WO2013121581A1 - Mirror driving device - Google Patents

Mirror driving device Download PDF

Info

Publication number
WO2013121581A1
WO2013121581A1 PCT/JP2012/053845 JP2012053845W WO2013121581A1 WO 2013121581 A1 WO2013121581 A1 WO 2013121581A1 JP 2012053845 W JP2012053845 W JP 2012053845W WO 2013121581 A1 WO2013121581 A1 WO 2013121581A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
mirror
resonance frequency
current
switch
Prior art date
Application number
PCT/JP2012/053845
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 榎本
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/053845 priority Critical patent/WO2013121581A1/en
Publication of WO2013121581A1 publication Critical patent/WO2013121581A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means

Definitions

  • the present invention relates to a technical field for driving a mirror used in an image display device.
  • an image display device that displays an image by scanning (scanning) a laser beam with a mirror.
  • a mirror used in an image display device adjusts the driving frequency to the resonance frequency of the structure for the purpose of increasing the deflection angle while reducing the driving current and reducing fluctuations due to disturbance.
  • Patent Documents 1 and 2 describe techniques relating to the control of the resonance frequency of such a mirror.
  • Patent Document 1 discloses a technique for controlling the resonance frequency of a vibrating mirror by heating the torsion bar with a heating element, with respect to a vibrating mirror that deflects a laser beam by reciprocally vibrating a mirror substrate about a torsion bar as a rotation axis.
  • a temperature control device such as a Peltier element or a fan motor so that the torsion bar has a target temperature that exhibits a spring constant corresponding to a predetermined drive frequency.
  • Patent Documents 1 and 2 require an external device (such as a heating element, a Peltier element, and a fan motor) for controlling the resonance frequency in addition to the device that drives the mirror.
  • an external device such as a heating element, a Peltier element, and a fan motor
  • the resonance frequency in addition to the device that drives the mirror.
  • An object of the present invention is to provide a mirror driving device capable of appropriately controlling a resonance frequency without causing an increase in size of the device or an increase in power consumption.
  • the mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and the connecting portion, and a first coil for swinging the mirror portion. And a second coil, and switching means for selectively switching the supply of current to one or both of the first coil and the second coil.
  • the mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and the connecting portion, and a plurality of coils for swinging the mirror portion. And a switching means for switching the number of coils that supply current among the plurality of coils.
  • FIG. 1 shows an overall configuration of a mirror driving device according to the present embodiment.
  • the figure for demonstrating the specific structure of a switch part is shown. An example of a change in resolution when the resonance frequency changes is shown.
  • the figure for demonstrating the reason which can control a resonance frequency, without increasing the emitted-heat amount (power consumption) in the whole apparatus by a present Example is shown.
  • the processing flow for the resonant frequency control which concerns on a present Example is shown.
  • the processing flow for the resonant frequency detection which concerns on a present Example is shown.
  • times into a resonant frequency is shown.
  • a mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and a connection portion, a first coil for swinging the mirror portion, and And a switching means for selectively switching supply of current to one or both of the first coil and the second coil.
  • the above mirror driving device is suitably applied to an image display device that displays an image by scanning (scanning) laser light with a mirror portion.
  • the mirror part is swingably connected via a base part and a connection part (for example, a torsion bar), and is swung by the first coil and the second coil.
  • the switching means selectively switches the supply of current to one or both of the first coil and the second coil.
  • the coil power consumption that is, the heat generation amount
  • the temperature of the connecting portion can be controlled using the change in the amount of heat generated by the coil, and the resonance frequency can be controlled. Therefore, according to the above mirror driving device, it is possible to appropriately control the resonance frequency without causing an increase in the size of the device or an increase in power consumption.
  • the first coil and the second coil are formed so as to surround the mirror part, and are disposed in the vicinity of the connection part.
  • temperature control of a connection part can be performed appropriately, ensuring the rotational torque for rocking
  • the first coil and the second coil are wound in parallel. Therefore, it becomes possible to improve the mountability to the mirror drive device of a 1st coil and a 2nd coil.
  • the mirror driving device further includes a detecting unit that detects a resonance frequency of the oscillating mirror unit, and the switching unit selectively supplies the current according to the resonance frequency. Switch to.
  • the resonance frequency can be appropriately set to a desired frequency (reference resonance frequency).
  • the switching means switches so as to supply a current to one of the first coil and the second coil when the resonance frequency is equal to or higher than a reference resonance frequency.
  • the resonance frequency is lower than the reference resonance frequency, switching can be performed so as to supply current to both the first coil and the second coil.
  • the switching means supplies the current to one of the first coil and the second coil, and both the first coil and the second coil. It is possible to perform control for continuously switching between the current supply and the timing for performing the switching according to the resonance frequency.
  • the phase difference between the drive signal for swinging the mirror portion and the detection signal of the sensor for detecting the swing of the mirror portion due to the drive signal is 90 degrees.
  • the control means further controls the frequency of the drive signal, and the detection means determines the frequency of the drive signal when the phase difference is 90 degrees as a result of control by the control means. Detect as. Thereby, it is possible to appropriately detect the resonance frequency and appropriately control the switching based on the resonance frequency.
  • a mirror driving device in another aspect of the present invention, includes a base portion, a mirror portion that is swingably connected via the base portion and a connection portion, and a plurality of coils for swinging the mirror portion. And a switching unit that switches the number of coils that supply current among the plurality of coils.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a mirror driving device 100 according to the present embodiment.
  • the mirror drive device 100 mainly includes a mirror drive control unit 1, a vibrating mirror 2, and a switch unit 3.
  • the mirror driving device 100 is applied to an image display device (not shown), and operates to scan with laser light to draw an image.
  • the mirror drive control unit 1 includes a drive control unit 11, a switch control unit 12, a resonance frequency detection unit 13, and a phase comparison unit 14.
  • the vibrating mirror 2 includes a mirror part 21, a base part 22, a torsion bar 23, magnets 24a and 24b, coils 25a, 25b and 25c, and a position sensor 26.
  • the mirror drive control unit 1 corresponds to a drive circuit (actuator drive circuit) that swings the mirror unit 21 using the coils 25a, 25b, and 25c in the vibration mirror 2 as actuators.
  • the drive control unit 11 outputs a drive signal S11 (corresponding to a current) for driving the coils 25a, 25b, and 25c in the vibrating mirror 2.
  • the drive signal S11 is supplied to the coils 25a, 25b, and 25c via the switch unit 3.
  • the switch control unit 12 supplies a control signal S12 for controlling the switch unit 3 to the switch unit 3.
  • the switch control unit 12 generates a control signal S12 based on the resonance frequency detected by the resonance frequency detection unit 13.
  • the switch control unit 12 (which may include the switch unit 3) corresponds to an example of the “switching unit” in the present invention.
  • the phase comparison unit 14 obtains the phase difference between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26 in the vibration mirror 2. Specifically, the phase comparison unit 14 obtains a phase difference between the frequency corresponding to the drive signal S11 of the drive control unit 11 and the frequency corresponding to the actual swinging operation of the vibrating mirror 2 by the drive signal S11.
  • the resonance frequency detection unit 13 detects the resonance frequency in the oscillating mirror 2 based on the phase difference obtained by the phase comparison unit 14. Specifically, the resonance frequency detection unit 13 detects the frequency of the drive signal S11 when the phase difference is 90 degrees as the resonance frequency.
  • the switch unit 3 has a plurality of switches (not shown) for switching the output destination of the drive signal S11 of the drive control unit 11. Specifically, the switch unit 3 supplies the drive signal S11 to at least one of the coils 25a, 25b, and 25c by switching a plurality of switches according to the control signal S12 of the switch control unit 12. .
  • a drive signal S25a is supplied from the switch unit 3 to the coil 25a
  • a drive signal S25b is supplied from the switch unit 3 to the coil 25b
  • a drive signal S25c is supplied from the switch unit 3 to the coil 25c (
  • the drive signals S25a, S25b, and S25c correspond to currents).
  • coil 25 when the coils 25a, 25b, and 25c are not distinguished from each other, they are appropriately described as “coil 25”, and when the drive signals S25a, S25b, and S25c are not distinguished from each other, they are appropriately described as “drive signal S25”. .
  • the mirror part 21 is supported by a torsion bar 23 and is configured to be swingable with respect to the base part 22 (in other words, the frame part).
  • the mirror unit 21 receives laser light and reflects the laser light toward a screen (not shown). For example, the mirror unit 21 swings so as to scan the laser beam in the horizontal direction (main scanning direction).
  • the torsion bar 23 has elasticity that connects the mirror part 21 and the base part 22 and rotates the mirror part 21 about an axis along one direction as a central axis.
  • the above-described resonance frequency is a frequency mainly determined by the configuration of the mirror unit 21 and the torsion bar 23.
  • the resonance frequency is determined by the moment of inertia of the mirror portion 21 and the spring constant (torsional elastic coefficient) of the torsion bar 23.
  • the resonance frequency tends to change depending on the temperature of the torsion bar 23. Specifically, the resonance frequency tends to decrease as the temperature of the torsion bar 23 increases, and the resonance frequency tends to increase as the temperature of the torsion bar 23 decreases.
  • the coils 25 a, 25 b, and 25 c are formed so as to surround the mirror part 21 and swing together with the mirror part 21.
  • Each of the coils 25a, 25b, and 25c is made of the same material and has the same wire diameter, and is disposed by being wound in parallel, that is, a plurality of one-turn windings are connected in parallel.
  • the coils 25a, 25b, and 25c are shown with only one turn (one turn) for convenience of explanation, but are actually composed of a plurality of turns (the number of turns of the coils 25a, 25b, and 25c (the number of turns). ) Is the same).
  • the coils 25a, 25b, and 25c are supplied with drive signals S25a, S25b, and S25c (corresponding to current) under the control of the switch unit 3 by the switch control unit 12, respectively.
  • a current is passed through the coil 25 in the presence of a magnetic field (a magnetic field in a direction perpendicular to the torsion bar 23) by the magnets 24a and 24b, a rotational torque due to Lorentz force is generated. Thereby, the mirror part 21 will rock
  • a position sensor 26 is provided in the vicinity of the torsion bar 23.
  • the position sensor 26 is configured to be able to detect the position of the mirror unit 21, and supplies a detection signal S 26 corresponding to the detected position of the mirror unit 21 to the phase comparison unit 14.
  • the position sensor 26 is configured by an angle sensor that detects an angle (rotation angle) of the mirror unit 21.
  • the switch unit 3 includes first switches 3a1 and 3a2 and second switches 3b1 and 3b2.
  • the first switches 3a1, 3a2 are switched between on and off by a control signal S12a (shown by a broken line) from the switch control unit 12.
  • the first switches 3a1, 3a2 operate in conjunction with the control signal S12a and are set to the same state.
  • the second switches 3b1 and 3b2 are switched between on and off by a control signal S12b (shown by a broken line) from the switch control unit 12.
  • the second switches 3b1 and 3b2 operate in conjunction with the control signal S12b and are set to the same state.
  • first switches 3a1 and 3a2 are not distinguished from each other, they are referred to as “first switches 3a”, and when the second switches 3b1 and 3b2 are not distinguished from each other, they are referred to as “second switches 3b”.
  • the coil impedance of the oscillating mirror 2 is changed by changing the number of the coils 25 through which the current flows according to the setting of the first switch 3a and the second switch 3b.
  • the conditions of the coils 25a, 25b, and 25c are the same, and the coils 25a, 25b, and 25c are connected in parallel. Therefore, the larger the number of the coils 25 through which the current flows, the lower the coil impedance. In other words, the smaller the number of coils 25 through which current flows, the higher the coil impedance.
  • the coil impedance is “ Also called “high coil impedance”.
  • the coil impedance is “low coil impedance”.
  • both the first switch 3a and the second switch 3b are turned off.
  • the coil impedance is lower than the case, the coil impedance is higher than when both the first switch 3a and the second switch 3b are turned on.
  • the same coil impedance is obtained when the first switch 3a is turned off and the second switch 3b is turned on.
  • the coil impedance is also referred to as “standard coil impedance”.
  • the resonance frequency in the oscillating mirror 2 is controlled by changing the coil impedance by the control of the switch unit 3 by the switch control unit 12. Specifically, the fluctuation of the resonant frequency is suppressed by controlling the power consumption of the coil 25 (that is, the amount of heat generated by the coil 25) by changing the coil impedance. That is, in this embodiment, the resonance frequency is set to a desired frequency (hereinafter referred to as “reference resonance frequency”) by controlling the temperature of the torsion bar 23 using the self-heating of the coil 25.
  • the reference resonance frequency is a fixed frequency that is set in advance in accordance with image drawing by the image display device.
  • the coil impedance is increased to increase the coil 25.
  • the switch control unit 12 controls the switch unit 3 so as to decrease the resonance frequency by increasing the heat generation amount (that is, by increasing the temperature of the torsion bar 23). Specifically, the switch control unit 12 controls the switch unit 3 so that both the first switch 3a and the second switch 3b are set to off, thereby causing a current to flow only in the coil 25a, thereby increasing the high coil impedance. Set to.
  • the switch control unit 12 controls the switch unit 3. Specifically, the switch control unit 12 controls the switch unit 3 so that both the first switch 3a and the second switch 3b are set to ON, so that a current flows through all of the coils 25a, 25b, and 25c. Therefore, the coil impedance is set to be low.
  • the switch control unit 12 controls the switch unit 3 so as to set the first switch 3a on and the second switch 3b off. Then, the current is passed through the coils 25a and 25c, or the current is passed through the coils 25a and 25c by controlling the switch unit 3 so that the first switch 3a is turned off and the second switch 3b is turned on. . That is, the switch control unit 12 sets the standard coil impedance.
  • the vibrating mirror 2 used in the image display device has a resonance frequency as a driving frequency for the purpose of increasing a swing angle while reducing the driving current of the mirror unit 21 and reducing fluctuations due to disturbance. Is controlled by using.
  • a resonance frequency tends to change depending on the temperature in the vibrating mirror 2 (specifically, the temperature of the torsion bar 23).
  • the resonance frequency tends to change from the reference resonance frequency.
  • a coping method when the resonance frequency changes in this way a method is known in which the image is not distorted by synchronizing the image signal and performing shift correction such as pixel data and scanning line interpolation. However, this method tends to reduce the resolution.
  • FIG. 3 shows an example of a change in resolution when the resonance frequency changes.
  • FIG. 3 shows the horizontal scanning direction (main scanning direction) in the substantially horizontal direction and the vertical scanning direction (sub-scanning direction) in the vertical direction. Specifically, FIG. 3 shows the horizontal resolution and the vertical resolution in a part of the image.
  • FIG. 3A shows a diagram when the resonance frequency is not shifted, specifically, when the resonance frequency matches the reference resonance frequency.
  • the horizontal resolution is four and the vertical resolution is four.
  • FIG. 3B shows a diagram when the resonance frequency is lower than the reference resonance frequency.
  • the horizontal resolution is equivalent to six lines by interpolation (interpolated points are indicated by broken lines), but the actual amount of information is four.
  • FIG. 3C shows a diagram when the resonance frequency is higher than the reference resonance frequency.
  • the horizontal resolution is lowered as compared with the case where the resonance frequency shown in FIG.
  • the vertical resolution is equivalent to six by interpolation (interpolated lines are indicated by broken lines), but the actual amount of information is four.
  • the switch control unit 12 controls the resonance frequency by changing the coil impedance by performing control to switch the coil 25 to be used. That is, in this embodiment, the temperature of the torsion bar 23 is adjusted by changing the coil impedance to control the amount of heat generated by the coil 25, and the resonance frequency is set to the reference resonance frequency. According to such a present Example, a resonant frequency can be controlled appropriately, without adding the external device for temperature control like the technique described in patent document 1,2. Therefore, according to the present Example, the enlargement of an apparatus can be suppressed and it can apply appropriately to a small apparatus.
  • a method of controlling the temperature using the self-heating of the coil 25 is used.
  • this method uses the current necessary for driving the coil 25 as it is, Temperature control can be appropriately realized without increasing current consumption. That is, in this embodiment, it is not necessary to increase the current for temperature control.
  • the temperature change amount (power consumption change amount) on the vibrating mirror 2 side can be offset by the temperature change amount (power consumption change amount) on the mirror drive control unit 1 side.
  • the resonance frequency can be controlled without increasing the power consumption of the entire apparatus. That is, the heat generation amount of the entire mirror driving device 100 corresponds to the sum of the loss on the mirror drive control unit 1 side and the heat generation on the vibrating mirror 2 side, but control for changing the coil impedance as in this embodiment. According to this, since the heat generation amount can be distributed between the mirror drive control unit 1 side and the vibrating mirror 2 side, the heat generation amount (power consumption) in the entire apparatus can be maintained substantially constant.
  • FIG. 4 shows the voltage, current, and heat generation on the mirror drive control unit 1 side on the left side, and the voltage, current, and heat generation on the vibration mirror 2 side on the right side.
  • graphs A11, B11, and C11 indicate drive voltages on the mirror drive control unit 1 side
  • graphs A12, B12, and C12 indicate currents on the mirror drive control unit 1 side
  • Graphs A13, B13, and C13 show the heat generation amount (voltage ⁇ current) on the mirror drive control unit 1 side.
  • the heat generation amounts A13, B13, and C13 are amounts corresponding to “power supply voltage ⁇ drive voltage”, and indicate losses on the mirror drive control unit 1 side.
  • FIG. 4 (a) shows a diagram when temperature control is not particularly performed because the detected resonance frequency is approximately the reference resonance frequency. Specifically, a diagram in the case of using standard coil impedance is shown.
  • FIG. 4B shows a diagram in the case where temperature control for increasing the temperature is performed because the detected resonance frequency is equal to or higher than the reference resonance frequency. Specifically, a diagram in the case of using a high coil impedance is shown.
  • the amount of heat generated on the vibrating mirror 2 side is increased as compared with the case where the standard coil impedance is used.
  • the mirror drive control unit 1 side is increased.
  • the amount of heat generated (loss) decreases. Therefore, the amount of heat generation (power consumption) in the entire mirror driving device 100 does not change between when the high coil impedance is used and when the standard coil impedance is used. That is, according to the configuration according to the present embodiment, even if the coil impedance is increased, it can be said that the heat generation amount (power consumption) in the entire mirror driving device 100 does not change.
  • FIG. 4C shows a diagram in the case where the temperature control for reducing the temperature is performed because the detected resonance frequency is lower than the reference resonance frequency.
  • a diagram in the case of using a low coil impedance is shown. Comparing FIG. 4A and FIG. 4C, when the low coil impedance is used, the drive voltage on the mirror drive control unit 1 side is lower than when the standard coil impedance is used. However, it can be seen that the current on the mirror drive control unit 1 side does not change (see graphs A12 and C12). Since the drive voltage is reduced in this way, the amount of heat generated (loss) on the mirror drive control unit 1 side is increased when the low coil impedance is used than when the standard coil impedance is used.
  • the amount of heat generated on the vibrating mirror 2 side is reduced as compared with the case where the standard coil impedance is used.
  • the driving voltage is lowered, the mirror driving control unit 1 side is reduced.
  • the calorific value (loss) increases. Therefore, the amount of heat generated (power consumption) in the entire mirror driving device 100 does not change between when the low coil impedance is used and when the standard coil impedance is used. That is, according to the configuration according to the present embodiment, even if the coil impedance is decreased, it can be said that the heat generation amount (power consumption) in the entire mirror driving device 100 does not change.
  • FIG. 5 shows a processing flow for resonance frequency control. This processing flow is repeatedly executed by the mirror drive control unit 1 during normal operation of the image display device, for example.
  • step S101 the resonance frequency detection unit 13 in the mirror drive control unit 1 detects the resonance frequency in the vibration mirror 2. Then, the process proceeds to step S102.
  • the specific processing related to the detection of the resonance frequency will be described later in detail.
  • step S102 the switch controller 12 in the mirror drive controller 1 determines whether or not the resonance frequency (detected resonance frequency) acquired in step S101 matches the reference resonance frequency. If the detected resonance frequency does not match the reference resonance frequency (step S102: Yes), the process proceeds to step S103. In step S103 and subsequent steps, temperature control for setting the detected resonance frequency to the reference resonance frequency is performed. On the other hand, when the detected resonance frequency matches the reference resonance frequency (step S102: No), the process ends. In this case, temperature control is not performed.
  • step S102 of FIG. 5 it may be determined whether or not the detected resonance frequency and the reference resonance frequency are substantially the same. That is, it is not necessary to determine whether or not the detected resonance frequency and the reference resonance frequency are exactly the same. In such a case, when the detected resonance frequency and the reference resonance frequency are substantially the same, the resonance frequency control process is terminated.
  • step S103 the switch control unit 12 determines whether or not the detected resonance frequency is less than the reference resonance frequency. If the detected resonance frequency is less than the reference resonance frequency (step S103: Yes), the process proceeds to step S104.
  • the switch control unit 12 controls the switch unit 3 so as to lower the coil impedance in order to increase the resonance frequency by reducing the amount of heat generated by the coil 25 (step S104).
  • the switch control unit 12 uses all of the coils 25a, 25b, and 25c by controlling the switch unit 3 so that both the first switch 3a and the second switch 3b are set to ON. Thus, the low coil impedance is set. Then, the process proceeds to step S106.
  • step S105 the switch control unit 12 controls the switch unit 3 to increase the coil impedance in order to decrease the resonance frequency by increasing the amount of heat generated by the coil 25 (step S105). Specifically, the switch control unit 12 controls the switch unit 3 so as to set both the first switch 3a and the second switch 3b to be off, so that only the coil 25a is used, so that a high coil impedance is obtained. Set to. Then, the process proceeds to step S106.
  • step S106 the apparatus waits for a predetermined time in order to wait for a temperature change caused by the coil impedance control as described above. Then, the process proceeds to step S107.
  • step S107 the resonance frequency detector 13 detects the resonance frequency in the oscillating mirror 2 again. Then, the process proceeds to step S108.
  • the specific processing related to the detection of the resonance frequency will be described later in detail.
  • step S108 the switch control unit 12 determines whether or not the resonance frequency (detection resonance frequency) acquired in step S107 is within a predetermined range.
  • the predetermined range is a frequency range defined with reference to the reference resonance frequency.
  • step S108: Yes If the detected resonance frequency is within the predetermined range (step S108: Yes), it can be said that the resonance frequency is close to the reference resonance frequency to some extent, so the processing ends. On the other hand, when the detected resonance frequency is not within the predetermined range (step S108: No), it can be said that the resonance frequency is away from the reference resonance frequency, and thus the process returns to step S102. In this case, the process after step S102 is performed again.
  • FIG. 6 shows a processing flow for detecting the resonance frequency.
  • This processing flow is executed in steps S101 and S107 of the processing flow shown in FIG.
  • the outline of the processing flow of FIG. 6 will be briefly described.
  • the drive frequency is controlled so that the phase difference (absolute value) between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26 is 90 degrees, and the phase difference (absolute value) is The drive frequency at 90 degrees is detected as the resonance frequency.
  • FIG. 7 shows the transfer characteristics of the actuator (coil 25, etc.) of the vibrating mirror 2 on the upper side, and shows the phase difference between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26 on the lower side. Yes. As shown in FIG. 7, it can be seen that when the phase difference (absolute value) is 90 degrees, a peak occurs in the transfer characteristic of the actuator, that is, resonance occurs. From this, it can be said that the drive frequency when the phase difference (absolute value) is 90 degrees is the resonance frequency in the oscillating mirror 2.
  • step S201 the phase comparison unit 14 in the mirror drive control unit 1 detects the phase difference between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26. Then, the process proceeds to step S202.
  • step S202 the phase comparison unit 14 determines whether or not the phase difference (absolute value) acquired in step S201 is 90 degrees.
  • step S202: Yes the process proceeds to step S203.
  • the resonance frequency detection unit 13 in the mirror drive control unit 1 detects the currently set drive frequency of the vibrating mirror 2 as the resonance frequency (step S203). Then, the process ends.
  • step S202 determines whether or not the phase difference (absolute value) is greater than 90 degrees.
  • step S204 If the phase difference (absolute value) is larger than 90 degrees (step S204: Yes), the process proceeds to step S205.
  • the drive control unit 11 in the mirror drive control unit 1 performs control to reduce the drive frequency of the oscillating mirror 2 (step S205). Then, the process returns to step S201.
  • step S204 when the phase difference (absolute value) is 90 degrees or less (step S204: No), the process proceeds to step S206.
  • the drive control unit 11 performs control to increase the drive frequency of the vibrating mirror 2 (step S206). Then, the process returns to step S201.
  • temperature control is appropriately realized by changing the coil impedance so as to set the resonance frequency to the reference resonance frequency while appropriately detecting the resonance frequency. Is possible.
  • step S202 in FIG. 6 it may be determined whether or not the phase difference (absolute value) is approximately 90 degrees. That is, it is not necessary to determine whether or not the phase difference (absolute value) is strictly 90 degrees. In such a case, the drive frequency when the phase difference (absolute value) is approximately 90 degrees is detected as the resonance frequency.
  • Modification 2 In the above description, the embodiment using the plurality of coils 25 having the same conditions (material, wire diameter, number of turns, etc.) is shown, but the present invention is not limited to this.
  • a plurality of coils made of different materials, different wire diameters, different numbers of turns, and the like can be used.
  • the coil impedance is changed by switching the number of coils to be used.
  • the coil impedance can be changed by switching the coil itself to be used. Needless to say, even in this modification, the coil impedance may be changed by switching the number of coils to be used.
  • the coil impedance to be used (high coil impedance, low coil impedance, or standard coil impedance) is switched according to the detected resonance frequency.
  • the coil impedance can be continuously changed by continuously switching the coil that supplies the current according to the switching time ratio.
  • the coil impedance can be arbitrarily controlled between the high coil impedance and the low coil impedance in accordance with the detected resonance frequency.
  • coil A and coil B can be controlled continuously in a relatively short cycle.
  • the period in which current is supplied to the coil A in the period in which the switching is performed is longer than the period in which current is supplied to the coil A and the coil B. Also, make continuous switching.
  • the period during which current is supplied to the coil A and the coil B in one cycle in which the switching is performed is greater than the period during which current is supplied to the coil A. Also, make continuous switching.
  • the above-described modification uses two coils having different conditions (hereinafter referred to as “coil C” and “coil D”.
  • the coil C has a higher impedance than the coil D). It can also be applied to.
  • the period for supplying current to the coil C is longer than the period for supplying current to the coil D in one cycle for performing the switching. Switch continuously.
  • the period for supplying the current to the coil D is set longer than the period for supplying the current to the coil C in one cycle for performing the switching. Switch continuously.
  • Modification 4 In the above, the embodiment in which the present invention is applied to the configuration in which the laser beam is scanned in the horizontal direction (main scanning direction) has been described. However, the present invention has a configuration in which the laser beam is scanned in the vertical direction (sub scanning direction). Can be applied similarly.
  • the present invention is not limited to application to an image display device that displays an image by scanning a laser beam.
  • the present invention can also be applied to sensor devices such as a foreign matter sensor and a temperature sensor.
  • the present invention can be used for an image display device.

Abstract

This mirror driving device has a base unit, a mirror unit connected to the base part via connecting part so as to be able to oscillate, a first coil and second coil for causing the mirror part to oscillate, and a switching means for selectively switching the supply of electric current to either or both of the first coil and second coil. A resonance frequency can thereby be appropriately controlled without leading to an increase in the size or power consumption of the device.

Description

ミラー駆動装置Mirror drive device
 本発明は、画像表示装置に用いられるミラーを駆動する技術分野に関する。 The present invention relates to a technical field for driving a mirror used in an image display device.
 従来から、レーザ光をミラーで走査(スキャン)することで画像を表示する画像表示装置が知られている。一般的には、画像表示装置で用いられるミラーは、駆動電流を低減させつつ振れ角を大きくする、外乱に対する変動を低減させる、等の目的から、駆動周波数を構造体の共振周波数に合わせている。このようなミラーの共振周波数の制御に関する技術が、例えば特許文献1及び2に記載されている。 2. Description of the Related Art Conventionally, an image display device that displays an image by scanning (scanning) a laser beam with a mirror is known. In general, a mirror used in an image display device adjusts the driving frequency to the resonance frequency of the structure for the purpose of increasing the deflection angle while reducing the driving current and reducing fluctuations due to disturbance. . For example, Patent Documents 1 and 2 describe techniques relating to the control of the resonance frequency of such a mirror.
 特許文献1には、トーションバーを回転軸としてミラー基板を往復振動させることによりレーザ光を偏向させる振動ミラーに関して、発熱素子によってトーションバーを加熱することで、振動ミラーにおける共振周波数を制御する技術が記載されている。また、特許文献2には、トーションバーが所定の駆動周波数に対応するばね定数を発揮する目標温度となるように、ペルチェ素子やファンモータなどの温度調節装置を用いて、トーションバーの温度を昇降させる技術が記載されている。 Patent Document 1 discloses a technique for controlling the resonance frequency of a vibrating mirror by heating the torsion bar with a heating element, with respect to a vibrating mirror that deflects a laser beam by reciprocally vibrating a mirror substrate about a torsion bar as a rotation axis. Are listed. In Patent Document 2, the temperature of the torsion bar is raised and lowered using a temperature control device such as a Peltier element or a fan motor so that the torsion bar has a target temperature that exhibits a spring constant corresponding to a predetermined drive frequency. The technology to be described is described.
特開2004-69731号公報Japanese Patent Laid-Open No. 2004-69731 特開2008-9188号公報JP 2008-9188 A
 しかしながら、上記の特許文献1及び2に記載された技術では、ミラーを駆動する装置の他に共振周波数制御のための外付け装置(発熱素子やペルチェ素子やファンモータなど)が別途必要であり、装置全体のサイズが大きくなってしまう傾向にあった。よって、当該技術を小型機器へ適用することが困難であった。また、特許文献1及び2に記載された技術では、外付け装置によってトーションバーの温度を制御しているため、外付け装置の制御のために消費電力が増加してしまう傾向にあった。 However, the techniques described in Patent Documents 1 and 2 require an external device (such as a heating element, a Peltier element, and a fan motor) for controlling the resonance frequency in addition to the device that drives the mirror. There was a tendency for the overall size of the apparatus to increase. Therefore, it has been difficult to apply the technology to small devices. In the techniques described in Patent Documents 1 and 2, since the temperature of the torsion bar is controlled by the external device, power consumption tends to increase due to the control of the external device.
 本発明が解決しようとする課題は上記のようなものが例として挙げられる。本発明は、装置の大型化や消費電力の増加などを生じさせることなく、共振周波数を適切に制御することが可能なミラー駆動装置を提供することを課題とする。 Examples of the problem to be solved by the present invention include the above. An object of the present invention is to provide a mirror driving device capable of appropriately controlling a resonance frequency without causing an increase in size of the device or an increase in power consumption.
 請求項1に記載の発明では、ミラー駆動装置は、ベース部と、前記ベース部と接続部を介して揺動可能に接続されたミラー部と、前記ミラー部を揺動させるための第一コイル及び第二コイルと、前記第一コイル及び前記第二コイルのうちのいずれか一方又は両方への電流の供給を選択的に切り替える切り替え手段と、を有する。 In the first aspect of the invention, the mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and the connecting portion, and a first coil for swinging the mirror portion. And a second coil, and switching means for selectively switching the supply of current to one or both of the first coil and the second coil.
 請求項8に記載の発明では、ミラー駆動装置は、ベース部と、前記ベース部と接続部を介して揺動可能に接続されたミラー部と、前記ミラー部を揺動させるための複数のコイルを有するコイル部と、前記複数のコイルのうち、電流を供給するコイルの数を切り替える切り替え手段と、を有する。 In the invention according to claim 8, the mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and the connecting portion, and a plurality of coils for swinging the mirror portion. And a switching means for switching the number of coils that supply current among the plurality of coils.
本実施例に係るミラー駆動装置の全体構成を示す。1 shows an overall configuration of a mirror driving device according to the present embodiment. スイッチ部の具体的な構成について説明するための図を示す。The figure for demonstrating the specific structure of a switch part is shown. 共振周波数の変化時における解像度の変化例を示す。An example of a change in resolution when the resonance frequency changes is shown. 本実施例により、装置全体での発熱量(消費電力)を増加させることなく共振周波数を制御することができる理由を説明するための図を示す。The figure for demonstrating the reason which can control a resonance frequency, without increasing the emitted-heat amount (power consumption) in the whole apparatus by a present Example is shown. 本実施例に係る共振周波数制御のための処理フローを示す。The processing flow for the resonant frequency control which concerns on a present Example is shown. 本実施例に係る共振周波数検出のための処理フローを示す。The processing flow for the resonant frequency detection which concerns on a present Example is shown. 位相差(絶対値)が90度である場合の駆動周波数を共振周波数とする理由を説明するための図を示す。The figure for demonstrating the reason for making the drive frequency in case a phase difference (absolute value) is 90 degree | times into a resonant frequency is shown.
 本発明の1つの観点では、ミラー駆動装置は、ベース部と、前記ベース部と接続部を介して揺動可能に接続されたミラー部と、前記ミラー部を揺動させるための第一コイル及び第二コイルと、前記第一コイル及び前記第二コイルのうちのいずれか一方又は両方への電流の供給を選択的に切り替える切り替え手段と、を有する。 In one aspect of the present invention, a mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and a connection portion, a first coil for swinging the mirror portion, and And a switching means for selectively switching supply of current to one or both of the first coil and the second coil.
 上記のミラー駆動装置は、レーザ光をミラー部で走査(スキャン)することで画像を表示する画像表示装置に好適に適用される。ミラー部は、ベース部と接続部(例えばトーションバー)を介して揺動可能に接続され、第一コイル及び第二コイルによって揺動される。切り替え手段は、第一コイル及び第二コイルのうちのいずれか一方又は両方への電流の供給を選択的に切り替える。このような切り替えを行うことにより、コイルインピーダンスが変化することで、コイルの消費電力(つまり発熱量)が変化する。これにより、コイルの発熱量の変化を利用して、接続部の温度を制御することができ、共振周波数を制御することが可能となる。したがって、上記のミラー駆動装置によれば、装置の大型化や消費電力の増加などを生じさせることなく、共振周波数を適切に制御することが可能となる。 The above mirror driving device is suitably applied to an image display device that displays an image by scanning (scanning) laser light with a mirror portion. The mirror part is swingably connected via a base part and a connection part (for example, a torsion bar), and is swung by the first coil and the second coil. The switching means selectively switches the supply of current to one or both of the first coil and the second coil. By performing such switching, the coil power consumption (that is, the heat generation amount) changes due to the change in coil impedance. As a result, the temperature of the connecting portion can be controlled using the change in the amount of heat generated by the coil, and the resonance frequency can be controlled. Therefore, according to the above mirror driving device, it is possible to appropriately control the resonance frequency without causing an increase in the size of the device or an increase in power consumption.
 好適には、前記第一コイル及び前記第二コイルは、前記ミラー部を取り囲むように形成されていると共に、前記接続部の近傍に配置されている。これにより、ミラー部を揺動させるための回転トルクを確保しつつ、接続部の温度制御を適切に行うことができる。 Preferably, the first coil and the second coil are formed so as to surround the mirror part, and are disposed in the vicinity of the connection part. Thereby, temperature control of a connection part can be performed appropriately, ensuring the rotational torque for rocking | fluctuating a mirror part.
 上記のミラー駆動装置の一態様では、前記第一コイルと前記第二コイルとは並列に巻かれて配置されている。これにより、第一コイル及び第二コイルのミラー駆動装置への搭載性を向上させることが可能となる。 In one aspect of the above mirror driving device, the first coil and the second coil are wound in parallel. Thereby, it becomes possible to improve the mountability to the mirror drive device of a 1st coil and a 2nd coil.
 上記のミラー駆動装置の他の一態様では、揺動する前記ミラー部の共振周波数を検出する検出手段を更に有し、前記切り替え手段は、前記共振周波数に応じて、前記電流の供給を選択的に切り替える。これにより、共振周波数を所望の周波数(基準共振周波数)に適切に設定することが可能となる。 In another aspect of the above mirror driving device, the mirror driving device further includes a detecting unit that detects a resonance frequency of the oscillating mirror unit, and the switching unit selectively supplies the current according to the resonance frequency. Switch to. As a result, the resonance frequency can be appropriately set to a desired frequency (reference resonance frequency).
 上記のミラー駆動装置において好適には、前記切り替え手段は、前記共振周波数が基準共振周波数以上である場合には、前記第一コイル及び前記第二コイルのうちの一方に電流を供給するように切り替えを行い、前記共振周波数が前記基準共振周波数未満である場合には、前記第一コイル及び前記第二コイルの両方に電流を供給するように切り替えを行うことができる。 Preferably, in the above mirror driving device, the switching means switches so as to supply a current to one of the first coil and the second coil when the resonance frequency is equal to or higher than a reference resonance frequency. When the resonance frequency is lower than the reference resonance frequency, switching can be performed so as to supply current to both the first coil and the second coil.
 また、上記のミラー駆動装置において好適には、前記切り替え手段は、前記第一コイル及び前記第二コイルのうちの一方への前記電流の供給と、前記第一コイル及び前記第二コイルの両方への前記電流の供給とを連続的に切り替える制御を行い、前記共振周波数に応じて、前記切り替えを行うタイミングを制御することができる。 In the above mirror driving device, preferably, the switching means supplies the current to one of the first coil and the second coil, and both the first coil and the second coil. It is possible to perform control for continuously switching between the current supply and the timing for performing the switching according to the resonance frequency.
 上記のミラー駆動装置の他の一態様では、前記ミラー部を揺動させるための駆動信号と、前記駆動信号による前記ミラー部の揺動を検出するセンサの検出信号との位相差が90度となるように、前記駆動信号の周波数を制御する制御手段を更に備え、前記検出手段は、前記制御手段による制御によって前記位相差が90度となった際の前記駆動信号の周波数を、前記共振周波数として検出する。これにより、共振周波数を適切に検出して、当該共振周波数に基づいて、上記した切り替えの制御を適切に行うことができる。 In another aspect of the above mirror driving device, the phase difference between the drive signal for swinging the mirror portion and the detection signal of the sensor for detecting the swing of the mirror portion due to the drive signal is 90 degrees. The control means further controls the frequency of the drive signal, and the detection means determines the frequency of the drive signal when the phase difference is 90 degrees as a result of control by the control means. Detect as. Thereby, it is possible to appropriately detect the resonance frequency and appropriately control the switching based on the resonance frequency.
 本発明の他の観点では、ミラー駆動装置は、ベース部と、前記ベース部と接続部を介して揺動可能に接続されたミラー部と、前記ミラー部を揺動させるための複数のコイルを有するコイル部と、前記複数のコイルのうち、電流を供給するコイルの数を切り替える切り替え手段と、を有する。 In another aspect of the present invention, a mirror driving device includes a base portion, a mirror portion that is swingably connected via the base portion and a connection portion, and a plurality of coils for swinging the mirror portion. And a switching unit that switches the number of coils that supply current among the plurality of coils.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [装置構成]
 図1は、本実施例に係るミラー駆動装置100の全体構成を示す概略図である。ミラー駆動装置100は、主に、ミラー駆動制御部1と、振動ミラー2と、スイッチ部3と、を有する。ミラー駆動装置100は、図示しない画像表示装置に適用され、画像を描画するべく、レーザ光を走査(スキャン)するように動作する。
[Device configuration]
FIG. 1 is a schematic diagram illustrating an overall configuration of a mirror driving device 100 according to the present embodiment. The mirror drive device 100 mainly includes a mirror drive control unit 1, a vibrating mirror 2, and a switch unit 3. The mirror driving device 100 is applied to an image display device (not shown), and operates to scan with laser light to draw an image.
 ミラー駆動制御部1は、駆動制御部11と、スイッチ制御部12と、共振周波数検出部13と、位相比較部14と、を有する。振動ミラー2は、ミラー部21と、ベース部22と、トーションバー23と、マグネット24a、24bと、コイル25a、25b、25cと、位置センサ26と、を有する。ミラー駆動制御部1は、振動ミラー2におけるコイル25a、25b、25cをアクチュエータとして用いて、ミラー部21を揺動させる駆動回路(アクチュエータ駆動回路)に相当する。 The mirror drive control unit 1 includes a drive control unit 11, a switch control unit 12, a resonance frequency detection unit 13, and a phase comparison unit 14. The vibrating mirror 2 includes a mirror part 21, a base part 22, a torsion bar 23, magnets 24a and 24b, coils 25a, 25b and 25c, and a position sensor 26. The mirror drive control unit 1 corresponds to a drive circuit (actuator drive circuit) that swings the mirror unit 21 using the coils 25a, 25b, and 25c in the vibration mirror 2 as actuators.
 まず、ミラー駆動制御部1について説明する。駆動制御部11は、振動ミラー2内のコイル25a、25b、25cを駆動するための駆動信号S11(電流に相当する)を出力する。駆動信号S11は、スイッチ部3を介してコイル25a、25b、25cに供給される。 First, the mirror drive control unit 1 will be described. The drive control unit 11 outputs a drive signal S11 (corresponding to a current) for driving the coils 25a, 25b, and 25c in the vibrating mirror 2. The drive signal S11 is supplied to the coils 25a, 25b, and 25c via the switch unit 3.
 スイッチ制御部12は、スイッチ部3を制御するための制御信号S12を、スイッチ部3に供給する。スイッチ制御部12は、共振周波数検出部13によって検出された共振周波数に基づいて、制御信号S12を生成する。スイッチ制御部12(スイッチ部3を含めても良い)は、本発明における「切り替え手段」の一例に相当する。 The switch control unit 12 supplies a control signal S12 for controlling the switch unit 3 to the switch unit 3. The switch control unit 12 generates a control signal S12 based on the resonance frequency detected by the resonance frequency detection unit 13. The switch control unit 12 (which may include the switch unit 3) corresponds to an example of the “switching unit” in the present invention.
 位相比較部14は、駆動制御部11の駆動信号S11と、振動ミラー2内の位置センサ26の検出信号S26との位相差を求める。具体的には、位相比較部14は、駆動制御部11の駆動信号S11に対応する周波数と、駆動信号S11による振動ミラー2の実際の揺動動作に対応する周波数との位相差を求める。 The phase comparison unit 14 obtains the phase difference between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26 in the vibration mirror 2. Specifically, the phase comparison unit 14 obtains a phase difference between the frequency corresponding to the drive signal S11 of the drive control unit 11 and the frequency corresponding to the actual swinging operation of the vibrating mirror 2 by the drive signal S11.
 共振周波数検出部13は、位相比較部14によって求められた位相差に基づいて、振動ミラー2における共振周波数を検出する。具体的には、共振周波数検出部13は、位相差が90度である際の駆動信号S11の周波数を、共振周波数として検出する。 The resonance frequency detection unit 13 detects the resonance frequency in the oscillating mirror 2 based on the phase difference obtained by the phase comparison unit 14. Specifically, the resonance frequency detection unit 13 detects the frequency of the drive signal S11 when the phase difference is 90 degrees as the resonance frequency.
 スイッチ部3は、駆動制御部11の駆動信号S11の出力先を切り替えるための複数のスイッチ(不図示)を有している。具体的には、スイッチ部3は、スイッチ制御部12の制御信号S12に応じて、複数のスイッチを切り替えることで、コイル25a、25b、25cのうちの少なくとも1つ以上に駆動信号S11を供給する。図1において、スイッチ部3からコイル25aには駆動信号S25aが供給され、スイッチ部3からコイル25bには駆動信号S25bが供給され、スイッチ部3からコイル25cには駆動信号S25cが供給される(駆動信号S25a、S25b、S25cは電流に相当する)。 The switch unit 3 has a plurality of switches (not shown) for switching the output destination of the drive signal S11 of the drive control unit 11. Specifically, the switch unit 3 supplies the drive signal S11 to at least one of the coils 25a, 25b, and 25c by switching a plurality of switches according to the control signal S12 of the switch control unit 12. . In FIG. 1, a drive signal S25a is supplied from the switch unit 3 to the coil 25a, a drive signal S25b is supplied from the switch unit 3 to the coil 25b, and a drive signal S25c is supplied from the switch unit 3 to the coil 25c ( The drive signals S25a, S25b, and S25c correspond to currents).
 なお、以下では、コイル25a、25b、25cを区別しない場合には、適宜「コイル25」と表記し、駆動信号S25a、S25b、S25cを区別しない場合には、適宜「駆動信号S25」と表記する。 Hereinafter, when the coils 25a, 25b, and 25c are not distinguished from each other, they are appropriately described as “coil 25”, and when the drive signals S25a, S25b, and S25c are not distinguished from each other, they are appropriately described as “drive signal S25”. .
 次に、振動ミラー2について説明する。ミラー部21は、トーションバー23によって支持されており、ベース部22(言い換えるとフレーム部)に対して揺動可能に構成されている。ミラー部21は、レーザ光が入射され、図示しないスクリーンに向けてレーザ光を反射する。例えば、ミラー部21は、レーザ光を水平方向(主走査方向)に走査するように揺動する。トーションバー23は、ミラー部21とベース部22とを接続し、ミラー部21を一の方向に沿った軸を中心軸として回転させるような弾性を有する。 Next, the vibrating mirror 2 will be described. The mirror part 21 is supported by a torsion bar 23 and is configured to be swingable with respect to the base part 22 (in other words, the frame part). The mirror unit 21 receives laser light and reflects the laser light toward a screen (not shown). For example, the mirror unit 21 swings so as to scan the laser beam in the horizontal direction (main scanning direction). The torsion bar 23 has elasticity that connects the mirror part 21 and the base part 22 and rotates the mirror part 21 about an axis along one direction as a central axis.
 なお、上記した共振周波数は、主に、ミラー部21やトーションバー23などの構成によって決まる周波数である。例えば、共振周波数は、ミラー部21の慣性モーメントやトーションバー23のばね定数(ねじり弾性係数)などによって決まる。また、共振周波数は、トーションバー23の温度によって変化する傾向にある。具体的には、トーションバー23の温度が高くなると共振周波数は低くなり、トーションバー23の温度が低くなると共振周波数は高くなる傾向にある。 The above-described resonance frequency is a frequency mainly determined by the configuration of the mirror unit 21 and the torsion bar 23. For example, the resonance frequency is determined by the moment of inertia of the mirror portion 21 and the spring constant (torsional elastic coefficient) of the torsion bar 23. Further, the resonance frequency tends to change depending on the temperature of the torsion bar 23. Specifically, the resonance frequency tends to decrease as the temperature of the torsion bar 23 increases, and the resonance frequency tends to increase as the temperature of the torsion bar 23 decreases.
 コイル25a、25b、25cは、ミラー部21を取り囲むように形成されており、ミラー部21と共に揺動する。コイル25a、25b、25cは、それぞれ、同じ材料で構成されていると共に同じ線径を有しており、並列に重ねて巻かれて配置されている、つまり1ターンの巻き線が複数並列に接続されている。図1では、コイル25a、25b、25cは、説明の便宜上、1ターン(1巻)しか示していないが、実際には複数ターンで構成されている(コイル25a、25b、25cのターン数(巻数)は同じである)。コイル25a、25b、25cは、それぞれ、スイッチ制御部12によるスイッチ部3の制御の元、駆動信号S25a、S25b、S25c(電流に相当する)が供給される。マグネット24a、24bによる磁界(トーションバー23に直交する方向の磁界)の存在下において、このようにコイル25に電流を流すと、ローレンツ力による回転トルクが発生する。これにより、ミラー部21が揺動することとなる。 The coils 25 a, 25 b, and 25 c are formed so as to surround the mirror part 21 and swing together with the mirror part 21. Each of the coils 25a, 25b, and 25c is made of the same material and has the same wire diameter, and is disposed by being wound in parallel, that is, a plurality of one-turn windings are connected in parallel. Has been. In FIG. 1, the coils 25a, 25b, and 25c are shown with only one turn (one turn) for convenience of explanation, but are actually composed of a plurality of turns (the number of turns of the coils 25a, 25b, and 25c (the number of turns). ) Is the same). The coils 25a, 25b, and 25c are supplied with drive signals S25a, S25b, and S25c (corresponding to current) under the control of the switch unit 3 by the switch control unit 12, respectively. When a current is passed through the coil 25 in the presence of a magnetic field (a magnetic field in a direction perpendicular to the torsion bar 23) by the magnets 24a and 24b, a rotational torque due to Lorentz force is generated. Thereby, the mirror part 21 will rock | fluctuate.
 トーションバー23の近傍には、位置センサ26が設けられている。位置センサ26は、ミラー部21の位置を検出可能に構成され、検出したミラー部21の位置に対応する検出信号S26を位相比較部14に供給する。例えば、位置センサ26は、ミラー部21の角度(回転角度)を検出する角度センサによって構成される。 A position sensor 26 is provided in the vicinity of the torsion bar 23. The position sensor 26 is configured to be able to detect the position of the mirror unit 21, and supplies a detection signal S 26 corresponding to the detected position of the mirror unit 21 to the phase comparison unit 14. For example, the position sensor 26 is configured by an angle sensor that detects an angle (rotation angle) of the mirror unit 21.
 次に、図2を参照して、スイッチ部3の具体的な構成について説明する。図2では、説明の便宜上、スイッチ部3の説明に必要な最小限の構成要素のみを図示している。図2に示すように、スイッチ部3は、第1スイッチ3a1、3a2、及び第2スイッチ3b1、3b2を有する。 Next, a specific configuration of the switch unit 3 will be described with reference to FIG. In FIG. 2, only the minimum components necessary for the description of the switch unit 3 are illustrated for convenience of description. As shown in FIG. 2, the switch unit 3 includes first switches 3a1 and 3a2 and second switches 3b1 and 3b2.
 第1スイッチ3a1、3a2は、スイッチ制御部12からの制御信号S12a(破線で示す)によって、オンとオフとの間で切り替えがなされる。第1スイッチ3a1、3a2は、制御信号S12aによって連動して動作し、同じ状態に設定される。第2スイッチ3b1、3b2は、スイッチ制御部12からの制御信号S12b(破線で示す)によって、オンとオフとの間で切り替えがなされる。第2スイッチ3b1、3b2は、制御信号S12bによって連動して動作し、同じ状態に設定される。以下では、第1スイッチ3a1、3a2を区別しない場合には「第1スイッチ3a」と表記し、第2スイッチ3b1、3b2を区別しない場合には「第2スイッチ3b」と表記する。 The first switches 3a1, 3a2 are switched between on and off by a control signal S12a (shown by a broken line) from the switch control unit 12. The first switches 3a1, 3a2 operate in conjunction with the control signal S12a and are set to the same state. The second switches 3b1 and 3b2 are switched between on and off by a control signal S12b (shown by a broken line) from the switch control unit 12. The second switches 3b1 and 3b2 operate in conjunction with the control signal S12b and are set to the same state. Hereinafter, when the first switches 3a1 and 3a2 are not distinguished from each other, they are referred to as “first switches 3a”, and when the second switches 3b1 and 3b2 are not distinguished from each other, they are referred to as “second switches 3b”.
 第1スイッチ3a及び第2スイッチ3bの両方ともオフである場合には、コイル25aにのみ電流(駆動信号S25a)が供給される。また、第1スイッチ3aがオンで、第2スイッチ3bがオフである場合には、コイル25a、25bに電流(駆動信号S25a、S25b)が供給される。また、第1スイッチ3a及び第2スイッチ3bの両方ともオンである場合には、コイル25a、25b、25cの全てに電流(駆動信号S25a、S25b、S25c)が供給される。 When both the first switch 3a and the second switch 3b are off, a current (drive signal S25a) is supplied only to the coil 25a. In addition, when the first switch 3a is on and the second switch 3b is off, current (drive signals S25a and S25b) is supplied to the coils 25a and 25b. When both the first switch 3a and the second switch 3b are on, current (drive signals S25a, S25b, S25c) is supplied to all the coils 25a, 25b, 25c.
 このような第1スイッチ3a及び第2スイッチ3bの設定によって、電流が流れるコイル25の数が変わることで、振動ミラー2におけるコイルインピーダンスが変化することとなる。コイル25a、25b、25cの条件は同じであり、コイル25a、25b、25cは並列に接続されているため、電流が流れるコイル25の数が多いほど、コイルインピーダンスが低くなる。言い換えると、電流が流れるコイル25の数が少ないほど、コイルインピーダンスが高くなる。 The coil impedance of the oscillating mirror 2 is changed by changing the number of the coils 25 through which the current flows according to the setting of the first switch 3a and the second switch 3b. The conditions of the coils 25a, 25b, and 25c are the same, and the coils 25a, 25b, and 25c are connected in parallel. Therefore, the larger the number of the coils 25 through which the current flows, the lower the coil impedance. In other words, the smaller the number of coils 25 through which current flows, the higher the coil impedance.
 具体的には、第1スイッチ3a及び第2スイッチ3bの両方ともオフにした場合には、コイル25aにのみ電流が供給されるため、コイルインピーダンスが最も高くなる(以下では、当該コイルインピーダンスを「高コイルインピーダンス」とも呼ぶ)。これに対して、第1スイッチ3a及び第2スイッチ3bの両方ともオンにした場合には、コイル25a、25b、25cの全てに電流が供給されるため、コイルインピーダンスが最も低くなる(以下では、当該コイルインピーダンスを「低コイルインピーダンス」とも呼ぶ)。 Specifically, when both the first switch 3a and the second switch 3b are turned off, the current is supplied only to the coil 25a, so that the coil impedance becomes the highest (hereinafter, the coil impedance is “ Also called “high coil impedance”). On the other hand, when both the first switch 3a and the second switch 3b are turned on, current is supplied to all of the coils 25a, 25b, and 25c, so that the coil impedance is the lowest (hereinafter, The coil impedance is also referred to as “low coil impedance”).
 他方で、第1スイッチ3aをオンにし、第2スイッチ3bをオフにした場合には、コイル25a、25bに電流が供給されるため、第1スイッチ3a及び第2スイッチ3bの両方ともオフにした場合よりもコイルインピーダンスが低くなるが、第1スイッチ3a及び第2スイッチ3bの両方ともオンにした場合よりもコイルインピーダンスが高くなる。第1スイッチ3aをオフにし、第2スイッチ3bをオンにした場合も、同様のコイルインピーダンスとなる。以下では、当該コイルインピーダンスを「標準コイルインピーダンス」とも呼ぶ。 On the other hand, when the first switch 3a is turned on and the second switch 3b is turned off, since current is supplied to the coils 25a and 25b, both the first switch 3a and the second switch 3b are turned off. Although the coil impedance is lower than the case, the coil impedance is higher than when both the first switch 3a and the second switch 3b are turned on. The same coil impedance is obtained when the first switch 3a is turned off and the second switch 3b is turned on. Hereinafter, the coil impedance is also referred to as “standard coil impedance”.
 [制御方法]
 次に、本実施例に係る制御方法について具体的に説明する。本実施例では、上記したように、スイッチ制御部12によるスイッチ部3の制御によって、コイルインピーダンスを変えることで、振動ミラー2における共振周波数を制御する。具体的には、コイルインピーダンスを変えることでコイル25の消費電力(つまりコイル25の発熱量)を制御することにより、共振周波数の変動の抑制を図っている。つまり、本実施例では、コイル25の自己発熱を利用して、トーションバー23の温度を制御することにより、共振周波数を所望の周波数(以下では「基準共振周波数」と呼ぶ。)に設定する。なお、基準共振周波数は、画像表示装置による画像の描画などに応じて予め設定される固定の周波数である。
[Control method]
Next, the control method according to the present embodiment will be specifically described. In the present embodiment, as described above, the resonance frequency in the oscillating mirror 2 is controlled by changing the coil impedance by the control of the switch unit 3 by the switch control unit 12. Specifically, the fluctuation of the resonant frequency is suppressed by controlling the power consumption of the coil 25 (that is, the amount of heat generated by the coil 25) by changing the coil impedance. That is, in this embodiment, the resonance frequency is set to a desired frequency (hereinafter referred to as “reference resonance frequency”) by controlling the temperature of the torsion bar 23 using the self-heating of the coil 25. The reference resonance frequency is a fixed frequency that is set in advance in accordance with image drawing by the image display device.
 より詳しくは、本実施例では、共振周波数検出部13によって検出された共振周波数(以下では「検出共振周波数」と呼ぶ。)が基準共振周波数以上である場合には、コイルインピーダンスを上げてコイル25の発熱量を増加させることによって(つまりトーションバー23の温度を上昇させることによって)、共振周波数を低下させるべく、スイッチ制御部12がスイッチ部3を制御する。具体的には、スイッチ制御部12は、第1スイッチ3a及び第2スイッチ3bの両方ともオフに設定するようにスイッチ部3を制御することで、コイル25aのみに電流を流すことにより高コイルインピーダンスに設定する。 More specifically, in this embodiment, when the resonance frequency detected by the resonance frequency detector 13 (hereinafter referred to as “detected resonance frequency”) is equal to or higher than the reference resonance frequency, the coil impedance is increased to increase the coil 25. The switch control unit 12 controls the switch unit 3 so as to decrease the resonance frequency by increasing the heat generation amount (that is, by increasing the temperature of the torsion bar 23). Specifically, the switch control unit 12 controls the switch unit 3 so that both the first switch 3a and the second switch 3b are set to off, thereby causing a current to flow only in the coil 25a, thereby increasing the high coil impedance. Set to.
 他方で、検出共振周波数が基準共振周波数未満である場合には、コイルインピーダンスを下げてコイル25の発熱量を減少させることによって(つまりトーションバー23の温度を低下させることによって)、共振周波数を上昇させるべく、スイッチ制御部12がスイッチ部3を制御する。具体的には、スイッチ制御部12は、第1スイッチ3a及び第2スイッチ3bの両方ともオンに設定するようにスイッチ部3を制御することで、コイル25a、25b、25cの全てに電流を流すことにより低コイルインピーダンスに設定する。 On the other hand, when the detected resonance frequency is lower than the reference resonance frequency, the resonance frequency is increased by decreasing the coil impedance to decrease the amount of heat generated by the coil 25 (that is, by decreasing the temperature of the torsion bar 23). In order to do this, the switch control unit 12 controls the switch unit 3. Specifically, the switch control unit 12 controls the switch unit 3 so that both the first switch 3a and the second switch 3b are set to ON, so that a current flows through all of the coils 25a, 25b, and 25c. Therefore, the coil impedance is set to be low.
 他方で、検出共振周波数が概ね基準共振周波数である場合には、スイッチ制御部12は、第1スイッチ3aをオンに設定し第2スイッチ3bをオフに設定するようにスイッチ部3を制御することで、コイル25a、25bに電流を流す、若しくは、第1スイッチ3aをオフに設定し第2スイッチ3bをオンに設定するようにスイッチ部3を制御することで、コイル25a、25cに電流を流す。つまり、スイッチ制御部12は、標準コイルインピーダンスに設定する。 On the other hand, when the detected resonance frequency is approximately the reference resonance frequency, the switch control unit 12 controls the switch unit 3 so as to set the first switch 3a on and the second switch 3b off. Then, the current is passed through the coils 25a and 25c, or the current is passed through the coils 25a and 25c by controlling the switch unit 3 so that the first switch 3a is turned off and the second switch 3b is turned on. . That is, the switch control unit 12 sets the standard coil impedance.
 ここで、上記のように共振周波数を制御する理由について説明する。一般的には、画像表示装置で用いられる振動ミラー2は、ミラー部21の駆動電流を低減させつつ振れ角を大きくする、外乱に対する変動を低減させる、等の目的から、共振周波数を駆動周波数として用いて制御されている。このような共振周波数は、振動ミラー2における温度(詳しくはトーションバー23の温度)によって変化する傾向にある。具体的には、共振周波数が基準共振周波数から変化する傾向にある。このように共振周波数が変化した場合の対処方法として、画像信号を同期させてピクセルデータや走査線の補間などのずれ補正を行うことで、画像が歪まないようにする方法が知られている。しかしながら、当該方法では、解像度が低下してしまう傾向にある。 Here, the reason for controlling the resonance frequency as described above will be described. In general, the vibrating mirror 2 used in the image display device has a resonance frequency as a driving frequency for the purpose of increasing a swing angle while reducing the driving current of the mirror unit 21 and reducing fluctuations due to disturbance. Is controlled by using. Such a resonance frequency tends to change depending on the temperature in the vibrating mirror 2 (specifically, the temperature of the torsion bar 23). Specifically, the resonance frequency tends to change from the reference resonance frequency. As a coping method when the resonance frequency changes in this way, a method is known in which the image is not distorted by synchronizing the image signal and performing shift correction such as pixel data and scanning line interpolation. However, this method tends to reduce the resolution.
 図3は、共振周波数の変化時における解像度の変化例を示している。図3は、略横方向に水平走査方向(主走査方向)を示し、縦方向に垂直走査方向(副走査方向)を示している。具体的には、図3は、画像の一部分での水平解像度及び垂直解像度を示している。 FIG. 3 shows an example of a change in resolution when the resonance frequency changes. FIG. 3 shows the horizontal scanning direction (main scanning direction) in the substantially horizontal direction and the vertical scanning direction (sub-scanning direction) in the vertical direction. Specifically, FIG. 3 shows the horizontal resolution and the vertical resolution in a part of the image.
 図3(a)は、共振周波数がずれていない場合、具体的には共振周波数が基準共振周波数に一致する場合の図を示している。この場合には、水平解像度が4本であり、垂直解像度が4本である。図3(b)は、共振周波数が基準共振周波数よりも低くなった場合の図を示している。この場合には、垂直解像度が3本となるため、図3(a)に示した共振周波数がずれていない場合と比較すると、垂直解像度が低下していると言える。一方で、水平解像度は、補間により6本相当となるが(補間した点を破線で示している)、実際の情報量は4本である。図3(c)は、共振周波数が基準共振周波数よりも高くなった場合の図を示している。この場合には、水平解像度が3本となるため、図3(a)に示した共振周波数がずれていない場合と比較すると、水平解像度が低下していると言える。一方で、垂直解像度は、補間により6本相当となるが(補間した線を破線で示している)、実際の情報量は4本である。 FIG. 3A shows a diagram when the resonance frequency is not shifted, specifically, when the resonance frequency matches the reference resonance frequency. In this case, the horizontal resolution is four and the vertical resolution is four. FIG. 3B shows a diagram when the resonance frequency is lower than the reference resonance frequency. In this case, since there are three vertical resolutions, it can be said that the vertical resolution is lowered as compared with the case where the resonance frequency shown in FIG. On the other hand, the horizontal resolution is equivalent to six lines by interpolation (interpolated points are indicated by broken lines), but the actual amount of information is four. FIG. 3C shows a diagram when the resonance frequency is higher than the reference resonance frequency. In this case, since there are three horizontal resolutions, it can be said that the horizontal resolution is lowered as compared with the case where the resonance frequency shown in FIG. On the other hand, the vertical resolution is equivalent to six by interpolation (interpolated lines are indicated by broken lines), but the actual amount of information is four.
 以上のように、共振周波数が変化すると、それに応じて画像補正を行ったとしても、解像度が低下する傾向にあることがわかる。このような共振周波数の変化を抑制するために、トーションバー23の温度を制御する技術(例えば特許文献1、2に記載された技術)が知られている。しかしながら、「発明が解決しようとする課題」で述べたように、当該技術では、共振周波数制御のための外付け装置(例えば、ヒータなどの発熱源や、ファンやペルチェ素子などの冷却装置)が別途必要であり、装置全体のサイズが大きくなってしまう傾向にあった。また、当該技術では、このような外付け装置を用いることで、消費電力が増加してしまう傾向にあった。 As described above, it can be seen that when the resonance frequency changes, the resolution tends to decrease even if image correction is performed accordingly. In order to suppress such a change in the resonance frequency, a technique for controlling the temperature of the torsion bar 23 (for example, a technique described in Patent Documents 1 and 2) is known. However, as described in “Problems to be Solved by the Invention”, in this technique, an external device (for example, a heat source such as a heater or a cooling device such as a fan or a Peltier element) for resonance frequency control is used. This is necessary separately and tends to increase the overall size of the apparatus. Moreover, in the said technique, there existed a tendency for power consumption to increase by using such an external device.
 これに対して、本実施例では、スイッチ制御部12が、使用するコイル25を切り替える制御を行うことで、コイルインピーダンスを変えることにより、共振周波数を制御する。つまり、本実施例では、コイルインピーダンスを変えることでコイル25の発熱量を制御することにより、トーションバー23の温度を調整して、共振周波数を基準共振周波数に設定する。このような本実施例によれば、特許文献1、2に記載された技術のような温度制御のための外付け装置を追加することなく、共振周波数を適切に制御することができる。よって、本実施例によれば、装置の大型化を抑制でき、小型機器に適切に適用することが可能となる。 In contrast, in this embodiment, the switch control unit 12 controls the resonance frequency by changing the coil impedance by performing control to switch the coil 25 to be used. That is, in this embodiment, the temperature of the torsion bar 23 is adjusted by changing the coil impedance to control the amount of heat generated by the coil 25, and the resonance frequency is set to the reference resonance frequency. According to such a present Example, a resonant frequency can be controlled appropriately, without adding the external device for temperature control like the technique described in patent document 1,2. Therefore, according to the present Example, the enlargement of an apparatus can be suppressed and it can apply appropriately to a small apparatus.
 また、本実施例では、コイル25の自己発熱を利用して温度制御を行うといった方法を用いているが、この方法ではコイル25の駆動に必要な電流をそのまま利用しているため、装置全体の消費電流を増加させることなく適切に温度制御を実現することができる。つまり、本実施例においては、温度制御のために電流を増加させる必要はない。 In this embodiment, a method of controlling the temperature using the self-heating of the coil 25 is used. However, since this method uses the current necessary for driving the coil 25 as it is, Temperature control can be appropriately realized without increasing current consumption. That is, in this embodiment, it is not necessary to increase the current for temperature control.
 更に、本実施例によれば、振動ミラー2側での温度変化量(消費電力変化量)を、ミラー駆動制御部1側での温度変化量(消費電力変化量)で相殺することができるため、装置全体での消費電力を増加させることなく共振周波数を制御することができる。つまり、ミラー駆動装置100全体の発熱量は、ミラー駆動制御部1側での損失と振動ミラー2側での発熱とを合わせた量に相当するが、本実施例のようなコイルインピーダンスを変える制御によれば、ミラー駆動制御部1側と振動ミラー2側とで発熱量を分配することができるので、装置全体での発熱量(消費電力)を概ね一定に維持することができる。 Furthermore, according to the present embodiment, the temperature change amount (power consumption change amount) on the vibrating mirror 2 side can be offset by the temperature change amount (power consumption change amount) on the mirror drive control unit 1 side. The resonance frequency can be controlled without increasing the power consumption of the entire apparatus. That is, the heat generation amount of the entire mirror driving device 100 corresponds to the sum of the loss on the mirror drive control unit 1 side and the heat generation on the vibrating mirror 2 side, but control for changing the coil impedance as in this embodiment. According to this, since the heat generation amount can be distributed between the mirror drive control unit 1 side and the vibrating mirror 2 side, the heat generation amount (power consumption) in the entire apparatus can be maintained substantially constant.
 ここで、図4を参照して、本実施例により、ミラー駆動装置100全体での発熱量(消費電力)を増加させることなく共振周波数を制御することができる理由について説明する。 Here, with reference to FIG. 4, the reason why the resonance frequency can be controlled without increasing the heat generation amount (power consumption) in the entire mirror driving device 100 according to the present embodiment will be described.
 図4は、左側に、ミラー駆動制御部1側での電圧、電流及び発熱量を示しており、右側に、振動ミラー2側での電圧、電流及び発熱量を示している。具体的には、グラフA11、B11、C11は、ミラー駆動制御部1側での駆動電圧を示しており、グラフA12、B12、C12は、ミラー駆動制御部1側での電流を示しており、グラフA13、B13、C13は、ミラー駆動制御部1側での発熱量(電圧×電流)を示している。この発熱量A13、B13、C13は、「電源電圧-駆動電圧」に対応する量であり、ミラー駆動制御部1側での損失を示している。「電源電圧-駆動電圧」の式から分かるように、ミラー駆動制御部1側では、駆動電圧が高くなるほど発熱量が小さくなり(つまり損失が小さくなり)、駆動電圧が低くなるほど発熱量が大きくなる(つまり損失が大きくなる)。一方で、グラフA21、B21、C21は、振動ミラー2側での電圧を示しており、グラフA22、B22、C22は、振動ミラー2側での電流を示しており、グラフA23、B23、C23は、振動ミラー2側での発熱量(電圧×電流)を示している。 FIG. 4 shows the voltage, current, and heat generation on the mirror drive control unit 1 side on the left side, and the voltage, current, and heat generation on the vibration mirror 2 side on the right side. Specifically, graphs A11, B11, and C11 indicate drive voltages on the mirror drive control unit 1 side, and graphs A12, B12, and C12 indicate currents on the mirror drive control unit 1 side. Graphs A13, B13, and C13 show the heat generation amount (voltage × current) on the mirror drive control unit 1 side. The heat generation amounts A13, B13, and C13 are amounts corresponding to “power supply voltage−drive voltage”, and indicate losses on the mirror drive control unit 1 side. As can be seen from the expression “power supply voltage−drive voltage”, on the mirror drive control unit 1 side, the higher the drive voltage, the smaller the heat generation amount (that is, the smaller the loss), and the lower the drive voltage, the greater the heat generation amount. (In other words, loss increases). On the other hand, graphs A21, B21, and C21 show voltages on the vibrating mirror 2 side, graphs A22, B22, and C22 show currents on the vibrating mirror 2 side, and graphs A23, B23, and C23 show The amount of heat generation (voltage × current) on the vibrating mirror 2 side is shown.
 図4(a)は、検出共振周波数が概ね基準共振周波数であるため、特に温度制御を行わない場合の図を示している。具体的には、標準コイルインピーダンスを用いた場合の図を示している。図4(b)は、検出共振周波数が基準共振周波数以上であるため、温度を上昇させるための温度制御を行った場合の図を示している。具体的には、高コイルインピーダンスを用いた場合の図を示している。 FIG. 4 (a) shows a diagram when temperature control is not particularly performed because the detected resonance frequency is approximately the reference resonance frequency. Specifically, a diagram in the case of using standard coil impedance is shown. FIG. 4B shows a diagram in the case where temperature control for increasing the temperature is performed because the detected resonance frequency is equal to or higher than the reference resonance frequency. Specifically, a diagram in the case of using a high coil impedance is shown.
 図4(a)と図4(b)とを比較すると、高コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、ミラー駆動制御部1側での駆動電圧は高くなっているが(グラフA11、B11参照)、ミラー駆動制御部1側での電流は変わらないことがわかる(グラフA12、B12参照)。このように駆動電圧が高くなることで、高コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、ミラー駆動制御部1側での発熱量(損失)が減少していることがわかる(グラフA13、B13参照)。他方で、高コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、振動ミラー2側での発熱量が増加していることがわかる(A23、B23参照)。なお、ミラー駆動制御部1側で電流が変わらないのは、コイル駆動力による変位は「電流×ターン数(巻き数)」で決まるが、ターン数は変わらないので、コイルインピーダンスが変わっても必要なコイル変位を得るための電流が変わらないからである。また、高コイルインピーダンスを用いた場合に駆動電圧が高くなっているのは、コイルインピーダンスが増加しても同じ電流とするためには、駆動電圧を上げる必要があるからである。 Comparing FIG. 4A and FIG. 4B, when the high coil impedance is used, the drive voltage on the mirror drive control unit 1 side is higher than when the standard coil impedance is used. However, it can be seen that the current on the mirror drive control unit 1 side does not change (see graphs A12 and B12). As the drive voltage is increased in this way, when the high coil impedance is used, the amount of heat generated (loss) on the mirror drive control unit 1 side is reduced as compared with the case where the standard coil impedance is used. (See graphs A13 and B13). On the other hand, it can be seen that when the high coil impedance is used, the amount of heat generated on the vibrating mirror 2 side is increased as compared with the case where the standard coil impedance is used (see A23 and B23). The current does not change on the mirror drive control unit 1 side because the displacement due to the coil driving force is determined by “current × number of turns (number of turns)”, but the number of turns does not change, so it is necessary even if the coil impedance changes. This is because the current for obtaining a proper coil displacement does not change. The reason why the drive voltage is high when high coil impedance is used is that it is necessary to increase the drive voltage in order to obtain the same current even if the coil impedance increases.
 このように、高コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、振動ミラー2側での発熱量は増加するが、駆動電圧が上がることでミラー駆動制御部1側での発熱量(損失)は減少する。そのため、高コイルインピーダンスを用いた場合と標準コイルインピーダンスを用いた場合とでは、ミラー駆動装置100全体での発熱量(消費電力)は変わらない。つまり、本実施例に係る構成によれば、コイルインピーダンスを増加させても、ミラー駆動装置100全体での発熱量(消費電力)は変わらないと言える。 As described above, when the high coil impedance is used, the amount of heat generated on the vibrating mirror 2 side is increased as compared with the case where the standard coil impedance is used. However, when the drive voltage is increased, the mirror drive control unit 1 side is increased. The amount of heat generated (loss) decreases. Therefore, the amount of heat generation (power consumption) in the entire mirror driving device 100 does not change between when the high coil impedance is used and when the standard coil impedance is used. That is, according to the configuration according to the present embodiment, even if the coil impedance is increased, it can be said that the heat generation amount (power consumption) in the entire mirror driving device 100 does not change.
 次に、図4(c)は、検出共振周波数が基準共振周波数未満であるため、温度を低下させるための温度制御を行った場合の図を示している。具体的には、低コイルインピーダンスを用いた場合の図を示している。図4(a)と図4(c)とを比較すると、低コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、ミラー駆動制御部1側での駆動電圧は低くなっているが(グラフA11、C11参照)、ミラー駆動制御部1側での電流は変わらないことがわかる(グラフA12、C12参照)。このように駆動電圧が低くなることで、低コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、ミラー駆動制御部1側での発熱量(損失)が増加していることがわかる(グラフA13、C13参照)。他方で、低コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、振動ミラー2側での発熱量が減少していることがわかる(A23、C23参照)。なお、ミラー駆動制御部1側で電流が変わらないのは、コイル駆動力による変位は「電流×ターン数(巻き数)」で決まるが、ターン数は変わらないので、コイルインピーダンスが変わっても必要なコイル変位を得るための電流が変わらないからである。また、低コイルインピーダンスを用いた場合に駆動電圧が低くなっているのは、コイルインピーダンスが減少しても同じ電流とするためには、駆動電圧を下げる必要があるからである。 Next, FIG. 4C shows a diagram in the case where the temperature control for reducing the temperature is performed because the detected resonance frequency is lower than the reference resonance frequency. Specifically, a diagram in the case of using a low coil impedance is shown. Comparing FIG. 4A and FIG. 4C, when the low coil impedance is used, the drive voltage on the mirror drive control unit 1 side is lower than when the standard coil impedance is used. However, it can be seen that the current on the mirror drive control unit 1 side does not change (see graphs A12 and C12). Since the drive voltage is reduced in this way, the amount of heat generated (loss) on the mirror drive control unit 1 side is increased when the low coil impedance is used than when the standard coil impedance is used. (See graphs A13 and C13). On the other hand, it can be seen that when the low coil impedance is used, the amount of heat generated on the vibrating mirror 2 side is reduced as compared with the case where the standard coil impedance is used (see A23 and C23). The current does not change on the mirror drive control unit 1 side because the displacement due to the coil driving force is determined by “current × number of turns (number of turns)”. This is because the current for obtaining a proper coil displacement does not change. The reason why the drive voltage is low when the low coil impedance is used is that the drive voltage needs to be lowered in order to obtain the same current even if the coil impedance is reduced.
 このように、低コイルインピーダンスを用いた場合には、標準コイルインピーダンスを用いた場合よりも、振動ミラー2側での発熱量は減少するが、駆動電圧が下がることでミラー駆動制御部1側での発熱量(損失)が増加する。そのため、低コイルインピーダンスを用いた場合と標準コイルインピーダンスを用いた場合とでは、ミラー駆動装置100全体での発熱量(消費電力)は変わらない。つまり、本実施例に係る構成によれば、コイルインピーダンスを減少させても、ミラー駆動装置100全体での発熱量(消費電力)は変わらないと言える。 As described above, when the low coil impedance is used, the amount of heat generated on the vibrating mirror 2 side is reduced as compared with the case where the standard coil impedance is used. However, when the driving voltage is lowered, the mirror driving control unit 1 side is reduced. The calorific value (loss) increases. Therefore, the amount of heat generated (power consumption) in the entire mirror driving device 100 does not change between when the low coil impedance is used and when the standard coil impedance is used. That is, according to the configuration according to the present embodiment, even if the coil impedance is decreased, it can be said that the heat generation amount (power consumption) in the entire mirror driving device 100 does not change.
 以上説明したことから分かるように、本実施例によれば、ミラー駆動装置100全体での発熱量(消費電力)を一定に維持しつつ適切に温度制御を行うことができる。 As can be seen from the above description, according to the present embodiment, it is possible to appropriately control the temperature while maintaining the heat generation amount (power consumption) of the entire mirror driving device 100 constant.
 [処理フロー]
 次に、図5及び図6を参照して、本実施例に係る処理フローについて具体的に説明する。
[Processing flow]
Next, the processing flow according to the present embodiment will be described in detail with reference to FIGS.
 図5は、共振周波数制御のための処理フローを示している。この処理フローは、例えば画像表示装置の通常動作時に、ミラー駆動制御部1によって繰り返し実行される。 FIG. 5 shows a processing flow for resonance frequency control. This processing flow is repeatedly executed by the mirror drive control unit 1 during normal operation of the image display device, for example.
 まず、ステップS101では、ミラー駆動制御部1内の共振周波数検出部13が、振動ミラー2における共振周波数を検出する。そして、処理はステップS102に進む。なお、共振周波数の検出に係る具体的な処理については、詳細は後述する。 First, in step S101, the resonance frequency detection unit 13 in the mirror drive control unit 1 detects the resonance frequency in the vibration mirror 2. Then, the process proceeds to step S102. The specific processing related to the detection of the resonance frequency will be described later in detail.
 ステップS102では、ミラー駆動制御部1内のスイッチ制御部12が、ステップS101で取得された共振周波数(検出共振周波数)が基準共振周波数に一致しないか否かを判定する。検出共振周波数が基準共振周波数に一致しない場合(ステップS102:Yes)、処理はステップS103に進む。ステップS103以降では、検出共振周波数を基準共振周波数に設定するための温度制御が行われる。一方で、検出共振周波数が基準共振周波数に一致する場合(ステップS102:No)、処理は終了する。この場合には、温度制御は行われない。 In step S102, the switch controller 12 in the mirror drive controller 1 determines whether or not the resonance frequency (detected resonance frequency) acquired in step S101 matches the reference resonance frequency. If the detected resonance frequency does not match the reference resonance frequency (step S102: Yes), the process proceeds to step S103. In step S103 and subsequent steps, temperature control for setting the detected resonance frequency to the reference resonance frequency is performed. On the other hand, when the detected resonance frequency matches the reference resonance frequency (step S102: No), the process ends. In this case, temperature control is not performed.
 なお、図5のステップS102において、検出共振周波数と基準共振周波数が概ね一致しないか否かを判定することとしても良い。つまり、検出共振周波数と基準共振周波数が厳密に一致であるか否かを判定しなくても良い。こうした場合には、検出共振周波数と基準共振周波数が概ね一致している場合には共振周波数制御処理が終了されることとなる。 Note that, in step S102 of FIG. 5, it may be determined whether or not the detected resonance frequency and the reference resonance frequency are substantially the same. That is, it is not necessary to determine whether or not the detected resonance frequency and the reference resonance frequency are exactly the same. In such a case, when the detected resonance frequency and the reference resonance frequency are substantially the same, the resonance frequency control process is terminated.
 ステップS103では、スイッチ制御部12が、検出共振周波数が基準共振周波数未満であるか否かを判定する。検出共振周波数が基準共振周波数未満である場合(ステップS103:Yes)、処理はステップS104に進む。この場合には、スイッチ制御部12は、コイル25の発熱量を減少させることで共振周波数を上昇させるべく、コイルインピーダンスを下げるようにスイッチ部3を制御する(ステップS104)。具体的には、スイッチ制御部12は、第1スイッチ3a及び第2スイッチ3bの両方ともオンに設定するようにスイッチ部3を制御することで、コイル25a、25b、25cの全てを使用することにより、低コイルインピーダンスに設定する。そして、処理はステップS106に進む。 In step S103, the switch control unit 12 determines whether or not the detected resonance frequency is less than the reference resonance frequency. If the detected resonance frequency is less than the reference resonance frequency (step S103: Yes), the process proceeds to step S104. In this case, the switch control unit 12 controls the switch unit 3 so as to lower the coil impedance in order to increase the resonance frequency by reducing the amount of heat generated by the coil 25 (step S104). Specifically, the switch control unit 12 uses all of the coils 25a, 25b, and 25c by controlling the switch unit 3 so that both the first switch 3a and the second switch 3b are set to ON. Thus, the low coil impedance is set. Then, the process proceeds to step S106.
 これに対して、検出共振周波数が基準共振周波数以上である場合(ステップS103:No)、処理はステップS105に進む。この場合には、スイッチ制御部12は、コイル25の発熱量を増加させることで共振周波数を減少させるべく、コイルインピーダンスを上げるようにスイッチ部3を制御する(ステップS105)。具体的には、スイッチ制御部12は、第1スイッチ3a及び第2スイッチ3bの両方ともオフに設定するようにスイッチ部3を制御することで、コイル25aのみを使用することにより、高コイルインピーダンスに設定する。そして、処理はステップS106に進む。 On the other hand, when the detected resonance frequency is equal to or higher than the reference resonance frequency (step S103: No), the process proceeds to step S105. In this case, the switch control unit 12 controls the switch unit 3 to increase the coil impedance in order to decrease the resonance frequency by increasing the amount of heat generated by the coil 25 (step S105). Specifically, the switch control unit 12 controls the switch unit 3 so as to set both the first switch 3a and the second switch 3b to be off, so that only the coil 25a is used, so that a high coil impedance is obtained. Set to. Then, the process proceeds to step S106.
 ステップS106では、上記したようなコイルインピーダンスの制御に起因する温度変化を待つべく、所定時間待機する。そして、処理はステップS107に進む。 In step S106, the apparatus waits for a predetermined time in order to wait for a temperature change caused by the coil impedance control as described above. Then, the process proceeds to step S107.
 ステップS107では、共振周波数検出部13が、振動ミラー2における共振周波数を再度検出する。そして、処理はステップS108に進む。なお、共振周波数の検出に係る具体的な処理については、詳細は後述する。 In step S107, the resonance frequency detector 13 detects the resonance frequency in the oscillating mirror 2 again. Then, the process proceeds to step S108. The specific processing related to the detection of the resonance frequency will be described later in detail.
 ステップS108では、スイッチ制御部12が、ステップS107で取得された共振周波数(検出共振周波数)が所定範囲内にあるか否かを判定する。当該所定範囲は、基準共振周波数を基準にして規定された周波数の範囲である。 In step S108, the switch control unit 12 determines whether or not the resonance frequency (detection resonance frequency) acquired in step S107 is within a predetermined range. The predetermined range is a frequency range defined with reference to the reference resonance frequency.
 検出共振周波数が所定範囲内にある場合(ステップS108:Yes)、共振周波数が基準共振周波数にある程度近い周波数であると言えるため、処理は終了する。これに対して、検出共振周波数が所定範囲内にない場合(ステップS108:No)、共振周波数が基準共振周波数から離れていると言えるため、処理はステップS102に戻る。この場合には、ステップS102以降の処理を再度行う。 If the detected resonance frequency is within the predetermined range (step S108: Yes), it can be said that the resonance frequency is close to the reference resonance frequency to some extent, so the processing ends. On the other hand, when the detected resonance frequency is not within the predetermined range (step S108: No), it can be said that the resonance frequency is away from the reference resonance frequency, and thus the process returns to step S102. In this case, the process after step S102 is performed again.
 次に、図6は、共振周波数検出のための処理フローを示している。この処理フローは、図5に示した処理フローのステップS101、S107で実行される。ここで、図6の処理フローの概要について簡単に説明する。当該処理フローにおいては、駆動制御部11の駆動信号S11と位置センサ26の検出信号S26との位相差(絶対値)が90度となるように駆動周波数を制御し、位相差(絶対値)が90度となった際の駆動周波数を共振周波数として検出する。 Next, FIG. 6 shows a processing flow for detecting the resonance frequency. This processing flow is executed in steps S101 and S107 of the processing flow shown in FIG. Here, the outline of the processing flow of FIG. 6 will be briefly described. In this processing flow, the drive frequency is controlled so that the phase difference (absolute value) between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26 is 90 degrees, and the phase difference (absolute value) is The drive frequency at 90 degrees is detected as the resonance frequency.
 図7を参照して、位相差(絶対値)が90度である場合の駆動周波数を共振周波数とする理由について説明する。図7は、上側に、振動ミラー2のアクチュエータ(コイル25など)の伝達特性を示し、下側に、駆動制御部11の駆動信号S11と位置センサ26の検出信号S26との位相差を示している。図7に示すように、位相差(絶対値)が90度である場合に、アクチュエータの伝達特性においてピークが生じていることがわかる、つまり共振が発生していることがわかる。このことから、位相差(絶対値)が90度である場合の駆動周波数は、振動ミラー2における共振周波数であると言える。 Referring to FIG. 7, the reason why the drive frequency when the phase difference (absolute value) is 90 degrees is used as the resonance frequency will be described. FIG. 7 shows the transfer characteristics of the actuator (coil 25, etc.) of the vibrating mirror 2 on the upper side, and shows the phase difference between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26 on the lower side. Yes. As shown in FIG. 7, it can be seen that when the phase difference (absolute value) is 90 degrees, a peak occurs in the transfer characteristic of the actuator, that is, resonance occurs. From this, it can be said that the drive frequency when the phase difference (absolute value) is 90 degrees is the resonance frequency in the oscillating mirror 2.
 図6に戻って、共振周波数検出のための処理フローについて説明する。まず、ステップS201では、ミラー駆動制御部1内の位相比較部14が、駆動制御部11の駆動信号S11と位置センサ26の検出信号S26との位相差を検出する。そして、処理はステップS202に進む。 Referring back to FIG. 6, the processing flow for detecting the resonance frequency will be described. First, in step S201, the phase comparison unit 14 in the mirror drive control unit 1 detects the phase difference between the drive signal S11 of the drive control unit 11 and the detection signal S26 of the position sensor 26. Then, the process proceeds to step S202.
 ステップS202では、位相比較部14は、ステップS201で取得された位相差(絶対値)が90度であるか否かを判定する。位相差(絶対値)が90度である場合(ステップS202:Yes)、処理はステップS203に進む。この場合には、ミラー駆動制御部1内の共振周波数検出部13が、現在設定されている振動ミラー2の駆動周波数を、共振周波数として検出する(ステップS203)。そして、処理は終了する。 In step S202, the phase comparison unit 14 determines whether or not the phase difference (absolute value) acquired in step S201 is 90 degrees. When the phase difference (absolute value) is 90 degrees (step S202: Yes), the process proceeds to step S203. In this case, the resonance frequency detection unit 13 in the mirror drive control unit 1 detects the currently set drive frequency of the vibrating mirror 2 as the resonance frequency (step S203). Then, the process ends.
 これに対して、位相差(絶対値)が90度でない場合(ステップS202:No)、処理はステップS204に進む。ステップS204では、位相比較部14が、位相差(絶対値)が90度よりも大きいか否かを判定する。 On the other hand, when the phase difference (absolute value) is not 90 degrees (step S202: No), the process proceeds to step S204. In step S204, the phase comparison unit 14 determines whether or not the phase difference (absolute value) is greater than 90 degrees.
 位相差(絶対値)が90度よりも大きい場合(ステップS204:Yes)、処理はステップS205に進む。この場合には、位相差(絶対値)を小さくするべく、ミラー駆動制御部1内の駆動制御部11が、振動ミラー2の駆動周波数を下げる制御を行う(ステップS205)。そして、処理はステップS201に戻る。 If the phase difference (absolute value) is larger than 90 degrees (step S204: Yes), the process proceeds to step S205. In this case, in order to reduce the phase difference (absolute value), the drive control unit 11 in the mirror drive control unit 1 performs control to reduce the drive frequency of the oscillating mirror 2 (step S205). Then, the process returns to step S201.
 これに対して、位相差(絶対値)が90度以下である場合(ステップS204:No)、処理はステップS206に進む。この場合には、位相差(絶対値)を大きくするべく、駆動制御部11が、振動ミラー2の駆動周波数を上げる制御を行う(ステップS206)。そして、処理はステップS201に戻る。 On the other hand, when the phase difference (absolute value) is 90 degrees or less (step S204: No), the process proceeds to step S206. In this case, in order to increase the phase difference (absolute value), the drive control unit 11 performs control to increase the drive frequency of the vibrating mirror 2 (step S206). Then, the process returns to step S201.
 以上説明した図5及び図6の処理フローによれば、共振周波数を適切に検出しつつ、共振周波数を基準共振周波数に設定すべく、コイルインピーダンスを変化させることによる温度制御を適切に実現することが可能となる。 According to the processing flow of FIGS. 5 and 6 described above, temperature control is appropriately realized by changing the coil impedance so as to set the resonance frequency to the reference resonance frequency while appropriately detecting the resonance frequency. Is possible.
 なお、図6のステップS202において、位相差(絶対値)が概ね90度であるか否かを判定することとしても良い。つまり、位相差(絶対値)が厳密に90度であるか否かを判定しなくても良い。こうした場合には、位相差(絶対値)が概ね90度である場合の駆動周波数が、共振周波数として検出されることとなる。 In step S202 in FIG. 6, it may be determined whether or not the phase difference (absolute value) is approximately 90 degrees. That is, it is not necessary to determine whether or not the phase difference (absolute value) is strictly 90 degrees. In such a case, the drive frequency when the phase difference (absolute value) is approximately 90 degrees is detected as the resonance frequency.
 [変形例]
 以下では、上記の実施例に好適な変形例について説明する。なお、下記の変形例は、任意に組み合わせて上述の実施例に適用することができる。
[Modification]
Below, the modification suitable for said Example is demonstrated. It should be noted that the following modifications can be applied to the above-described embodiments in any combination.
 (変形例1)
 上記では、コイル25を3つ用いる実施例を示したが、コイル25を2つのみ用いても良いし、コイル25を4つ以上用いても良い。コイル25を2つ用いた場合には、設定可能なコイルインピーダンスの数は少ないが、装置構成を簡便にすることができる。コイル25を4つ以上用いた場合には、装置構成が複雑化する傾向にあるが、設定可能なコイルインピーダンスの数が増えるため、微妙な温度変化や大きな温度変化などを適切に実現することが可能となる。
(Modification 1)
In the above description, an example in which three coils 25 are used has been described. However, only two coils 25 may be used, or four or more coils 25 may be used. When two coils 25 are used, the number of settable coil impedances is small, but the apparatus configuration can be simplified. When four or more coils 25 are used, the device configuration tends to be complicated. However, since the number of settable coil impedances increases, it is possible to appropriately realize subtle temperature changes and large temperature changes. It becomes possible.
 (変形例2)
 上記では、同一の条件(材料や線径やターン数など)を有する複数のコイル25を用いる実施例を示したが、これに限定はされない。変形例では、異なる材料や、異なる線径や、異なるターン数などによって構成された、複数のコイルを用いることができる。上記した実施例では、使用するコイルの数を切り替えることによってコイルインピーダンスを変化させていたが、変形例では、使用するコイル自体を切り替えることによってコイルインピーダンスを変化させることができる。なお、当該変形例でも、使用するコイルの数を切り替えることでコイルインピーダンスを変化させても良いことは言うまでもない。
(Modification 2)
In the above description, the embodiment using the plurality of coils 25 having the same conditions (material, wire diameter, number of turns, etc.) is shown, but the present invention is not limited to this. In the modified example, a plurality of coils made of different materials, different wire diameters, different numbers of turns, and the like can be used. In the above-described embodiment, the coil impedance is changed by switching the number of coils to be used. However, in the modification, the coil impedance can be changed by switching the coil itself to be used. Needless to say, even in this modification, the coil impedance may be changed by switching the number of coils to be used.
 (変形例3)
 上記した実施例では、コイルインピーダンスを変化させるに当たって、検出共振周波数に応じて、使用するコイルインピーダンス(高コイルインピーダンス、低コイルインピーダンス及び標準コイルインピーダンスのいずれか)を切り替えていた。変形例では、電流を供給するコイルを連続的に切り替えることで、その切り替え時間比により、コイルインピーダンスを連続的に変化させることができる。この例では、検出共振周波数に応じて、コイルインピーダンスを高コイルインピーダンスと低コイルインピーダンスとの間で任意に制御することができる。
(Modification 3)
In the above-described embodiment, when changing the coil impedance, the coil impedance to be used (high coil impedance, low coil impedance, or standard coil impedance) is switched according to the detected resonance frequency. In the modified example, the coil impedance can be continuously changed by continuously switching the coil that supplies the current according to the switching time ratio. In this example, the coil impedance can be arbitrarily controlled between the high coil impedance and the low coil impedance in accordance with the detected resonance frequency.
 例えば、同じ条件を有する2つのコイル(以下、「コイルA」及び「コイルB」と表記する。)を用いて、コイルAへの電流の供給と、コイルA及びコイルBへの電流の供給とを、比較的短い周期にて連続的に切り替える制御を行うことができる。1つの例では、検出共振周波数が基準共振周波数以上である場合には、当該切り替えを行う1つの周期において、コイルAに電流を供給する期間を、コイルA及びコイルBに電流を供給する期間よりも長くして、連続的な切り替えを行う。これに対して、検出共振周波数が基準共振周波数未満である場合には、当該切り替えを行う1つの周期において、コイルA及びコイルBに電流を供給する期間を、コイルAに電流を供給する期間よりも長くして、連続的な切り替えを行う。 For example, using two coils having the same conditions (hereinafter referred to as “coil A” and “coil B”), supply of current to coil A and supply of current to coil A and coil B Can be controlled continuously in a relatively short cycle. In one example, when the detected resonance frequency is equal to or higher than the reference resonance frequency, the period in which current is supplied to the coil A in the period in which the switching is performed is longer than the period in which current is supplied to the coil A and the coil B. Also, make continuous switching. On the other hand, when the detected resonance frequency is lower than the reference resonance frequency, the period during which current is supplied to the coil A and the coil B in one cycle in which the switching is performed is greater than the period during which current is supplied to the coil A. Also, make continuous switching.
 また、上記した変形例は、異なる条件を有する2つのコイル(以下、「コイルC」及び「コイルD」と表記する。コイルCはコイルDよりも高いインピーダンスを有するものとする。)を用いる場合にも適用することができる。この例では、コイルCへの電流の供給と、コイルDへの電流の供給とを、比較的短い周期にて連続的に切り替える制御を行うことができる。1つの例では、検出共振周波数が基準共振周波数以上である場合には、当該切り替えを行う1つの周期において、コイルCに電流を供給する期間を、コイルDに電流を供給する期間よりも長くして、連続的な切り替えを行う。これに対して、検出共振周波数が基準共振周波数未満である場合には、当該切り替えを行う1つの周期において、コイルDに電流を供給する期間を、コイルCに電流を供給する期間よりも長くして、連続的な切り替えを行う。 Further, the above-described modification uses two coils having different conditions (hereinafter referred to as “coil C” and “coil D”. The coil C has a higher impedance than the coil D). It can also be applied to. In this example, it is possible to perform control for continuously switching between supply of current to the coil C and supply of current to the coil D at a relatively short cycle. In one example, when the detected resonance frequency is equal to or higher than the reference resonance frequency, the period for supplying current to the coil C is longer than the period for supplying current to the coil D in one cycle for performing the switching. Switch continuously. On the other hand, when the detected resonance frequency is lower than the reference resonance frequency, the period for supplying the current to the coil D is set longer than the period for supplying the current to the coil C in one cycle for performing the switching. Switch continuously.
 なお、上記した変形例は、3つ以上のコイルを用いる構成にも同様に適用することができる。 It should be noted that the above-described modification can be similarly applied to a configuration using three or more coils.
 (変形例4)
 上記では、本発明を、レーザ光を水平方向(主走査方向)に走査する構成に適用する実施例を示したが、本発明は、レーザ光を垂直方向(副走査方向)に走査する構成にも同様に適用することができる。
(Modification 4)
In the above, the embodiment in which the present invention is applied to the configuration in which the laser beam is scanned in the horizontal direction (main scanning direction) has been described. However, the present invention has a configuration in which the laser beam is scanned in the vertical direction (sub scanning direction). Can be applied similarly.
 (変形例5)
 本発明は、レーザ光を走査することで画像を表示する画像表示装置への適用に限定はされない。本発明は、異物センサや温度センサなどのセンサ機器にも適用することができる。
(Modification 5)
The present invention is not limited to application to an image display device that displays an image by scanning a laser beam. The present invention can also be applied to sensor devices such as a foreign matter sensor and a temperature sensor.
 本発明は、画像表示装置に利用することができる。 The present invention can be used for an image display device.
 1 ミラー駆動制御部
 2 振動ミラー
 3 スイッチ部
 3a1、3a2 第1スイッチ
 3b1、3b2 第2スイッチ
 11 駆動制御部
 12 スイッチ制御部
 13 共振周波数検出部
 14 位相比較部
 21 ミラー部
 22 ベース部
 23 トーションバー
 25a、25b、25c コイル
 26 位置センサ
 100 ミラー駆動装置
DESCRIPTION OF SYMBOLS 1 Mirror drive control part 2 Vibration mirror 3 Switch part 3a1, 3a2 1st switch 3b1, 3b2 2nd switch 11 Drive control part 12 Switch control part 13 Resonance frequency detection part 14 Phase comparison part 21 Mirror part 22 Base part 23 Torsion bar 25a , 25b, 25c Coil 26 Position sensor 100 Mirror drive device

Claims (8)

  1.  ベース部と、
     前記ベース部と接続部を介して揺動可能に接続されたミラー部と、
     前記ミラー部を揺動させるための第一コイル及び第二コイルと、
     前記第一コイル及び前記第二コイルのうちのいずれか一方又は両方への電流の供給を選択的に切り替える切り替え手段と、を有することを特徴とするミラー駆動装置。
    A base part;
    A mirror part swingably connected via the base part and a connection part;
    A first coil and a second coil for swinging the mirror part;
    And a switching unit that selectively switches the supply of current to one or both of the first coil and the second coil.
  2.  前記第一コイルと前記第二コイルとは並列に巻かれて配置されていることを特徴とする請求項1に記載のミラー駆動装置。 The mirror driving device according to claim 1, wherein the first coil and the second coil are wound and arranged in parallel.
  3.  前記第一コイル及び前記第二コイルは、前記ミラー部を取り囲むように形成されていると共に、前記接続部の近傍に配置されていることを特徴とする請求項1又は2に記載のミラー駆動装置。 3. The mirror driving device according to claim 1, wherein the first coil and the second coil are formed so as to surround the mirror portion and are disposed in the vicinity of the connection portion. 4. .
  4.  揺動する前記ミラー部の共振周波数を検出する検出手段を更に有し、
     前記切り替え手段は、前記共振周波数に応じて、前記電流の供給を選択的に切り替えることを特徴とする請求項1乃至3のいずれか一項に記載のミラー駆動装置。
    It further has detection means for detecting the resonance frequency of the mirror part that swings,
    4. The mirror driving device according to claim 1, wherein the switching unit selectively switches the supply of the current according to the resonance frequency. 5.
  5.  前記切り替え手段は、前記共振周波数が基準共振周波数以上である場合には、前記第一コイル及び前記第二コイルのうちの一方に電流を供給するように切り替えを行い、前記共振周波数が前記基準共振周波数未満である場合には、前記第一コイル及び前記第二コイルの両方に電流を供給するように切り替えを行うことを特徴とする請求項4に記載のミラー駆動装置。 The switching means performs switching so as to supply a current to one of the first coil and the second coil when the resonance frequency is equal to or higher than a reference resonance frequency, and the resonance frequency is the reference resonance. 5. The mirror driving device according to claim 4, wherein when the frequency is less than the frequency, switching is performed so that a current is supplied to both the first coil and the second coil.
  6.  前記切り替え手段は、前記第一コイル及び前記第二コイルのうちの一方への前記電流の供給と、前記第一コイル及び前記第二コイルの両方への前記電流の供給とを連続的に切り替える制御を行い、前記共振周波数に応じて、前記切り替えを行うタイミングを制御することを特徴とする請求項4に記載のミラー駆動装置。 The switching means is a control for continuously switching the supply of the current to one of the first coil and the second coil and the supply of the current to both the first coil and the second coil. The mirror driving device according to claim 4, wherein the switching timing is controlled according to the resonance frequency.
  7.  前記ミラー部を揺動させるための駆動信号と、前記駆動信号による前記ミラー部の揺動を検出するセンサの検出信号との位相差が90度となるように、前記駆動信号の周波数を制御する制御手段を更に備え、
     前記検出手段は、前記制御手段による制御によって前記位相差が90度となった際の前記駆動信号の周波数を、前記共振周波数として検出することを特徴とする請求項4乃至6のいずれか一項に記載のミラー駆動装置。
    The frequency of the drive signal is controlled so that the phase difference between the drive signal for swinging the mirror part and the detection signal of the sensor that detects the swing of the mirror part by the drive signal is 90 degrees. Further comprising control means,
    The detection means detects the frequency of the drive signal when the phase difference is 90 degrees as controlled by the control means as the resonance frequency. The mirror drive device described in 1.
  8.  ベース部と、
     前記ベース部と接続部を介して揺動可能に接続されたミラー部と、
     前記ミラー部を揺動させるための複数のコイルを有するコイル部と、
     前記複数のコイルのうち、電流を供給するコイルの数を切り替える切り替え手段と、を有することを特徴とするミラー駆動装置。
    A base part;
    A mirror part swingably connected via the base part and a connection part;
    A coil portion having a plurality of coils for swinging the mirror portion;
    A mirror driving device comprising switching means for switching the number of coils that supply current among the plurality of coils.
PCT/JP2012/053845 2012-02-17 2012-02-17 Mirror driving device WO2013121581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053845 WO2013121581A1 (en) 2012-02-17 2012-02-17 Mirror driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053845 WO2013121581A1 (en) 2012-02-17 2012-02-17 Mirror driving device

Publications (1)

Publication Number Publication Date
WO2013121581A1 true WO2013121581A1 (en) 2013-08-22

Family

ID=48983738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053845 WO2013121581A1 (en) 2012-02-17 2012-02-17 Mirror driving device

Country Status (1)

Country Link
WO (1) WO2013121581A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015239A (en) * 2019-07-16 2021-02-12 日本電産サンキョー株式会社 Measuring system and measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171930A (en) * 2005-11-22 2007-07-05 Canon Inc Oscillating device, optical deflector and method of controlling the same
JP2009134194A (en) * 2007-11-30 2009-06-18 Seiko Epson Corp Actuator and image forming apparatus
JP2010139691A (en) * 2008-12-11 2010-06-24 Brother Ind Ltd Optical scanner and image display device equipped with the optical scanner
JP2011125110A (en) * 2009-12-09 2011-06-23 Nippon Signal Co Ltd:The Planar actuator
JP2011180179A (en) * 2010-02-26 2011-09-15 Ricoh Co Ltd Optical scanner and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171930A (en) * 2005-11-22 2007-07-05 Canon Inc Oscillating device, optical deflector and method of controlling the same
JP2009134194A (en) * 2007-11-30 2009-06-18 Seiko Epson Corp Actuator and image forming apparatus
JP2010139691A (en) * 2008-12-11 2010-06-24 Brother Ind Ltd Optical scanner and image display device equipped with the optical scanner
JP2011125110A (en) * 2009-12-09 2011-06-23 Nippon Signal Co Ltd:The Planar actuator
JP2011180179A (en) * 2010-02-26 2011-09-15 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015239A (en) * 2019-07-16 2021-02-12 日本電産サンキョー株式会社 Measuring system and measuring method
JP7356275B2 (en) 2019-07-16 2023-10-04 ニデックインスツルメンツ株式会社 Measurement system and method

Similar Documents

Publication Publication Date Title
JP5310566B2 (en) Micro scanner device and control method of micro scanner device
WO2012070610A1 (en) Optical scanning device
JP5524535B2 (en) Actuator drive
JP5769941B2 (en) Actuator drive
US9414032B2 (en) Video projection apparatus capable of operating at optimum resonant frequency and its controlling method
JP6287808B2 (en) Image display apparatus and image correction method
JP4023442B2 (en) Optical scanner and image forming apparatus having the same
US11143863B2 (en) Optical scanning device
JP5300624B2 (en) Planar actuator and optical scanning device
WO2013121581A1 (en) Mirror driving device
JP2016156913A (en) Optical scanning device
JP2012168444A (en) Correction system for deflection reflecting device, and graphic display device
JP2018132666A (en) Optical scanner and distance image sensor
JP2013003526A (en) Optical scanning device
JP5312302B2 (en) Optical scanning device
JP2009222857A (en) Optical scanner device and image forming apparatus
JP2015210451A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2015210450A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2010017021A (en) Drive device for vibration actuator, and lens barrel and camera provided with the same
JP6189137B2 (en) Optical scanner
JP5634705B2 (en) Planar actuator
JP6231361B2 (en) Vibration element and optical scanning device
JP2009237102A (en) Optical scanner and image forming apparatus
JP5777899B2 (en) Actuator drive controller
JP6224432B2 (en) Vibrating device, optical scanning device, image forming apparatus and video projection apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868735

Country of ref document: EP

Kind code of ref document: A1