adjusting the polarization state, the power consumption can be further reduced.
(5) 本開示のさらに他の側面によれば、前記直流電源部は、更に、前記第1の圧電素子の分極状態を調整にするために、少なくとも前記交流電源部によって前記第1の圧電素子に交流電圧が印加されないとき、前記第1の圧電素子に直流電圧を印加する、ことを特徴とする光スキャナを得ることができる。 (5) According to still another aspect of the present disclosure, the DC power supply unit is further configured to adjust the polarization state of the first piezoelectric element by at least the first piezoelectric element by the AC power supply unit. When an AC voltage is not applied to the first piezoelectric element, a DC voltage is applied to the first piezoelectric element, whereby an optical scanner can be obtained.
 このような光スキャナでは、少なくとも第1の圧電素子に交流電圧が印加されないとき、第1の圧電素子に直流電圧が印加される。反射ミラー,第1の弾性梁及び第2の弾性梁を揺動する第1の圧電素子の分極状態が調整されることによって、位相差のばらつき量をさらに抑えることが可能になる。 In such an optical scanner, a DC voltage is applied to the first piezoelectric element when at least an AC voltage is not applied to the first piezoelectric element. By adjusting the polarization state of the first piezoelectric element that swings the reflection mirror, the first elastic beam, and the second elastic beam, the amount of variation in the phase difference can be further suppressed.
(6) 本開示のさらに他の側面によれば、前記交流電源部は、前記反射ミラー、前記第1の弾性梁及び前記第2の弾性梁を揺動軸線周りに共振駆動させるために、前記検出信号に応じて前記第1の圧電素子に印加する交流電圧の周波数を調整する周波数調整部を備える、ことを特徴とする光スキャナを得ることができる。 (6) According to still another aspect of the present disclosure, the AC power supply unit is configured to drive the reflection mirror, the first elastic beam, and the second elastic beam to resonate around an oscillation axis. An optical scanner comprising a frequency adjusting unit that adjusts the frequency of the AC voltage applied to the first piezoelectric element in accordance with a detection signal can be obtained.
 このような光スキャナでは、周波数調整部が検出信号に応じて光スキャナを駆動するための交流電圧の周波数を調整することによって、光スキャナは共振駆動される。周波数調整部が、反射ミラーの位相に関係する検出信号をフィードバックして交流電圧の周波数を調整する。従って、検出信号のフィードバックにより反射ミラーの位相ズレ量を小さくできる技術は、共振駆動される光スキャナの駆動制御に効果的である。 In such an optical scanner, the optical scanner is resonantly driven by adjusting the frequency of the AC voltage for driving the optical scanner in accordance with the detection signal. The frequency adjusting unit feeds back a detection signal related to the phase of the reflecting mirror to adjust the frequency of the AC voltage. Therefore, a technique that can reduce the phase shift amount of the reflection mirror by feedback of the detection signal is effective for driving control of the optical scanner driven by resonance.
(7) 本開示のさらに他の側面によれば、前記直流電源部は、更に、前記交流電源部によって前記第1の圧電素子に交流電圧が印加されているときにも、前記第1の圧電素子又は前記第2の圧電素子の少なくとも一方に直流電圧を印加する、ことを特徴とする光スキャナを得ることができる。 (7) According to still another aspect of the present disclosure, the DC power supply unit further includes the first piezoelectric element when an AC voltage is applied to the first piezoelectric element by the AC power supply unit. An optical scanner characterized by applying a DC voltage to at least one of the element and the second piezoelectric element can be obtained.
 このような光スキャナでは、第1の圧電素子に交流電圧が印加されているときにも、第1の圧電素子又は第2の圧電素子の少なくとも一方に直流電圧が印加される。これによって、光スキャナの駆動後も分極状態を調整することが可能になる。 In such an optical scanner, even when an AC voltage is applied to the first piezoelectric element, a DC voltage is applied to at least one of the first piezoelectric element and the second piezoelectric element. As a result, the polarization state can be adjusted even after the optical scanner is driven.
(8) 上記目的を達成するために、本開示一側面によれば、光を走査して画像を形成するための、上記した本開示の側面によって得られる光スキャナと、その光スキャナに光を供給するための光源と、前記光スキャナによって走査された光を使用者の目に導く接眼光学系と、を備えることを特徴する画像表示装置を得ることができる。このような画像表示装置は、上記した本開示の側面によって得られる光スキャナを画像表示装置に用いる。検出用圧電素子によって検出される位相差のばらつき量が抑えられることで、より精緻な画像を表示することが可能になる。 (8) In order to achieve the above object, according to one aspect of the present disclosure, an optical scanner obtained by the above-described aspect of the present disclosure for scanning light to form an image, and light to the optical scanner. An image display apparatus comprising: a light source for supply; and an eyepiece optical system that guides light scanned by the optical scanner to a user's eyes can be obtained. In such an image display apparatus, the optical scanner obtained according to the above-described aspect of the present disclosure is used for the image display apparatus. By suppressing the amount of variation in the phase difference detected by the detection piezoelectric element, a more precise image can be displayed.
光スキャナ100の機械的構成を示す斜視図。FIG. 3 is a perspective view showing a mechanical configuration of the optical scanner 100. 光スキャナ100の機能的構成を示すブロック図。2 is a block diagram showing a functional configuration of the optical scanner 100. FIG. 信号処理回路170が第1圧電素子130及び第2圧電素子140に対して電圧の印加を制御する流れを説明するフローチャート。7 is a flowchart for explaining a flow in which the signal processing circuit 170 controls the application of voltage to the first piezoelectric element 130 and the second piezoelectric element 140. 周波数と振幅ゲイン及び位相差との関係を説明する図。The figure explaining the relationship between a frequency, an amplitude gain, and a phase difference. 直流電圧印加時間を変化させた場合の、分極状態の変化を示す図。The figure which shows the change of a polarization state at the time of changing DC voltage application time. 印加する直流電圧量を変化させた場合の、分極状態の変化を示す図。The figure which shows the change of a polarization state at the time of changing the direct-current voltage amount to apply. 直流電圧を印加した場合における位相差のばらつき量の経過時間依存性を示す図。The figure which shows the elapsed time dependence of the dispersion | variation amount of a phase difference at the time of applying a DC voltage. 画像表示装置1の全体構成を示す図。1 is a diagram illustrating an overall configuration of an image display device 1. FIG. 光スキャナ100を駆動するための機能的構成の他の例を示すブロック図。FIG. 6 is a block diagram showing another example of a functional configuration for driving the optical scanner 100. 直流電圧を印加しない場合における光スキャナの駆動終了から次回駆動までの経過時間と、検出位相のズレ量との関係を示した図。The figure which showed the relationship between the elapsed time from the drive end of an optical scanner to the next drive in the case of not applying a DC voltage, and the amount of deviation | shift of a detection phase.
 本開示を反映した実施形態について、図面を用いて以下に詳細に説明する。なお、本開示は、以下に記載の構成に限定されるものではなく、同一の技術的思想において種々の構成を採用することができる。例えば、以下に説明する各構成において、所定の構成を省略することができる。また、以下に説明する各処理において、所定のステップを省略することができる。 Embodiments reflecting the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to the configurations described below, and various configurations can be employed in the same technical idea. For example, in each configuration described below, a predetermined configuration can be omitted. In each process described below, a predetermined step can be omitted.
 <実施形態>
 [光スキャナ100の機械的構成]
 図1に示されるように、光スキャナ100は、基体110と台座120とを有する。図1では分かれた状態で示されるが、基体110と台座120とは、接着される。以下、基体110と台座120との構成を説明する。
<Embodiment>
[Mechanical configuration of optical scanner 100]
As shown in FIG. 1, the optical scanner 100 includes a base 110 and a pedestal 120. Although shown in a separated state in FIG. 1, the base 110 and the pedestal 120 are bonded together. Hereinafter, the structure of the base 110 and the pedestal 120 will be described.
 基体110は、反射ミラー111,第1弾性梁112,第2弾性梁113及び外枠部114で構成される。また、基体110には、第1圧電素子130及び第2圧電素子140と、第1圧電素子130及び第2圧電素子140に電圧を印加するための下部電極131,141、上部電極132,142とが設けられる。 The base 110 includes a reflection mirror 111, a first elastic beam 112, a second elastic beam 113, and an outer frame portion 114. Further, the substrate 110 includes a first piezoelectric element 130 and a second piezoelectric element 140, lower electrodes 131 and 141 for applying a voltage to the first piezoelectric element 130 and the second piezoelectric element 140, and upper electrodes 132 and 142. Is provided.
 平面視略円形に形成された反射ミラー111は、基体110の中心に設けられる。反射ミラー111の一端には、第1弾性梁112が連結される。反射ミラー111の他端には、第2弾性梁113が連結される。 The reflection mirror 111 formed in a substantially circular shape in plan view is provided at the center of the base 110. A first elastic beam 112 is connected to one end of the reflection mirror 111. A second elastic beam 113 is connected to the other end of the reflection mirror 111.
 第1弾性梁112は、反射ミラー支持部112a,結合部112b及び一対の梁部112cで構成される。反射ミラー支持部112aの一端は、反射ミラー111に連結される。反射ミラー支持部112aの他端は、結合部112bに連結される。結合部112bは、反射ミラー支持部112aに対して直交するように連結される。結合部112bの両端には、一対の梁部112cが連結される。一対の梁部112cの一端は、結合部112bに対して直交するように結合部112bの両端に連結される。一対の梁部112cの他端は、外枠部114に対して直交するように連結される。 The first elastic beam 112 includes a reflection mirror support portion 112a, a coupling portion 112b, and a pair of beam portions 112c. One end of the reflection mirror support 112 a is connected to the reflection mirror 111. The other end of the reflection mirror support part 112a is connected to the coupling part 112b. The coupling portion 112b is coupled so as to be orthogonal to the reflection mirror support portion 112a. A pair of beam portions 112c are coupled to both ends of the coupling portion 112b. One end of the pair of beam portions 112c is coupled to both ends of the coupling portion 112b so as to be orthogonal to the coupling portion 112b. The other ends of the pair of beam portions 112c are connected so as to be orthogonal to the outer frame portion 114.
 第2弾性梁113は、反射ミラー支持部113a,結合部113b及び一対の梁部113cで構成される。第2弾性梁113の形状は、反射ミラー111に対して第1弾性梁112と対称であるので、説明は省略される。 The second elastic beam 113 includes a reflection mirror support portion 113a, a coupling portion 113b, and a pair of beam portions 113c. Since the shape of the second elastic beam 113 is symmetrical to the first elastic beam 112 with respect to the reflection mirror 111, the description thereof is omitted.
 外枠部114は、反射ミラー111、第1弾性梁112及び第2弾性梁113の周囲に、四角環状に配置される。外枠部114は、反射ミラー111、第1弾性梁112及び第2弾性梁113が揺動される際に、固定端として働く。即ち、外枠部114は、固定端として働く機能を有していれば、どの様な形状でも差し支えない。 The outer frame portion 114 is arranged in a square ring around the reflection mirror 111, the first elastic beam 112, and the second elastic beam 113. The outer frame portion 114 serves as a fixed end when the reflecting mirror 111, the first elastic beam 112, and the second elastic beam 113 are swung. That is, the outer frame portion 114 may have any shape as long as it has a function of acting as a fixed end.
 第1圧電素子130は、反射ミラー111,第1弾性梁112及び第2弾性梁113を揺動駆動させるために、基体110に設けられる。具体的には、第1圧電素子130は、下部電極131の上に形成される。下部電極131は、一対の梁部112cの上面から外枠部114に亘り形成される。即ち、第1圧電素子130は、下部電極131を介して一対の梁部112c及び外枠部114に固定される。第1圧電素子130の上面には、上部電極132が設けられる。下部電極131と上部電極132との間に電圧が印加されることにより、第1圧電素子130は分極する。この分極によって、第1圧電素子130は、一対の梁部112cの長手方向に伸び縮みする。第1圧電素子130は下部電極131を介して一対の梁部112c及び外枠部114に固定されているので、第1圧電素子130の伸縮は、一対の梁部112cが基体110の厚み方向に変位する屈曲変位に変換される。即ち、第1圧電素子130は、ユニモルフとして働く。一対の梁部112cの屈曲変位は、結合部112bを介して第1弾性梁112,第2弾性梁113及び反射ミラー111を揺動させるための回転トルクに変換される。ここで、第1圧電素子130を構成する2つの圧電素子は、互いに逆相の交流電圧、即ち位相がπずれた交流電圧が夫々印加されることで逆相駆動される。 The first piezoelectric element 130 is provided on the base 110 to drive the reflection mirror 111, the first elastic beam 112, and the second elastic beam 113 to swing. Specifically, the first piezoelectric element 130 is formed on the lower electrode 131. The lower electrode 131 is formed from the upper surface of the pair of beam portions 112c to the outer frame portion 114. That is, the first piezoelectric element 130 is fixed to the pair of beam portions 112 c and the outer frame portion 114 via the lower electrode 131. An upper electrode 132 is provided on the upper surface of the first piezoelectric element 130. When a voltage is applied between the lower electrode 131 and the upper electrode 132, the first piezoelectric element 130 is polarized. Due to this polarization, the first piezoelectric element 130 expands and contracts in the longitudinal direction of the pair of beam portions 112c. Since the first piezoelectric element 130 is fixed to the pair of beam portions 112c and the outer frame portion 114 via the lower electrode 131, the expansion and contraction of the first piezoelectric element 130 causes the pair of beam portions 112c to extend in the thickness direction of the base 110. It is converted into a bending displacement. That is, the first piezoelectric element 130 functions as a unimorph. The bending displacement of the pair of beam portions 112c is converted into a rotational torque for swinging the first elastic beam 112, the second elastic beam 113, and the reflection mirror 111 via the coupling portion 112b. Here, the two piezoelectric elements constituting the first piezoelectric element 130 are driven in reverse phase by applying AC voltages having opposite phases, that is, AC voltages having a phase shift of π.
 下部電極131、第1圧電素子130及び上部電極132は、例えば以下の方法で形成される。先ず、白金(Pt)や金(Au)等を、0.2μm~0.6μmの厚さで一対の梁部112cの上面から外枠部114に亘り堆積することで、下部電極131が形成される。この堆積には、例えばスパッタや蒸着等の製膜方法が用いられる。次に、PZT等の圧電素子を1μm~3μmの厚さで下部電極131の上に堆積することで、第1圧電素子130が形成される。この堆積には、例えばエアロゾルデポジション法(例えば、特開2007-31737号公報を参照)等の製膜方法が用いられる。最後に、第1圧電素子130の上に上部電極132が形成される。上部電極132は、下部電極131と同様の手法によって形成される。尚、下部電極131及び上部電極132には、図示しない配線ケーブルが接続される。 The lower electrode 131, the first piezoelectric element 130, and the upper electrode 132 are formed by the following method, for example. First, platinum (Pt), gold (Au), or the like is deposited from the upper surface of the pair of beam portions 112c to the outer frame portion 114 with a thickness of 0.2 μm to 0.6 μm, whereby the lower electrode 131 is formed. The For this deposition, for example, a film forming method such as sputtering or vapor deposition is used. Next, a first piezoelectric element 130 is formed by depositing a piezoelectric element such as PZT on the lower electrode 131 with a thickness of 1 μm to 3 μm. For this deposition, for example, a film forming method such as an aerosol deposition method (see, for example, JP-A-2007-31737) is used. Finally, the upper electrode 132 is formed on the first piezoelectric element 130. The upper electrode 132 is formed by the same method as the lower electrode 131. A wiring cable (not shown) is connected to the lower electrode 131 and the upper electrode 132.
 第2圧電素子140は、反射ミラー111の揺動状態を検知するために、下部電極141の上に形成される。下部電極141は、一対の梁部113cの上面から外枠部114に亘り形成される。即ち、第2圧電素子140は、下部電極141を介して一対の梁部113c及び外枠部114に固定される。第2圧電素子140の上面には、上部電極142が設けられる。下部電極141、第2圧電素子140及び上部電極142の形成方法は、下部電極131、第1圧電素子130及び上部電極132の形成方法と同一である。 The second piezoelectric element 140 is formed on the lower electrode 141 in order to detect the swinging state of the reflection mirror 111. The lower electrode 141 is formed from the upper surface of the pair of beam portions 113 c to the outer frame portion 114. That is, the second piezoelectric element 140 is fixed to the pair of beam portions 113 c and the outer frame portion 114 via the lower electrode 141. An upper electrode 142 is provided on the upper surface of the second piezoelectric element 140. The method of forming the lower electrode 141, the second piezoelectric element 140, and the upper electrode 142 is the same as the method of forming the lower electrode 131, the first piezoelectric element 130, and the upper electrode 132.
 第1圧電素子130の伸び縮みは、一対の梁部112cの屈曲変位に変換され、結果として第1弾性梁112,第2弾性梁113及び反射ミラー111を揺動させる。このとき、第2弾性梁113も揺動されるので、第2圧電素子140は屈曲変位する。第2圧電素子140が屈曲変位するので、圧電効果によって第2圧電素子140は基体110の厚み方向に分極する。その結果、第2圧電素子140の屈曲変位量に応じた電位差が下部電極141と上部電極142との間に発生する。この電位差を下部電極141及び上部電極142から検出信号として読み出すことにより、反射ミラー111の揺動状態が検出される。 The expansion / contraction of the first piezoelectric element 130 is converted into a bending displacement of the pair of beam portions 112c, and as a result, the first elastic beam 112, the second elastic beam 113, and the reflection mirror 111 are swung. At this time, since the second elastic beam 113 is also swung, the second piezoelectric element 140 is bent and displaced. Since the second piezoelectric element 140 is bent and displaced, the second piezoelectric element 140 is polarized in the thickness direction of the base 110 due to the piezoelectric effect. As a result, a potential difference corresponding to the bending displacement amount of the second piezoelectric element 140 is generated between the lower electrode 141 and the upper electrode 142. By reading this potential difference as a detection signal from the lower electrode 141 and the upper electrode 142, the swinging state of the reflection mirror 111 is detected.
 台座120は、基体固定部121を備える。基体固定部121は、基体110の外枠部114に固定される。そのため、基体固定部121は、外枠部114と同じ大きさの四角環状に形成される。台座120と基体110とを接着や陽極接合等によって固定することで、光スキャナ110が形成される。 The pedestal 120 includes a base fixing part 121. The base fixing part 121 is fixed to the outer frame part 114 of the base 110. Therefore, the base fixing part 121 is formed in a quadrangular annular shape having the same size as the outer frame part 114. The optical scanner 110 is formed by fixing the pedestal 120 and the base 110 by bonding, anodic bonding, or the like.
 前記した反射ミラー111,第1弾性梁112,第2弾性梁113,第1圧電素子130及び第2圧電素子140が、本発明の反射ミラー,第1の弾性梁,第2の弾性梁,第1の圧電素子及び第2の圧電素子の一例である。 The reflection mirror 111, the first elastic beam 112, the second elastic beam 113, the first piezoelectric element 130 and the second piezoelectric element 140 described above are the reflection mirror, the first elastic beam, the second elastic beam, the first elastic beam of the present invention. It is an example of 1 piezoelectric element and 2nd piezoelectric element.
 [光スキャナ100の機能的構成]
 図2に示されるように、光スキャナ100は、第1圧電素子130、第2圧電素子140、交流電圧印加部150、直流電圧印加部160、信号処理回路170及び信号重畳回路190を含む。以下、光スキャナ100の個々の機能について説明する。
[Functional configuration of optical scanner 100]
As shown in FIG. 2, the optical scanner 100 includes a first piezoelectric element 130, a second piezoelectric element 140, an AC voltage application unit 150, a DC voltage application unit 160, a signal processing circuit 170, and a signal superposition circuit 190. Hereinafter, individual functions of the optical scanner 100 will be described.
 交流電圧印加部150は、位相比較器151,ローパスフィルタ152,電圧制御発振器153,位相シフタ154,コンパレータ155を含む。位相比較器151は、第1圧電素子130を駆動するための駆動信号と、第2圧電素子140から発生した検出信号とを比較する。位相比較器151は、この比較に基づいて、駆動信号と検出信号との位相差に応じた位相差電圧をローパスフィルタ152に出力する。ローパスフィルタ152は、位相比較器151からの位相差電圧を積分して平滑化する。ローパスフィルタ152は、平滑化された位相差電圧を、VCO制御電圧として電圧制御発振器153に出力する。電圧制御発振器153は、第1圧電素子130を駆動するための交流電圧を発生する。電圧制御発振器153は、ローパスフィルタ152からのVCO制御電圧に応じた周波数のサイン波を、駆動信号として後述する信号重畳回路190及び位相シフタ154に出力する。後記する図4に示される様に、光スキャナ100が共振状態にある場合、駆動信号と検出信号との位相差がπ/2ずれる。そこで、位相シフタ154は、光スキャナ100が共振状態において、入力された駆動信号と検出信号との位相が一致するように、入力された駆動信号の位相を調整する。位相シフタ154は、位相が調整された駆動信号を、コンパレータ155に出力する。コンパレータ155は、電位0Vと駆動信号とを比較して、駆動信号の電位が0V以上であれば正の所定電位を、駆動信号の電位が0V未満であれば負の所定電位を出力する。即ち、コンパレータ155は入力された駆動信号を矩形波に整形する。コンパレータ155は、矩形波に整形された駆動信号を、位相比較器151に出力する。換言すれば、位相比較器151、ローパスフィルタ152、電圧制御発振器153、位相シフタ154及びコンパレータ155は、位相同期回路を形成する。従って、交流電圧印加部150は、光スキャナ100の揺動を所定の振動周波数に保つ働きをする。尚、図2には表わされないが、交流電圧印加部150は、出力される駆動信号を昇圧又は降圧することで駆動信号の振幅を調整する機能や、電圧制御発振器153に制御信号を供給して駆動信号の周波数を調整する機能を有する。尚、前記した交流電圧印加部150が本発明の交流電源部の一例であり、位相比較器151,ローパスフィルタ152,電圧制御発振器153,位相シフタ154及びコンパレータ155が形成する位相同期回路が本発明の周波数調整部の一例である。 The AC voltage application unit 150 includes a phase comparator 151, a low pass filter 152, a voltage controlled oscillator 153, a phase shifter 154, and a comparator 155. The phase comparator 151 compares the drive signal for driving the first piezoelectric element 130 with the detection signal generated from the second piezoelectric element 140. Based on this comparison, the phase comparator 151 outputs a phase difference voltage corresponding to the phase difference between the drive signal and the detection signal to the low-pass filter 152. The low-pass filter 152 integrates and smoothes the phase difference voltage from the phase comparator 151. The low pass filter 152 outputs the smoothed phase difference voltage to the voltage controlled oscillator 153 as a VCO control voltage. The voltage controlled oscillator 153 generates an alternating voltage for driving the first piezoelectric element 130. The voltage controlled oscillator 153 outputs a sine wave having a frequency corresponding to the VCO control voltage from the low-pass filter 152 to a signal superimposing circuit 190 and a phase shifter 154 described later as a drive signal. As shown in FIG. 4 to be described later, when the optical scanner 100 is in a resonance state, the phase difference between the drive signal and the detection signal is shifted by π / 2. Therefore, the phase shifter 154 adjusts the phase of the input drive signal so that the phase of the input drive signal and the detection signal matches when the optical scanner 100 is in the resonance state. The phase shifter 154 outputs the drive signal whose phase has been adjusted to the comparator 155. The comparator 155 compares the potential 0V with the drive signal, and outputs a positive predetermined potential if the potential of the drive signal is 0V or more, and outputs a negative predetermined potential if the potential of the drive signal is less than 0V. That is, the comparator 155 shapes the input drive signal into a rectangular wave. The comparator 155 outputs the drive signal shaped into a rectangular wave to the phase comparator 151. In other words, the phase comparator 151, the low-pass filter 152, the voltage controlled oscillator 153, the phase shifter 154, and the comparator 155 form a phase synchronization circuit. Therefore, the AC voltage application unit 150 serves to keep the oscillation of the optical scanner 100 at a predetermined oscillation frequency. Although not shown in FIG. 2, the AC voltage application unit 150 supplies a control signal to the voltage-controlled oscillator 153 and the function of adjusting the amplitude of the drive signal by boosting or stepping down the output drive signal. And has a function of adjusting the frequency of the drive signal. The AC voltage application unit 150 described above is an example of the AC power supply unit of the present invention, and the phase synchronization circuit formed by the phase comparator 151, the low-pass filter 152, the voltage control oscillator 153, the phase shifter 154, and the comparator 155 is the present invention. It is an example of the frequency adjustment part.
 直流電圧印加部160は、信号重畳回路190及び第2圧電素子140に直流電圧を印加する。第2圧電素子140では、上部電極142と下部電極141との間に直流電圧印加部160からの直流電圧が直接印加される。一方、第1圧電素子130では、信号重畳回路190を介して、上部電極132と下部電極131との間に直流電圧印加部160からの直流電圧が印加される。 The DC voltage application unit 160 applies a DC voltage to the signal superimposing circuit 190 and the second piezoelectric element 140. In the second piezoelectric element 140, the DC voltage from the DC voltage application unit 160 is directly applied between the upper electrode 142 and the lower electrode 141. On the other hand, in the first piezoelectric element 130, a DC voltage from the DC voltage application unit 160 is applied between the upper electrode 132 and the lower electrode 131 via the signal superimposing circuit 190.
 信号重畳回路190は、電圧制御発振器153から出力された駆動信号と、直流電圧印加部160からの直流電圧とを重畳する。信号重畳回路190は、直流電圧の重畳された駆動信号を、第1圧電素子130、即ち上部電極132と下部電極131との間に印加する。以下、本実施形態において、第1圧電素子130に印加される直流電圧は、この信号重畳回路190を介して印加される直流電圧印加部160からの直流電圧を意味する。 The signal superimposing circuit 190 superimposes the driving signal output from the voltage controlled oscillator 153 and the DC voltage from the DC voltage applying unit 160. The signal superimposing circuit 190 applies a driving signal on which a DC voltage is superimposed between the first piezoelectric element 130, that is, between the upper electrode 132 and the lower electrode 131. Hereinafter, in the present embodiment, the DC voltage applied to the first piezoelectric element 130 means a DC voltage from the DC voltage application unit 160 applied via the signal superimposing circuit 190.
 第1圧電素子130は、信号重畳回路190から出力された直流電圧が重畳された駆動信号に応じて、第1圧電素子130を梁部112cの長手方向に伸び縮みする。第1圧電素子130の伸び縮みによって、第1弾性梁112,第2弾性梁113及び反射ミラー111は揺動する。 The first piezoelectric element 130 expands and contracts the first piezoelectric element 130 in the longitudinal direction of the beam portion 112c in accordance with the drive signal on which the DC voltage output from the signal superimposing circuit 190 is superimposed. As the first piezoelectric element 130 expands and contracts, the first elastic beam 112, the second elastic beam 113, and the reflection mirror 111 swing.
 第2圧電素子140は、第2弾性梁113の揺動によって生じる検出信号を、位相比較器151に出力する。位相比較器151は、この検出信号と矩形波に整形された駆動信号とを比較する。 The second piezoelectric element 140 outputs a detection signal generated by the swing of the second elastic beam 113 to the phase comparator 151. The phase comparator 151 compares this detection signal with the drive signal shaped into a rectangular wave.
 信号処理回路170は、制御信号を出力することで、図3に示すフローチャートに従って直流電圧印加回路160及び交流電圧印加部150の制御を行う。信号処理回路170は、制御動作のために交流電圧印加部150から検出信号や位相差電圧等の各種信号を受け取るように構成されている。 The signal processing circuit 170 outputs a control signal to control the DC voltage application circuit 160 and the AC voltage application unit 150 according to the flowchart shown in FIG. The signal processing circuit 170 is configured to receive various signals such as a detection signal and a phase difference voltage from the AC voltage application unit 150 for the control operation.
 以上説明した機能構成によって、光スキャナ100の共振駆動が可能になる。尚、直流電圧印加部160は、上述のように第1圧電素子130に駆動信号が入力されている間に第1圧電素子130及び第2圧電素子140に直流電圧を印加することができるとともに、第1圧電素子130に駆動信号が入力されないときに、第1圧電素子130及び第2圧電素子140に直流電圧を印加することも可能である。尚、前記した直流電圧印加部160が、本発明の直流電源部の一例である。 With the functional configuration described above, the optical scanner 100 can be resonantly driven. The DC voltage application unit 160 can apply a DC voltage to the first piezoelectric element 130 and the second piezoelectric element 140 while a drive signal is input to the first piezoelectric element 130 as described above. It is also possible to apply a DC voltage to the first piezoelectric element 130 and the second piezoelectric element 140 when no drive signal is input to the first piezoelectric element 130. The DC voltage application unit 160 described above is an example of the DC power supply unit of the present invention.
 [光スキャナ100の駆動方法]
 図3に示される制御処理は、光スキャナ100の外部から信号処理回路170に対して、光スキャナ100の動作を開始する旨の外部信号が入力されることによって開始される。ステップS100において、信号処理回路170は、直流電圧印加部160に制御信号を送信することで、直流電圧印加部160に直流電圧を第1圧電素子130及び第2圧電素子140に印加させる。このとき、駆動信号は第1圧電素子130に未だ入力されていない。その後、信号処理回路170は、処理をステップS101に移行する。
[Driving Method of Optical Scanner 100]
The control process shown in FIG. 3 is started when an external signal for starting the operation of the optical scanner 100 is input from the outside of the optical scanner 100 to the signal processing circuit 170. In step S <b> 100, the signal processing circuit 170 transmits a control signal to the DC voltage application unit 160 to cause the DC voltage application unit 160 to apply a DC voltage to the first piezoelectric element 130 and the second piezoelectric element 140. At this time, the drive signal has not yet been input to the first piezoelectric element 130. Thereafter, the signal processing circuit 170 shifts the processing to step S101.
 ステップS101において、信号処理回路170は、直流電圧が第1圧電素子130及び第2圧電素子140に印加されてから、分極状態が直流電圧印加時間に対して飽和するのに必要な所定時間が経過したか否かを判断する。所定時間が経過していなければ、所定時間が経過するまで直流電圧が第1圧電素子130及び第2圧電素子140に印加され続ける(ステップS101がN)。一方、所定時間が経過した場合(ステップS101がY)、信号処理回路170は、処理をステップS102に移行する。 In step S101, the signal processing circuit 170 passes a predetermined time required for the polarization state to saturate with respect to the DC voltage application time after the DC voltage is applied to the first piezoelectric element 130 and the second piezoelectric element 140. Determine whether or not. If the predetermined time has not elapsed, the DC voltage is continuously applied to the first piezoelectric element 130 and the second piezoelectric element 140 until the predetermined time has elapsed (N in step S101). On the other hand, when the predetermined time has elapsed (Y in step S101), the signal processing circuit 170 shifts the processing to step S102.
 ステップS102において、信号処理回路170は、交流電圧印加部150に制御信号を送信することで、電圧制御発振器153に5Vの振幅を有する駆動信号を発振させる。発振された駆動信号は、交流電圧印加部150から信号重畳回路190に入力される。信号重畳回路190は、直流電圧印加部160からの直流電圧をこの駆動信号に重畳する。信号重畳回路190は、直流電圧が重畳された駆動信号を、第1圧電素子130に出力する。その後、信号処理回路170は、処理をステップS103に移行する。 In step S102, the signal processing circuit 170 transmits a control signal to the AC voltage application unit 150 to cause the voltage control oscillator 153 to oscillate a drive signal having an amplitude of 5V. The oscillated drive signal is input from the AC voltage application unit 150 to the signal superimposing circuit 190. The signal superimposing circuit 190 superimposes the DC voltage from the DC voltage application unit 160 on this drive signal. The signal superimposing circuit 190 outputs a drive signal on which the DC voltage is superimposed to the first piezoelectric element 130. Thereafter, the signal processing circuit 170 shifts the processing to step S103.
 ステップS103において、信号処理回路170は、検出信号が信号処理回路170内に予め設定された所定の閾値電圧を超えたか否かを判断する。検出信号が所定の閾値電圧を超えない場合(ステップS103がN)、信号処理回路170は、交流電圧印加部150に制御信号を送信することで、駆動信号の周波数を変化させる(ステップS104)。具体的には、信号処理回路170は、周波数を27kHzから33kHzまでの間で変化させ、検出信号の電圧が所定の閾値電圧を超える周波数を探す。 In step S103, the signal processing circuit 170 determines whether or not the detection signal has exceeded a predetermined threshold voltage preset in the signal processing circuit 170. When the detection signal does not exceed the predetermined threshold voltage (N in step S103), the signal processing circuit 170 changes the frequency of the drive signal by transmitting a control signal to the AC voltage application unit 150 (step S104). Specifically, the signal processing circuit 170 changes the frequency from 27 kHz to 33 kHz, and searches for a frequency at which the voltage of the detection signal exceeds a predetermined threshold voltage.
 検出信号の電圧値は、駆動信号の周波数に応じて変化する。検出信号の電圧値の変化によって、光スキャナ100が共振状態にあるかどうかを大まかに判断できる。以下図4を用いて、その理由を説明する。図4の上図は、駆動信号の周波数と振幅ゲインとの関係を示す図である。振幅ゲインは、反射ミラー111の振れ角の大きさを表す値である。本実施形態の光スキャナ100は、共振周波数が30kHzになるように作製される。そのため、駆動信号の周波数が30kHzにおいて光スキャナ100は共振駆動され、振幅ゲインは最大となる。そして、駆動信号の周波数が30kHzから離れるに従って、振幅ゲインは小さくなる。反射ミラー111の振れ角の大きさは、検出信号の電圧値の大きさとして反映される。従って、検出信号の電圧値の大きさを調べることで、光スキャナ100が共振状態にあるかどうかを大まかに判断できる。 The voltage value of the detection signal changes according to the frequency of the drive signal. It is possible to roughly determine whether or not the optical scanner 100 is in a resonance state based on a change in the voltage value of the detection signal. Hereinafter, the reason will be described with reference to FIG. The upper diagram of FIG. 4 is a diagram showing the relationship between the frequency of the drive signal and the amplitude gain. The amplitude gain is a value representing the magnitude of the deflection angle of the reflection mirror 111. The optical scanner 100 of this embodiment is manufactured so that the resonance frequency is 30 kHz. Therefore, when the frequency of the drive signal is 30 kHz, the optical scanner 100 is resonantly driven and the amplitude gain is maximized. The amplitude gain decreases as the frequency of the drive signal increases from 30 kHz. The magnitude of the deflection angle of the reflection mirror 111 is reflected as the magnitude of the voltage value of the detection signal. Therefore, it is possible to roughly determine whether or not the optical scanner 100 is in a resonance state by checking the voltage value of the detection signal.
 検出信号が所定の閾値電圧を超えた場合(ステップS103がY)、信号処理回路170は、交流電圧印加部150に制御信号を送信することで、電圧制御発振器153に40Vの振幅を有する駆動信号を発振させる(ステップS105)。発振された駆動信号は、交流電圧印加部150から信号重畳回路190に入力される。信号重畳回路190は、直流電圧印加部160からの直流電圧をこの駆動信号に重畳する。信号重畳回路190は、直流電圧が重畳された駆動信号を、第1圧電素子130に出力する。その後、信号処理回路170は、処理をステップS106に移行する。 When the detection signal exceeds a predetermined threshold voltage (Y in step S103), the signal processing circuit 170 transmits a control signal to the AC voltage application unit 150, thereby causing the voltage control oscillator 153 to have a drive signal having an amplitude of 40V. Is oscillated (step S105). The oscillated drive signal is input from the AC voltage application unit 150 to the signal superimposing circuit 190. The signal superimposing circuit 190 superimposes the DC voltage from the DC voltage application unit 160 on this drive signal. The signal superimposing circuit 190 outputs a drive signal on which the DC voltage is superimposed to the first piezoelectric element 130. Thereafter, the signal processing circuit 170 shifts the processing to step S106.
 ステップS106において、信号処理回路170は、検出信号と駆動信号との位相差が90°か否かを判断する。位相差が90°でない場合(ステップS106がN)、信号処理回路170は、交流電圧印加部150に制御信号を送信することで、駆動信号の周波数を変化させ(ステップS107)、位相差が90°になる周波数を探す。 In step S106, the signal processing circuit 170 determines whether or not the phase difference between the detection signal and the drive signal is 90 °. When the phase difference is not 90 ° (N in step S106), the signal processing circuit 170 changes the frequency of the drive signal by transmitting a control signal to the AC voltage application unit 150 (step S107), and the phase difference is 90. Find the frequency that will be °.
 検出信号と駆動信号との位相差と、駆動信号の周波数との関係を、図4の下図に示す。駆動信号の周波数と光スキャナ100の共振周波数とが等しい状態、即ち光スキャナ100が共振状態において、検出信号と駆動信号との位相差は90°になる。検出信号と駆動信号との位相差は、駆動信号の周波数が共振周波数より小さくなるに従って90°より小さくなり、周波数が共振周波数より大きくなるに従って90°より大きくなる。従って、検出信号と駆動信号との位相差を調べることで、光スキャナ100が共振状態にあるかどうかを判断できる。 The lower diagram of FIG. 4 shows the relationship between the phase difference between the detection signal and the drive signal and the frequency of the drive signal. When the frequency of the drive signal and the resonance frequency of the optical scanner 100 are equal, that is, when the optical scanner 100 is in the resonance state, the phase difference between the detection signal and the drive signal is 90 °. The phase difference between the detection signal and the drive signal becomes smaller than 90 ° as the frequency of the drive signal becomes lower than the resonance frequency, and becomes larger than 90 ° as the frequency becomes higher than the resonance frequency. Therefore, it is possible to determine whether or not the optical scanner 100 is in a resonance state by examining the phase difference between the detection signal and the drive signal.
 検出信号と駆動信号との位相差が90°の場合(ステップS106がY)、光スキャナ100は共振駆動される。この共振駆動は、ステップS108において、信号処理回路170が光スキャナ100の駆動を終了すると判断するまで継続される。この判断は、例えば、光スキャナ100の外部から信号処理回路170に対して、光スキャナ100の動作を終了する旨の外部信号が入力されたか否かを判断することで達成される。光スキャナ100の駆動を終了する場合(ステップS108がY)、信号処理回路170は、交流電圧印加部150に制御信号を送信し、駆動信号の出力を停止させる(ステップS109)。その後、信号処理回路170は、直流電圧印加部160に制御信号を送信し、直流電圧の出力を停止させる(ステップS110)。 When the phase difference between the detection signal and the drive signal is 90 ° (Y in step S106), the optical scanner 100 is driven to resonate. This resonance driving is continued until it is determined in step S108 that the signal processing circuit 170 finishes driving the optical scanner 100. This determination is achieved, for example, by determining whether or not an external signal for ending the operation of the optical scanner 100 is input from the outside of the optical scanner 100 to the signal processing circuit 170. When the driving of the optical scanner 100 is finished (Step S108 is Y), the signal processing circuit 170 transmits a control signal to the AC voltage application unit 150 and stops outputting the drive signal (Step S109). Thereafter, the signal processing circuit 170 transmits a control signal to the DC voltage application unit 160 to stop the output of the DC voltage (step S110).
 [位相差ばらつき量の改善]
 第1圧電素子に駆動信号が送信される前に第1圧電素子及び第2圧電素子に直流電圧が印加されることによって、従来に対して位相差のばらつき量がどの程度抑えられるかを、図5~図7を用いて説明する。
[Improvement of phase difference variation]
FIG. 4 shows how much variation in phase difference can be suppressed by applying a DC voltage to the first piezoelectric element and the second piezoelectric element before a drive signal is transmitted to the first piezoelectric element. This will be described with reference to FIGS.
 図5に示されるように、5Vの直流電圧が印加された圧電素子の試料に対して、分極状態比(ΔP%)が調べられる。この圧電素子の試料は、本実施形態で用いられる第1圧電素子130及び第2圧電素子140と同じ組成を有する。5Vの直流電圧が印加される時間は、0分,5分,10分,15分,20分である。横軸は、5Vの直流電圧を印加開始してからの経過時間である。縦軸は、直流電圧印加前の前記試料の分極状態と、直流電圧印加後の前記試料の分極状態との比である。図5に黒丸と直線で示される飽和分極値Pmは、直流電圧の印加時間を変化させても略一様の値を示した。一方、図5に黒四角と点線とで示される残留分極値Prは、直流電圧の印加時間が5分までは急激に値が上昇し、5分から10分までは緩やかに上昇する。残留分極値Prは、直流電圧の印加時間が10分を過ぎた後は殆ど変化しない。換言すれば、直流電圧の印加時間が10分以上の場合、残留分極値Prは飽和する。従って、直流電圧の印加時間は10分以上が適切であると考えられる。 As shown in FIG. 5, the polarization state ratio (ΔP%) is examined for a sample of a piezoelectric element to which a DC voltage of 5 V is applied. The sample of this piezoelectric element has the same composition as the first piezoelectric element 130 and the second piezoelectric element 140 used in this embodiment. The time for applying the DC voltage of 5V is 0 minutes, 5 minutes, 10 minutes, 15 minutes, and 20 minutes. The horizontal axis represents the elapsed time from the start of application of a DC voltage of 5V. The vertical axis represents the ratio between the polarization state of the sample before application of the DC voltage and the polarization state of the sample after application of the DC voltage. The saturation polarization value Pm indicated by a black circle and a straight line in FIG. 5 showed a substantially uniform value even when the DC voltage application time was changed. On the other hand, the remanent polarization value Pr indicated by a black square and a dotted line in FIG. 5 rapidly increases until the DC voltage application time is 5 minutes and gradually increases from 5 minutes to 10 minutes. The remanent polarization value Pr hardly changes after the DC voltage application time exceeds 10 minutes. In other words, when the DC voltage application time is 10 minutes or longer, the remanent polarization value Pr is saturated. Accordingly, it is considered that the DC voltage application time is appropriately 10 minutes or more.
 次に、図6に示されるように、直流電圧が10分間印加された前記試料に対して、分極状態比(ΔP%)が調べられる。印加される直流電圧の値は、0V,5V,10V,15V,20Vである。横軸は、前記試料に対して10分間印加される直流電圧量である。縦軸は、図5と同様に、直流電圧印加前の圧電素子試料の分極状態と、直流電圧印加後の圧電素子資料の分極状態との比である。飽和分極値Pm及び残留分極値Prは、図5と同じ表記にて図6に示される。飽和分極値Pmは、印加される直流電圧量を変化させても略一様の値を示した。一方、残留分極値Prは、印加される直流電圧量が5Vまでは急激に値が上昇し、5Vから10Vまで若干の減少を示す。そして、残留分極値Prは、印加される直流電圧量が10V以上の領域では殆ど変化しない。換言すれば、直流電圧の電圧が10V以上の場合、残留分極値Prは飽和する。従って、印加される直流電圧値は、10V以上が適切であると考えられる。ここで、本実施形態における光スキャナ100で用いられる圧電素子は、上部電極と下部電極との電位差が約8Vの場合に、抗電界に等しい電界が生じるように形成される。従って、図6から、抗電界が生じる電圧値以上の電圧が、圧電素子に印加されるのが適切であると考えられる。 Next, as shown in FIG. 6, the polarization state ratio (ΔP%) is examined for the sample to which a DC voltage has been applied for 10 minutes. The value of the applied DC voltage is 0V, 5V, 10V, 15V, and 20V. The horizontal axis represents the amount of DC voltage applied to the sample for 10 minutes. Similarly to FIG. 5, the vertical axis represents the ratio between the polarization state of the piezoelectric element sample before application of the DC voltage and the polarization state of the piezoelectric element material after application of the DC voltage. The saturation polarization value Pm and the remanent polarization value Pr are shown in FIG. 6 in the same notation as FIG. The saturation polarization value Pm showed a substantially uniform value even when the applied DC voltage amount was changed. On the other hand, the remanent polarization value Pr increases rapidly until the applied DC voltage amount is 5V, and shows a slight decrease from 5V to 10V. The remanent polarization value Pr hardly changes in the region where the applied DC voltage amount is 10 V or more. In other words, when the DC voltage is 10 V or more, the remanent polarization value Pr is saturated. Therefore, it is considered that an appropriate DC voltage value of 10 V or more is appropriate. Here, the piezoelectric element used in the optical scanner 100 in the present embodiment is formed such that an electric field equal to the coercive electric field is generated when the potential difference between the upper electrode and the lower electrode is about 8V. Therefore, it can be considered from FIG. 6 that it is appropriate to apply a voltage equal to or higher than the voltage value at which the coercive electric field is generated to the piezoelectric element.
 図7において、図10と同様に、縦軸は位相差のばらつき量を、横軸は光スキャナの駆動終了から次回駆動までの経過時間をそれぞれ表す。図7において、光スキャナ100の駆動前に、10Vの直流電圧が第1圧電素子130に48時間印加された。経過時間0時間の初回駆動時直後は約4nsecの位相差のばらつき量であり、120時間ほど経過した後は約2nsecの位相差のばらつき量であった。直流電圧が印加されない場合の依存性を示す図10においては、初回駆動時と120時間経過後との間の位相差のばらつき量の差は10nsec程度である。一方、直流電圧が印加された図7においては、初回駆動時と120時間経過後との間の位相差のばらつき量の差は2nsec程度であり、図10に比べて明らかに小さくなっている。即ち、直流電圧が圧電素子に印加されることによって、検出される位相差のばらつき量が抑えられた。 7, as in FIG. 10, the vertical axis represents the amount of phase difference variation, and the horizontal axis represents the elapsed time from the end of driving of the optical scanner to the next driving. In FIG. 7, before driving the optical scanner 100, a DC voltage of 10V was applied to the first piezoelectric element 130 for 48 hours. Immediately after the first drive at an elapsed time of 0 hours, the amount of variation in phase difference was about 4 nsec, and after about 120 hours, the amount of variation in phase difference was about 2 nsec. In FIG. 10, which shows the dependence when no DC voltage is applied, the difference in the amount of variation in phase difference between the first drive and after 120 hours is about 10 nsec. On the other hand, in FIG. 7 to which a DC voltage is applied, the difference in the amount of variation in phase difference between the initial drive and after 120 hours has elapsed is about 2 nsec, which is clearly smaller than that in FIG. That is, the amount of variation in the detected phase difference is suppressed by applying a DC voltage to the piezoelectric element.
[画像表示装置1の説明]
 本実施形態の光スキャナ100を用いた、画像表示装置1の全体構成及び動作について説明する。図8に示されるように、画像表示装置1は、観察者の瞳孔52に光束を入射させて網膜54上に画像を表示することによって、観察者に虚像を視認させるための装置である。この装置は、網膜走査型ディスプレイともいわれる。
[Description of Image Display Device 1]
The overall configuration and operation of the image display apparatus 1 using the optical scanner 100 of this embodiment will be described. As shown in FIG. 8, the image display device 1 is a device for causing a viewer to visually recognize a virtual image by causing a light beam to enter the pupil 52 of the viewer and displaying an image on the retina 54. This device is also called a retinal scanning display.
 画像表示装置1は、光束生成手段2、光ファイバ19、コリメート光学系20、光スキャナ100、水平走査ドライバ61、第1のリレー光学系22、垂直走査部23、垂直走査ドライバ62、第2のリレー光学系24を備える。光束生成手段2は、映像信号処理回路3、光源部30、光合波部40で構成される。映像信号処理回路3は、外部から供給される映像信号に基づいて、画像を合成するための要素となるB信号、G信号、R信号、水平同期信号、垂直同期信号を発生する。 The image display apparatus 1 includes a light beam generation unit 2, an optical fiber 19, a collimating optical system 20, an optical scanner 100, a horizontal scanning driver 61, a first relay optical system 22, a vertical scanning unit 23, a vertical scanning driver 62, a second A relay optical system 24 is provided. The light beam generation means 2 includes a video signal processing circuit 3, a light source unit 30, and an optical multiplexing unit 40. The video signal processing circuit 3 generates a B signal, a G signal, an R signal, a horizontal synchronization signal, and a vertical synchronization signal, which are elements for combining images, based on a video signal supplied from the outside.
 光源部30は、Bレーザドライバ31、Gレーザドライバ32、Rレーザドライバ33、Bレーザ34、Gレーザ35、Rレーザ36を備える。Bレーザドライバ31は、映像信号処理回路3からのB信号に応じた強度の青色の光束を発生させるように、Bレーザ34を駆動する。Gレーザドライバ32は、映像信号処理回路3からのG信号に応じた強度の緑色の光束を発生させるように、Gレーザ35を駆動する。Rレーザドライバ33は、映像信号処理回路3からのR信号に応じた強度の赤色の光束を発生させるように、Rレーザ36を駆動する。Bレーザ34,Gレーザ35及びRレーザ36は、例えば半導体レーザや高調波発生機構付き固体レーザとして構成できる。尚、前記した光源部30が、本発明の光源の一例である。 The light source unit 30 includes a B laser driver 31, a G laser driver 32, an R laser driver 33, a B laser 34, a G laser 35, and an R laser 36. The B laser driver 31 drives the B laser 34 so as to generate a blue light beam having an intensity corresponding to the B signal from the video signal processing circuit 3. The G laser driver 32 drives the G laser 35 so as to generate a green light beam having an intensity corresponding to the G signal from the video signal processing circuit 3. The R laser driver 33 drives the R laser 36 so as to generate a red light beam having an intensity corresponding to the R signal from the video signal processing circuit 3. The B laser 34, the G laser 35, and the R laser 36 can be configured as, for example, a semiconductor laser or a solid-state laser with a harmonic generation mechanism. The light source unit 30 described above is an example of the light source of the present invention.
 光合波部40は、コリメート光学系41,42,43と、ダイクロイックミラー44,45,46と、集光光学系47とを備える。Bレーザ34から出射した青色レーザ光は、コリメート光学系41によって平行光化された後に、ダイクロイックミラー44に入射する。Gレーザ35から出射した緑色レーザ光は、コリメート光学系42を経てダイクロイックミラー45に入射する。Rレーザ36から出射した赤色レーザ光は、コリメート光学系43を経てダイクロイックミラー46に入射する。ダイクロイックミラー44,45,46にそれぞれ入射した3原色のレーザ光は、波長選択的に反射または透過されて1本の光束として合成され、集光光学系47に達する。合成されたレーザ光は、集光光学系47によって集光され、光ファイバ19へ入射する。 The optical multiplexing unit 40 includes collimating optical systems 41, 42, 43, dichroic mirrors 44, 45, 46, and a condensing optical system 47. The blue laser light emitted from the B laser 34 is collimated by the collimating optical system 41 and then enters the dichroic mirror 44. The green laser light emitted from the G laser 35 enters the dichroic mirror 45 through the collimating optical system 42. The red laser light emitted from the R laser 36 enters the dichroic mirror 46 through the collimating optical system 43. The three primary color laser beams respectively incident on the dichroic mirrors 44, 45, and 46 are reflected or transmitted in a wavelength-selective manner and are combined as one light beam, and reach the condensing optical system 47. The combined laser light is condensed by the condensing optical system 47 and enters the optical fiber 19.
 水平走査ドライバ61は、映像信号処理回路3からの水平同期信号に従って、光スキャナ100を駆動する。垂直走査ドライバ62は、映像信号処理回路3からの垂直同期信号に従って、垂直走査スキャナ23を駆動する。レーザ光は、光スキャナ100及び垂直走査スキャナ23の走査によって、水平方向と垂直方向とに走査された光束として変換され、画像として表示可能な状態になる。具体的には、光ファイバ19から出射したレーザ光は、コリメート光学系20によって平行光に変換された後に、光スキャナ100に導かれる。光スキャナ100によって水平方向に走査されたレーザ光は、第1のリレー光学系22を通過した後に、垂直走査スキャナ23に平行光線として入射する。このとき、第1のリレー光学系22によって、垂直走査スキャナ23の位置に光学瞳が形成される。垂直走査スキャナ23によって垂直方向に走査されたレーザ光は、第2のリレー光学系24を通過した後に、観測者の瞳孔52に平行光線として入射する。このとき、第2のリレー光学系24によって、観測者の瞳孔52と垂直走査スキャナ23の位置にある光学瞳とが共役となる。尚、前記した第2のリレー光学系24が、本発明の接眼光学系の一例である。 The horizontal scanning driver 61 drives the optical scanner 100 according to the horizontal synchronizing signal from the video signal processing circuit 3. The vertical scanning driver 62 drives the vertical scanning scanner 23 according to the vertical synchronization signal from the video signal processing circuit 3. The laser light is converted into a light beam scanned in the horizontal direction and the vertical direction by the scanning of the optical scanner 100 and the vertical scanning scanner 23, and can be displayed as an image. Specifically, laser light emitted from the optical fiber 19 is converted into parallel light by the collimating optical system 20 and then guided to the optical scanner 100. The laser beam scanned in the horizontal direction by the optical scanner 100 passes through the first relay optical system 22 and then enters the vertical scanning scanner 23 as parallel rays. At this time, an optical pupil is formed at the position of the vertical scanning scanner 23 by the first relay optical system 22. The laser beam scanned in the vertical direction by the vertical scanning scanner 23 passes through the second relay optical system 24 and then enters the observer's pupil 52 as parallel rays. At this time, the observer's pupil 52 and the optical pupil at the position of the vertical scanning scanner 23 are conjugated by the second relay optical system 24. The above-described second relay optical system 24 is an example of an eyepiece optical system according to the present invention.
 <変形例>
 本発明は、今までに述べた実施形態に限定されることは無く、その趣旨を逸脱しない範囲において種々の変形・変更が可能である。以下にその変形の一例を述べる。
<Modification>
The present invention is not limited to the embodiments described so far, and various modifications and changes can be made without departing from the spirit of the present invention. An example of the modification will be described below.
(1) 図2において、直流電圧印加部160は、第1圧電素子130と第2圧電素子140との両方に直流電圧を印加する。しかし、第2圧電素子140にのみ直流電圧を印加するような構成にしても良い。 (1) In FIG. 2, the DC voltage application unit 160 applies a DC voltage to both the first piezoelectric element 130 and the second piezoelectric element 140. However, a configuration in which a DC voltage is applied only to the second piezoelectric element 140 may be adopted.
(2) 前記した実施形態において、光スキャナ100の駆動周波数は、共振周波数と同じに設定される。即ち、光スキャナ100は共振駆動される。しかし、光スキャナ100は、共振周波数と異なる周波数で駆動されても良い。共振駆動では検出信号と駆動信号との位相差を知る必要があるので、本発明によって位相差のばらつき量を抑えることは、共振駆動において特に有用である。しかし、図4において位相差が0°となる周波数で光スキャナ100が駆動される場合であっても、光の走査位置を知る等の目的で位相を調べることが必要となる場合もある。そのため、光スキャナが共振駆動で用いられない場合でも、本発明は有用である。 (2) In the above-described embodiment, the drive frequency of the optical scanner 100 is set to be the same as the resonance frequency. That is, the optical scanner 100 is driven to resonate. However, the optical scanner 100 may be driven at a frequency different from the resonance frequency. Since it is necessary to know the phase difference between the detection signal and the drive signal in the resonance drive, it is particularly useful in the resonance drive to suppress the variation amount of the phase difference according to the present invention. However, even when the optical scanner 100 is driven at a frequency at which the phase difference is 0 ° in FIG. 4, it may be necessary to check the phase for the purpose of knowing the scanning position of the light. Therefore, the present invention is useful even when the optical scanner is not used for resonance driving.
(3) 前記した実施形態において、駆動信号が第1圧電素子130に入力され、検出信号が第2圧電素子140から出力される。しかし、第1圧電素子130の構成と第2圧電素子140の構成とは同じであるので、駆動信号が第2圧電素子140に入力され、検出信号が第1圧電素子130から出力されても良い。あるいは、図9に示される光スキャナ200のように、駆動信号の入力先と検出信号の出力元とが切替可能な構成でもよい。 (3) In the above-described embodiment, the drive signal is input to the first piezoelectric element 130 and the detection signal is output from the second piezoelectric element 140. However, since the configuration of the first piezoelectric element 130 and the configuration of the second piezoelectric element 140 are the same, a drive signal may be input to the second piezoelectric element 140 and a detection signal may be output from the first piezoelectric element 130. . Or the structure which can switch the input destination of a drive signal, and the output source of a detection signal like the optical scanner 200 shown by FIG. 9 may be sufficient.
 光スキャナ200は、切替回路180が設けられ、2つの信号重畳回路190a,190bが設けられる点において、前記した実施形態における光スキャナ100と相違する。図9において、前記した実施形態の回路構成と同一の構成要素に関しては、図2と同じ番号を付すことで説明を省略する。切替回路180は、信号処理回路170からの制御信号に従い、入力された駆動信号を第1圧電素子130又は第2圧電素子140のいずれか一方の圧電素子に選択的に出力することで、光スキャナ200を駆動するための圧電素子を切替る機能を有する。また、切替回路180は、信号処理回路170からの制御信号に従い、光スキャナ200の駆動に使用されない他方の圧電素子から出力された検出信号を、位相比較器151に入力する機能も有する。即ち、切替回路180は、第1圧電素子130及び第2圧電素子140の機能を、光スキャナ200の駆動に用いる圧電素子と、光スキャナ200の位相を検出する圧電素子との何れかに切替えることを可能にする。この切替回路180は、例えばCMOS等を用いた単極二接点スイッチ(SPDT(Single-Pole Dual Throw)スイッチ)によって構成することができる。駆動信号が切替回路180から第1圧電素子130に対して出力される場合、切替回路180は、駆動信号を信号重畳回路190aに出力する。信号重畳回路190aは、この駆動信号と直流電圧印加部160からの直流電圧とを重畳する。信号重畳回路190aは、直流電圧と重畳された駆動信号を、第1圧電素子130に出力する。このとき、信号重畳回路190bには駆動信号が入力されないので、第2圧電素子140に対しては、直流電圧印加部160からの直流電圧のみが信号重畳回路190bを介して入力される。一方、駆動信号が切替回路180から第2圧電素子140に対して出力される場合、切替回路180は、駆動信号を信号重畳回路190bに出力する。信号重畳回路190bは、この駆動信号と直流電圧印加部160からの直流電圧とを重畳する。信号重畳回路190bは、直流電圧と重畳された駆動信号を、第2圧電素子140に出力する。このとき、信号重畳回路190aには駆動信号が入力されないので、第1圧電素子130に対しては、直流電圧印加部160からの直流電圧のみが信号重畳回路190aを介して入力される。 The optical scanner 200 is different from the optical scanner 100 in the above-described embodiment in that a switching circuit 180 is provided and two signal superimposing circuits 190a and 190b are provided. In FIG. 9, the same components as those in the circuit configuration of the above-described embodiment are denoted by the same reference numerals as those in FIG. The switching circuit 180 selectively outputs the input drive signal to one of the first piezoelectric element 130 and the second piezoelectric element 140 in accordance with the control signal from the signal processing circuit 170, so that the optical scanner 200 has a function of switching a piezoelectric element for driving 200. The switching circuit 180 also has a function of inputting, to the phase comparator 151, a detection signal output from the other piezoelectric element that is not used for driving the optical scanner 200 in accordance with a control signal from the signal processing circuit 170. That is, the switching circuit 180 switches the function of the first piezoelectric element 130 and the second piezoelectric element 140 to either a piezoelectric element used for driving the optical scanner 200 or a piezoelectric element that detects the phase of the optical scanner 200. Enable. The switching circuit 180 can be configured by a single-pole two-contact switch (SPDT (Single-Pole Dual Throw) switch) using, for example, CMOS. When the driving signal is output from the switching circuit 180 to the first piezoelectric element 130, the switching circuit 180 outputs the driving signal to the signal superimposing circuit 190a. The signal superimposing circuit 190 a superimposes this drive signal and the DC voltage from the DC voltage application unit 160. The signal superimposing circuit 190 a outputs a drive signal superimposed with the DC voltage to the first piezoelectric element 130. At this time, since the drive signal is not input to the signal superimposing circuit 190b, only the DC voltage from the DC voltage applying unit 160 is input to the second piezoelectric element 140 via the signal superimposing circuit 190b. On the other hand, when the drive signal is output from the switching circuit 180 to the second piezoelectric element 140, the switching circuit 180 outputs the drive signal to the signal superimposing circuit 190b. The signal superimposing circuit 190b superimposes the drive signal and the DC voltage from the DC voltage applying unit 160. The signal superimposing circuit 190b outputs a drive signal superimposed with the DC voltage to the second piezoelectric element 140. At this time, since the drive signal is not input to the signal superimposing circuit 190a, only the DC voltage from the DC voltage applying unit 160 is input to the first piezoelectric element 130 via the signal superimposing circuit 190a.
 切替回路180を用いることの効果は、特許文献1に記載されている信号経路切替手段の様に、光スキャナ200の寿命を延ばすことが可能になることである。駆動に用いられる圧電素子が受ける応力は、位相検出に用いられる素子が受ける応力よりも大きい。そのため、駆動に用いられる圧電素子の寿命は、位相検出に用いられる圧電素子の寿命よりも短くなる可能性がある。切替回路180用いて圧電素子を駆動と検出とに適宜切替えて使用することによって、第1圧電素子130と第2圧電素子140との寿命が同じになるように調整できる。従って、光スキャナ200の寿命を延ばすことが可能になる。 The effect of using the switching circuit 180 is that the life of the optical scanner 200 can be extended like the signal path switching means described in Patent Document 1. The stress received by the piezoelectric element used for driving is larger than the stress received by the element used for phase detection. Therefore, the lifetime of the piezoelectric element used for driving may be shorter than the lifetime of the piezoelectric element used for phase detection. By using the switching circuit 180 and switching the piezoelectric element between driving and detection as appropriate, the lifetime of the first piezoelectric element 130 and the second piezoelectric element 140 can be adjusted to be the same. Therefore, the life of the optical scanner 200 can be extended.
(4) 前記した実施形態においては、図3に示される様に、駆動信号が第1圧電素子130に送信されているときも、第1圧電素子130及び第2圧電素子140に直流電圧が印加される。しかし、第1圧電素子130及び第2圧電素子140は、光スキャナ100が駆動される時点において分極状態が調整済みであれば良い。従って、直流電圧は、駆動信号が第1圧電素子130に送信される前にのみ印加され、駆動信号の送信後は直流電圧が印加されなくても良い。あるいは、駆動信号の送信後も第1圧電素子130及び第2圧電素子140に直流電圧が印加されるのであれば、特開2007-25608号公報に記載の技術の様に、印加される直流電圧値を調整することにより、圧電素子に発生する張力を変化させ、光スキャナの共振周波数を調整することも可能である。 (4) In the above-described embodiment, as shown in FIG. 3, a DC voltage is applied to the first piezoelectric element 130 and the second piezoelectric element 140 even when the drive signal is transmitted to the first piezoelectric element 130. Is done. However, the first piezoelectric element 130 and the second piezoelectric element 140 only have to be adjusted in polarization state when the optical scanner 100 is driven. Therefore, the DC voltage is applied only before the drive signal is transmitted to the first piezoelectric element 130, and the DC voltage may not be applied after the drive signal is transmitted. Alternatively, if a DC voltage is applied to the first piezoelectric element 130 and the second piezoelectric element 140 even after transmission of the drive signal, the applied DC voltage is applied as in the technique described in Japanese Patent Application Laid-Open No. 2007-25608. By adjusting the value, it is also possible to change the tension generated in the piezoelectric element and adjust the resonance frequency of the optical scanner.
(5) 前記した実施形態の光スキャナの弾性梁は、反射ミラー支持部から結合部を介して一対の梁部に結合される、所謂二股梁の形状である。しかし、これ以外の構造であってもよい。例えば、米国特許第6657764号明細書の図1や特開2007-268374号公報の図2に記載の光スキャナの様に、弾性梁が二股に分かれない形状の光スキャナであっても、光スキャナの駆動に圧電素子が使用されるのであれば、本発明は適応可能である。また、前記した実施形態の光スキャナにおいて、反射ミラー111は、一端に連結される第1弾性梁112と、他端に連結される第2弾性梁113とによって両持支持される。しかし、例えば特開平7-65098号公報の図1に記載の光スキャナの様に、反射ミラーが一端でのみ弾性梁によって支持される片持支持の構成であっても、光スキャナの揺動状態の検知や駆動に圧電素子が使用されるのであれば、本発明は適応可能である。要は、弾性梁によって支持された反射ミラーの駆動や揺動状態の検知を、圧電素子によって行う構成の光スキャナであれば良い。 (5) The elastic beam of the optical scanner of the above-described embodiment has a so-called bifurcated beam shape that is coupled to the pair of beam portions from the reflection mirror support portion via the coupling portion. However, other structures may be used. For example, the optical scanner may be an optical scanner having a shape in which the elastic beam is not divided into two branches, such as the optical scanner shown in FIG. 1 of US Pat. No. 6,657,764 and FIG. If a piezoelectric element is used for driving, the present invention is applicable. In the optical scanner of the above-described embodiment, the reflection mirror 111 is supported at both ends by the first elastic beam 112 connected to one end and the second elastic beam 113 connected to the other end. However, even if the reflection mirror is supported by an elastic beam only at one end, such as the optical scanner shown in FIG. 1 of Japanese Patent Application Laid-Open No. 7-65098, the optical scanner swings. The present invention can be applied if a piezoelectric element is used for detection and driving. In short, any optical scanner having a configuration in which the reflection mirror supported by the elastic beam is driven and the swing state is detected by a piezoelectric element may be used.
(6) 前記した実施形態において、第1圧電素子130を構成する2つの圧電素子は、互いに逆相の交流電圧、即ち位相がπずれた交流電圧が夫々印加されることで逆相駆動される。しかし、逆相駆動は、例えば図1において第1圧電素子130を構成する2つの圧電素子のうち右側の圧電素子と、第2圧電素子140を構成する2つの圧電素子の左側の圧電素子とに、逆相の交流電圧が印加されることで達成されても良い。あるいは、図1において第1圧電素子130を構成する2つの圧電素子のうち右側の圧電素子と、第2圧電素子140を構成する2つの圧電素子の右側の圧電素子とに、同じ位相の交流電圧が印加されることで、同相駆動が達成されても良い。 (6) In the above-described embodiment, the two piezoelectric elements constituting the first piezoelectric element 130 are driven in reverse phase by applying AC voltages having opposite phases, that is, AC voltages having phases shifted by π, respectively. . However, the reverse-phase driving is performed, for example, on the right piezoelectric element of the two piezoelectric elements constituting the first piezoelectric element 130 in FIG. 1 and the left piezoelectric element of the two piezoelectric elements constituting the second piezoelectric element 140. Alternatively, this may be achieved by applying a reverse-phase AC voltage. Alternatively, an AC voltage having the same phase is applied to the right piezoelectric element of the two piezoelectric elements constituting the first piezoelectric element 130 and the right piezoelectric element of the two piezoelectric elements 140 constituting the second piezoelectric element 140 in FIG. May be applied to achieve in-phase driving.
1 画像表示装置
2 光束生成手段
3 映像信号処理回路3
19 光ファイバ
20,41,42,43 コリメート光学系
22 第1のリレー光学系
23 垂直走査スキャナ
24 第2のリレー光学系
30 光源部
31 Bレーザドライバ
32 Gレーザドライバ
33 Bレーザドライバ
34 Bレーザ
35 Gレーザ
35 Rレーザ
40 光合波部
44,45,46 ダイクロイックミラー
47 集光光学系
52 観察者の瞳孔
54 観察者の網膜
61 水平走査ドライバ
62 垂直走査ドライバ
100,200 光スキャナ
110 基体
111 反射ミラー
112 第1弾性梁
113 第2弾性梁
112a,113a 反射ミラー支持部
112b,113b 結合部
112c,113c 一対の梁部
114 外枠部
120 台座
121 基体固定部
130 第1圧電素子
131,141 下部電極
132,142 上部電極
140 第2圧電素子
150 交流電圧印加部
151 位相比較器
152 ローパスフィルタ
153 電圧制御発振器
154 位相シフタ
155 コンパレータ
160 直流電圧印加部
170 信号処理回路
180 切替回路
190,190a,190b 信号重畳回路
DESCRIPTION OF SYMBOLS 1 Image display apparatus 2 Light beam production | generation means 3 Video signal processing circuit 3
19 Optical fibers 20, 41, 42, 43 Collimating optical system 22 First relay optical system 23 Vertical scanning scanner 24 Second relay optical system 30 Light source unit 31 B laser driver 32 G laser driver 33 B laser driver 34 B laser 35 G laser 35 R laser 40 Optical multiplexing units 44, 45, 46 Dichroic mirror 47 Condensing optical system 52 Observer pupil 54 Observer retina 61 Horizontal scanning driver 62 Vertical scanning driver 100, 200 Optical scanner 110 Base 111 Reflection mirror 112 1st elastic beam 113 2nd elastic beam 112a, 113a Reflection mirror support part 112b, 113b Coupled part 112c, 113c A pair of beam part 114 Outer frame part 120 Base 121 Base fixing | fixed part 130 1st piezoelectric element 131,141 Lower electrode 132, 142 Upper electrode 140 Second piezoelectric element 1 50 AC voltage application unit 151 Phase comparator 152 Low-pass filter 153 Voltage controlled oscillator 154 Phase shifter 155 Comparator 160 DC voltage application unit 170 Signal processing circuit 180 Switching circuit 190, 190a, 190b Signal superposition circuit

Claims (8)

  1.  揺動軸線の周りに揺動され、入射した光を所定方向に走査する反射ミラーと、
     前記反射ミラーに連結された第1の弾性梁と、
     前記反射ミラーに前記第1の弾性梁とは異なる位置で連結された第2の弾性梁と、
     前記反射ミラー、前記第1の弾性梁及び前記第2の弾性梁を揺動させるために、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方に設けられ、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方に曲げ変位を生じさせる第1の圧電素子と、
     前記第1の圧電素子に曲げ変位を生じさせるために、前記第1の圧電素子に交流電圧を印加する交流電源部と、
     前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方の曲げ変位の状態を検知するために、前記第1の弾性梁又は前記第2の弾性梁の少なくとも一方に設けられ、自身の曲げ変位に応じた検出信号を生じる第2の圧電素子と、
     少なくとも前記交流電源部によって前記第1の圧電素子に交流電圧が印加されないとき、前記第2の圧電素子に直流電圧を印加する直流電源部と、
    を備えることを特徴とする光スキャナ。
    A reflection mirror that is oscillated around an oscillation axis and scans incident light in a predetermined direction;
    A first elastic beam coupled to the reflecting mirror;
    A second elastic beam coupled to the reflecting mirror at a position different from the first elastic beam;
    The first elastic beam is provided on at least one of the first elastic beam and the second elastic beam to swing the reflection mirror, the first elastic beam, and the second elastic beam. Or a first piezoelectric element that causes bending displacement in at least one of the second elastic beams;
    An alternating current power supply for applying an alternating voltage to the first piezoelectric element in order to cause bending displacement in the first piezoelectric element;
    In order to detect the bending displacement state of at least one of the first elastic beam or the second elastic beam, the bending beam is provided on at least one of the first elastic beam or the second elastic beam and is bent by itself. A second piezoelectric element that generates a detection signal according to the displacement;
    A DC power supply unit that applies a DC voltage to the second piezoelectric element when at least an AC voltage is not applied to the first piezoelectric element by the AC power supply unit;
    An optical scanner comprising:
  2.  前記直流電源部は、前記第2の圧電素子に抗電界以上の電界が発生するように、直流電圧を前記第2の圧電素子に印加する、
    ことを特徴とする請求項1に記載の光スキャナ。
    The DC power supply unit applies a DC voltage to the second piezoelectric element so that an electric field higher than a coercive electric field is generated in the second piezoelectric element;
    The optical scanner according to claim 1.
  3.  前記直流電源部は、前記交流電源部によって前記第1の圧電素子に交流電圧の印加が開始されるよりも所定時間前に、前記第2の圧電素子に直流電圧の印加を開始する、
    ことを特徴とする請求項1に記載の光スキャナ。
    The DC power supply unit starts applying a DC voltage to the second piezoelectric element a predetermined time before the AC power supply unit starts applying an AC voltage to the first piezoelectric element;
    The optical scanner according to claim 1.
  4.  前記直流電源部は、前記交流電源部によって前記第1の圧電素子に交流電圧の印加が開始されるよりも、少なくとも直流電圧の印加時間に対して分極状態が飽和する時間だけ前に、前記第2の圧電素子に直流電圧の印加を開始する、
    ことを特徴とする請求項3に記載の光スキャナ。
    The DC power supply unit is configured so that the AC power supply unit starts applying the AC voltage to the first piezoelectric element at least before the polarization state is saturated with respect to the DC voltage application time. Starting to apply a DC voltage to the piezoelectric element 2;
    The optical scanner according to claim 3.
  5.  前記直流電源部は、更に、前記第1の圧電素子の分極状態を調整にするために、少なくとも前記交流電源部によって前記第1の圧電素子に交流電圧が印加されないとき、前記第1の圧電素子に直流電圧を印加する、
    ことを特徴とする請求項1に記載の光スキャナ。
    The DC power supply unit further includes the first piezoelectric element when no AC voltage is applied to the first piezoelectric element by at least the AC power supply unit in order to adjust the polarization state of the first piezoelectric element. DC voltage is applied to
    The optical scanner according to claim 1.
  6.  前記交流電源部は、前記反射ミラー、前記第1の弾性梁及び前記第2の弾性梁を揺動軸線周りに共振駆動させるために、前記検出信号に応じて前記第1の圧電素子に印加する交流電圧の周波数を調整する周波数調整部を備える、
    ことを特徴とする請求項1に記載の光スキャナ。
    The AC power supply unit applies to the first piezoelectric element according to the detection signal in order to drive the reflection mirror, the first elastic beam, and the second elastic beam to resonate around a swing axis. A frequency adjustment unit for adjusting the frequency of the AC voltage;
    The optical scanner according to claim 1.
  7.  前記直流電源部は、更に、前記交流電源部によって前記第1の圧電素子に交流電圧が印加されているときにも、前記第1の圧電素子又は前記第2の圧電素子の少なくとも一方に直流電圧を印加する、
    ことを特徴とする請求項1に記載の光スキャナ。
    The DC power supply unit further applies a DC voltage to at least one of the first piezoelectric element and the second piezoelectric element even when an AC voltage is applied to the first piezoelectric element by the AC power supply unit. Apply
    The optical scanner according to claim 1.
  8.  光を走査して画像を形成するための、請求項1~7のいずれか1項に記載の光スキャナと、
     その光スキャナに光を供給するための光源と、
     前記光スキャナによって走査された光を使用者の目に導く接眼光学系と、を備えることを特徴する画像表示装置。
    The optical scanner according to any one of claims 1 to 7, for forming an image by scanning light;
    A light source for supplying light to the optical scanner;
    An image display apparatus comprising: an eyepiece optical system that guides light scanned by the optical scanner to a user's eyes.
PCT/JP2009/006484 2008-12-11 2009-11-30 Optical scanner and image display device using the optical scanner WO2010067532A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-315384 2008-12-11
JP2008315384A JP2010139691A (en) 2008-12-11 2008-12-11 Optical scanner and image display device equipped with the optical scanner

Publications (1)

Publication Number Publication Date
WO2010067532A1 true WO2010067532A1 (en) 2010-06-17

Family

ID=42242529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006484 WO2010067532A1 (en) 2008-12-11 2009-11-30 Optical scanner and image display device using the optical scanner

Country Status (2)

Country Link
JP (1) JP2010139691A (en)
WO (1) WO2010067532A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524254B2 (en) * 2012-02-14 2014-06-18 富士フイルム株式会社 Mirror drive device and control method thereof
WO2013121581A1 (en) * 2012-02-17 2013-08-22 パイオニア株式会社 Mirror driving device
JP6333007B2 (en) * 2014-03-18 2018-05-30 パイオニア株式会社 Virtual image display device
JP2016080890A (en) * 2014-10-17 2016-05-16 株式会社リコー Electromechanical system
JP6515723B2 (en) * 2015-07-30 2019-05-22 富士電機株式会社 Rotary actuator
JP2018124575A (en) * 2018-04-24 2018-08-09 パイオニア株式会社 Virtual image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180496A (en) * 2002-11-15 2004-06-24 Matsushita Electric Ind Co Ltd Drive method of piezoelectric material actuator, and the piezoelectric material actuator, and disk recording/reproducing apparatus using the actuator
JP2005208251A (en) * 2004-01-21 2005-08-04 Sumitomo Precision Prod Co Ltd Resonance detection apparatus of micromirror, laser beam scanner and micromirror drive apparatus
JP2007025608A (en) * 2005-07-21 2007-02-01 Brother Ind Ltd Optical scanning apparatus, picture display, method of adjusting resonance frequency of optical scanner and method of correcting position of reflection mirror
JP2007140316A (en) * 2005-11-22 2007-06-07 Sumitomo Precision Prod Co Ltd Micromirror scanner and laser beam scanner using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180496A (en) * 2002-11-15 2004-06-24 Matsushita Electric Ind Co Ltd Drive method of piezoelectric material actuator, and the piezoelectric material actuator, and disk recording/reproducing apparatus using the actuator
JP2005208251A (en) * 2004-01-21 2005-08-04 Sumitomo Precision Prod Co Ltd Resonance detection apparatus of micromirror, laser beam scanner and micromirror drive apparatus
JP2007025608A (en) * 2005-07-21 2007-02-01 Brother Ind Ltd Optical scanning apparatus, picture display, method of adjusting resonance frequency of optical scanner and method of correcting position of reflection mirror
JP2007140316A (en) * 2005-11-22 2007-06-07 Sumitomo Precision Prod Co Ltd Micromirror scanner and laser beam scanner using same

Also Published As

Publication number Publication date
JP2010139691A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2010067532A1 (en) Optical scanner and image display device using the optical scanner
EP1719012B1 (en) Mems scanning system with improved performance
EP2240813B1 (en) Oscillating mirror for image projection
US7639413B2 (en) Resonant optical scanner using vibrating body with optimized resonant frequency characteristics and image forming apparatus having the same
US9893263B2 (en) Driver for optical deflector using combined saw-tooth drive voltage and method for controlling the same
US20090185251A1 (en) Oscillating mirror for image projection
US7750746B2 (en) Oscillator device and optical deflection device
JP2007025608A (en) Optical scanning apparatus, picture display, method of adjusting resonance frequency of optical scanner and method of correcting position of reflection mirror
US7817322B2 (en) Optical scanning device, image display device provided with optical scanning device, retinal scanning display, and driving method of optical scanning element
WO2010035469A1 (en) Optical scanner and image display device equipped with optical scanner
US20120275000A1 (en) Optical scanning device
US20130278984A1 (en) Optical scanning device
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
US8064117B2 (en) Oscillating element, manufacturing method of oscillating element, optical scanning device, image forming device and image display device
US8300292B2 (en) Optical scanner, image display apparatus having optical scanner and driving method of optical scanner
JP2012154989A (en) Optical deflection module
CN112352185B (en) Adjusting the resonant frequency of a scanning mirror
US8274723B2 (en) Piezoelectric transducer element, actuator, sensor, optical scanning device, and optical scanning display device
WO2011108395A1 (en) Optical scanning device and image display device provided with the same
US7586659B2 (en) Audio MEMS mirror feedback
JP2012185194A (en) Image display device
WO2009113722A1 (en) Oscillator device, optical deflector and image forming apparatus using the optical deflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831640

Country of ref document: EP

Kind code of ref document: A1