WO2011108395A1 - Optical scanning device and image display device provided with the same - Google Patents

Optical scanning device and image display device provided with the same Download PDF

Info

Publication number
WO2011108395A1
WO2011108395A1 PCT/JP2011/053788 JP2011053788W WO2011108395A1 WO 2011108395 A1 WO2011108395 A1 WO 2011108395A1 JP 2011053788 W JP2011053788 W JP 2011053788W WO 2011108395 A1 WO2011108395 A1 WO 2011108395A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
amplitude
drive signal
resonance
deflection
Prior art date
Application number
PCT/JP2011/053788
Other languages
French (fr)
Japanese (ja)
Inventor
政敏 神山
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2011108395A1 publication Critical patent/WO2011108395A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • H04N1/1135Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors for the main-scan only

Definitions

  • the present invention relates to an optical scanning device and an image display device including the same, and more specifically, by a resonance type deflection element having a deflection surface for deflecting an incident light beam and swinging around the axis by resonance.
  • the present invention relates to an optical scanning device that scans a light beam and an image display device including the same.
  • an optical scanning device that scans a light beam having an intensity corresponding to an image signal in a one-dimensional direction or a two-dimensional direction.
  • Such an optical scanning device scans a light beam having an intensity corresponding to an image signal in a two-dimensional direction and projects it onto at least one retina of a user, and displays an image
  • an image display device such as a screen scanning type image display device that displays an image on a screen by scanning a light beam having an intensity corresponding to a signal in a two-dimensional direction.
  • a resonant deflection element that can swing the reflection mirror at a relatively high speed and a non-resonance deflection element that can swing the reflection mirror at a relatively low speed
  • the light beam emitted from the light source with the intensity corresponding to the image signal is scanned in the first direction by resonating the reflection mirror of the resonance type deflection element, and the reflection mirror of the non-resonance type deflection element is sawtooth wave or triangular wave Or it drives by trapezoid wave shape and scans a light beam to a 2nd direction, and displays an image.
  • the first direction is, for example, the horizontal direction
  • the second direction is, for example, the vertical direction.
  • the deflection surface of the resonance type deflection element is oscillated at a resonance frequency unique to the resonance type deflection element, whereby the deflection surface can be oscillated at low power consumption and at high speed.
  • the resonance frequency unique to the resonance type deflection element differs depending on the individual difference of the resonance type deflection element, it is necessary to detect the resonance frequency for each resonance type deflection element and drive the resonance type deflection element.
  • the resonance type deflection element has a jumping characteristic in which the oscillation amplitude of the deflection surface changes suddenly when the frequency is shifted. Therefore, if the resonant frequency of the resonant deflection element changes due to changes in the ambient temperature or the like, the oscillation amplitude (swing) of the deflection surface must be changed without changing the frequency of the drive signal for driving the resonant deflection element. There is a risk that the angle will be rapidly reduced. At this time, if the voltage of the drive signal is increased to maintain the deflection surface at a constant oscillation amplitude without changing the frequency of the drive signal, the deflection surface is oscillated at a position deviating from the resonance point. Therefore, the power consumption of the resonance type deflection element increases. Moreover, when the deflection surface is swung at a position deviating from the resonance point, a large swing amplitude cannot be obtained.
  • the present invention provides an optical scanning device capable of maintaining a deflection surface at a constant oscillation amplitude even when the resonance frequency of a resonance type deflection element changes due to a change in ambient temperature or the like, and an image display device including the same.
  • the purpose is to provide.
  • a resonance type deflection element having a deflection surface for deflecting an incident light beam, the deflection surface oscillating around an axis by resonance, and the resonance type deflection device.
  • the frequency of the drive signal for driving the element is changed, the oscillation amplitude of the deflection surface is detected, the resonance frequency unique to the resonance-type deflection element is determined, and the drive at a frequency shifted from the resonance frequency by a predetermined frequency
  • Drive means for changing the amplitude of the drive signal to drive the swing amplitude of the deflection surface to a predetermined value after driving the resonant deflection element with a signal.
  • the resonant deflection element is a MEMS in which a region including the deflection surface is formed on a metal substrate, and the driving means has the drive having a frequency higher than the resonance frequency by a predetermined frequency.
  • the swing amplitude of the deflection surface may be set to a predetermined value.
  • the resonant deflection element is a MEMS in which a region including the deflection surface is formed on a silicon substrate, and the drive means has the drive having a frequency lower than the resonance frequency by a predetermined frequency.
  • the swing amplitude of the deflection surface may be set to a predetermined value.
  • the optical scanning device may further include a temperature detection unit that detects a temperature of the resonant deflection element or its surroundings, and the predetermined frequency may be a frequency based on a temperature detected by the temperature detection unit.
  • a retinal scanning type image display that includes the optical scanning device and displays an image by scanning a light beam having an intensity corresponding to an image signal with the optical scanning device and emitting the light beam toward at least one eye of a user. It is good also as an apparatus.
  • the amplitude level of the drive signal is changed to set the swing amplitude of the deflection surface to a predetermined value. Even when the resonance frequency of the resonant deflection element changes due to a change in ambient temperature or the like, the deflection surface can be maintained at a constant oscillation amplitude.
  • the optical scanning device 1 includes a drive control unit 10, a DC voltage superimposing unit 40, a resonant deflection element 50, a light source 60, and a BD sensor 70.
  • the drive control unit 10 is a drive unit that generates a drive signal Sig1 that drives the resonant deflection element 50, and includes a frequency determination unit 11, an amplitude determination unit 12, and a drive signal generation unit 13.
  • the drive signal generation unit 13 generates and outputs a drive signal Sig1 having the frequency fo and the amplitude Vp determined by the frequency determination unit 11 and the amplitude determination unit 12.
  • the DC voltage superimposing unit 40 includes a DC voltage applying unit 41 and a signal superimposing circuit 42. Then, the direct current voltage generated by the direct current voltage application unit 41 is superimposed on the drive signal Sig 1 output from the drive control unit 10 by the signal superimposing circuit 42 and applied to the drive unit 51 of the resonant deflection element 50. .
  • the deflection surface 52 of the resonant deflection element 50 swings based on the drive signal Sig1 superimposed on the DC voltage.
  • the drive part 51 is comprised by the piezoelectric element etc., for example.
  • the resonant deflection element 50 is a MEMS formed on a thin plate-like metal substrate, and has, for example, a shape as shown in FIG.
  • the metal substrate include an aluminum substrate, a copper substrate, and an iron substrate.
  • the resonant deflection element 50 includes a drive unit 51, a deflection surface (reflection mirror) 52, a frame body 53, and beam portions 54 and 54. Then, the drive signal Sig1 superimposed on the DC voltage is applied to the drive unit 51. Due to the displacement of the drive unit 51, the frame body 53, the beam portions 54 and 54, the deflection surface 52, and the frequency at the frequency according to the drive signal Sig1.
  • the deflection surface 52 swings about the axis about the swing axis Lc.
  • the swing amplitude of the deflection surface 52 is a rotation angle range of the deflection surface 52 and is a deflection angle of the deflection surface 52.
  • FIG. 3 shows the oscillation amplitude characteristics of the deflection surface 52 of the resonant deflection element 50 when a drive signal Sig1 having a predetermined amplitude is inputted at a certain temperature while changing its frequency.
  • a drive signal Sig1 having a predetermined amplitude is inputted at a certain temperature while changing its frequency.
  • FIG. 3 shows the oscillation amplitude characteristics of the deflection surface 52 of the resonant deflection element 50 when a drive signal Sig1 having a predetermined amplitude is inputted at a certain temperature while changing its frequency.
  • the resonance frequency fs unique to the resonance type deflection element 50 is determined while changing the frequency of the drive signal Sig1 having a predetermined amplitude, and from the resonance frequency fs as shown in FIG.
  • the resonant deflection element 50 is driven by a drive signal Sig1 having a frequency fo that is higher by a predetermined frequency ⁇ f.
  • the oscillation amplitude of the deflecting surface 52 is increased. It can be suppressed from becoming smaller. That is, by setting the frequency fo of the drive signal Sig1 to a frequency that is higher by a predetermined frequency ⁇ f than the resonance frequency fs inherent to the resonance type deflection element 50, a margin can be taken against a characteristic change due to a temperature change or the like.
  • FIG. 7 is a diagram showing the characteristics of the resonant deflection element 50 for each amplitude Vp (5V, 7V, 11.5V, 13V) of the drive signal Sig1.
  • Vp amplitude of the drive signal Sig1
  • the resonance frequency fs of the resonance type deflection element 50 also varies. Therefore, if the amplitude Vp of the drive signal Sig1 is changed after the frequency of the drive signal Sig1 is determined, the swing amplitude of the deflection surface 52 changes.
  • the amplitude of the drive signal Sig1 is increased to some extent, the frequency fo is determined, and then the amplitude Vp is changed. By doing so, it is possible to suppress the swing amplitude of the deflection surface 52 from rapidly decreasing due to the amplitude change of the drive signal Sig1.
  • the frequency of the drive signal Sig1 is adjusted more accurately by adjusting the frequency of the drive signal Sig1 based on the phase difference ⁇ c between the signal waveform of the drive signal Sig1 and the oscillation waveform of the deflection surface 52.
  • the deflection surface 52 is swung. That is, after determining the frequency fo of the drive signal Sig1 and adjusting the swing amplitude of the deflection surface 52 to a predetermined amplitude as described above, when the phase difference ⁇ c is out of the predetermined range Z (see FIG. 8), The frequency of the drive signal Sig1 is adjusted so that the phase difference ⁇ c is within the predetermined range Z.
  • the amplitude Vp of the drive signal Sig1 is changed in order to keep the swinging amplitude of the deflection surface 52 constant, it is performed after confirming that the phase difference ⁇ c is within the predetermined range Z. That is, the frequency control based on the phase difference ⁇ c is performed with priority over the amplitude control. In this way, the deflection surface 52 can be oscillated with higher accuracy.
  • the optical scanning device 1 is configured as described above, it is possible to suppress the swing amplitude of the deflecting surface 52 from rapidly decreasing due to the jump phenomenon, and to resonate in accordance with the environmental change of the optical scanning device 1.
  • the mold deflection element 50 can be driven.
  • the frequency determining unit 11, the amplitude determining unit 12, the drive signal generating unit 13, and the DC voltage superimposing unit 40 are configured as follows.
  • the frequency determination unit 11 detects the resonance frequency fs unique to the resonance type deflection element 50 and determines a frequency higher than the resonance frequency fs by a predetermined frequency ⁇ f as the frequency fo of the drive signal Sig1. Thereafter, when the phase difference ⁇ c between the drive signal Sig1 and the oscillation state of the resonant deflection element 50 exceeds a predetermined range, the frequency determination unit 11 changes the frequency fo of the drive signal Sig1, and the phase difference ⁇ c is Within a predetermined range Z.
  • the frequency determination unit 11 includes a phase difference determination unit 21, a target phase difference storage unit 22, a phase difference comparison unit 23, and a frequency change control unit 24.
  • the phase difference determination unit 21 determines the phase difference ⁇ c between the signal waveform of the drive signal Sig1 and the swing waveform of the deflection surface 52.
  • the BD sensor 70 receives a light beam emitted from the light source 60 when the deflecting surface 52 is at a predetermined tilt angle, and outputs a detection signal (hereinafter referred to as a BD signal).
  • the phase difference determination unit 21 detects the tilt angle state of the deflection surface 52 based on the output timing of the BD signal from the BD sensor 70, and the phase difference ⁇ c between the waveform of the drive signal Sig1 and the swing waveform of the deflection surface 52. Determine.
  • phase difference determination unit 21 for example, when the tilt angle of the deflecting surface 52 goes from + X to -X, the timing when the tilt angle becomes 0 and when the drive signal Sig1 goes from a positive voltage to a negative voltage, It is also possible to detect the timing when it becomes 0 V and determine the phase difference ⁇ c from the relationship between these timings. It is assumed that the inclination angle of the deflection surface 52 is in the + X direction when a positive voltage drive signal is applied to the drive unit 51.
  • the target phase difference storage unit 22 stores information on a predetermined range Z that is a range of the phase difference ⁇ c that can be activated.
  • the phase difference comparison unit 23 acquires the phase difference ⁇ c from the phase difference determination unit 21 and also acquires information on the predetermined range Z from the target phase difference storage unit 22, and whether or not the phase difference ⁇ c is within the predetermined range Z. Determine.
  • the frequency change control unit 24 outputs the phase difference ⁇ c from the phase difference determination unit 21 if the phase difference ⁇ c output from the phase difference determination unit 21 is larger than the upper limit value of the predetermined range Z when the phase difference ⁇ c is not within the predetermined range Z.
  • the drive signal generation unit 13 is controlled to increase the frequency of the drive signal Sig1 until the phase difference ⁇ c is smaller than the lower limit value of the predetermined range Z. Thereafter, the frequency change control unit 24 controls the drive signal generation unit 13 to lower the frequency of the drive signal Sig1 until the phase difference ⁇ c output from the phase difference determination unit 21 reaches 90 [deg].
  • the frequency of the drive signal Sig1 when the phase difference ⁇ c output from the phase difference determination unit 21 reaches 90 [deg] is the resonance frequency fs. Therefore, the frequency change control unit 24 determines the frequency of the drive signal Sig1 when the phase difference ⁇ c output from the phase difference determination unit 21 is 90 [deg] as the resonance frequency fs.
  • the frequency change control unit 24 has the phase difference determination unit 21.
  • the drive signal generator 13 is controlled to decrease the frequency of the drive signal Sig ⁇ b> 1 until the phase difference ⁇ c output from is reduced to 90 [deg]. Then, the frequency change control unit 24 determines the frequency of the drive signal Sig1 when the phase difference ⁇ c output from the phase difference determination unit 21 is 90 [deg] as the resonance frequency fs.
  • the frequency change control unit 24 determines the resonance frequency fs by increasing or decreasing the frequency of the drive signal Sig1. Then, the frequency change control unit 24 controls the drive signal generation unit 13 to output from the drive signal generation unit 13 a drive signal Sig1 having a frequency fo higher than the resonance frequency fs by a predetermined frequency ⁇ f.
  • the amplitude determination unit 12 controls the amplitude Vp of the drive signal Sig1 output from the drive signal generation unit 13 so that the swing amplitude of the deflection surface 52 of the resonant deflection element 50 becomes the target swing amplitude. And operates when the phase difference ⁇ c falls within the predetermined range Z.
  • the amplitude determination unit 12 includes an amplitude control execution switching unit 31, an amplitude determination unit 32, a target amplitude storage unit 33, an amplitude comparison unit 34, and an amplitude change control unit 35.
  • the amplitude control execution switching unit 31 controls the operation of the amplitude determination unit 32 based on the output from the phase difference comparison unit 23. That is, when the amplitude control execution switching unit 31 receives a signal output when the phase difference ⁇ c is within the predetermined range Z from the phase difference comparison unit 23, the amplitude control execution switching unit 31 sets the amplitude determination unit 32 to the non-operation state, and the phase difference ⁇ c is When the signal output when it is not within the predetermined range Z is received from the phase difference comparison unit 23, the amplitude determination unit 32 is put into an operating state.
  • the amplitude determination unit 32 detects the swing amplitude of the deflecting surface 52 based on the presence / absence and timing of the BD signal from the BD sensor 70 when the amplitude control execution switching unit 31 is brought into the operating state. Specifically, when the BD signal is not output from the BD sensor 70, the amplitude determination unit 32 determines that the swinging amplitude of the deflection surface 52 is within a predetermined range. Further, when the BD signal is output from the BD sensor 70, the swing amplitude of the deflection surface 52 is determined based on the interval of the BD signal output from the BD sensor 70.
  • the target amplitude storage unit 33 stores information on the swing amplitude (hereinafter referred to as swing amplitude Xa) of the target deflection surface 52.
  • the amplitude comparison unit 34 acquires information on the swing amplitude (hereinafter referred to as swing amplitude Xr) of the deflection surface 52 from the amplitude determination unit 32 and also acquires information on the swing amplitude Xa from the target amplitude storage unit 33. Then, an amplitude difference between the swing amplitude Xr and the swing amplitude Xa (hereinafter referred to as an amplitude difference Xs) is obtained.
  • the amplitude change control unit 35 controls the drive signal generation unit 13 to change the amplitude Vp of the drive signal Sig1 so that the amplitude difference Xs falls within a predetermined range.
  • the amplitude change control unit 35 does not change the amplitude Vp of the drive signal Sig1 when the amplitude difference Xs is within the predetermined range.
  • FIG. 9 is a simplified diagram for easy understanding.
  • the frequency determination unit 11 and the amplitude determination unit 12 output a drive signal Sig 1 having a predetermined frequency and amplitude from the drive signal generation unit 13. Then, the drive signal generation unit 13 is controlled (step S10). Specifically, the frequency change control unit 24 of the frequency determination unit 11 controls the drive signal generation unit 13 so that the drive signal Sig1 has a predetermined frequency. Further, the amplitude change control unit 35 of the amplitude determination unit 12 controls the drive signal generation unit 13 so that the drive signal Sig1 has a predetermined amplitude.
  • the predetermined frequency and amplitude are, for example, the frequency and amplitude set in advance in the frequency change control unit 24 and the amplitude change control unit 35 as defaults.
  • the frequency and amplitude when the frequency change control unit 24 and the amplitude change control unit 35 last controlled the drive signal Sig1 may be stored, and the frequency and amplitude may be set as a predetermined frequency and amplitude.
  • phase difference determination unit 21 determines the phase difference ⁇ c between the signal waveform of the drive signal Sig1 and the swing waveform of the deflection surface 52 (step S11).
  • the phase difference ⁇ c is compared with the predetermined range Z acquired from the target phase difference storage unit 22 in the phase difference comparison unit 23, and it is determined whether or not the phase difference ⁇ c is within the predetermined range Z (step S12). .
  • the frequency change control unit 24 detects the resonance frequency fs by increasing or decreasing the frequency of the drive signal Sig1, as described above. That is, the frequency change control unit 24 increases or decreases the frequency of the drive signal Sig1, and the frequency of the drive signal Sig1 when the phase difference ⁇ c output from the phase difference determination unit 21 becomes 90 [deg] is determined as the resonance frequency. It is determined as fs. Then, the frequency change control unit 24 controls the drive signal generation unit 13 to output from the drive signal generation unit 13 a drive signal Sig1 having a frequency fo that is higher than the resonance frequency fs by a predetermined frequency ⁇ f (step S13).
  • step S12 when the phase difference ⁇ c is within the predetermined range Z (step S12: Yes), based on the signal output from the frequency change control unit 24, the amplitude control execution switching unit 31 sets the amplitude determination unit 32 in the operating state, and the amplitude The determination unit 32 detects the swing amplitude of the deflection surface 52 (step S14). Then, the amplitude comparison unit 34 compares the swing amplitude Xr of the deflection surface 52 with the swing amplitude Xa of the target deflection surface 52 from the amplitude determination unit 32, and obtains an amplitude difference Xs thereof (step S15).
  • step S15 when the amplitude difference Xs is outside the predetermined range (step S15: No), the amplitude change control unit 35 controls the drive signal generation unit 13 so that the amplitude difference Xs is within the predetermined range, thereby driving signal Sig1. Is changed (step S16).
  • step S15 when the amplitude difference Xs is within the predetermined range (step S15: Yes), the drive control unit 10 is based on an input from the outside (for example, the operation unit). It is determined whether or not there is an end instruction (step S17). If there is an end instruction (step S ⁇ b> 17: Yes), the drive control unit 10 stops swinging of the deflection surface 52 of the resonant deflection element 50 and ends the driving process of the resonant deflection element 50. . On the other hand, if there is no end instruction (step S17: No), the process returns to step S11, and the processes from step S11 are repeated.
  • the frequency of the drive signal Sig1 for driving the resonance type deflection element 50 is changed, the oscillation state of the deflection surface 52 is detected, and the resonance type deflection element 50 is detected.
  • the inherent resonance frequency fs is determined.
  • the optical scanning device 1 drives the resonance type deflection element 50 with the drive signal Sig1 having a frequency shifted from the resonance frequency fs by a predetermined frequency ⁇ f, and then changes the amplitude Vp of the drive signal Sig1 to change the vibration of the deflection surface 52.
  • the dynamic amplitude is set to a predetermined value.
  • the optical scanning device 1 is configured in this way, it is possible to suppress the swing amplitude of the deflecting surface 52 from rapidly decreasing due to the jump phenomenon, and the resonant deflection element 50 due to a change in ambient temperature or the like. Even when the resonance frequency fs changes, the deflection surface 52 can be maintained at a constant oscillation amplitude.
  • the resonant deflection element 50 is a MEMS in which a region including a deflection surface 52 is formed on a metal substrate, and has characteristics as shown in FIG. That is, when the frequency of the drive signal Sig1 is made lower than the resonance frequency, the swing amplitude (swing angle) of the deflecting surface 52 is suddenly reduced, but even if the frequency of the drive signal Sig1 is increased from the resonance frequency. The swing amplitude (swing angle) of the deflecting surface 52 does not rapidly decrease. Therefore, the drive control unit 10 drives the resonant deflection element 50 with the drive signal Sig1 having a frequency fo that is higher than the resonant frequency fs by a predetermined frequency ⁇ f. In this way, even when the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, the swing amplitude of the deflection surface 52 can be increased with a small drive signal Sig1, thereby saving power. be able to.
  • a line image sensor in which a plurality of photoelectric conversion elements are arranged in an array is provided at a position where a light beam scanned by the resonant deflection element 50 is incident.
  • the swinging state of the deflection surface 52 may be detected based on the output signal.
  • a new piezoelectric element is provided on the frame 53, and the swinging state of the deflection surface 52 is detected based on an electrical signal output from the piezoelectric element in response to the swinging of the deflection surface 52. You may do it.
  • a temperature detection unit 80 that detects the temperature of the resonant deflection element 50 or its surroundings is provided, and the predetermined frequency ⁇ f is changed according to the detection result by the temperature detection unit 80.
  • the frequency change control unit 24 stores a table associating the temperature T with the frequency, reads the frequency associated with the temperature T detected by the temperature detection unit 80 from the table, and sets the frequency to a predetermined value.
  • the frequency is ⁇ f.
  • the predetermined frequency ⁇ f can be appropriately determined according to the temperature, and even when the resonance frequency of the resonance-type deflection element changes due to a change in the ambient temperature or the like, the deflection surface 52 can be made more stable. A constant oscillation amplitude can be maintained.
  • the temperature detecting unit 80 corresponds to the temperature detecting means of the present invention.
  • the resonance type deflection element 50 is a MEMS in which a region including a deflection surface 52 is formed on a metal substrate
  • a MEMS in which a region including a deflection surface is formed on a silicon substrate may be used.
  • the resonant deflection element 50 ' is configured as shown in FIG.
  • the resonance type deflection element 50 ' has a reflecting mirror which is a deflection surface 52' having a quadrangular shape, and a reflecting surface is formed on the surface thereof.
  • the deflection surface 52 ' is supported by beam portions 54' and 54 'connected to two sides, and the beam portions 54' and 54 'are connected to and supported by a frame 53'.
  • the deflection surface 52 ' is supported by the frame 53' via the two beam portions 54 'and 54' so as to be swingable.
  • a drive unit 51 ′ made of a piezoelectric element extending from one corner of the frame 53 ′ toward the beam 54 ′ is formed on the frame 53 ′.
  • the deflection surface 52 ', the frame 53', and the beam portions 54 'and 54' are formed on the silicon substrate.
  • the drive signal Sig1 is superimposed on the direct current voltage from the drive control unit 10 and input to the drive unit 51 ′, so that the longitudinal direction of the beam portions 54 ′ and 54 ′ becomes the swing axis Lc ′ and the deflection surface 52 ′ It swings around the swing axis Lc ′.
  • this resonance type deflection element 50 ′ as shown in FIG. 12, when the frequency of the drive signal Sig1 is made higher than the resonance frequency fs, the oscillation amplitude (the deflection angle) of the deflection surface 52 is suddenly reduced. Even if the frequency of the drive signal Sig1 is lowered from the resonance frequency fs, the swing amplitude (swing angle) of the deflecting surface 52 does not rapidly decrease.
  • the drive control unit 10 drives the resonance type deflection element 50 ′ with a drive signal Sig 1 having a frequency fo lower than the resonance frequency fs by a predetermined frequency ⁇ f. In this way, even when the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, the swing amplitude of the deflection surface 52 can be increased with a small drive signal Sig1, thereby saving power. be able to.
  • the image display device is an optical scanning image display device, which emits laser light intensity-modulated in accordance with an image signal from a laser, scans the laser light in a two-dimensional direction by a scanning unit, and projects it. The image is projected onto the target and displayed.
  • a retinal scanning type image display device hereinafter referred to as RSD
  • RSD retinal scanning type image display device
  • the RSD 100 is based on an image signal S input from an external input terminal (not shown), and R (red) drive signals 120r and G (green) drive signals that are elements for forming an image.
  • a control unit 110 that generates 120 g, B (blue) drive signal 120 b in units of pixels is provided. Further, the control unit 110 outputs a high-speed driving signal 111 used in the high-speed scanning unit 150 and a low-speed driving signal 112 used in the low-speed scanning unit 160, respectively.
  • the R laser driver 126, the G laser driver 127, and the B laser driver 128 are based on the R drive signal 120r, the G drive signal 120g, and the B drive signal 120b that are output from the control unit 110, respectively.
  • B are supplied to the B laser 125, respectively.
  • Each laser 123, 124, 125 emits laser light whose intensity is modulated in accordance with the drive current supplied from each laser driver 126, 127, 128.
  • the R (red) laser light Lr, G (green) laser light Lg, and B (blue) laser light Lb emitted from the lasers 123, 124, and 125 were collimated by collimating optical systems 131, 132, and 133, respectively.
  • the light enters the dichroic mirrors 134, 135, and 136. Thereafter, the laser beams Lr, Lg, and Lb of the three primary colors are wavelength-selectively reflected and transmitted by these dichroic mirrors 134, 135, and 136, reach the coupling optical system 137, and are combined to the optical fiber cable 140. Emitted.
  • the laser light emitted through the optical fiber cable 140 is collimated by the collimating optical system 141 and is incident on the high-speed scanning unit 150.
  • the high-speed scanning unit 150 includes a resonance-type deflection element 151 having a deflection surface (reflection mirror) 152 for scanning a laser beam in the horizontal direction.
  • the high-speed scanning driving circuit 153 uses the resonance type deflection element 151 based on the high-speed drive signal 111.
  • the deflecting element 151 is driven, and the laser beam is deflected and scanned by the deflecting surface 152.
  • a first relay optical system 155 is provided between the high speed scanning unit 150 and the low speed scanning unit 160, and the laser beam operated by the high speed scanning unit 150 is incident on the low speed scanning unit 160.
  • the low-speed scanning unit 160 includes a non-resonant deflecting element 161 having a deflection surface (reflection mirror) 162 for scanning the laser beam in the vertical direction, and the low-speed scanning driving circuit 163 is based on the low-speed driving signal 112.
  • the non-resonance type deflection element 161 is driven.
  • the low-speed scanning unit 160 scans a laser beam for forming an image in a vertical direction from the first scanning line toward the last scanning line for each frame of the image to be displayed.
  • the “scanning line” means one scanning on one side in the horizontal direction by the high-speed scanning unit 150.
  • the laser beam scanned by the non-resonant deflection element 161 is half-positioned in front of the eye 201 through the second relay optical system 170 in which two lenses 170a and 170b having positive refractive power are arranged in series.
  • the light is reflected by the mirror 180 and enters the user's pupil 201a.
  • an image corresponding to the image signal S is projected on the retina 201b, and the user recognizes the laser light incident on the pupil 201a as an image.
  • the half mirror 180 transmits the external light La so as to enter the user's pupil 201a, so that the user can visually recognize an image obtained by superimposing an image based on the laser light on the external scene based on the external light La. it can.
  • the control unit 110 operates with a circuit configuration similar to that of the drive control unit 10 of the optical scanning device 1, and the high-speed scanning drive circuit 153 is similar to the DC voltage superimposing unit 40. Operates with a circuit configuration. That is, in the RSD 100, the frequency of the high-speed drive signal 111 for driving the resonance type deflection element 151 is changed, and the oscillation amplitude of the deflection surface 152 is detected based on the BD signal output from the BD sensor 154. The resonance frequency fs inherent to 151 is determined.
  • the RSD 100 drives the resonant deflection element 151 with the high-speed drive signal 111 having a frequency shifted from the resonance frequency fs by a predetermined frequency ⁇ f, and then changes the amplitude of the high-speed drive signal 111 to change the swing amplitude of the deflection surface 152. Is set to a predetermined value.
  • the RSD 100 is configured in this manner, it is possible to suppress the swing amplitude of the deflecting surface 152 from rapidly decreasing due to a jump phenomenon, and the resonance frequency of the resonant deflection element 151 due to a change in ambient temperature or the like. Even when fs changes, the deflection surface 152 can be maintained at a constant oscillation amplitude.
  • the optical scanning device 1 includes deflection surfaces 52 and 52 ′ for deflecting an incident light beam, and resonance in which the deflection surfaces 52 and 52 swing around the swing axes Lc and Lc ′ due to resonance. It has the type
  • drive control unit 10 drive means
  • the drive control unit 10 drives the resonance type deflection elements 50 and 50 ′ with the drive signal Sig1 having a frequency fo shifted from the resonance frequency fs by a predetermined frequency ⁇ f, and then changes the amplitude of the drive signal Sig1 to change the deflection surface.
  • the swing amplitude of 52 and 52 ′ is set to a predetermined value. Accordingly, it is possible to prevent the swing amplitude of the deflection surface 52 from rapidly decreasing due to the jump phenomenon, and even when the resonance frequency fs of the resonance type deflection element 50 is changed due to a change in the ambient temperature or the like, the deflection is also suppressed.
  • the surface 52 can be maintained at a constant oscillation amplitude.
  • the resonant deflection element 50 is a MEMS in which a region including the deflection surface 52 is formed on a metal substrate.
  • the drive control unit 10 drives the drive signal having a frequency fo that is higher than the resonance frequency fs by a predetermined frequency ⁇ f. Since the swing amplitude of the deflecting surface 52 is set to a predetermined value after the resonant deflection element 50 is driven by Sig1, even if the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, a small drive signal Sig1 is used. The swing amplitude of the deflection surface 52 can be increased, and power saving can be achieved.
  • the resonance type deflection element 50 ′ is a MEMS in which a region including the deflection surface 52 ′ is formed on a silicon substrate, and the drive control unit 10 drives the drive signal having a frequency fs lower than the resonance frequency fs by a predetermined frequency ⁇ f. Since the oscillation amplitude of the deflecting surface 52 ′ is set to a predetermined value after driving the resonant deflection element 50 ′ with Sig1, even if the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, a small drive signal With Sig1, the swing amplitude of the deflection surface 52 ′ can be increased, and power saving can be achieved.
  • the temperature detecting unit 80 that detects the temperature of the resonant deflection elements 50, 50 ′ or the surrounding thereof is provided and the predetermined frequency ⁇ f is a frequency based on the temperature detected by the temperature detecting unit 80, the ambient temperature Even when the resonance frequency fs of the resonance type deflection elements 50, 50 ′ changes due to such changes, the deflection surfaces 52, 52 ′ can be more stably maintained at a constant oscillation amplitude.

Abstract

Provided is an optical scanning device capable of maintaining a deflection surface at a constant oscillation amplitude even when the resonance frequency of a resonance-type deflection element is altered by variations in ambient temperature etc., and also provided is an image display device provided with the optical scanning device. A drive control unit (10) is provided which changes the amplitude of a drive signal (Sig1) and sets the oscillation amplitude of a deflection surface (52) to a prescribed value after the frequency of the drive signal (Sig1) which drives a resonance-type deflection element (50) is changed, the resonance amplitude of the deflection surface (52) is detected, the resonance frequency specific to the resonance-type deflection element (50) is determined, and the resonance-type deflection element (50) is driven by the drive signal (Sig1) having a frequency that is offset from the resonance frequency by a prescribed frequency.

Description

光走査装置及びそれを備えた画像表示装置Optical scanning device and image display device having the same
 本発明は、光走査装置及びそれを備えた画像表示装置に関し、さらに詳細には、入射する光束を偏向する偏向面を有し、共振により偏向面が軸周りに揺動する共振型偏向素子により光束を走査する光走査装置及びそれを備えた画像表示装置に関する。 The present invention relates to an optical scanning device and an image display device including the same, and more specifically, by a resonance type deflection element having a deflection surface for deflecting an incident light beam and swinging around the axis by resonance. The present invention relates to an optical scanning device that scans a light beam and an image display device including the same.
 従来より、画像信号に応じた強度の光束を1次元方向又は2次元方向に走査する光走査装置が知られている。このような光走査装置は、画像信号に応じた強度の光束を2次元方向に走査して、ユーザの少なくとも一方の網膜上に投影することにより画像を表示する網膜走査型画像表示装置や、画像信号に応じた強度の光束を2次元方向に走査してスクリーン上に画像を表示するスクリーン走査型画像表示装置などの画像表示装置に用いられている。 2. Description of the Related Art Conventionally, an optical scanning device that scans a light beam having an intensity corresponding to an image signal in a one-dimensional direction or a two-dimensional direction is known. Such an optical scanning device scans a light beam having an intensity corresponding to an image signal in a two-dimensional direction and projects it onto at least one retina of a user, and displays an image, It is used in an image display device such as a screen scanning type image display device that displays an image on a screen by scanning a light beam having an intensity corresponding to a signal in a two-dimensional direction.
 例えば、下記特許文献1に記載の画像表示装置では、相対的に高速に反射ミラーを揺動可能な共振型偏向素子と、相対的に低速に反射ミラーを揺動可能な非共振型偏向素子とにより光束を走査して画像を表示する。すなわち、画像信号に応じた強度で光源から出射された光束を、共振型偏向素子の反射ミラーを共振させて第1方向に走査し、さらに非共振型偏向素子の反射ミラーを鋸歯波状、三角波状又は台形波状に駆動させて光束を第2方向へ走査して、画像を表示する。なお、第1方向は例えば水平方向であり、第2方向は例えば垂直方向である。 For example, in the image display device described in Patent Document 1 below, a resonant deflection element that can swing the reflection mirror at a relatively high speed, and a non-resonance deflection element that can swing the reflection mirror at a relatively low speed, By scanning the luminous flux, an image is displayed. That is, the light beam emitted from the light source with the intensity corresponding to the image signal is scanned in the first direction by resonating the reflection mirror of the resonance type deflection element, and the reflection mirror of the non-resonance type deflection element is sawtooth wave or triangular wave Or it drives by trapezoid wave shape and scans a light beam to a 2nd direction, and displays an image. The first direction is, for example, the horizontal direction, and the second direction is, for example, the vertical direction.
特開2006-276396号公報JP 2006-276396 A
 共振型偏向素子を有する光走査装置では、共振型偏向素子の偏向面を共振型偏向素子固有の共振周波数で揺動させることにより、低消費電力かつ高速に偏向面を揺動させることができる。 In an optical scanning device having a resonance type deflection element, the deflection surface of the resonance type deflection element is oscillated at a resonance frequency unique to the resonance type deflection element, whereby the deflection surface can be oscillated at low power consumption and at high speed.
 しかし、共振型偏向素子固有の共振周波数は、共振型偏向素子の個体差によって異なるため、共振型偏向素子毎に共振周波数を検出して、共振型偏向素子を駆動させる必要がある。 However, since the resonance frequency unique to the resonance type deflection element differs depending on the individual difference of the resonance type deflection element, it is necessary to detect the resonance frequency for each resonance type deflection element and drive the resonance type deflection element.
 しかし、共振型偏向素子は、周波数がずれたときに急激に偏向面の揺動振幅が変化する跳躍特性を有している。そのため、周囲温度等の変化により共振型偏向素子の共振周波数が変化した場合には、共振型偏向素子を駆動する駆動信号の周波数も追従して変更しなければ、偏向面の揺動振幅(振れ角)が急激に小さくなる恐れがある。このとき、駆動信号の周波数を変更することなく、偏向面を一定の揺動振幅に維持させようとして駆動信号の電圧を上昇させると、共振ポイントからずれたところで偏向面を揺動させることになるため共振型偏向素子の消費電力が増大してしまう。しかも、共振ポイントからずれたところで偏向面を揺動させた場合、大きな揺動振幅を得ることができない。 However, the resonance type deflection element has a jumping characteristic in which the oscillation amplitude of the deflection surface changes suddenly when the frequency is shifted. Therefore, if the resonant frequency of the resonant deflection element changes due to changes in the ambient temperature or the like, the oscillation amplitude (swing) of the deflection surface must be changed without changing the frequency of the drive signal for driving the resonant deflection element. There is a risk that the angle will be rapidly reduced. At this time, if the voltage of the drive signal is increased to maintain the deflection surface at a constant oscillation amplitude without changing the frequency of the drive signal, the deflection surface is oscillated at a position deviating from the resonance point. Therefore, the power consumption of the resonance type deflection element increases. Moreover, when the deflection surface is swung at a position deviating from the resonance point, a large swing amplitude cannot be obtained.
 本発明は、周囲温度等の変化により共振型偏向素子の共振周波数が変化した場合においても、偏向面を一定の揺動振幅に維持することができる光走査装置及びそれを備えた画像表示装置を提供することを目的とする。 The present invention provides an optical scanning device capable of maintaining a deflection surface at a constant oscillation amplitude even when the resonance frequency of a resonance type deflection element changes due to a change in ambient temperature or the like, and an image display device including the same. The purpose is to provide.
 上記目的を達成するために、本発明の光走査装置では、入射する光束を偏向する偏向面を有し、共振により前記偏向面が軸周りに揺動する共振型偏向素子と、前記共振型偏向素子を駆動する駆動信号の周波数を変化させ、前記偏向面の揺動振幅を検出して、前記共振型偏向素子固有の共振周波数を判定し、この共振周波数から所定周波数だけずれた周波数の前記駆動信号で前記共振型偏向素子を駆動した後、前記駆動信号の振幅を変更して前記偏向面の揺動振幅を所定値にする駆動手段と、を備えている。 In order to achieve the above object, in the optical scanning device of the present invention, a resonance type deflection element having a deflection surface for deflecting an incident light beam, the deflection surface oscillating around an axis by resonance, and the resonance type deflection device. The frequency of the drive signal for driving the element is changed, the oscillation amplitude of the deflection surface is detected, the resonance frequency unique to the resonance-type deflection element is determined, and the drive at a frequency shifted from the resonance frequency by a predetermined frequency Drive means for changing the amplitude of the drive signal to drive the swing amplitude of the deflection surface to a predetermined value after driving the resonant deflection element with a signal.
 また、前記光走査装置において、前記共振型偏向素子は、メタル基板上に前記偏向面を含む領域が形成されたMEMSであり、前記駆動手段は、前記共振周波数から所定周波数だけ高い周波数の前記駆動信号で前記共振型偏向素子を駆動した後、前記偏向面の揺動振幅を所定値にしてもよい。 Further, in the optical scanning device, the resonant deflection element is a MEMS in which a region including the deflection surface is formed on a metal substrate, and the driving means has the drive having a frequency higher than the resonance frequency by a predetermined frequency. After the resonance type deflection element is driven by a signal, the swing amplitude of the deflection surface may be set to a predetermined value.
 また、前記光走査装置において、前記共振型偏向素子は、シリコン基板上に前記偏向面を含む領域が形成されたMEMSであり、前記駆動手段は、前記共振周波数から所定周波数だけ低い周波数の前記駆動信号で前記共振型偏向素子を駆動した後、前記偏向面の揺動振幅を所定値にしてもよい。 Further, in the optical scanning device, the resonant deflection element is a MEMS in which a region including the deflection surface is formed on a silicon substrate, and the drive means has the drive having a frequency lower than the resonance frequency by a predetermined frequency. After the resonance type deflection element is driven by a signal, the swing amplitude of the deflection surface may be set to a predetermined value.
 また、前記光走査装置において、前記共振型偏向素子又はその周囲の温度を検出する温度検出手段を備え、前記所定周波数は、前記温度検出手段によって検出された温度に基づいた周波数としてもよい。 The optical scanning device may further include a temperature detection unit that detects a temperature of the resonant deflection element or its surroundings, and the predetermined frequency may be a frequency based on a temperature detected by the temperature detection unit.
 また、前記光走査装置を備え、画像信号に応じた強度の光束を前記光走査装置により走査し、ユーザの少なくとも一方の眼に向けて出射させることで、画像を表示する網膜走査型の画像表示装置としてもよい。 A retinal scanning type image display that includes the optical scanning device and displays an image by scanning a light beam having an intensity corresponding to an image signal with the optical scanning device and emitting the light beam toward at least one eye of a user. It is good also as an apparatus.
 本発明によれば、共振周波数から所定周波数だけずれた周波数の駆動信号で共振型偏向素子を駆動した後、駆動信号の振幅レベルを変更して偏向面の揺動振幅を所定値にするので、周囲温度等の変化により共振型偏向素子の共振周波数が変化した場合においても、偏向面を一定の揺動振幅に維持することができる。 According to the present invention, after driving the resonant deflection element with a drive signal having a frequency shifted from the resonance frequency by a predetermined frequency, the amplitude level of the drive signal is changed to set the swing amplitude of the deflection surface to a predetermined value. Even when the resonance frequency of the resonant deflection element changes due to a change in ambient temperature or the like, the deflection surface can be maintained at a constant oscillation amplitude.
本発明の一実施形態に係る光走査装置の構成を示す図である。It is a figure which shows the structure of the optical scanning device which concerns on one Embodiment of this invention. 共振型偏向素子の構成を示す図である。It is a figure which shows the structure of a resonance-type deflection | deviation element. 共振型偏向素子の特性を示す図である。It is a figure which shows the characteristic of a resonance type deflection | deviation element. 共振型偏向素子の特性を示す図である。It is a figure which shows the characteristic of a resonance type deflection | deviation element. 共振型偏向素子の特性を示す図である。It is a figure which shows the characteristic of a resonance type deflection | deviation element. 共振型偏向素子の特性を示す図である。It is a figure which shows the characteristic of a resonance type deflection | deviation element. 共振型偏向素子の特性を示す図である。It is a figure which shows the characteristic of a resonance type deflection | deviation element. 偏向面の揺動振幅(振れ角)と偏向面との位相差との関係を示す図である。It is a figure which shows the relationship between the rocking | fluctuation amplitude (deflection angle) of a deflection surface, and the phase difference of a deflection surface. 駆動制御部の処理の流れを示す図である。It is a figure which shows the flow of a process of a drive control part. 本発明の一実施形態に係る他の光走査装置の構成を示す図である。It is a figure which shows the structure of the other optical scanning device which concerns on one Embodiment of this invention. 別の偏向素子の構成を示す図である。It is a figure which shows the structure of another deflection | deviation element. 図11に示す偏向素子の特性を示す図である。It is a figure which shows the characteristic of the deflection | deviation element shown in FIG. 本発明の一実施形態に係る画像表示装置の構成を示す図である。It is a figure which shows the structure of the image display apparatus which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態に係る光走査装置及びそれを備えた画像表示装置について図面を参照して具体的に説明する。 Hereinafter, an optical scanning device and an image display device including the same according to an embodiment of the present invention will be specifically described with reference to the drawings.
 [1.光走査装置の構成]
 本実施形態に係る光走査装置1は、駆動制御部10、直流電圧重畳部40、共振型偏向素子50、光源60、BDセンサ70を有している。
[1. Configuration of optical scanning device]
The optical scanning device 1 according to this embodiment includes a drive control unit 10, a DC voltage superimposing unit 40, a resonant deflection element 50, a light source 60, and a BD sensor 70.
 駆動制御部10は、共振型偏向素子50を駆動する駆動信号Sig1を生成する駆動手段であり、周波数決定部11と、振幅決定部12と、駆動信号生成部13とを有している。駆動信号生成部13は、周波数決定部11及び振幅決定部12により決定された周波数fo及び振幅Vpの駆動信号Sig1を生成して出力する。 The drive control unit 10 is a drive unit that generates a drive signal Sig1 that drives the resonant deflection element 50, and includes a frequency determination unit 11, an amplitude determination unit 12, and a drive signal generation unit 13. The drive signal generation unit 13 generates and outputs a drive signal Sig1 having the frequency fo and the amplitude Vp determined by the frequency determination unit 11 and the amplitude determination unit 12.
 直流電圧重畳部40は、直流電圧印加部41と、信号重畳回路42とを有している。そして、駆動制御部10から出力された駆動信号Sig1に、信号重畳回路42により、直流電圧印加部41で生成された直流電圧が重畳されて、共振型偏向素子50の駆動部51に印加される。共振型偏向素子50の偏向面52は、直流電圧に重畳された駆動信号Sig1に基づいて揺動する。なお、駆動部51は、例えば圧電素子などにより構成される。 The DC voltage superimposing unit 40 includes a DC voltage applying unit 41 and a signal superimposing circuit 42. Then, the direct current voltage generated by the direct current voltage application unit 41 is superimposed on the drive signal Sig 1 output from the drive control unit 10 by the signal superimposing circuit 42 and applied to the drive unit 51 of the resonant deflection element 50. . The deflection surface 52 of the resonant deflection element 50 swings based on the drive signal Sig1 superimposed on the DC voltage. In addition, the drive part 51 is comprised by the piezoelectric element etc., for example.
 ここで、共振型偏向素子50は、薄板状のメタル基板上に形成されたMEMSであり、例えば、図2に示すような形状を有している。また、メタル基板として、アルミ基板、銅基板、鉄基板などがある。図2に示す例では、共振型偏向素子50は、駆動部51と、偏向面(反射ミラー)52と、枠体53と、梁部54,54とを有して構成されている。そして、駆動部51に直流電圧に重畳された駆動信号Sig1が印加され、この駆動部51の変位により、駆動信号Sig1に応じた周波数で、枠体53と梁部54,54と偏向面52とが振動し、揺動軸Lcを中心として、偏向面52が軸周りに揺動する。尚、以下においては、偏向面52の揺動振幅とは、偏向面52の回転角度範囲であり、偏向面52の振れ角である。 Here, the resonant deflection element 50 is a MEMS formed on a thin plate-like metal substrate, and has, for example, a shape as shown in FIG. Examples of the metal substrate include an aluminum substrate, a copper substrate, and an iron substrate. In the example shown in FIG. 2, the resonant deflection element 50 includes a drive unit 51, a deflection surface (reflection mirror) 52, a frame body 53, and beam portions 54 and 54. Then, the drive signal Sig1 superimposed on the DC voltage is applied to the drive unit 51. Due to the displacement of the drive unit 51, the frame body 53, the beam portions 54 and 54, the deflection surface 52, and the frequency at the frequency according to the drive signal Sig1. Oscillates, and the deflection surface 52 swings about the axis about the swing axis Lc. In the following description, the swing amplitude of the deflection surface 52 is a rotation angle range of the deflection surface 52 and is a deflection angle of the deflection surface 52.
 図3に、ある温度で所定振幅の駆動信号Sig1をその周波数を変化させながら入力したときの共振型偏向素子50の偏向面52の揺動振幅特性を示す。同図に示すように、共振周波数fsから周波数が少しずれたところに急激に偏向面52の揺動振幅が変化する跳躍現象が発生する箇所が存在する。そのため、周囲温度等の変化により共振型偏向素子50の共振周波数fsが変化した場合には、共振型偏向素子50を駆動する駆動信号Sig1の周波数も追従して変更しなければ、偏向面52の揺動振幅が急激に小さくなる恐れがある。 FIG. 3 shows the oscillation amplitude characteristics of the deflection surface 52 of the resonant deflection element 50 when a drive signal Sig1 having a predetermined amplitude is inputted at a certain temperature while changing its frequency. As shown in the figure, there is a location where a jump phenomenon occurs in which the oscillation amplitude of the deflecting surface 52 suddenly changes when the frequency slightly deviates from the resonance frequency fs. Therefore, when the resonance frequency fs of the resonant deflection element 50 changes due to a change in the ambient temperature or the like, the frequency of the drive signal Sig1 for driving the resonant deflection element 50 must be changed following the change. There is a possibility that the swing amplitude is rapidly reduced.
 しかも、メタルで構成された共振型偏向素子50では、図4に示すように、駆動信号Sig1の周波数を上昇させていったときの振幅特性と、駆動信号Sig1の周波数を下降させていったときの振幅特性が異なっている。そのため、偏向面52の揺動振幅が急激に小さくなった後に、駆動信号Sig1の周波数と共振型偏向素子50の共振周波数fsに合わせるのに時間がかかってしまう場合がある。なお、図4においては、駆動信号Sig1の周波数を下降させながら入力したときの特性を実線で示し、駆動信号Sig1の周波数を上昇させながら入力したときの特性を波線で示す。 Moreover, in the resonant deflection element 50 made of metal, as shown in FIG. 4, when the frequency of the drive signal Sig1 is increased, and when the frequency of the drive signal Sig1 is decreased, as shown in FIG. Have different amplitude characteristics. For this reason, it may take time to match the frequency of the drive signal Sig1 and the resonance frequency fs of the resonance type deflection element 50 after the swing amplitude of the deflection surface 52 is rapidly reduced. In FIG. 4, the characteristics when the drive signal Sig1 is input while decreasing the frequency are indicated by solid lines, and the characteristics when the drive signal Sig1 is input while increasing the frequency are indicated by wavy lines.
 そこで、本実施形態に係る光走査装置1では、所定振幅の駆動信号Sig1の周波数を変化させながら共振型偏向素子50固有の共振周波数fsを判定し、図5に示すように、共振周波数fsから所定周波数Δfだけ高い周波数foの駆動信号Sig1で共振型偏向素子50を駆動するようにしている。 Therefore, in the optical scanning device 1 according to the present embodiment, the resonance frequency fs unique to the resonance type deflection element 50 is determined while changing the frequency of the drive signal Sig1 having a predetermined amplitude, and from the resonance frequency fs as shown in FIG. The resonant deflection element 50 is driven by a drive signal Sig1 having a frequency fo that is higher by a predetermined frequency Δf.
 このようにすることで、図6に示すように、温度変化等により共振型偏向素子50の特性が、実線で示す特性から波線で示す特性となったときでも、偏向面52の揺動振幅が小さくなることを抑えることができる。すなわち、駆動信号Sig1の周波数foを、共振型偏向素子50固有の共振周波数fsから所定周波数Δfだけ高い周波数とすることで、温度変化などによる特性変化に対してマージンをとることができる。 By doing so, as shown in FIG. 6, even when the characteristic of the resonant deflecting element 50 changes from the characteristic indicated by the solid line to the characteristic indicated by the broken line due to a temperature change or the like, the oscillation amplitude of the deflecting surface 52 is increased. It can be suppressed from becoming smaller. That is, by setting the frequency fo of the drive signal Sig1 to a frequency that is higher by a predetermined frequency Δf than the resonance frequency fs inherent to the resonance type deflection element 50, a margin can be taken against a characteristic change due to a temperature change or the like.
 また、共振型偏向素子50の特性は、駆動信号Sig1の振幅Vpによっても変化する。図7に、共振型偏向素子50の特性を駆動信号Sig1の振幅Vp毎(5V,7V,11.5V,13V)に示した図である。同図からわかるように、駆動信号Sig1の振幅Vpによって揺動振幅も異なるが、共振型偏向素子50の共振周波数fsも異なるものとなる。従って、駆動信号Sig1の周波数を決定した後に、駆動信号Sig1の振幅Vpを変化させると、偏向面52の揺動振幅が変化する。特に、駆動信号Sig1の振幅Vpを大きく変化させると、偏向面52の揺動振幅の変化が大きくなり、駆動信号Sig1の周波数が共振周波数fsから外れて偏向面52の揺動振幅が急激に小さくなる恐れがある。 Further, the characteristics of the resonant deflection element 50 also change depending on the amplitude Vp of the drive signal Sig1. FIG. 7 is a diagram showing the characteristics of the resonant deflection element 50 for each amplitude Vp (5V, 7V, 11.5V, 13V) of the drive signal Sig1. As can be seen from the figure, the oscillation amplitude varies depending on the amplitude Vp of the drive signal Sig1, but the resonance frequency fs of the resonance type deflection element 50 also varies. Therefore, if the amplitude Vp of the drive signal Sig1 is changed after the frequency of the drive signal Sig1 is determined, the swing amplitude of the deflection surface 52 changes. In particular, when the amplitude Vp of the drive signal Sig1 is greatly changed, the change in the swing amplitude of the deflection surface 52 increases, and the frequency of the drive signal Sig1 deviates from the resonance frequency fs, and the swing amplitude of the deflection surface 52 decreases rapidly. There is a fear.
 そこで、本実施形態に係る光走査装置1では、駆動信号Sig1の振幅をある程度大きくしてからその周波数foを決定し、その後、振幅Vpを変化させるようにしている。このようにすることで、駆動信号Sig1の振幅変化によって、偏向面52の揺動振幅が急激に小さくなることを抑制することができる。 Therefore, in the optical scanning device 1 according to this embodiment, the amplitude of the drive signal Sig1 is increased to some extent, the frequency fo is determined, and then the amplitude Vp is changed. By doing so, it is possible to suppress the swing amplitude of the deflection surface 52 from rapidly decreasing due to the amplitude change of the drive signal Sig1.
 さらに、本実施形態に係る光走査装置1では、駆動信号Sig1の信号波形と偏向面52の揺動波形との位相差θcに基づいて、駆動信号Sig1の周波数を調整することで、さらに精度よく偏向面52を揺動するようにしている。すなわち、上述のように駆動信号Sig1の周波数foを決定し、偏向面52の揺動振幅を所定振幅に調整した後に、位相差θcが所定範囲Z内(図8参照)から外れたときには、位相差θcが所定範囲Z内になるように駆動信号Sig1の周波数を調整するようにしている。 Furthermore, in the optical scanning device 1 according to the present embodiment, the frequency of the drive signal Sig1 is adjusted more accurately by adjusting the frequency of the drive signal Sig1 based on the phase difference θc between the signal waveform of the drive signal Sig1 and the oscillation waveform of the deflection surface 52. The deflection surface 52 is swung. That is, after determining the frequency fo of the drive signal Sig1 and adjusting the swing amplitude of the deflection surface 52 to a predetermined amplitude as described above, when the phase difference θc is out of the predetermined range Z (see FIG. 8), The frequency of the drive signal Sig1 is adjusted so that the phase difference θc is within the predetermined range Z.
 また、偏向面52の揺動振幅を一定に保つために駆動信号Sig1の振幅Vpを変更する場合には、位相差θcが所定範囲Z内であることを確認してから行うようにしている。すなわち、位相差θcによる周波数制御を、振幅制御よりも優先して行うようにしている。このようにすることでさらに精度よく偏向面52を揺動することができる。 Further, when the amplitude Vp of the drive signal Sig1 is changed in order to keep the swinging amplitude of the deflection surface 52 constant, it is performed after confirming that the phase difference θc is within the predetermined range Z. That is, the frequency control based on the phase difference θc is performed with priority over the amplitude control. In this way, the deflection surface 52 can be oscillated with higher accuracy.
 このように光走査装置1が構成されているため、跳躍現象により偏向面52の揺動振幅が急激に小さくなることを抑制することができ、しかも、光走査装置1の環境変化に合わせた共振型偏向素子50の駆動を行うことが可能となる。 Since the optical scanning device 1 is configured as described above, it is possible to suppress the swing amplitude of the deflecting surface 52 from rapidly decreasing due to the jump phenomenon, and to resonate in accordance with the environmental change of the optical scanning device 1. The mold deflection element 50 can be driven.
 上述した動作を行うために、周波数決定部11、振幅決定部12、駆動信号生成部13、直流電圧重畳部40は以下のように構成されている。 In order to perform the above-described operation, the frequency determining unit 11, the amplitude determining unit 12, the drive signal generating unit 13, and the DC voltage superimposing unit 40 are configured as follows.
 周波数決定部11は、共振型偏向素子50固有の共振周波数fsを検出し、この共振周波数fsに対して所定周波数Δfだけ高い周波数を駆動信号Sig1の周波数foとして決定する。その後、周波数決定部11は、駆動信号Sig1と共振型偏向素子50の揺動状態との位相差θcが所定範囲を超えたとき、駆動信号Sig1の周波数foを変更して、その位相差θcが所定範囲Z内になるようにする。 The frequency determination unit 11 detects the resonance frequency fs unique to the resonance type deflection element 50 and determines a frequency higher than the resonance frequency fs by a predetermined frequency Δf as the frequency fo of the drive signal Sig1. Thereafter, when the phase difference θc between the drive signal Sig1 and the oscillation state of the resonant deflection element 50 exceeds a predetermined range, the frequency determination unit 11 changes the frequency fo of the drive signal Sig1, and the phase difference θc is Within a predetermined range Z.
 この周波数決定部11は、位相差判定部21と、目標位相差記憶部22と、位相差比較部23と、周波数変更制御部24とを有している。 The frequency determination unit 11 includes a phase difference determination unit 21, a target phase difference storage unit 22, a phase difference comparison unit 23, and a frequency change control unit 24.
 位相差判定部21は、駆動信号Sig1の信号波形と偏向面52の揺動波形との位相差θcを判定する。BDセンサ70は偏向面52が所定の傾き角にあるときに光源60から出射された光束を入射して検出信号(以下、BD信号という)を出力している。位相差判定部21は、BDセンサ70からのBD信号の出力タイミングに基づき、偏向面52の傾き角の状態を検出し、駆動信号Sig1の波形と偏向面52の揺動波形との位相差θcを判定する。なお、位相差判定部21において、例えば、偏向面52の傾き角が+Xから-Xへ向かうときに傾き角が0になるタイミングと、駆動信号Sig1が正電圧から負電圧に向かうときに電圧が0Vとなるタイミングとを検出し、これらのタイミングの関係から、位相差θcを判定するようにしてもよい。なお、正電圧の駆動信号を駆動部51に印加したときに、偏向面52の傾き角が+X方向になるものとする。 The phase difference determination unit 21 determines the phase difference θc between the signal waveform of the drive signal Sig1 and the swing waveform of the deflection surface 52. The BD sensor 70 receives a light beam emitted from the light source 60 when the deflecting surface 52 is at a predetermined tilt angle, and outputs a detection signal (hereinafter referred to as a BD signal). The phase difference determination unit 21 detects the tilt angle state of the deflection surface 52 based on the output timing of the BD signal from the BD sensor 70, and the phase difference θc between the waveform of the drive signal Sig1 and the swing waveform of the deflection surface 52. Determine. In the phase difference determination unit 21, for example, when the tilt angle of the deflecting surface 52 goes from + X to -X, the timing when the tilt angle becomes 0 and when the drive signal Sig1 goes from a positive voltage to a negative voltage, It is also possible to detect the timing when it becomes 0 V and determine the phase difference θc from the relationship between these timings. It is assumed that the inclination angle of the deflection surface 52 is in the + X direction when a positive voltage drive signal is applied to the drive unit 51.
 目標位相差記憶部22は、起動許容できる位相差θcの範囲である所定範囲Zの情報が記憶されている。位相差比較部23は、位相差判定部21から位相差θcを取得すると共に、目標位相差記憶部22から所定範囲Zの情報を取得し、位相差θcが所定範囲Z内にあるか否かを判定する。 The target phase difference storage unit 22 stores information on a predetermined range Z that is a range of the phase difference θc that can be activated. The phase difference comparison unit 23 acquires the phase difference θc from the phase difference determination unit 21 and also acquires information on the predetermined range Z from the target phase difference storage unit 22, and whether or not the phase difference θc is within the predetermined range Z. Determine.
 周波数変更制御部24は、位相差θcが所定範囲Z内にないときに、位相差判定部21から出力される位相差θcが所定範囲Zの上限値より大きければ、位相差判定部21から出力される位相差θcが所定範囲Zの下限値より小さくなるまで、駆動信号生成部13を制御して駆動信号Sig1の周波数を上げてく。その後、周波数変更制御部24は、位相差判定部21から出力される位相差θcが90[deg]になるまで、駆動信号生成部13を制御して駆動信号Sig1の周波数を下げていく。位相差判定部21から出力される位相差θcが90[deg]になったときの駆動信号Sig1の周波数が共振周波数fsである。従って、周波数変更制御部24は、位相差判定部21から出力される位相差θcが90[deg]になったときの駆動信号Sig1の周波数を共振周波数fsとして判定する。 The frequency change control unit 24 outputs the phase difference θc from the phase difference determination unit 21 if the phase difference θc output from the phase difference determination unit 21 is larger than the upper limit value of the predetermined range Z when the phase difference θc is not within the predetermined range Z. The drive signal generation unit 13 is controlled to increase the frequency of the drive signal Sig1 until the phase difference θc is smaller than the lower limit value of the predetermined range Z. Thereafter, the frequency change control unit 24 controls the drive signal generation unit 13 to lower the frequency of the drive signal Sig1 until the phase difference θc output from the phase difference determination unit 21 reaches 90 [deg]. The frequency of the drive signal Sig1 when the phase difference θc output from the phase difference determination unit 21 reaches 90 [deg] is the resonance frequency fs. Therefore, the frequency change control unit 24 determines the frequency of the drive signal Sig1 when the phase difference θc output from the phase difference determination unit 21 is 90 [deg] as the resonance frequency fs.
 また、周波数変更制御部24は、位相差θcが所定範囲Z内にないときに、位相差判定部21から出力される位相差θcが所定範囲Zの下限値より小さければ、位相差判定部21から出力される位相差θcが90[deg]となるまで、駆動信号生成部13を制御して駆動信号Sig1の周波数を下げていく。そして、周波数変更制御部24は、位相差判定部21から出力される位相差θcが90[deg]になったときの駆動信号Sig1の周波数を共振周波数fsとして判定する。 In addition, when the phase difference θc is not within the predetermined range Z and the phase difference θc output from the phase difference determination unit 21 is smaller than the lower limit value of the predetermined range Z, the frequency change control unit 24 has the phase difference determination unit 21. The drive signal generator 13 is controlled to decrease the frequency of the drive signal Sig <b> 1 until the phase difference θc output from is reduced to 90 [deg]. Then, the frequency change control unit 24 determines the frequency of the drive signal Sig1 when the phase difference θc output from the phase difference determination unit 21 is 90 [deg] as the resonance frequency fs.
 このように、周波数変更制御部24は、位相差θcが所定範囲Z内にないとき、駆動信号Sig1の周波数を増減させて共振周波数fsを判定するようにしている。そして、周波数変更制御部24は、駆動信号生成部13を制御して、共振周波数fsよりも所定周波数Δfだけ高い周波数foの駆動信号Sig1を駆動信号生成部13から出力させるようにしている。 Thus, when the phase difference θc is not within the predetermined range Z, the frequency change control unit 24 determines the resonance frequency fs by increasing or decreasing the frequency of the drive signal Sig1. Then, the frequency change control unit 24 controls the drive signal generation unit 13 to output from the drive signal generation unit 13 a drive signal Sig1 having a frequency fo higher than the resonance frequency fs by a predetermined frequency Δf.
 振幅決定部12は、共振型偏向素子50の偏向面52の揺動振幅が目標とする揺動振幅となるように、駆動信号生成部13から出力される駆動信号Sig1の振幅Vpを制御するものであり、位相差θcが所定範囲Z内となったときに動作する。 The amplitude determination unit 12 controls the amplitude Vp of the drive signal Sig1 output from the drive signal generation unit 13 so that the swing amplitude of the deflection surface 52 of the resonant deflection element 50 becomes the target swing amplitude. And operates when the phase difference θc falls within the predetermined range Z.
 振幅決定部12は、振幅制御実行切換部31と、振幅判定部32と、目標振幅記憶部33と、振幅比較部34と、振幅変更制御部35とを有している。 The amplitude determination unit 12 includes an amplitude control execution switching unit 31, an amplitude determination unit 32, a target amplitude storage unit 33, an amplitude comparison unit 34, and an amplitude change control unit 35.
 振幅制御実行切換部31は、位相差比較部23からの出力に基づき、振幅判定部32の動作を制御する。すなわち、振幅制御実行切換部31は、位相差θcが所定範囲Z内にあるときに出力される信号を位相差比較部23から受信すると、振幅判定部32を非動作状態にし、位相差θcが所定範囲Z内にないときに出力される信号を位相差比較部23から受信すると、振幅判定部32を動作状態にする。 The amplitude control execution switching unit 31 controls the operation of the amplitude determination unit 32 based on the output from the phase difference comparison unit 23. That is, when the amplitude control execution switching unit 31 receives a signal output when the phase difference θc is within the predetermined range Z from the phase difference comparison unit 23, the amplitude control execution switching unit 31 sets the amplitude determination unit 32 to the non-operation state, and the phase difference θc is When the signal output when it is not within the predetermined range Z is received from the phase difference comparison unit 23, the amplitude determination unit 32 is put into an operating state.
 振幅判定部32は、振幅制御実行切換部31から動作状態にされたとき、BDセンサ70からのBD信号の有無やタイミングに基づき、偏向面52の揺動振幅を検出する。具体的には、振幅判定部32は、BDセンサ70からBD信号が出力されないときには、偏向面52の揺動振幅が所定範囲以下であると判断する。また、BDセンサ70からBD信号が出力されているとき、BDセンサ70から出力されるBD信号の間隔に基づき、偏向面52の揺動振幅を判断する。 The amplitude determination unit 32 detects the swing amplitude of the deflecting surface 52 based on the presence / absence and timing of the BD signal from the BD sensor 70 when the amplitude control execution switching unit 31 is brought into the operating state. Specifically, when the BD signal is not output from the BD sensor 70, the amplitude determination unit 32 determines that the swinging amplitude of the deflection surface 52 is within a predetermined range. Further, when the BD signal is output from the BD sensor 70, the swing amplitude of the deflection surface 52 is determined based on the interval of the BD signal output from the BD sensor 70.
 目標振幅記憶部33は、目標とする偏向面52の揺動振幅(以下、揺動振幅Xaとする)の情報を記憶している。振幅比較部34は、振幅判定部32から偏向面52の揺動振幅(以下、揺動振幅Xrとする)の情報を取得すると共に、目標振幅記憶部33から揺動振幅Xaの情報を取得し、揺動振幅Xrと揺動振幅Xaとの振幅差(以下、振幅差Xsとする)を求める。なお、振幅比較部34は、振幅判定部32が動作していないときには、揺動振幅Xrと揺動振幅Xaとの差がない旨の情報(Xs=0)を出力する。 The target amplitude storage unit 33 stores information on the swing amplitude (hereinafter referred to as swing amplitude Xa) of the target deflection surface 52. The amplitude comparison unit 34 acquires information on the swing amplitude (hereinafter referred to as swing amplitude Xr) of the deflection surface 52 from the amplitude determination unit 32 and also acquires information on the swing amplitude Xa from the target amplitude storage unit 33. Then, an amplitude difference between the swing amplitude Xr and the swing amplitude Xa (hereinafter referred to as an amplitude difference Xs) is obtained. When the amplitude determination unit 32 is not operating, the amplitude comparison unit 34 outputs information (Xs = 0) indicating that there is no difference between the swing amplitude Xr and the swing amplitude Xa.
 振幅変更制御部35は、振幅差Xsが所定範囲内となるように、駆動信号生成部13を制御して駆動信号Sig1の振幅Vpを変更する。なお、振幅変更制御部35は、振幅差Xsが所定範囲内にあるときには、駆動信号Sig1の振幅Vpの変更は行わない。 The amplitude change control unit 35 controls the drive signal generation unit 13 to change the amplitude Vp of the drive signal Sig1 so that the amplitude difference Xs falls within a predetermined range. The amplitude change control unit 35 does not change the amplitude Vp of the drive signal Sig1 when the amplitude difference Xs is within the predetermined range.
 以上のように構成された光走査装置1における駆動制御部10の処理を、図9を参照して説明する。なお、図9は、理解を容易にするために簡略化した図としている。 Processing of the drive control unit 10 in the optical scanning device 1 configured as described above will be described with reference to FIG. FIG. 9 is a simplified diagram for easy understanding.
 駆動制御部10において、共振型偏向素子50の駆動を開始すると、まず、周波数決定部11及び振幅決定部12は所定の周波数及び振幅の駆動信号Sig1が駆動信号生成部13から出力されるように、駆動信号生成部13を制御する(ステップS10)。具体的には、周波数決定部11の周波数変更制御部24は、駆動信号Sig1が所定の周波数となるように駆動信号生成部13を制御する。また、振幅決定部12の振幅変更制御部35は、駆動信号Sig1が所定の振幅となるように駆動信号生成部13を制御する。所定の周波数及び振幅とは、例えば、デフォルトとして予め周波数変更制御部24及び振幅変更制御部35に設定されている周波数及び振幅である。なお、周波数変更制御部24及び振幅変更制御部35が最後に駆動信号Sig1を制御したときの周波数及び振幅を記憶しておき、この周波数及び振幅を所定の周波数及び振幅としてもよい。 In the drive control unit 10, when driving of the resonant deflection element 50 is started, first, the frequency determination unit 11 and the amplitude determination unit 12 output a drive signal Sig 1 having a predetermined frequency and amplitude from the drive signal generation unit 13. Then, the drive signal generation unit 13 is controlled (step S10). Specifically, the frequency change control unit 24 of the frequency determination unit 11 controls the drive signal generation unit 13 so that the drive signal Sig1 has a predetermined frequency. Further, the amplitude change control unit 35 of the amplitude determination unit 12 controls the drive signal generation unit 13 so that the drive signal Sig1 has a predetermined amplitude. The predetermined frequency and amplitude are, for example, the frequency and amplitude set in advance in the frequency change control unit 24 and the amplitude change control unit 35 as defaults. The frequency and amplitude when the frequency change control unit 24 and the amplitude change control unit 35 last controlled the drive signal Sig1 may be stored, and the frequency and amplitude may be set as a predetermined frequency and amplitude.
 次に、周波数決定部11において、位相差判定部21と位相差比較部23とがその動作を開始する。位相差判定部21は、駆動信号Sig1の信号波形と偏向面52の揺動波形との位相差θcを判定する(ステップS11)。この位相差θcは、位相差比較部23において、目標位相差記憶部22から取得した所定範囲Zと比較され、位相差θcが所定範囲Z内にあるか否かを判定される(ステップS12)。 Next, in the frequency determination unit 11, the phase difference determination unit 21 and the phase difference comparison unit 23 start their operations. The phase difference determination unit 21 determines the phase difference θc between the signal waveform of the drive signal Sig1 and the swing waveform of the deflection surface 52 (step S11). The phase difference θc is compared with the predetermined range Z acquired from the target phase difference storage unit 22 in the phase difference comparison unit 23, and it is determined whether or not the phase difference θc is within the predetermined range Z (step S12). .
 位相差θcが所定範囲Z内にないとき(ステップS12:No)、周波数変更制御部24は、上述したように、駆動信号Sig1の周波数を増減させて共振周波数fsを検出する。すなわち、周波数変更制御部24は、駆動信号Sig1の周波数を増減させていき、位相差判定部21から出力される位相差θcが90[deg]になったときの駆動信号Sig1の周波数を共振周波数fsとして判定する。そして、周波数変更制御部24は、駆動信号生成部13を制御して、共振周波数fsよりも所定周波数Δfだけ高い周波数foの駆動信号Sig1を駆動信号生成部13から出力させる(ステップS13)。 When the phase difference θc is not within the predetermined range Z (step S12: No), the frequency change control unit 24 detects the resonance frequency fs by increasing or decreasing the frequency of the drive signal Sig1, as described above. That is, the frequency change control unit 24 increases or decreases the frequency of the drive signal Sig1, and the frequency of the drive signal Sig1 when the phase difference θc output from the phase difference determination unit 21 becomes 90 [deg] is determined as the resonance frequency. It is determined as fs. Then, the frequency change control unit 24 controls the drive signal generation unit 13 to output from the drive signal generation unit 13 a drive signal Sig1 having a frequency fo that is higher than the resonance frequency fs by a predetermined frequency Δf (step S13).
 一方、位相差θcが所定範囲Z内にあるとき(ステップS12:Yes)、周波数変更制御部24から出力される信号に基づき、振幅制御実行切換部31は振幅判定部32を動作状態にし、振幅判定部32により偏向面52の揺動振幅を検出させる(ステップS14)。そして、振幅比較部34は、振幅判定部32から偏向面52の揺動振幅Xrと目標とする偏向面52の揺動振幅Xaとを比較し、それらの振幅差Xsを求める(ステップS15)。そして、振幅変更制御部35は、振幅差Xsが所定範囲外であるときには(ステップS15:No)、振幅差Xsが所定範囲内になるように、駆動信号生成部13を制御して駆動信号Sig1の振幅を変更する(ステップS16)。 On the other hand, when the phase difference θc is within the predetermined range Z (step S12: Yes), based on the signal output from the frequency change control unit 24, the amplitude control execution switching unit 31 sets the amplitude determination unit 32 in the operating state, and the amplitude The determination unit 32 detects the swing amplitude of the deflection surface 52 (step S14). Then, the amplitude comparison unit 34 compares the swing amplitude Xr of the deflection surface 52 with the swing amplitude Xa of the target deflection surface 52 from the amplitude determination unit 32, and obtains an amplitude difference Xs thereof (step S15). Then, when the amplitude difference Xs is outside the predetermined range (step S15: No), the amplitude change control unit 35 controls the drive signal generation unit 13 so that the amplitude difference Xs is within the predetermined range, thereby driving signal Sig1. Is changed (step S16).
 ステップS13又はステップS16の処理が終了したとき、一方、振幅差Xsが所定範囲内であるときには(ステップS15:Yes)、駆動制御部10は、外部(例えば、操作部)からの入力に基づき、終了指示があったか否かを判定する(ステップS17)。そして、終了指示がある場合(ステップS17:Yes)には、駆動制御部10は、共振型偏向素子50の偏向面52の揺動を中止して、共振型偏向素子50の駆動処理を終了する。一方、終了指示がない場合(ステップS17:No)には、処理をステップS11に戻し、ステップS11からの処理を繰り返す。 When the process of step S13 or step S16 is completed, on the other hand, when the amplitude difference Xs is within the predetermined range (step S15: Yes), the drive control unit 10 is based on an input from the outside (for example, the operation unit). It is determined whether or not there is an end instruction (step S17). If there is an end instruction (step S <b> 17: Yes), the drive control unit 10 stops swinging of the deflection surface 52 of the resonant deflection element 50 and ends the driving process of the resonant deflection element 50. . On the other hand, if there is no end instruction (step S17: No), the process returns to step S11, and the processes from step S11 are repeated.
 以上のように、本実施形態に係る光走査装置1では、共振型偏向素子50を駆動する駆動信号Sig1の周波数を変化させ、偏向面52の揺動状態を検出して、共振型偏向素子50固有の共振周波数fsを判定する。そして、光走査装置1は、この共振周波数fsから所定周波数Δfだけずれた周波数の駆動信号Sig1で共振型偏向素子50を駆動した後、駆動信号Sig1の振幅Vpを変更して偏向面52の揺動振幅を所定値にする。 As described above, in the optical scanning device 1 according to the present embodiment, the frequency of the drive signal Sig1 for driving the resonance type deflection element 50 is changed, the oscillation state of the deflection surface 52 is detected, and the resonance type deflection element 50 is detected. The inherent resonance frequency fs is determined. The optical scanning device 1 drives the resonance type deflection element 50 with the drive signal Sig1 having a frequency shifted from the resonance frequency fs by a predetermined frequency Δf, and then changes the amplitude Vp of the drive signal Sig1 to change the vibration of the deflection surface 52. The dynamic amplitude is set to a predetermined value.
 このように光走査装置1が構成されているため、跳躍現象により偏向面52の揺動振幅が急激に小さくなることを抑制することができ、しかも、周囲温度等の変化により共振型偏向素子50の共振周波数fsが変化した場合においても、偏向面52を一定の揺動振幅に維持することができる。 Since the optical scanning device 1 is configured in this way, it is possible to suppress the swing amplitude of the deflecting surface 52 from rapidly decreasing due to the jump phenomenon, and the resonant deflection element 50 due to a change in ambient temperature or the like. Even when the resonance frequency fs changes, the deflection surface 52 can be maintained at a constant oscillation amplitude.
 また、共振型偏向素子50は、メタル基板上に偏向面52を含む領域が形成されたMEMSであり、図3に示すような特性を有している。すなわち、駆動信号Sig1の周波数を共振周波数よりも低くしていくと急激に偏向面52の揺動振幅(振れ角)が小さくなるが、駆動信号Sig1の周波数を共振周波数から高くしていっても偏向面52の揺動振幅(振れ角)は急激に小さくならない。そこで、駆動制御部10は、共振周波数fsから所定周波数Δfだけ高い周波数foの駆動信号Sig1で共振型偏向素子50を駆動するようにしている。このようにすることで、駆動信号Sig1の周波数を共振周波数fsと同一としない場合であっても、小さい駆動信号Sig1で偏向面52の揺動振幅を大きくとることができ、省電力化を図ることができる。 The resonant deflection element 50 is a MEMS in which a region including a deflection surface 52 is formed on a metal substrate, and has characteristics as shown in FIG. That is, when the frequency of the drive signal Sig1 is made lower than the resonance frequency, the swing amplitude (swing angle) of the deflecting surface 52 is suddenly reduced, but even if the frequency of the drive signal Sig1 is increased from the resonance frequency. The swing amplitude (swing angle) of the deflecting surface 52 does not rapidly decrease. Therefore, the drive control unit 10 drives the resonant deflection element 50 with the drive signal Sig1 having a frequency fo that is higher than the resonant frequency fs by a predetermined frequency Δf. In this way, even when the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, the swing amplitude of the deflection surface 52 can be increased with a small drive signal Sig1, thereby saving power. be able to.
 なお、BDセンサ70に代えて、共振型偏向素子50により走査された光束が入射する位置に複数の光電変換素子をアレイ状に設けたラインイメージセンサを設け、ラインイメージセンサの各光電変換素子から出力される信号に基づいて偏向面52の揺動状態を検出するようにしてもよい。また、共振型偏向素子50において、枠体53に新たに圧電素子を設け、偏向面52の揺動に応じて圧電素子から出力される電気信号に基づき、偏向面52の揺動状態を検出するようにしてもよい。 Instead of the BD sensor 70, a line image sensor in which a plurality of photoelectric conversion elements are arranged in an array is provided at a position where a light beam scanned by the resonant deflection element 50 is incident. The swinging state of the deflection surface 52 may be detected based on the output signal. Further, in the resonance type deflection element 50, a new piezoelectric element is provided on the frame 53, and the swinging state of the deflection surface 52 is detected based on an electrical signal output from the piezoelectric element in response to the swinging of the deflection surface 52. You may do it.
 また、図10に示すように、共振型偏向素子50又はその周囲の温度を検出する温度検出部80を設け、温度検出部80による検出結果に応じて、所定周波数Δfを変更するようにしてもよい。すなわち、周波数変更制御部24において、温度Tと周波数とを関連づけたテーブルを記憶しておき、温度検出部80によって検出された温度Tに関連づけられた周波数を前記テーブルから読み出して、この周波数を所定周波数Δfとする。このようにすることで、温度に応じて適切に所定周波数Δfを決めることができ、周囲温度等の変化により共振型偏向素子の共振周波数が変化した場合においても、より安定的に偏向面52を一定の揺動振幅に維持することができる。なお、温度検出部80は本発明の温度検出手段に相当する。 In addition, as shown in FIG. 10, a temperature detection unit 80 that detects the temperature of the resonant deflection element 50 or its surroundings is provided, and the predetermined frequency Δf is changed according to the detection result by the temperature detection unit 80. Good. That is, the frequency change control unit 24 stores a table associating the temperature T with the frequency, reads the frequency associated with the temperature T detected by the temperature detection unit 80 from the table, and sets the frequency to a predetermined value. The frequency is Δf. In this way, the predetermined frequency Δf can be appropriately determined according to the temperature, and even when the resonance frequency of the resonance-type deflection element changes due to a change in the ambient temperature or the like, the deflection surface 52 can be made more stable. A constant oscillation amplitude can be maintained. The temperature detecting unit 80 corresponds to the temperature detecting means of the present invention.
 また、共振型偏向素子50は、メタル基板上に偏向面52を含む領域が形成されたMEMSとしたが、シリコン基板上に偏向面を含む領域が形成されたMEMSを用いるようにしてもよい。例えば、共振型偏向素子50’を図11に示すように構成する。同図に示すように、共振型偏向素子50’は、その偏向面52’である反射ミラーを四角形状とし、その表面に反射面が形成されている。偏向面52’は2辺に連結する梁部54’,54’により支持され、梁部54’,54’は枠体53’に連結して支持されている。つまり、偏向面52’は2つの梁部54’,54’を介して枠体53’に揺動可能に支持されている。また、枠体53’の1つの隅部から梁部54’に向かって延びる圧電素子からなる駆動部51’が枠体53’上に形成されている。これらの偏向面52’,枠体53’,梁部54’,54’はシリコン基板上に形成されるものである。そして、駆動制御部10から駆動信号Sig1を直流電圧を重畳して駆動部51’に入力することで、梁部54’,54’の長手方向を揺動軸Lc’として、偏向面52’が揺動軸Lc’周りに揺動する。この共振型偏向素子50’では、図12に示すように、駆動信号Sig1の周波数を共振周波数fsよりも高くしていくと急激に偏向面52の揺動振幅(振れ角)が小さくなるが、駆動信号Sig1の周波数を共振周波数fsから低くしていっても偏向面52の揺動振幅(振れ角)は急激に小さくならない。そこで、駆動制御部10は、共振周波数fsから所定周波数Δfだけ低い周波数foの駆動信号Sig1で共振型偏向素子50’を駆動する。このようにすることで、駆動信号Sig1の周波数を共振周波数fsと同一としない場合であっても、小さい駆動信号Sig1で偏向面52の揺動振幅を大きくとることができ、省電力化を図ることができる。 Further, although the resonance type deflection element 50 is a MEMS in which a region including a deflection surface 52 is formed on a metal substrate, a MEMS in which a region including a deflection surface is formed on a silicon substrate may be used. For example, the resonant deflection element 50 'is configured as shown in FIG. As shown in the figure, the resonance type deflection element 50 'has a reflecting mirror which is a deflection surface 52' having a quadrangular shape, and a reflecting surface is formed on the surface thereof. The deflection surface 52 'is supported by beam portions 54' and 54 'connected to two sides, and the beam portions 54' and 54 'are connected to and supported by a frame 53'. That is, the deflection surface 52 'is supported by the frame 53' via the two beam portions 54 'and 54' so as to be swingable. In addition, a drive unit 51 ′ made of a piezoelectric element extending from one corner of the frame 53 ′ toward the beam 54 ′ is formed on the frame 53 ′. The deflection surface 52 ', the frame 53', and the beam portions 54 'and 54' are formed on the silicon substrate. Then, the drive signal Sig1 is superimposed on the direct current voltage from the drive control unit 10 and input to the drive unit 51 ′, so that the longitudinal direction of the beam portions 54 ′ and 54 ′ becomes the swing axis Lc ′ and the deflection surface 52 ′ It swings around the swing axis Lc ′. In this resonance type deflection element 50 ′, as shown in FIG. 12, when the frequency of the drive signal Sig1 is made higher than the resonance frequency fs, the oscillation amplitude (the deflection angle) of the deflection surface 52 is suddenly reduced. Even if the frequency of the drive signal Sig1 is lowered from the resonance frequency fs, the swing amplitude (swing angle) of the deflecting surface 52 does not rapidly decrease. Therefore, the drive control unit 10 drives the resonance type deflection element 50 ′ with a drive signal Sig 1 having a frequency fo lower than the resonance frequency fs by a predetermined frequency Δf. In this way, even when the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, the swing amplitude of the deflection surface 52 can be increased with a small drive signal Sig1, thereby saving power. be able to.
 [2.画像表示装置]
 次に、上記光走査装置を適用した画像表示装置について説明する。本実施形態に係る画像表示装置は、光走査型画像表示装置であり、画像信号に応じて強度変調したレーザ光をレーザから出射し、このレーザ光を走査部により2次元方向に走査し、投射対象に投射して画像を表示するものである。以下においては、網膜走査型の画像表示装置(以下、RSDという)を一例に挙げて説明するが、スクリーン投射型の画像表示装置などにも適用することができる。
[2. Image display device]
Next, an image display device to which the optical scanning device is applied will be described. The image display device according to the present embodiment is an optical scanning image display device, which emits laser light intensity-modulated in accordance with an image signal from a laser, scans the laser light in a two-dimensional direction by a scanning unit, and projects it. The image is projected onto the target and displayed. In the following, a retinal scanning type image display device (hereinafter referred to as RSD) will be described as an example, but the present invention can also be applied to a screen projection type image display device.
 本実施形態に係るRSDの電気的構成及び光学的構成について、図13を参照して説明する。 The electrical configuration and optical configuration of the RSD according to the present embodiment will be described with reference to FIG.
 本実施形態に係るRSD100は、外部入力端子(図示せず)から入力された画像信号Sに基づいて、画像を形成するための要素となるR(赤色)駆動信号120r,G(緑色)駆動信号120g,B(青色)駆動信号120bを画素単位で生成する制御部110を備えている。また、制御部110は、高速走査部150で使用される高速駆動信号111と、低速走査部160で使用される低速駆動信号112とをそれぞれ出力する。 The RSD 100 according to the present embodiment is based on an image signal S input from an external input terminal (not shown), and R (red) drive signals 120r and G (green) drive signals that are elements for forming an image. A control unit 110 that generates 120 g, B (blue) drive signal 120 b in units of pixels is provided. Further, the control unit 110 outputs a high-speed driving signal 111 used in the high-speed scanning unit 150 and a low-speed driving signal 112 used in the low-speed scanning unit 160, respectively.
 Rレーザドライバ126,Gレーザドライバ127,Bレーザドライバ128は、それぞれ制御部110から出力されるR駆動信号120r,G駆動信号120g,B駆動信号120bをもとに、Rレーザ123,Gレーザ124,Bレーザ125へそれぞれ駆動電流を供給する。各レーザ123,124,125は、各レーザドライバ126,127,128から供給される駆動電流に応じて強度変調されたレーザ光を出射する。各レーザ123,124,125から出射したR(赤色)レーザ光Lr,G(緑色)レーザ光Lg、B(青色)レーザ光Lbは、コリメート光学系131,132,133によってそれぞれ平行光化された後に、ダイクロイックミラー134,135,136に入射される。その後、これらのダイクロイックミラー134,135,136により、3原色の各レーザ光Lr,Lg,Lbが波長選択的に反射・透過して結合光学系137に達し、合波されて光ファイバケーブル140へ出射される。 The R laser driver 126, the G laser driver 127, and the B laser driver 128 are based on the R drive signal 120r, the G drive signal 120g, and the B drive signal 120b that are output from the control unit 110, respectively. , B are supplied to the B laser 125, respectively. Each laser 123, 124, 125 emits laser light whose intensity is modulated in accordance with the drive current supplied from each laser driver 126, 127, 128. The R (red) laser light Lr, G (green) laser light Lg, and B (blue) laser light Lb emitted from the lasers 123, 124, and 125 were collimated by collimating optical systems 131, 132, and 133, respectively. Later, the light enters the dichroic mirrors 134, 135, and 136. Thereafter, the laser beams Lr, Lg, and Lb of the three primary colors are wavelength-selectively reflected and transmitted by these dichroic mirrors 134, 135, and 136, reach the coupling optical system 137, and are combined to the optical fiber cable 140. Emitted.
 光ファイバケーブル140を介して出射されるレーザ光はコリメート光学系141により平行光化され、高速走査部150へ入射される。高速走査部150は、レーザ光を水平方向に走査するための偏向面(反射ミラー)152を有する共振型偏向素子151を備えており、高速走査駆動回路153により高速駆動信号111に基づいて共振型偏向素子151を駆動し、偏向面152によりレーザ光を偏向して走査する。高速走査部150と低速走査部160との間には、第1リレー光学系155が設けられており、高速走査部150により操作されたレーザ光が、低速走査部160に入射する。 The laser light emitted through the optical fiber cable 140 is collimated by the collimating optical system 141 and is incident on the high-speed scanning unit 150. The high-speed scanning unit 150 includes a resonance-type deflection element 151 having a deflection surface (reflection mirror) 152 for scanning a laser beam in the horizontal direction. The high-speed scanning driving circuit 153 uses the resonance type deflection element 151 based on the high-speed drive signal 111. The deflecting element 151 is driven, and the laser beam is deflected and scanned by the deflecting surface 152. A first relay optical system 155 is provided between the high speed scanning unit 150 and the low speed scanning unit 160, and the laser beam operated by the high speed scanning unit 150 is incident on the low speed scanning unit 160.
 低速走査部160は、レーザ光を垂直方向に走査するための偏向面(反射ミラー)162を有する非共振型偏向素子161を有しており、低速走査駆動回路163により低速駆動信号112に基づいて非共振型偏向素子161を駆動する。この低速走査部160は、表示すべき画像の1フレームごとに、画像を形成するためのレーザ光を最初の走査線から最後の走査線に向かって垂直方向に走査する。ここで「走査線」とは、高速走査部150による水平方向への片側1走査を意味する。非共振型偏向素子161によって走査されたレーザ光は、正の屈折力を持つ2つのレンズ170a,170bが直列配置された第2リレー光学系170を介して、眼201の前方に位置させたハーフミラー180で反射されてユーザの瞳孔201aに入射する。これにより、網膜201b上に画像信号Sに応じた画像が投影され、ユーザは瞳孔201aに入射するレーザ光を画像として認識する。また、ハーフミラー180は外光Laを透過してユーザの瞳孔201aに入射させるようにしており、これによりユーザは外光Laに基づく外景にレーザ光に基づく画像を重ねた画像を視認することができる。 The low-speed scanning unit 160 includes a non-resonant deflecting element 161 having a deflection surface (reflection mirror) 162 for scanning the laser beam in the vertical direction, and the low-speed scanning driving circuit 163 is based on the low-speed driving signal 112. The non-resonance type deflection element 161 is driven. The low-speed scanning unit 160 scans a laser beam for forming an image in a vertical direction from the first scanning line toward the last scanning line for each frame of the image to be displayed. Here, the “scanning line” means one scanning on one side in the horizontal direction by the high-speed scanning unit 150. The laser beam scanned by the non-resonant deflection element 161 is half-positioned in front of the eye 201 through the second relay optical system 170 in which two lenses 170a and 170b having positive refractive power are arranged in series. The light is reflected by the mirror 180 and enters the user's pupil 201a. As a result, an image corresponding to the image signal S is projected on the retina 201b, and the user recognizes the laser light incident on the pupil 201a as an image. Further, the half mirror 180 transmits the external light La so as to enter the user's pupil 201a, so that the user can visually recognize an image obtained by superimposing an image based on the laser light on the external scene based on the external light La. it can.
 以上のように構成されたRSD100では、制御部110が上記光走査装置1の駆動制御部10と同様の回路構成を有して動作し、高速走査駆動回路153が直流電圧重畳部40と同様の回路構成を有して動作する。すなわち、RSD100では、共振型偏向素子151を駆動する高速駆動信号111の周波数を変化させ、BDセンサ154から出力されるBD信号に基き偏向面152の揺動振幅を検出して、共振型偏向素子151固有の共振周波数fsを判定する。そして、RSD100は、この共振周波数fsから所定周波数Δfだけずれた周波数の高速駆動信号111で共振型偏向素子151を駆動した後、高速駆動信号111の振幅を変更して偏向面152の揺動振幅を所定値にする。 In the RSD 100 configured as described above, the control unit 110 operates with a circuit configuration similar to that of the drive control unit 10 of the optical scanning device 1, and the high-speed scanning drive circuit 153 is similar to the DC voltage superimposing unit 40. Operates with a circuit configuration. That is, in the RSD 100, the frequency of the high-speed drive signal 111 for driving the resonance type deflection element 151 is changed, and the oscillation amplitude of the deflection surface 152 is detected based on the BD signal output from the BD sensor 154. The resonance frequency fs inherent to 151 is determined. The RSD 100 drives the resonant deflection element 151 with the high-speed drive signal 111 having a frequency shifted from the resonance frequency fs by a predetermined frequency Δf, and then changes the amplitude of the high-speed drive signal 111 to change the swing amplitude of the deflection surface 152. Is set to a predetermined value.
 このようにRSD100が構成されているため、跳躍現象により偏向面152の揺動振幅が急激に小さくなることを抑制することができ、しかも、周囲温度等の変化により共振型偏向素子151の共振周波数fsが変化した場合においても、偏向面152を一定の揺動振幅に維持することができる。 Since the RSD 100 is configured in this manner, it is possible to suppress the swing amplitude of the deflecting surface 152 from rapidly decreasing due to a jump phenomenon, and the resonance frequency of the resonant deflection element 151 due to a change in ambient temperature or the like. Even when fs changes, the deflection surface 152 can be maintained at a constant oscillation amplitude.
 本発明を、上述してきた実施形態を通して説明したが、本実施形態のRSD1によれば、以下の効果が期待できる。 Although the present invention has been described through the above-described embodiments, the following effects can be expected according to the RSD 1 of the present embodiment.
 (1)本実施形態の光走査装置1は、入射する光束を偏向する偏向面52,52’を有し、共振により偏向面52,52が揺動軸Lc,Lc’周りに揺動する共振型偏向素子50,50’を有している。さらに、光走査装置1は、駆動制御部10(駆動手段)を備え、この駆動制御部10により、共振型偏向素子50,50’を駆動する駆動信号Sig1の周波数を変化させ、偏向面52,52’の揺動振幅を検出して、共振型偏向素子50,50’固有の共振周波数を判定する。そして、駆動制御部10は、この共振周波数fsから所定周波数Δfだけずれた周波数foの駆動信号Sig1で共振型偏向素子50,50’を駆動した後、駆動信号Sig1の振幅を変更して偏向面52,52’の揺動振幅を所定値にする。従って、跳躍現象により偏向面52の揺動振幅が急激に小さくなることを抑制することができ、しかも、周囲温度等の変化により共振型偏向素子50の共振周波数fsが変化した場合においても、偏向面52を一定の揺動振幅に維持することができる。 (1) The optical scanning device 1 according to the present embodiment includes deflection surfaces 52 and 52 ′ for deflecting an incident light beam, and resonance in which the deflection surfaces 52 and 52 swing around the swing axes Lc and Lc ′ due to resonance. It has the type | mold deflection | deviation elements 50 and 50 '. Further, the optical scanning device 1 includes a drive control unit 10 (drive means), and the drive control unit 10 changes the frequency of the drive signal Sig1 for driving the resonance type deflection elements 50 and 50 ′, so that the deflection surface 52, The oscillation amplitude of 52 ′ is detected, and the resonance frequency inherent to the resonance type deflection elements 50, 50 ′ is determined. The drive control unit 10 drives the resonance type deflection elements 50 and 50 ′ with the drive signal Sig1 having a frequency fo shifted from the resonance frequency fs by a predetermined frequency Δf, and then changes the amplitude of the drive signal Sig1 to change the deflection surface. The swing amplitude of 52 and 52 ′ is set to a predetermined value. Accordingly, it is possible to prevent the swing amplitude of the deflection surface 52 from rapidly decreasing due to the jump phenomenon, and even when the resonance frequency fs of the resonance type deflection element 50 is changed due to a change in the ambient temperature or the like, the deflection is also suppressed. The surface 52 can be maintained at a constant oscillation amplitude.
 (2)また、共振型偏向素子50は、メタル基板上に偏向面52を含む領域が形成されたMEMSであり、駆動制御部10は、共振周波数fsから所定周波数Δfだけ高い周波数foの駆動信号Sig1で共振型偏向素子50を駆動した後、偏向面52の揺動振幅を所定値にするので、駆動信号Sig1の周波数を共振周波数fsと同一としない場合であっても、小さい駆動信号Sig1で偏向面52の揺動振幅を大きくとることができ、省電力化を図ることができる。 (2) The resonant deflection element 50 is a MEMS in which a region including the deflection surface 52 is formed on a metal substrate. The drive control unit 10 drives the drive signal having a frequency fo that is higher than the resonance frequency fs by a predetermined frequency Δf. Since the swing amplitude of the deflecting surface 52 is set to a predetermined value after the resonant deflection element 50 is driven by Sig1, even if the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, a small drive signal Sig1 is used. The swing amplitude of the deflection surface 52 can be increased, and power saving can be achieved.
 (3)共振型偏向素子50’は、シリコン基板上に偏向面52’を含む領域が形成されたMEMSであり、駆動制御部10は、共振周波数fsから所定周波数Δfだけ低い周波数fsの駆動信号Sig1で共振型偏向素子50’を駆動した後、偏向面52’の揺動振幅を所定値にするので、駆動信号Sig1の周波数を共振周波数fsと同一としない場合であっても、小さい駆動信号Sig1で偏向面52’の揺動振幅を大きくとることができ、省電力化を図ることができる。 (3) The resonance type deflection element 50 ′ is a MEMS in which a region including the deflection surface 52 ′ is formed on a silicon substrate, and the drive control unit 10 drives the drive signal having a frequency fs lower than the resonance frequency fs by a predetermined frequency Δf. Since the oscillation amplitude of the deflecting surface 52 ′ is set to a predetermined value after driving the resonant deflection element 50 ′ with Sig1, even if the frequency of the drive signal Sig1 is not the same as the resonance frequency fs, a small drive signal With Sig1, the swing amplitude of the deflection surface 52 ′ can be increased, and power saving can be achieved.
 (4)共振型偏向素子50,50’又はその周囲の温度を検出する温度検出部80を備え、所定周波数Δfは、温度検出部80によって検出された温度に基づいた周波数としているので、周囲温度等の変化により共振型偏向素子50,50’の共振周波数fsが変化した場合においても、より安定的に偏向面52,52’を一定の揺動振幅に維持することができる。 (4) Since the temperature detecting unit 80 that detects the temperature of the resonant deflection elements 50, 50 ′ or the surrounding thereof is provided and the predetermined frequency Δf is a frequency based on the temperature detected by the temperature detecting unit 80, the ambient temperature Even when the resonance frequency fs of the resonance type deflection elements 50, 50 ′ changes due to such changes, the deflection surfaces 52, 52 ′ can be more stably maintained at a constant oscillation amplitude.
 最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention other than the embodiments described above.
1 光走査装置
10 駆動制御部
40 直流電圧重畳部
50,50’,150 共振型偏向素子
52,52’,152 偏向面
80 温度検出部
DESCRIPTION OF SYMBOLS 1 Optical scanning apparatus 10 Drive control part 40 DC voltage superimposition part 50,50 ', 150 Resonance type deflection | deviation element 52,52', 152 Deflection surface 80 Temperature detection part

Claims (5)

  1.  入射する光束を偏向する偏向面を有し、共振により前記偏向面が軸周りに揺動する共振型偏向素子と、
     前記共振型偏向素子を駆動する駆動信号の周波数を変化させ、前記偏向面の揺動振幅を検出して、前記共振型偏向素子固有の共振周波数を判定し、この共振周波数から所定周波数だけずれた周波数の前記駆動信号で前記共振型偏向素子を駆動した後、前記駆動信号の振幅を変更して前記偏向面の揺動振幅を所定値にする駆動手段と、を備える光走査装置。
    A resonant deflecting element having a deflecting surface for deflecting an incident light beam, and the deflecting surface swings around an axis by resonance;
    The frequency of the drive signal for driving the resonance type deflection element is changed, the oscillation amplitude of the deflection surface is detected, the resonance frequency unique to the resonance type deflection element is determined, and the resonance frequency is deviated by a predetermined frequency. An optical scanning device comprising: driving means for changing the amplitude of the drive signal to drive the oscillation amplitude of the deflection surface to a predetermined value after driving the resonant deflection element with the drive signal of frequency.
  2.  前記共振型偏向素子は、メタル基板上に前記偏向面を含む領域が形成されたMEMSであり、
     前記駆動手段は、前記共振周波数から所定周波数だけ高い周波数の前記駆動信号で前記共振型偏向素子を駆動した後、前記偏向面の揺動振幅を所定値にする
    ことを特徴とする請求項1に記載の光走査装置。
    The resonant deflection element is a MEMS in which a region including the deflection surface is formed on a metal substrate,
    2. The drive means according to claim 1, wherein after the resonance type deflection element is driven with the drive signal having a frequency higher than the resonance frequency by a predetermined frequency, the swing amplitude of the deflection surface is set to a predetermined value. The optical scanning device described.
  3.  前記共振型偏向素子は、シリコン基板上に前記偏向面を含む領域が形成されたMEMSであり、
     前記駆動手段は、前記共振周波数から所定周波数だけ低い周波数の前記駆動信号で前記共振型偏向素子を駆動した後、前記偏向面の揺動振幅を所定値にする
    ことを特徴とする請求項1に記載の光走査装置。
    The resonant deflection element is a MEMS in which a region including the deflection surface is formed on a silicon substrate,
    2. The drive means according to claim 1, wherein after the resonance type deflection element is driven with the drive signal having a frequency lower than the resonance frequency by a predetermined frequency, the swing amplitude of the deflection surface is set to a predetermined value. The optical scanning device described.
  4.  前記共振型偏向素子又はその周囲の温度を検出する温度検出手段を備え、
     前記所定周波数は、前記温度検出手段によって検出された温度に基づいた周波数としたことを特徴とする請求項1に記載の光走査装置。
    A temperature detecting means for detecting the temperature of the resonant deflection element or its surroundings;
    The optical scanning device according to claim 1, wherein the predetermined frequency is a frequency based on a temperature detected by the temperature detection unit.
  5.  請求項1に記載の光走査装置を備え、画像信号に応じた強度の光束を前記光走査装置により走査し、ユーザの少なくとも一方の眼に向けて出射させることで、画像を表示することを特徴とする網膜走査型の画像表示装置。 The optical scanning device according to claim 1, wherein a light beam having an intensity corresponding to an image signal is scanned by the optical scanning device and emitted toward at least one eye of a user to display an image. Retina scanning type image display device.
PCT/JP2011/053788 2010-03-02 2011-02-22 Optical scanning device and image display device provided with the same WO2011108395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010045781A JP2011180450A (en) 2010-03-02 2010-03-02 Optical scanner and image display device including the same
JP2010-045781 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011108395A1 true WO2011108395A1 (en) 2011-09-09

Family

ID=44542051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053788 WO2011108395A1 (en) 2010-03-02 2011-02-22 Optical scanning device and image display device provided with the same

Country Status (2)

Country Link
JP (1) JP2011180450A (en)
WO (1) WO2011108395A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484656B1 (en) 2018-12-12 2019-11-19 Microsoft Technology Licensing, Llc Driver system resonant frequency determination
US11218506B2 (en) 2018-12-17 2022-01-04 Microsoft Technology Licensing, Llc Session maturity model with trusted sources

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311322B2 (en) * 2014-01-15 2018-04-18 株式会社リコー Optical deflection apparatus, image display apparatus, and head-up display
JP6364312B2 (en) * 2014-10-23 2018-07-25 スタンレー電気株式会社 Video projection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020226A (en) * 1996-06-28 1998-01-23 Olympus Optical Co Ltd Optical scanner
JP2005208460A (en) * 2004-01-26 2005-08-04 Seiko Epson Corp Optical scanner and image forming apparatus
JP2008089932A (en) * 2006-09-29 2008-04-17 Brother Ind Ltd Optical scanner and image display device with the same, and retina scanning type image display device and method of driving optical scanning element
JP2009237239A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Optical scanner and image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518099B2 (en) * 1995-10-06 2004-04-12 株式会社デンソー Optical scanner device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020226A (en) * 1996-06-28 1998-01-23 Olympus Optical Co Ltd Optical scanner
JP2005208460A (en) * 2004-01-26 2005-08-04 Seiko Epson Corp Optical scanner and image forming apparatus
JP2008089932A (en) * 2006-09-29 2008-04-17 Brother Ind Ltd Optical scanner and image display device with the same, and retina scanning type image display device and method of driving optical scanning element
JP2009237239A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Optical scanner and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484656B1 (en) 2018-12-12 2019-11-19 Microsoft Technology Licensing, Llc Driver system resonant frequency determination
US11218506B2 (en) 2018-12-17 2022-01-04 Microsoft Technology Licensing, Llc Session maturity model with trusted sources

Also Published As

Publication number Publication date
JP2011180450A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
US7639413B2 (en) Resonant optical scanner using vibrating body with optimized resonant frequency characteristics and image forming apparatus having the same
WO2011122410A1 (en) Optical scanning device and image display device
WO2007010981A1 (en) Optical scan device, image display device, optical scanner resonance frequency modification method, and reflection mirror position correction method
US10187620B2 (en) Display device
JP2018005007A (en) Optical scanner, projector device, and head-up display device
JP2008216299A (en) Two-dimensional optical scanner
JP5098759B2 (en) Image projection device
JP2010237536A (en) Image display device
US7817322B2 (en) Optical scanning device, image display device provided with optical scanning device, retinal scanning display, and driving method of optical scanning element
WO2007122974A1 (en) Optical scanner apparatus, image display apparatus, and retina scan type image display apparatus
WO2011108395A1 (en) Optical scanning device and image display device provided with the same
JP2014197063A (en) Oscillating mirror element and projector
JP2011227379A (en) Image display device
JP2011075957A (en) Image display device
JP4888022B2 (en) Image display device and retinal scanning image display device
JP2012078392A (en) Scanning type image display device
JP2011215398A (en) Image display apparatus
WO2005033771A1 (en) Optical scanner and image forming device with the same
WO2011125494A1 (en) Optical scanning device and image display device
JP5152075B2 (en) Drive signal generator, optical scanning device including the same, and image display device
JP2011075955A (en) Image display device
JP2011215325A (en) Optical scanning device and image display device
JP2011164121A (en) Image display device
US11169372B2 (en) Light scanning apparatus and method for controlling light scanning apparatus
JP2012053216A (en) Scanning type image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750507

Country of ref document: EP

Kind code of ref document: A1